ℓ_0 norm as a regularizer or as a constraint for least squares: analytical comparison of the optimal solutions

Mila NIKOLOVA

CMLA, ENS Cachan, CNRS, 61 Avenue du President Wilson, F-94230 Cachan, France nikolova@cmla.ens-cachan.fr http://mnikolova.perso.math.cnrs.fr

Abstract

We have an $M \times N$ real-valued arbitrary matrix A (e.g. a dictionary) with M < N and data d describing the sought-after unknown object u with the help of A. When the sought-after u is sparse, two popular models to recover it are the variational formulation $||Au - d||^2 + \beta ||u||_0$ for $\beta > 0$ a parameter and the sparsity constrained formulation where $||Au - d||^2$ is minimized under the constraint $||u||_0 \leq K$ for an integer K. Many papers mention that these models are "equivalent" via the choice of β / K . We analyze in depth the relationship between the optimal solutions of these models. We prove that a true equivalence (i.e. for each K there is a corresponding β and vice-versa) occurs only under specific conditions that depend mainly on the data d. In more general conditions we exhibit the similarities and the differences between their optimal solutions.