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Convexity

Convex function

f (xt) ≤ tf (x1) + (1− t) f (x0)

xt = tx1 + (1− t)x0

f x0( )

f xt( )

f x1( )

Local solutions are easy to find and globally optimal!

Easy to generalize:

Building bricks: linear, quadratic, norms...
Rules: convex+convex=convex,...
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Convex optimization with positive variables

Power control [Chiang:07] Circuit design [Hershenson:01]
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B. Examples of successive convex approximation

1) Logarithmic approximation for GP: In [17], [18], a
nonconvex problem involving the function log(1 + SIR) is
approximated by a + b log(SIR) for some a and b that satisfy
the above three conditions.

2) Single condensation method for GP: Complementary
GPs involve upper bounds on the ratio of posynomials as in
(9); they can be turned into GPs by approximating the denomi-
nator of the ratio of posynomials, g(x), with a monomial g̃(x),
but leaving the numerator f(x) as a posynomial.

Lemma 1: Let g(x) =
∑

i ui(x) be a posynomial. Then

g(x) ≥ g̃(x) =
∏

i

(
ui(x)

αi

)αi

. (11)

If, in addition, αi = ui(x0)/g(x0), ∀i, for any fixed positive
x0, then g̃(x0) = g(x0), and g̃(x0) is the best local monomial
approximation to g(x0) near x0 in the sense of first order
Taylor approximation.

Proof: The arithmetic-geometric mean inequality states
that

∑
i αivi ≥ ∏

i vαi

i , where v # 0 and α $ 0, 1T α =
1. Letting ui = αivi, we can write this basic inequality as∑

i ui ≥ ∏i (ui/αi)
αi . The inequality becomes an equality if

we let αi = ui/
∑

i ui, ∀i, which satisfies the condition that
α $ 0 and 1T α = 1. The best local monomial approximation
g̃(x0) of g(x0) near x0 can be easily verified [4].

Proposition 3: The approximation of a ratio of posynomials
f(x)/g(x) with f(x)/g̃(x), where g̃(x) is the monomial
approximation of g(x) using the arithmetic-geometric mean
approximation of Lemma 1, satisfies the three conditions for
the convergence of the successive approximation method.

Proof: Conditions (1) and (2) are clearly satisfied since
g(x) ≥ g̃(x) and g̃(x0) = g(x0) (Lemma 1). Condition (3) is
easily verified by taking derivatives of g(x) and g̃(x).

Suppose we want to minimize f0(x) subject to an equality
constraint on a ratio of posynomials f(x)/g(x) = 1. Then,
we can rewrite this as minimizing f0(x) + φt subject to
f(x)/g(x) ≤ 1 and f(x)/g(x) ≥ 1 − t where φ is a suf-
ficiently large number to guarantee that the optimum solution
will have t ≈ 0.5 The second constraint can be rewritten as
g(x)/(f(x) + tg(x)) ≤ 1 where we can apply the single
condensation method to the denominators of both constraints.

3) Double condensation method for GP[1]: Another choice
of approximation is to make a double monomial approxi-
mation for both the denominator and numerator in (9). We
can still use the arithmetic-geometric mean approximation of
Lemma 1 as a monomial approximation for the denominator.
But, Lemma 1 cannot be used as a monomial approximation
for the numerator. To satisfy the three conditions for the
convergence of the successive approximation method, a mono-
mial approximation for the numerator f(x) should satisfy
f(x) ≤ f̃(x).

C. Applications to power control

Figure 5 shows a block diagram of the approach of GP-
based power control for general SIR regime. In the high SIR
regime, we need to solve only one GP. In the medium to low

5In our numerical analysis, we use φ = 1 + k at the k-th iteration.
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Fig. 5. GP-based power control for general SIR regime.

SIR regimes, we solve truly nonconvex power control prob-
lems that cannot be turned into convex formulation through a
series of GPs.

GP-based power control problems in the medium to low SIR
regimes become SP (or, equivalently, Complementary GP),
which can be solved by the single or double condensation
method. We focus on the single condensation method here.
Consider a representative problem formulation of maximizing
total system throughput in a cellular wireless network subject
to user rate and outage probability constraints in problem (6),
which can be explicitly written out as

minimize
∏N

i=1
1

1+SIRi

subject to (2TRi,min − 1) 1
SIRi

≤ 1, ∀i,

(SIRth)N−1(1 − Po,i,max)
∏N

j "=i
GijPj

GiiPi
≤ 1, ∀i,

Pi(Pi,max)−1 ≤ 1, ∀i.
(12)

All the constraints are posynomials. However, the objective
is not a posynomial, but a ratio between two posynomials
as in (9). This power control problem can be solved by the
condensation method by solving a series of GPs. Specifically,
we have the following single-condensation algorithm:

Algorithm Single condensation GP power control
Input An initial feasible power vector P.
Output A power allocation that satisfies the KKT condi-

tions.
1) Evaluate the denominator posynomial of the objective

function in (12) with the given P.
2) Compute for each term i in this posynomial,

αi =
value of ith term in posynomial

value of posynomial
.

3) Condense the denominator posynomial of the (12) ob-
jective function into a monomial using (11) with weights αi.

4) Solve the resulting GP using an interior point method.
5) Go to step 1 using P of step 4.
6) Terminate the kth loop if ‖ P(k) − P(k−1) ‖≤ ε where

ε is the error tolerance for exit condition.
As condensing the objective in the above problem gives

us an underestimate of the objective value, each GP in the
condensation iteration loop tries to improve the accuracy of the
approximation to a particular minimum in the original feasible
region. All three conditions for convergence in subsection IV.A
are satisfied, and the algorithm is provably convergent. Em-
pirically through extensive numerical experiments, we observe
that it often compute the globally optimal power allocation.

Example 4. We consider a wireless cellular network with 3
users. Let T = 10−6s, Gii = 1.5, and generate Gij , i )= j, as
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Fig. 1. Two-stage op-amp considered herein.

ysis, …) are due to the formulation of the design problem as a
convex optimization problem. Geometric programming (when
reformulated as described in Section II-A) is just a special type
of convex optimization problem.Although general convex prob-
lems can be solved efficiently, the special structure of geometric
programming can be exploited to obtain an even more efficient
solution algorithm.
The method we present can be applied to a wide variety of

amplifier architectures, but in this paper, we apply the method
to a specific two-stage CMOS op-amp. The authors show how
the method extends to other architectures in [49] and [50]. A
longer version of this paper, which includes more detail about
the models, some of the derivations, and SPICE simulation
parameters, is available at the authors’ web site [51]. Related
work has been reported in several conference publications, e.g.,
[48]–[50].

A. The Two-Stage Amplifier
The specific two-stage CMOS op-amp we consider is shown

in Fig. 1. The circuit consists of an input differential stage with
active load followed by a common-source stage also with ac-
tive load. An output buffer is not used; this amplifier is as-
sumed to be part of a very large scale integration (VLSI) system
and is only required to drive a fixed on-chip capacitive load of
a few picofarads. This op-amp architecture has many advan-
tages: high open-loop voltage gain, rail-to-rail output swing,
large common-mode input range, only one frequency compen-
sation capacitor, and a small number of transistors. Its main
drawback is the nondominant pole formed by the load capac-
itance and the output impedance of the second stage, which
reduces the achievable bandwidth. Another potential disadvan-
tage is the right half-plane zero that arises from the feedforward
signal path through the compensating capacitor. Fortunately, the
zero is easily removed by a suitable choice for the compensation
resistor (see [2]).
This op-amp is a widely used general purpose op-amp [88];

it finds applications, for example, in switched capacitor filters
[23], analog-to-digital converters [60], [72], and sensing circuits
[85].
There are 18 design parameters for the two-stage op-amp:
• Thewidths and lengths of all transistors, i.e.,
and .

• The bias current .
• The value of the compensation capacitor .

The compensation resistor is chosen in a specific way that is
dependent on the design parameters listed above (and described
in Section V). There are also a number of parameters that we
consider fixed, e.g., the supply voltages and , the ca-
pacitive load , and the various process and technology pa-
rameters associated with the MOS models. To simplify some of
the equations we assume (without any loss of generality) that

.

B. Other Approaches
There is a huge literature, which goes back more than 20

years, on computer-aided design (CAD) of analog circuits. A
good survey of early research can be found in the survey [11];
more recent papers on analog-circuit CAD tools include [4],
[12], [13]. The problem we consider in this paper, i.e., selection
of component values and transistor dimensions, is only a part of
a complete analog-circuit CAD tool. Other parts, which we do
not consider here, include topology selection (see [66]) and ac-
tual circuit layout (see, e.g., ILAC [27], KOAN/ANAGRAM II
[15]). The part of the CADprocess that we consider lies between
these two tasks; the remainder of the discussion is restricted to
methods dealing with component and transistor sizing.
1) Classical Optimization Methods: General-purpose clas-

sical optimization methods, such as steepest descent, sequen-
tial quadratic programming, and Lagrange multiplier methods,
have been widely used in analog-circuit CAD. These methods
can be traced back to the survey paper [11]. The widely used
general-purpose optimization codes NPSOL [39] and MINOS
[71] are used in [25], [64], and [67]. LANCELOT [16], an-
other general-purpose optimizer, is used in [22]. Other CAD
approaches based on classical optimization methods, and exten-
sions such as a minimax formulation, include the one described
in [47], [61], and [63], OAC [78], OPASYN [56], CADICS [54],
WATOPT [31], and STAIC [45]. The classical methods can be
used with more complicated circuit models, including even full
SPICE simulations in each iteration, as in DELIGHT.SPICE
[75] (which uses the general-purpose optimizer DELIGHT [76])
and ECSTASY [86].
The main advantage of these methods is the wide variety of

problems they can handle; the only requirement is that the per-
formance measures, along with one or more derivatives, can be
computed. The main disadvantage of the classical optimization
methods is they only find locally optimal designs. This means
that the design is at least as good as neighboring designs, i.e.,
small variations of any of the design parameters results in a
worse (or infeasible) design. Unfortunately this does not mean
the design is the best that can be achieved, i.e., globally optimal;
it is possible (and often happens) that some other set of design
parameters, far away from the one found, is better. The same
problem arises in determining feasibility: a classical (local) op-
timization method can fail to find a feasible design, even though
one exists. Roughly speaking, classical methods can get stuck at
local minima. This shortcoming is so well known that it is often
not even mentioned in papers; it is taken as understood.
The problem of nonglobal solutions from classical optimiza-

tion methods can be treated in several ways. The usual approach

Variables: powers.
Variables: transistors widths,
lengths, currents, capacitors,...

The Geometric Programming (GP) trick

The above problems are non-convex.

Can be convexified by a change of variables qi = ezi .
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Convexity with positive variables

Exp: ezi are convex in zi .

Log-sum-exp: log
∑

i e
zi is convex in zi .

If f (ez) is convex in z then f (ez1+z2) is convex in z1, z2.

ez transforms sums into products!

The Geometric Programming (GP) trick

Minimize products of positive numbers qi ≥ 0 using ezi .
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Convexity with positive definite matrices Qi � 0

Today: GP with positive definite matrices

Can we minimize powers aTQ±1a?

Can we minimize log determinants log|Q|?
Can we minimize products Q1 ⊗Q2?

The answers are YES!

But the solution is not a simple change of variables.

Instead, we turn to geodesic convexity.
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Revisiting the GP trick

Convexity

f (

line︷ ︸︸ ︷
tz1 + (1− t)z0) ≤ tf (z1) + (1− t)f (z0)

Geodesic convexity f̃ (q) = f (log q)

f̃ (

geodesic︷ ︸︸ ︷
qt1q

1−t
0 ) ≤ tf̃ (q1) + (1− t)f̃ (q0)
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Geodesic convexity [Rapcsak 91], [Liberti 04]

For any q1,q0 ∈ D we define a geodesic
qt ∈ D parameterized by t ∈ [0, 1].

€ 

q0

€ 

q1

€ 

qt

A function f (q) is g-convex in q ∈ D if

f (qt) ≤ tf (q1) + (1− t) f (q0) ∀ t ∈ [0, 1].

Properties

Any local minimizer of f (q) over D is a global minimizer.

g-convex + g-convex = g-convex.
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From scalars to matrices

We do not know the matrix version of ex .

We do know how to generalize the geodesics qt = qt1q
1−t
0 .

Geodesic between Q0 � 0 and Q1 � 0

Qt = Q
1
2
0

(
Q
− 1

2
0 Q1Q

− 1
2

0

)t

Q
1
2
0 , t ∈ [0, 1].
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Powers (matrix case)

Theorem

The function

f (Q) = aTQ±1a

is g-convex in Q � 0.

Proof: eigenvalue decomposition reduces to scalar case.
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Log-sum-exp (matrix case)

Theorem

The function

f (Q) = log

∣∣∣∣∣
n∑

i=1

HiQHT
i

∣∣∣∣∣

is g-convex in Q � 0.

Similarly, log |Q| is g-linear.

Proof: eigenvalue decomposition reduces to scalar case.
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Products (matrix case)

Theorem

If f (W) is g-convex in W � 0, then

g (Q1, · · · ,Qn) = f (Q1 ⊗Q2 ⊗ · · · ⊗Qn)

is g-convex in Qi � 0.

The operation ⊗ is a Kronecker product.

A⊗ B =




a11B a12B · · · a1pB
a21B a22B · · · a21B

...
...

...
ap1B ap2B appB
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Invariance to orthogonal operators

A set S is g-convex if

Q0,Q1 ∈ S ⇒ Qt ∈ S.

Local minimas over g-convex sets are global.

Theorem

For orthonormal U, the set {Q : Q = UQUT} is g-convex.

Proof: Matrix commutativity properties QU = UQ.

Trivial in scalar case.
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Summary

aTQ±1a is g-convex.

log
∣∣∑n

i=1HiQHT
i

∣∣ is g-convex.

Qi ⊗ · · · ⊗Qj preserves g-convexity.

{Q : Q = UQUT} is g-convex.
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Covariance estimation

x: p-dimensional random vector.

Mean E{x} = 0, covariance Σ = E
[
xxT

]
.

{xi}ni=1: n independent & identically distributed realizations.

Goal

Problem: Derive Σ̂ ({xi}ni=1) to estimate Σ.

Solution: Maximum likelihood.

Emphasis on the hard non-Gaussian and structured cases.
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CIMI on “Optimization and Statistics in Image Processing”

I work on other stuff: comm, radar, sensor networks...

I was told this can also be used with images [Zhang:2012].
7
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Fig. 4. The projection of images to the fitted subspace.
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Fig. 5. Ordered distances of the 32 test images to the fitted 9-dimensional
subspaces by Algorithm 1, S-reaper and PCA.

for the test images. This observation can also be quantitatively
verified by checking the distances of 32 test images to the fitted
subspace by PCA, S-reaper and out algorithm, which is shown
in Figure IV-E. The subspace generated by our algorithm has
smaller distances to the test images, which explain the better
performance of our algorithm in Figure IV-E.
Besides, in this experiment our algorithm performs much

faster than S-Reaper; our algorithm costs 4.4 seconds on
a machine with Intel Core 2 Duo CPU at 3.00GHz and
6GB memory, while S-reaper cost 40 seconds. it is expected
since there is an additional eigenvalue decomposition in each
iteration of the S-Reaper algorithm.

V. DISCUSSION

In this paper we have investigated an M-estimator for
covariance estimation, and proved that this estimator can
find the underlying subspace exactly under a rather weak

assumption. We also demonstrated the virtue of this methods
by experiments on simulated data sets and real data sets.
An open question is that, if we can have a theoretical

guarantee on the robustness of our algorithm to noise and
therefore verify the empirical performance in Section IV-D.
We find it difficult to apply the commonly used perturbation
analysis in [35, Section 2.7] or [34, Theorem 2], which are
based on the size of the perturbation of the objective function,
since the objective function F (Σ) at a singular matrix is
undefined.
An interesting direction is to extend the idea of geodesi-

cal convexity to other problems. Euclidean metric between
matrices is usually used and under this metric the set of all
positive definite matrices is considered as a cone. However
in this work we consider the set of all positive matrices as a
manifold and use the Riemmannian metric between matrices.
It turns out that while F (Σ) in nonconvex in Euclidean metric,
it is convex in Riemmannian metric, and this formulation is
more powerful than similar formulations that are convex in
Euclidean metric [35], [17]. It would be interesting if there are
other optimization problems with the property of geodesical
convexity.
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VII. APPENDIX
A. Proof of Lemma III.2

Proof: Geodesical convexity of F (Σ) follows from (III.2)
and Lemma II.1. Therefore we only need to prove (III.2) for
geodesic convexity.
We will prove (III.2) by showing that, if Σ3 ∈ S++(D) is

the geometric mean of Σ1,Σ2 ∈ S++(D), then we have

ln(det(Σ1)) + ln(det(Σ2)) = 2 ln(det(Σ3)), (VII.1)

and

ln(xT Σ1x) + ln(xT Σ2x) ≥ 2 ln(xT Σ3x). (VII.2)

We start with the proof of (VII.1). Use (II.2) with t = 1
2 ,

we have

Σ3Σ
−1
1 Σ3

=Σ
1
2
1 (Σ

− 1
2

1 Σ3Σ
− 1

2
1 )

1
2 Σ

1
2
1 Σ−1

1 Σ
1
2
1 (Σ

− 1
2

1 Σ3Σ
− 1

2
1 )

1
2 Σ

1
2
1

=Σ2. (VII.3)

Using (VII.3), (VII.1) can be proved as follows:

det(Σ2) = det(Σ3Σ
−1
1 Σ3) = det(Σ3) det(Σ−1

1 ) det(Σ3)

=det(Σ3)
2/ det(Σ1).

To prove (VII.2), we let the SVD decomposition of
Σ

− 1
2

1 Σ2Σ
− 1

2
1 = U0Σ0U

T
0 and define x̂ = U0Σ

1
2
1 x, then we

have xT Σ1x = x̂T x̂, xT Σ2x = x̂T Σ0x̂, and xT Σ3x =
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A popular robust covariance estimator

Elliptical distributions, Spherically Invariant Random
processes, Compound Gaussian, Multivariate Student, etc..




...
xi
...


 =
√
qi




...
ui
...




︸ ︷︷ ︸
N (0,Q)

Non-convex ML via fixed point iteration:

Qk+1 =
p

n

n∑

i=1

xix
T
i

xTi Q
−1
k xi
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A bit of background Qk+1 = p
n

∑n
i=1

xixTi
xTi Q

−1
k xi

[Tyler:87] Introduction, fixed point iteration, existence,
uniqueness, convergence analysis.

[Gini:95], [Conte:02] Analysis, array processing.

[Pascal:08] Analysis and generalizations.

[Gini:95], [Abramovich:07], [Bandeira:10] Regularization,
normalization, diagonal loading, Bayesian priors.

[Chen:10] Regularization analysis via Perron Frobenius.

[Bombrun:2011], [Ollila:2012] Generalized Gaussian.

Lots of applications! Lots of difficult theory!
But specific and hard to follow and generalize.

22 / 40



G-convexity Covariance Non Gaussian Kronecker Symmetry

Revisiting Tyler’s estimator

The negative log likelihood is

L (Q) =
p

n

n∑

i=1

log
(
xTi Q

−1xi
)

+ log |Q|

Non-convex optimization problem.

25 years of methods that converge to the global solution.

Theorem

[Auderset:05] The negative log likelihood is g-convex.
Actually, jointly g-convex in q and Q.
Also for other elliptical distributions, e.g., MGGD.
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Why is this helpful? Regularization

Often, we need regularization / prior.

[Abramovich:07], [Chen:10] difficult design and analysis.

We propose to use g-convex regularization schemes

Global solution to ML (+ regularization)

min L (·) + λh(·)︸ ︷︷ ︸
needs to be g-convex

Guaranteed to be g-convex, and can be solved efficiently. We can
put priors on both the covariance and the scalings.
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G-convex scalings penalties

Prior knowledge on the scaling factors via g-convex functions:

Bounded peak values L ≤ log qi ≤ U.

Bounded second moments
∑

i log
2qi ≤ U.

Sparsity (outliers)
∑

i |log qi | ≤ U.

Smooth time series |log qi − log qi−1| ≤ U.

g"convex)

Without g-convexity [Bucciareli:96], [Wang:06], [Chitour:08].

We can also change variables and use convex penalties.

25 / 40



G-convexity Covariance Non Gaussian Kronecker Symmetry

G-convex matrix penalties

Shrinkage to identity (T = I) or arbitrary target

h (Q) = plog
(
Tr
{
Q−1T

})
+ log |Q|

Shrinkage to diagonal

h (Q) = log

p∏

i=1

[
Q−1

]
ii

+ log |Q|

Regularization of condition number

h (Q) =
λmax (Q)

λmin (Q)

g"convex)

Non-Gaussian versions of [Stoica:08], [Schafer:05], [Won:09].
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Experiments
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Kronecker (separable, transposable) model Q1 ⊗Q2

Estimating covariances of random p2 × p1 matrices.

A standard approach is to impose structure

X = Q
1
2
2WQ

1
2
1

Wij are i.i.d. N (0, 1).
Q2 correlates the columns.
Q1 correlates the rows.

In vector notations, E
[
xxT

]
= Q1 ⊗Q2

Examples: Tx ⊗ Rx, products ⊗ costumers, etc...
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A bit of background Q1 ⊗Q2

[Mardia:93], [Dutilleul:99] Introduction, Flip-Flop.

[Kermoal:02] Experiments in MIMO radio channels.

[Lu:05], [Srivastava:08] Testing, uniqueness.

[Werner:08] Asymptotic analysis and extensions.

[Allen:10] Regularization and applications in bioinformatics.

[Zhang:10], [Stegle:11] Sparsity, multitask learning.

[Tsiligkaridis:12] COMING UP COLLOQUIUM.

[Akdemir:11] Multiway Kronecker models.

Lots of applications! Lots of difficult theory!
But specific and hard to follow and generalize.
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Revisiting the Kronecker model

The Kronecker likelihood function is

L (Q1,Q2) =
n∑

i=1

xTi (Q1 ⊗Q2)−1 xi + log |Q1 ⊗Q2|

Non-convex optimization problem.

20 years of methods that converge to the global solution.

Theorem

The negative log likelihood is jointly g-convex in Q1 and Q2!
Also holds for multiway models with Q1 ⊗ · · · ⊗Qn.

Thus, every local minima is global, and we have lots of extensions.
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Why is this helpful? Regularized ML

Kronecker models do not require many samples.

[Allen:10] one sample + regularization via SVD.
We propose

min
Q1,Q2

L (Q1,Q2) + αTr
{
Q−11

}
Tr
{
Q−12

}

which is jointly g-convex.

p1 = p2 = 5
Σij = 0.8|i−j |
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Why is this helpful? Non-Gaussian & Kronecker ML

Just for fun: hybrid robust Kronecker model:

qiQ + Q1 ⊗Q2 ⇒ qi ·Q1 ⊗Q2

We propose

min
q,Q1,Q2

n∑

i=1

xTi (qi ·Q1 ⊗Q2)−1 xi + log |qi ·Q1 ⊗Q2|

which is jointly g-convex.

p1 = 10 and p2 = 2
Σij = 0.8|i−j |
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Common symmetry constraints

Symmetry

Q = UQUT ∀ U ∈ K

Applications:

Circulant, used for approximating Toeplitz = stationary

Persymmetric, e.g., radar systems using a symmetrically
spaced linear array with constant pulse repetition interval
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More symmetry constraints - properness

Symmetry

Q = UQUT ∀ U ∈ K

Applications:

Complex normal = double real normal (CN p = N2p)

Plus a symmetry constraint x ∼ e jθx.

cov

[
Re (x)
Im (x)

]
=

[
A B
−B A

]

Recently, proper Gaussian quaternions x = a + ib + jc + kd.

For example, in radar with I/Q phase and polarizations

Here too: QN p = N4p + special symmetry x ∼ eνθx.
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A bit of background Q = UQUT

Gaussian

Genreal symmetry groups [Shah & Chandrasekaran 2012]
Everybody knows proper complex (circularly symmetric)
Proper quaternion [Miron:06], [Bukhari:11], [Via:11]....

Non Gaussian

Persymmetric [Pailloux:11]
Complex elliptical distributions [Bombrun:11], [Ollila:12]

Lots of applications! But specific and hard to follow and generalize.
Easy in the Gaussian case (linear constraint).
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Revisiting symmetry constraints

Theorem

The set Q = UQUT is g-convex!

Can be combined with any g-convex negative-log-likelihood.

Can be combined with Kronecker models.

Symmetrically constrained Tyler, MGGD....

Any descent algorithm should find the global solution.
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Experiments

Proper quaternion multivariate T distribution, dimension 10.

4

VI. NUMERICAL RESULTS

For numerical simulations, we chose Tyler’s scatter esti-
mate in proper quaternion distributions. We have generated a
proper real covariance matrix Q0 and generated elliptically
distributed 10-dimensional quaternion random vectors as
si =

p
⌧v, where ⌧ ⇠ �2 and v is zero-mean normally

distributed with covariance matrix Q0. We choose ⇢(x) =
plog(x) to get the Tyler’s covariance estimator [10].

We compare four different covariance estimators:

• Sample Covariance

QSC =
1

n

nX

i=1

sis
T
i , (11)

• Proper Sample Covariance

QPSC =
1

|K|n
X

Ł2K

nX

i=1

Łsis
T
i ŁT , (12)

• Tyler Covariance Estimator Iteration

Qk+1 =
p

n

nX

i=1

sis
T
i

sT
i Q�1

k si

. (13)

• Tyler Proper Covariance Estimator Iteration

Qk+1 =
p

|K|n
X

Ł2K

nX

i=1

Łsis
T
i ŁT

sT
i ŁT Q�1

k Lsi

=
p

|K|n
X

Ł2K

nX

i=1

(Łsi)(Łsi)
T

(Łsi)T Q�1
k (Łsi)

.

(14)

We repeat the computations for 100 times for the four
estimators with 150 � 600 samples. In order to make the
results consistent we divide all the matrices by their traces.
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Discussion

Geodesic convexity in positive definite matrices

Similar to geometric programming in scalars.

Powers and log determinants are g-convex.

G-convexity is preserved in Kronecker products.

Symmetry sets are g-convex.

Unifies and generalizes many previous results.

Lots of applications....

Take home message

If you always find the global solution, maybe its (g-)convex!
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