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G-convexity
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@ Geodesic convexity



G-convexity

Convexity

Convex function

f(xe) < tf(x1)+ (1 —t)f (xo)

xt = tx1 + (1 — t)xo

@ Local solutions are easy to find and globally optimal!
o Easy to generalize:

e Building bricks: linear, quadratic, norms...
o Rules: convex+convex=convex,...



G-convexity

Convex optimization with positive variables

Power control [Chiang:07] Circuit design [Hershenson:01]

minimize H 11+SIR

subject to (2T Femin — 1) g <1, Vi,
(SIRi)N (L = P smas) [T1s 45 <1, Vi,
Py(Pijnaz) ™t <1, Vi

Variables: transistors widths,

Variables: powers. .
lengths, currents, capacitors,...

The Geometric Programming (GP) trick

@ The above problems are non-convex.

@ Can be convexified by a change of variables g; = e“.




G-convexity

Convexity with positive variables

o Exp: €% are convex in z;.

o Log-sum-exp: log) ;€% is convex in z;.

o If f(e?) is convex in z then f (e®12) is convex in z, 2.
°

e transforms sums into products!

The Geometric Programming (GP) trick

@ Minimize products of positive numbers g; > 0 using e%.




G-convexity

Convexity with positive definite matrices Q; = 0

Today: GP with positive definite matrices

Can we minimize powers a’ Q*la?

Can we minimize log determinants log|Q|?

@ Can we minimize products Q1 ® Q27

The answers are YES!

But the solution is not a simple change of variables.

Instead, we turn to geodesic convexity.



G-convexity
Revisiting the GP trick

line

—_—
f(tzy + (1 — t)zg) < tf(z1) + (1 — t)f(20)

Geodesic convexity f(q) = f(log q)

geodesic

—N— . .
f(alay ™) < tf(a1) + (1 — t)f(qo)




G-convexity

Geodesic convexity [Rapcsak 91], [Liberti 04]

@ For any q1,qo € D we define a geodesic
q: € D parameterized by t € [0, 1].

@ A function f(q) is g-convex in q € D if

flar) <tf(ai) +(1—-t)f(q) Vv te[01].

Properties

@ Any local minimizer of f(q) over D is a global minimizer.

@ g-convex + g-convex = g-Cconvex.

10 /40



G-convexity

From scalars to matrices

@ We do not know the matrix version of e*.

@ We do know how to generalize the geodesics g = qfqé_t.

Geodesic between Qg = 0 and Q; = 0

1 1 1\t 1
Qt:QS <Q02Q1Q02) Q;, t €[0,1].
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G-convexity

Powers (matrix case)

The function
f (Q) _ aTQ:tla

is g-convex in Q > 0.

@ Proof: eigenvalue decomposition reduces to scalar case.
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G-convexity

Log-sum-exp (matrix case)

The function

i H;QH/

i=1

f(Q) = log

is g-convex in Q > 0.

e Similarly, log |Q| is g-linear.

@ Proof: eigenvalue decomposition reduces to scalar case.
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G-convexity

Products (matrix case)

If f(W) is g-convex in W > 0, then

g(Ql),Qn):f(Ql®Q2®®Qn)

is g-convex in Q; = 0.

@ The operation ® is a Kronecker product.

a11B alzB cee alpB

ang 3223 s ang
A®B= _ :

ap1B apB appB
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G-convexity

Invariance to orthogonal operators

A set S is g-convex if

QOvQIGS = QtES

Local minimas over g-convex sets are global.

For orthonormal U, the set {Q : Q = UQU'} is g-convex. l

@ Proof: Matrix commutativity properties QU = UQ.

@ Trivial in scalar case.
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G-convexity

Summary

e a’Q*'ais g-convex.
o log|> 7, HiQH]| is g-convex.
o Q; ®- - ®Qj preserves g-convexity.

o {Q : Q=UQU"} is g-convex.
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Covariance

Outline

@ Covariance estimation
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Covariance

Covariance estimation

@ x: p-dimensional random vector.
® Mean E{x} = 0, covariance 3 = E [xxT].
o {x;}7_;: nindependent & identically distributed realizations.

Problem: Derive 33 ({x;}"_,) to estimate 3.

Solution: Maximum likelihood.

Emphasis on the hard non-Gaussian and structured cases.
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Covariance

CIMI on “Optimization and Statistics in Image Processing”

@ | work on other stuff: comm, radar, sensor networks...
o | was told this can also be used with images [Zhang:2012].

Original

Ez
24

PCA

S-reaper
E m n I ‘;. 1
r
Jﬁii II!II1 II!II1 e

M-est
e gy [

Inlier Inlier Outlier Test sample Test sample
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Non Gaussian
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© Non Gaussian
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Non Gaussian

A popular robust covariance estimator

o Elliptical distributions, Spherically Invariant Random
processes, Compound Gaussian, Multivariate Student, etc..

Xi | =4q; | ui

N(0,Q)

@ Non-convex ML via fixed point iteration:

p
Qi1 = Z TQk X:
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Non Gaussian

T

A bit of background Qi1 =250 F2

i—1 T O 1.
i=1 x,'TQk X;

o [Tyler:87] Introduction, fixed point iteration, existence,
uniqueness, convergence analysis.

o [Gini:95], [Conte:02] Analysis, array processing.
o [Pascal:08] Analysis and generalizations.

e [Gini:95], [Abramovich:07], [Bandeira:10] Regularization,
normalization, diagonal loading, Bayesian priors.

@ [Chen:10] Regularization analysis via Perron Frobenius.

o [Bombrun:2011], [Ollila:2012] Generalized Gaussian.

Lots of applications! Lots of difficult theory!
But specific and hard to follow and generalize. }

22 /40



Non Gaussian

Revisiting Tyler's estimator

The negative log likelihood is

L(Q) =2 1og (x/Q7'x;) +log Q)
i=1

@ Non-convex optimization problem.

@ 25 years of methods that converge to the global solution.

[Auderset:05] The negative log likelihood is g-convex.
Actually, jointly g-convex in q and Q.
Also for other elliptical distributions, e.g., MGGD.
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Non Gaussian

Why is this helpful? Regularization

e Often, we need regularization / prior.

@ [Abramovich:07], [Chen:10] difficult design and analysis.
@ We propose to use g-convex regularization schemes

Global solution to ML (+ regularization)

min L(-) + Ah()
—

needs to be g-convex

Guaranteed to be g-convex, and can be solved efficiently. We can
put priors on both the covariance and the scalings.
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Non Gaussian

G-convex scalings penalties

Prior knowledge on the scaling factors via g-convex functions:

@ Bounded peak values L <log g; < U.

@ Bounded second moments Zl-logzq; < U. g-convex
e Sparsity (outliers) . |log gi| < U.
@ Smooth time series |log g; — log gj—1| < U. ?

Without g-convexity [Bucciareli:96], [Wang:06], [Chitour:08].

We can also change variables and use convex penalties.
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Non Gaussian
G-convex matrix penalties

@ Shrinkage to identity (T = I) or arbitrary target
h(Q) = plog (Tr {Q'T}) +log|Q|

@ Shrinkage to diagonal

P g-convex

h(Q) =log [T [Q7']; +log Q|

¢

@ Regularization of condition number

Amax (Q)

h(Q) - )\min (Q)

Non-Gaussian versions of [Stoica:08], [Schafer:05], [Won:09].

26 /40



Experiments

Non Gaussian

Shrink to diag

Toeplitz p =10
zij = 0.4“7J’|
Factor 2 on 1st
cross validation

mmmmmmmmmmmmmmm

Condition number Correlated scalings

Toeplitz p =10
Zij = 0.4“7J’|
Kk =4.98 € [1,10]
cross validation

Toeplitz p =10
% = 0.8l
MA(2) with
ILz||> < 7.
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Kronecker
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@ Kronecker models
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Kronecker

Kronecker (separable, transposable) model Q; ® Qa

@ Estimating covariances of random p, X p; matrices.

@ A standard approach is to impose structure

1 1
X = Q:WQ?

o Wj are i.i.d. N (0,1).
o Q> correlates the columns.
o Q; correlates the rows.

@ In vector notations, E [xxT} =Q:1® Q>

@ Examples: Tx ® Rx, products ® costumers, etc...
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Kronecker

A bit of background Q; ®Q,

e [Mardia:93], [Dutilleul:99] Introduction, Flip-Flop.

o [Kermoal:02] Experiments in MIMO radio channels.

@ [Lu:05], [Srivastava:08] Testing, uniqueness.

@ [Werner:08] Asymptotic analysis and extensions.

o [Allen:10] Regularization and applications in bioinformatics.
@ [Zhang:10], [Stegle:11] Sparsity, multitask learning.

o [Tsiligkaridis:12] COMING UP COLLOQUIUM.

o [Akdemir:11] Multiway Kronecker models.

Lots of applications! Lots of difficult theory!
But specific and hard to follow and generalize. }
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Kronecker

Revisiting the Kronecker model

The Kronecker likelihood function is

L(Q1,Q2) = > %/ (Qu®Q2) ' x; +1og |Q1 © Qo

i=1

@ Non-convex optimization problem.

@ 20 years of methods that converge to the global solution.

The negative log likelihood is jointly g-convex in Q1 and Q5!
Also holds for multiway models with Q1 ® - - - ® Q.

Thus, every local minima is global, and we have lots of extensions.
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Kronecker

Why is this helpful? Regularized ML

@ Kronecker models do not require many samples.

@ [Allen:10] one sample + regularization via SVD.
@ We propose
min L(Q1,Q2) +aTr {Q, '} Tr{Q; "}
1,2

which is jointly g-convex.

°

°

N —— Sample
g o« ---FPI
O 04 -- RFPI10.01
2 ~RFPI10.03
< o3 1
Q
— — S o3
pL=p2=5 Y
¥, = 0.8l
y g o
o
&
T
E
o
=z

°

I R N
Number of samples
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Kronecker

Why is this helpful? Non-Gaussian & Kronecker ML

@ Just for fun: hybrid robust Kronecker model:

gQ + Q®Q: = ¢ - Q®Q

@ We propose

n
min Zx,-T(q,--Q1®Q2)_1Xf+10g’qi-01®Q2’
q,Q1,Q2 =

which is jointly g-convex.

p1 =10 and pp =2
3, = 0.8l

Normalized squared

I R
Number of samples
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© Symmetry constraints
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Symmetry

Common symmetry constraints

Q=UQU"T Vv Uek

Applications:
@ Circulant, used for approximating Toeplitz = stationary

@ Persymmetric, e.g., radar systems using a symmetrically
spaced linear array with constant pulse repetition interval

P11 P12 P13 .- P1n
q ¢ o - Chn—1
P12 P2 P23 .- Plp—
aq ¢ ¢ ... Ch_2 3 in—1
) ) 3 3 pa1 Pa2 P32 .- P12
C C C PP @]
o2 s 0 ps1 Ppa1 P - PU
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Symmetry

More symmetry constraints - properness

Q=UQU" Vv UeKk

Applications:
e Complex normal = double real normal (CAp, = N3p)
@ Plus a symmetry constraint x ~ e/x.
o Re(x) | | A B
Im(x) | | -B A
@ Recently, proper Gaussian quaternions x = a + ib + jc + kd.

@ For example, in radar with 1/Q phase and polarizations
o Here too: QN = Ny, + special symmetry x ~ e’Ox.
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Symmetry

A bit of background Q =UuUQuU’

o Gaussian
o Genreal symmetry groups [Shah & Chandrasekaran 2012]
o Everybody knows proper complex (circularly symmetric)
o Proper quaternion [Miron:06], [Bukhari:11], [Via:11]....
@ Non Gaussian

o Persymmetric [Pailloux:11]
o Complex elliptical distributions [Bombrun:11], [Ollila:12]

Lots of applications! But specific and hard to follow and generalize.
Easy in the Gaussian case (linear constraint). }
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Symmetry
Revisiting symmetry constraints
The set Q = UQU is g-convex! l

@ Can be combined with any g-convex negative-log-likelihood.

@ Can be combined with Kronecker models.
@ Symmetrically constrained Tyler, MGGD....
@ Any descent algorithm should find the global solution.
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Symmetry

Experiments

Proper quaternion multivariate T distribution, dimension 10.

T T T T T T T T
07k Sample Covariance (13) H
=B —Proper Sample Covariance (14)

— & -Tyler Covariance Estimator (12)

0B 4 Proper Tyler Covariance Estimator (13) [{
05 4
N
= R
)
F o4l e .
<) D"-e-‘e
o
LTS e —
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g, bl T
02 = B
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$og, “Boag. g
g, LD
-l ki, G-
. |

! I il 2L JIT T TN SPRNN "
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nurber of samples
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Symmetry

Discussion

Take home message

Geodesic convexity in positive definite matrices
Similar to geometric programming in scalars.
Powers and log determinants are g-convex.
G-convexity is preserved in Kronecker products.
Symmetry sets are g-convex.

Unifies and generalizes many previous results.

Lots of applications....

If you always find the global solution, maybe its (g-)convex!
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