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This is the second part of a series of two talks, where we investigate in a unified way  

the structural  properties  of  a  large class  of  convex regularizers  for  linear  inverse 

problems.  

This second talk is dedicated to analyzing the local sensitivity of any regularized 

solution to perturbations on the observations, and as a by-product, its implications to 

construct unbiased risk estimators and parameters selection procedures. We consider 

regularizations  with  convex positively  1-homogenous  functionals  (in  fact  gauges) 

which obey a weak decomposability property and belong to an o-minimal structure. 

The weak decomposability will promote solutions of the inverse problem conforming 

to some notion of simplicity/low complexity by living on a low dimensional sub-

space. This family of priors encompasses many special instances routinely used in 

regularized inverse problems such as l^1, l^1-l^2 (group sparsity), nuclear norm, or 

the l^\infty norm. The weak decomposability requirement is flexible enough to cope 

with analysis-type priors that include a pre-composition with a linear operator, such 

as for instance the total variation and polyhedral gauges. Weak decomposability is 

also  stable  under  summation  of  regularizers,  thus  enabling  to  handle  mixed 

regularizations. 

In this talk, owing to weak decomposability, we give a precise local parameterization 

and establish local differentiability of any regularized solution as a function of the 



observations. We also give an expression of the Jacobian of a solution mapping w.r.t.  

to the observations. Using tools from o-minimal geometry, we prove that the set of 

non-differentiability  points  is  of  zero  Lebesgue  measure,  hence  showing  that  the 

expression of the Jacobian is valid Lebesgue a.e.. These results are achieved without 

requiring that the forward-model linear operator is injective, and extend and unify 

previous results known for analysis l^1 sparsity, see [1] and references therein. When 

the noise in the observations is Gaussian, these results allow us to derive expressions 

of the Generalized Stein Unbiased Risk Estimator (GSURE) [2]. In turn, this provides 

a principled way to automatically select the hyperparameters involved, such as the 

regularization parameter.

This is a joint work with S. Vaiter, C. Deledalle, G. Peyré and C. Dossal.
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