Geodesic convexity \& covariance estimation

Ami Wiesel

School of Engineering and Computer Science Hebrew University of Jerusalem, Israel

June 28, 2013

Acknowledgments

- Teng Zhang (Princeton).
- Maria Greco (Universita di Pisa).
- Ilya Soloveychik (Hebrew University).
- Alba Sloin (Hebrew University).
(1) Geodesic convexity
(2) Covariance estimation
(3) Non Gaussian

4 Kronecker models
(5) Symmetry constraints

Outline

(1) Geodesic convexity
(2) Covariance estimation
(3) Non Gaussian

4 Kronecker models
(5) Symmetry constraints

Convexity

Convex function

$$
\begin{gathered}
f\left(\mathbf{x}_{t}\right) \leq t f\left(\mathbf{x}_{1}\right)+(1-t) f\left(\mathbf{x}_{0}\right) \\
\mathbf{x}_{t}=t \mathbf{x}_{1}+(1-t) \mathbf{x}_{0}
\end{gathered}
$$

- Local solutions are easy to find and globally optimal!
- Easy to generalize:
- Building bricks: linear, quadratic, norms...
- Rules: convex+convex=convex,...

Convex optimization with positive variables

Power control [Chiang:07]

```
minimize }\quad\mp@subsup{\prod}{i=1}{N}\frac{1}{1+\mp@subsup{\textrm{SIR}}{i}{}
subject to }(\mp@subsup{2}{}{T\mp@subsup{R}{i,min}{*}}-1)\frac{1}{\mp@subsup{\operatorname{SIR}}{i}{}}\leq1,\quad\foralli
    (SIR th )}\mp@subsup{)}{}{N-1}(1-\mp@subsup{P}{o,i,max}{*})\mp@subsup{\prod}{j\not=i}{N}\frac{\mp@subsup{G}{ij}{}\mp@subsup{P}{j}{}}{\mp@subsup{G}{ii}{}\mp@subsup{P}{i}{\prime}}\leq1,\quad\foralli
    Pi}(\mp@subsup{P}{i,\operatorname{max}}{}\mp@subsup{)}{}{-1}\leq1,\quad\foralli
```

Variables: powers.

Circuit design [Hershenson:01]

Variables: transistors widths, lengths, currents, capacitors,...

The Geometric Programming (GP) trick

- The above problems are non-convex.
- Can be convexified by a change of variables $q_{i}=e^{z_{i}}$.

Convexity with positive variables

- Exp: $e^{z_{i}}$ are convex in z_{i}.
- Log-sum-exp: $\log \sum_{i} e^{z_{i}}$ is convex in z_{i}.
- If $f\left(e^{z}\right)$ is convex in z then $f\left(e^{z_{1}+z_{2}}\right)$ is convex in z_{1}, z_{2}.
- e^{z} transforms sums into products!

The Geometric Programming (GP) trick

- Minimize products of positive numbers $q_{i} \geq 0$ using $e^{z_{i}}$.

Convexity with positive definite matrices $\mathbf{Q}_{i} \succeq 0$

Today: GP with positive definite matrices

- Can we minimize powers $\mathbf{a}^{T} \mathbf{Q}^{ \pm 1} \mathbf{a}$?
- Can we minimize \log determinants $\log |\mathbf{Q}|$?
- Can we minimize products $\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}$?
- The answers are YES!
- But the solution is not a simple change of variables.
- Instead, we turn to geodesic convexity.

Revisiting the GP trick

Convexity

$$
f(\overbrace{t \mathbf{z}_{1}+(1-t) \mathbf{z}_{0}}^{\text {line }}) \leq t f\left(\mathbf{z}_{1}\right)+(1-t) f\left(\mathbf{z}_{0}\right)
$$

Geodesic convexity $\tilde{f}(\mathbf{q})=f(\log \mathbf{q})$

$$
\tilde{f}(\overbrace{\mathbf{q}_{1}^{t} \mathbf{q}_{0}^{1-t}}^{\text {geodesic }}) \leq t \tilde{f}\left(\mathbf{q}_{1}\right)+(1-t) \tilde{f}\left(\mathbf{q}_{0}\right)
$$

Geodesic convexity [Rapcsak 91], [Liberti 04]

- For any $\mathbf{q}_{1}, \mathbf{q}_{0} \in D$ we define a geodesic $\mathbf{q}_{t} \in D$ parameterized by $t \in[0,1]$.

- A function $f(\mathbf{q})$ is g-convex in $\mathbf{q} \in D$ if

$$
f\left(\mathbf{q}_{t}\right) \leq t f\left(\mathbf{q}_{1}\right)+(1-t) f\left(\mathbf{q}_{0}\right) \quad \forall \quad t \in[0,1] .
$$

Properties

- Any local minimizer of $f(\mathbf{q})$ over \mathbf{D} is a global minimizer.
- g-convex + g-convex $=$ g-convex.

From scalars to matrices

- We do not know the matrix version of e^{x}.
- We do know how to generalize the geodesics $q_{t}=q_{1}^{t} q_{0}^{1-t}$.

Geodesic between $\mathbf{Q}_{0} \succ \mathbf{0}$ and $\mathbf{Q}_{1} \succ \mathbf{0}$

$$
\mathbf{Q}_{t}=\mathbf{Q}_{0}^{\frac{1}{2}}\left(\mathbf{Q}_{0}^{-\frac{1}{2}} \mathbf{Q}_{1} \mathbf{Q}_{0}^{-\frac{1}{2}}\right)^{t} \mathbf{Q}_{0}^{\frac{1}{2}}, \quad t \in[0,1]
$$

Powers (matrix case)

Theorem

The function

$$
f(\mathbf{Q})=\mathbf{a}^{\top} \mathbf{Q}^{ \pm 1} \mathbf{a}
$$

is g-convex in $\mathbf{Q} \succ \mathbf{0}$.

- Proof: eigenvalue decomposition reduces to scalar case.

Log-sum-exp (matrix case)

Theorem

The function

$$
f(\mathbf{Q})=\log \left|\sum_{i=1}^{n} \mathbf{H}_{i} \mathbf{Q} \mathbf{H}_{i}^{T}\right|
$$

is g-convex in $\mathbf{Q} \succ \mathbf{0}$.

- Similarly, $\log |\mathbf{Q}|$ is g-linear.
- Proof: eigenvalue decomposition reduces to scalar case.

Products (matrix case)

Theorem

If $f(\mathbf{W})$ is g-convex in $\mathbf{W} \succ \mathbf{0}$, then

$$
g\left(\mathbf{Q}_{1}, \cdots, \mathbf{Q}_{n}\right)=f\left(\mathbf{Q}_{1} \otimes \mathbf{Q}_{2} \otimes \cdots \otimes \mathbf{Q}_{n}\right)
$$

is g-convex in $\mathbf{Q}_{i} \succ \mathbf{0}$.

- The operation \otimes is a Kronecker product.

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{cccc}
a_{11} \mathbf{B} & a_{12} \mathbf{B} & \cdots & a_{1 p} \mathbf{B} \\
a_{21} \mathbf{B} & a_{22} \mathbf{B} & \cdots & a_{21} \mathbf{B} \\
\vdots & \vdots & & \vdots \\
a_{p 1} \mathbf{B} & a_{p 2} \mathbf{B} & & a_{p p} \mathbf{B}
\end{array}\right]
$$

Invariance to orthogonal operators

A set \mathcal{S} is g-convex if

$$
\mathbf{Q}_{0}, \mathbf{Q}_{1} \in \mathcal{S} \quad \Rightarrow \quad \mathbf{Q}_{t} \in \mathcal{S}
$$

Local minimas over g-convex sets are global.

Theorem

For orthonormal \mathbf{U}, the set $\left\{\mathbf{Q}: \mathbf{Q}=\mathbf{U Q} \mathbf{U}^{T}\right\}$ is g-convex.

- Proof: Matrix commutativity properties $\mathbf{Q U}=\mathbf{U Q}$.
- Trivial in scalar case.

Summary

- $\mathbf{a}^{T} \mathbf{Q}^{ \pm 1} \mathbf{a}$ is g-convex.
- $\log \left|\sum_{i=1}^{n} \mathbf{H}_{i} \mathbf{Q} \mathbf{H}_{i}^{T}\right|$ is g-convex.
- $\mathbf{Q}_{i} \otimes \cdots \otimes \mathbf{Q}_{j}$ preserves g-convexity.
- $\left\{\mathbf{Q}: \mathbf{Q}=\mathbf{U Q} \mathbf{U}^{T}\right\}$ is g-convex.

Outline

(1) Geodesic convexity

(2) Covariance estimation
(3) Non Gaussian
4) Kronecker models
(5) Symmetry constraints

Covariance estimation

- x: p-dimensional random vector.
- Mean $E\{\mathbf{x}\}=\mathbf{0}$, covariance $\boldsymbol{\Sigma}=E\left[\mathbf{x x}^{T}\right]$.
- $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}: n$ independent \& identically distributed realizations.

Goal

- Problem: Derive $\hat{\boldsymbol{\Sigma}}\left(\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}\right)$ to estimate $\boldsymbol{\Sigma}$.
- Solution: Maximum likelihood.
- Emphasis on the hard non-Gaussian and structured cases.

CIMI on "Optimization and Statistics in Image Processing"

- I work on other stuff: comm, radar, sensor networks...
- I was told this can also be used with images [Zhang:2012].

Outline

(1) Geodesic convexity

(2) Covariance estimation
(3) Non Gaussian
4) Kronecker models
(5) Symmetry constraints

A popular robust covariance estimator

- Elliptical distributions, Spherically Invariant Random processes, Compound Gaussian, Multivariate Student, etc..

$$
\left[\begin{array}{c}
\vdots \\
\mathbf{x}_{i} \\
\vdots
\end{array}\right]=\sqrt{q_{i}} \underbrace{\left[\begin{array}{c}
\vdots \\
\vdots
\end{array}\right]}_{\mathcal{N}(\mathbf{0}, \mathbf{Q})}
$$

- Non-convex ML via fixed point iteration:

$$
\mathbf{Q}_{k+1}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \mathbf{Q}_{k}^{-1} \mathbf{x}_{i}}
$$

A bit of background
 $$
\mathbf{Q}_{k+1}=\frac{p}{n} \sum_{i=1}^{n} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \mathbf{Q}_{k}^{-1} \mathbf{x}_{i}}
$$

- [Tyler:87] Introduction, fixed point iteration, existence, uniqueness, convergence analysis.
- [Gini:95], [Conte:02] Analysis, array processing.
- [Pascal:08] Analysis and generalizations.
- [Gini:95], [Abramovich:07], [Bandeira:10] Regularization, normalization, diagonal loading, Bayesian priors.
- [Chen:10] Regularization analysis via Perron Frobenius.
- [Bombrun:2011], [Ollila:2012] Generalized Gaussian.

Lots of applications! Lots of difficult theory!
But specific and hard to follow and generalize.

Revisiting Tyler's estimator

The negative log likelihood is

$$
L(\mathbf{Q})=\frac{p}{n} \sum_{i=1}^{n} \log \left(\mathbf{x}_{i}^{T} \mathbf{Q}^{-1} \mathbf{x}_{i}\right)+\log |\mathbf{Q}|
$$

- Non-convex optimization problem.
- 25 years of methods that converge to the global solution.

Theorem

[Auderset:05] The negative log likelihood is g-convex. Actually, jointly g-convex in \mathbf{q} and \mathbf{Q}.
Also for other elliptical distributions, e.g., MGGD.

Why is this helpful? Regularization

- Often, we need regularization / prior.
- [Abramovich:07], [Chen:10] difficult design and analysis.
- We propose to use g-convex regularization schemes

Global solution to ML (+ regularization)

$$
\min L(\cdot)+\underbrace{\lambda h(\cdot)}_{\text {needs to be g-convex }}
$$

Guaranteed to be g-convex, and can be solved efficiently. We can put priors on both the covariance and the scalings.

G-convex scalings penalties

Prior knowledge on the scaling factors via g-convex functions:

- Bounded peak values $L \leq \log q_{i} \leq U$.
- Bounded second moments $\sum_{i} \log ^{2} q_{i} \leq U$.
- Sparsity (outliers) $\sum_{i}\left|\log q_{i}\right| \leq U$.
- Smooth time series $\left|\log q_{i}-\log q_{i-1}\right| \leq U$.

Without g-convexity [Bucciareli:96], [Wang:06], [Chitour:08].

We can also change variables and use convex penalties.

G-convex matrix penalties

- Shrinkage to identity $(\mathbf{T}=\mathbf{I})$ or arbitrary target

$$
h(\mathbf{Q})=p \log \left(\operatorname{Tr}\left\{\mathbf{Q}^{-1} \mathbf{T}\right\}\right)+\log |\mathbf{Q}|
$$

- Shrinkage to diagonal

$$
h(\mathbf{Q})=\log \prod_{i=1}^{p}\left[\mathbf{Q}^{-1}\right]_{i i}+\log |\mathbf{Q}|
$$

- Regularization of condition number

$$
h(\mathbf{Q})=\frac{\lambda_{\max }(\mathbf{Q})}{\lambda_{\min }(\mathbf{Q})}
$$

Non-Gaussian versions of [Stoica:08], [Schafer:05], [Won:09].

Experiments

Shrink to diag
Toeplitz $p=10$ $\Sigma_{i j}=0.4^{|i-j|}$
Factor 2 on 1st cross validation

Condition number Toeplitz $p=10$ $\Sigma_{i j}=0.4^{|i-j|}$ $\kappa=4.98 \in[1,10]$ cross validation

Correlated scalings
Toeplitz $p=10$
$\Sigma_{i j}=0.8^{|i-j|}$
MA(2) with
$\|\mathbf{L z}\|_{2} \leq 7$.

Outline

(1) Geodesic convexity
(2) Covariance estimation
(3) Non Gaussian

4 Kronecker models
(5) Symmetry constraints

Kronecker (separable, transposable) model $\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}$

- Estimating covariances of random $p_{2} \times p_{1}$ matrices.
- A standard approach is to impose structure

$$
\mathbf{X}=\mathbf{Q}_{2}^{\frac{1}{2}} \mathbf{W} \mathbf{Q}_{1}^{\frac{1}{2}}
$$

- $\mathbf{W}_{i j}$ are i.i.d. $\mathcal{N}(0,1)$.
- \mathbf{Q}_{2} correlates the columns.
- \mathbf{Q}_{1} correlates the rows.
- In vector notations, $\mathrm{E}\left[\mathrm{xx}^{T}\right]=\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}$
- Examples: $\mathrm{Tx} \otimes \mathrm{Rx}$, products \otimes costumers, etc...

A bit of background
 $\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}$

- [Mardia:93], [Dutilleul:99] Introduction, Flip-Flop.
- [Kermoal:02] Experiments in MIMO radio channels.
- [Lu:05], [Srivastava:08] Testing, uniqueness.
- [Werner:08] Asymptotic analysis and extensions.
- [Allen:10] Regularization and applications in bioinformatics.
- [Zhang:10], [Stegle:11] Sparsity, multitask learning.
- [Tsiligkaridis:12] COMING UP COLLOQUIUM.
- [Akdemir:11] Multiway Kronecker models.

Lots of applications! Lots of difficult theory!
But specific and hard to follow and generalize.

Revisiting the Kronecker model

The Kronecker likelihood function is

$$
L\left(\mathbf{Q}_{1}, \mathbf{Q}_{2}\right)=\sum_{i=1}^{n} \mathbf{x}_{i}^{T}\left(\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}\right)^{-1} \mathbf{x}_{i}+\log \left|\mathbf{Q}_{1} \otimes \mathbf{Q}_{2}\right|
$$

- Non-convex optimization problem.
- 20 years of methods that converge to the global solution.

Theorem

The negative \log likelihood is jointly g-convex in \mathbf{Q}_{1} and \mathbf{Q}_{2} ! Also holds for multiway models with $\mathbf{Q}_{1} \otimes \cdots \otimes \mathbf{Q}_{n}$.

Thus, every local minima is global, and we have lots of extensions.

Why is this helpful? Regularized ML

- Kronecker models do not require many samples.
- [Allen:10] one sample + regularization via SVD.
- We propose

$$
\min _{\mathbf{Q}_{1}, \mathbf{Q}_{2}} L\left(\mathbf{Q}_{1}, \mathbf{Q}_{2}\right)+\alpha \operatorname{Tr}\left\{\mathbf{Q}_{1}^{-1}\right\} \operatorname{Tr}\left\{\mathbf{Q}_{2}^{-1}\right\}
$$

which is jointly g-convex.

$$
\begin{aligned}
& p_{1}=p_{2}=5 \\
& \Sigma_{i j}=0.8^{|i-j|}
\end{aligned}
$$

Why is this helpful? Non-Gaussian \& Kronecker ML

- Just for fun: hybrid robust Kronecker model:

$$
q_{i} \mathbf{Q}+\mathbf{Q}_{1} \otimes \mathbf{Q}_{2} \Rightarrow q_{i} \cdot \mathbf{Q}_{1} \otimes \mathbf{Q}_{2}
$$

- We propose

$$
\min _{\mathbf{q}, \mathbf{Q}_{1}, \mathbf{Q}_{2}} \sum_{i=1}^{n} \mathbf{x}_{i}^{T}\left(q_{i} \cdot \mathbf{Q}_{1} \otimes \mathbf{Q}_{2}\right)^{-1} \mathbf{x}_{i}+\log \left|q_{i} \cdot \mathbf{Q}_{1} \otimes \mathbf{Q}_{2}\right|
$$

which is jointly g-convex.

$$
\begin{aligned}
& p_{1}=10 \text { and } p_{2}=2 \\
& \boldsymbol{\Sigma}_{i j}=0.8^{|i-j|}
\end{aligned}
$$

Outline

(1) Geodesic convexity

(2) Covariance estimation
(3) Non Gaussian

4 Kronecker models
(5) Symmetry constraints

Common symmetry constraints

Symmetry

$$
\mathbf{Q}=\mathbf{U Q} \mathbf{U}^{T} \quad \forall \quad \mathbf{U} \in \mathcal{K}
$$

Applications:

- Circulant, used for approximating Toeplitz = stationary
- Persymmetric, e.g., radar systems using a symmetrically spaced linear array with constant pulse repetition interval

$$
\left[\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \cdots & c_{n-1} \\
c_{1} & c_{0} & c_{1} & \cdots & c_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{1} & c_{2} & c_{3} & \cdots & c_{0}
\end{array}\right] \quad\left[\begin{array}{ccccc}
p_{11} & p_{12} & p_{13} & \cdots & p_{1 n} \\
p_{12} & p_{22} & p_{23} & \cdots & p_{1 n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{41} & p_{42} & p_{32} & \cdots & p_{12} \\
p_{51} & p_{41} & p_{31} & \cdots & p_{11}
\end{array}\right]
$$

More symmetry constraints - properness

Symmetry

$$
\mathbf{Q}=\mathbf{U Q}^{T} \quad \forall \quad \mathbf{U} \in \mathcal{K}
$$

Applications:

- Complex normal $=$ double real normal $\left(\mathcal{C N}_{p}=\mathcal{N}_{2 p}\right)$
- Plus a symmetry constraint $\mathbf{x} \sim e^{j \theta} \mathbf{x}$.

$$
\operatorname{cov}\left[\begin{array}{l}
\operatorname{Re}(\mathbf{x}) \\
\operatorname{Im}(\mathbf{x})
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
-\mathbf{B} & \mathbf{A}
\end{array}\right]
$$

- Recently, proper Gaussian quaternions $\mathbf{x}=\mathbf{a}+i \mathbf{b}+j \mathbf{c}+k \mathbf{d}$.
- For example, in radar with I/Q phase and polarizations
- Here too: $\mathcal{Q} \mathcal{N}_{p}=\mathcal{N}_{4 p}+$ special symmetry $\mathbf{x} \sim e^{\nu \theta} \mathbf{x}$.

A bit of background
 $\mathbf{Q}=\mathbf{U Q U}^{\top}$

- Gaussian
- Genreal symmetry groups [Shah \& Chandrasekaran 2012]
- Everybody knows proper complex (circularly symmetric)
- Proper quaternion [Miron:06], [Bukhari:11], [Via:11]....
- Non Gaussian
- Persymmetric [Pailloux:11]
- Complex elliptical distributions [Bombrun:11], [Ollila:12]

Lots of applications! But specific and hard to follow and generalize. Easy in the Gaussian case (linear constraint).

Revisiting symmetry constraints

Theorem

The set $\mathbf{Q}=\mathbf{U Q} \mathbf{U}^{\top}$ is g-convex!

- Can be combined with any g-convex negative-log-likelihood.
- Can be combined with Kronecker models.
- Symmetrically constrained Tyler, MGGD....
- Any descent algorithm should find the global solution.

Experiments

Proper quaternion multivariate T distribution, dimension 10.

Discussion

- Geodesic convexity in positive definite matrices
- Similar to geometric programming in scalars.
- Powers and log determinants are g-convex.
- G-convexity is preserved in Kronecker products.
- Symmetry sets are g-convex.
- Unifies and generalizes many previous results.
- Lots of applications....

Take home message

If you always find the global solution, maybe its (g-)convex!

