Optimal Denoising of Natural Images and their Multiscale Geometry and Density

Boaz Nadler

Department of Computer Science and Applied Mathematics Weizmann Institute of Science, Israel.

Joint work with Anat Levin (WIS), Fredo Durand and Bill Freeman (MIT).

June 2013

[Levin and Nadler, CVPR 2011] [Levin, Nadler, Durand, Freeman, ECCV 2012]

Classical Statistical Inference:

 ${x_i}_{i=1}^n$ are *n* i.i.d. random samples (observations) from some unknown density p(x)

(in parametric setting, $p(x) = p_{\theta}(x)$).

Task:

Given $\{x_i\}$ wish to estimate p(x) (or θ).

Classical Statistical Inference:

 ${x_i}_{i=1}^n$ are *n* i.i.d. random samples (observations) from some unknown density p(x)

(in parametric setting, $p(x) = p_{\theta}(x)$).

Task:

Given $\{x_i\}$ wish to estimate p(x) (or θ).

Key result: Consistency As $n \to \infty$, $\hat{p}(x) \to p(x)$, and $\hat{\theta} \to \theta$

高 とう モン・ く ヨ と

< ∃⇒

Have only one (or even less) noisy observation per each unknown.

Have only one (or even less) noisy observation per each unknown.

Image Restoration Tasks are *ill-posed* problems.

Have only one (or even less) noisy observation per each unknown.

Image Restoration Tasks are *ill-posed* problems.

Given a degraded image y, there are multiple valid explanations x.

Have only one (or even less) noisy observation per each unknown.

Image Restoration Tasks are *ill-posed* problems.

Given a degraded image y, there are multiple valid explanations x.

Natural image priors are crucial to rule out unlikely solutions.

On the Strength of Natural Image Priors

▲御▶ ▲ 臣▶

On the Strength of Natural Image Priors

Natural $k \times k$ patches are *extremely sparse* in the set of $256^{k \times k}$ patches

Boaz Nadler Optimal Image Denoising

Practical / Computational issues limit most current image priors to local patches.

(4回) (4回) (4回)

Practical / Computational issues limit most current image priors to local patches.

Hence, the restoration results are *suboptimal*.

Towards Optimal Image Restoration

(4回) (4回) (4回)

æ

æ

- < ∃ >

- How accurate are currently used priors ?

-

- How accurate are currently used priors ?
- How much gain is possible by increasing patch size ?

- How accurate are currently used priors ?
- How much gain is possible by increasing patch size ?
- Computational issues aside, what is the optimal possible restoration ? Does it have a zero error ?

- How accurate are currently used priors ?
- How much gain is possible by increasing patch size ?
- Computational issues aside, what is the optimal possible restoration ? Does it have a zero error ?
- How do these questions relate to natural image statistics ?

- How accurate are currently used priors ?
- How much gain is possible by increasing patch size ?
- Computational issues aside, what is the optimal possible restoration ? Does it have a zero error ?
- How do these questions relate to natural image statistics ?

This talk will try to address some of these issues for a specific task: *denoising*

- III posed problem solved using priors
- Optimal prior = (unknown) density of natural images

個 と く ヨ と く ヨ と

- III posed problem solved using priors
- Optimal prior = (unknown) density of natural images

Questions:

3

個 と く ヨ と く ヨ と

- III posed problem solved using priors
- Optimal prior = (unknown) density of natural images

Questions:

i) What is the optimal achievable denoising ? How is it related to the multiscale geometry and density of natural images ?

向下 イヨト イヨト

- III posed problem solved using priors
- Optimal prior = (unknown) density of natural images

Questions:

i) What is the optimal achievable denoising ? How is it related to the multiscale geometry and density of natural images ?

ii) How far from optimal are current algorithms with approximate priors ?

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- III posed problem solved using priors
- Optimal prior = (unknown) density of natural images

Questions:

i) What is the optimal achievable denoising ? How is it related to the multiscale geometry and density of natural images ?

ii) How far from optimal are current algorithms with approximate priors ?

iii) How can we further improve current algorithms ?

・ 同 ト ・ ヨ ト ・ ヨ ト

[Is denoising dead ? / Chatterjee & Milanfar]

個 と く ヨ と く ヨ と …

3

[Is denoising dead ? / Chatterjee & Milanfar]

回 と く ヨ と く ヨ と

Should you do your Ph.D. in image denoising ?

[Is denoising dead ? / Chatterjee & Milanfar]

白 ト イヨト イヨト

Should you do your Ph.D. in image denoising ?

Answer at end of talk...

x : unknown noise free natural image y = x + n : observed image corrupted by noise. In this talk, n - additive iid Gaussian $N(0, \sigma^2)$.

x : unknown noise free natural image y = x + n : observed image corrupted by noise. In this talk, n - additive iid Gaussian $N(0, \sigma^2)$.

Task:

Given y, construct clean version \hat{y} (estimate of x).

x : unknown noise free natural image

y = x + n : observed image corrupted by noise.

In this talk, *n* - additive iid Gaussian $N(0, \sigma^2)$.

Task:

Given y, construct clean version \hat{y} (estimate of x).

Performance Measure:

$$\mathsf{MSE} = \mathbb{E}[\|x - \hat{y}\|^2]$$

x : unknown noise free natural image

y = x + n : observed image corrupted by noise.

In this talk, *n* - additive iid Gaussian $N(0, \sigma^2)$.

Task:

Given y, construct clean version \hat{y} (estimate of x).

Performance Measure:

$$\mathsf{MSE} = \mathbb{E}[\|x - \hat{y}\|^2]$$

Challenge:

III posed problem: #unknowns = #observations

伺 ト イヨト イヨト

Priors: All denoising algorithms employ implicitly or explicitly some prior on the unknown (noise-free) image.

Many different priors and denoising algorithms.

1980's - Gabor filters, anisotropic diffusion 1990's - wavelet based methods, total variation

2000's - sparse representations,

Priors: All denoising algorithms employ implicitly or explicitly some prior on the unknown (noise-free) image.

Many different priors and denoising algorithms.

1980's - Gabor filters, anisotropic diffusion

1990's - wavelet based methods, total variation

2000's - sparse representations,

05' Non-Local Means Algorithm

高 とう モン・ く ヨ と

The NL-Means Algorithm

L. Yaroslavsky already suggested similar ideas in 1985.

[Buades & al 2005] [Awate & Whittaker 2006] [Barash & Comaniciu 2004]

< ∃⇒

$$\hat{y}(x_i) = \frac{1}{D(x_i)} \sum_{\text{pixels } j} K_{\varepsilon}(\mathbf{y}(x_i), \mathbf{y}(x_j)) y(x_j)$$

where

$$D(x_i) = \sum_{pixels \ j} K_{\varepsilon}(\mathbf{y}(x_i), \mathbf{y}(x_j))$$

L. Yaroslavsky already suggested similar ideas in 1985.

[Buades & al 2005] [Awate & Whittaker 2006] [Barash & Comaniciu 2004]

$$\hat{y}(x_i) = rac{1}{D(x_i)} \sum_{\text{pixels } j} K_{\varepsilon}(\mathbf{y}(x_i), \mathbf{y}(x_j)) y(x_j)$$

where

$$D(x_i) = \sum_{pixels \ j} \mathcal{K}_{\varepsilon}(\mathbf{y}(x_i), \mathbf{y}(x_j))$$

In matrix form

$$\hat{\mathbf{y}} = \mathbf{D}^{-1} \mathbf{W} \mathbf{y}$$

One interpretation: Random walk on image patches.

[Singer, Shkolnisky, N. 08']

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

Example: Input Image

<ロ> (四) (四) (三) (三) (三)
Example: Original noise-free image

(4回) (1) (1)

- < ≣ →

Example: Result of BM3D

< ロ > < 回 > < 回 > < 回 > < 回 > :

æ

Example: Result of KSVD

æ

Key Questions About Natural Image Denoising:

白 ト イヨト イヨト

Key Questions About *Natural* Image Denoising:

- *Optimal* Denoising in this setup ? Relation to geometry and density of natural image patches ?

.

Key Questions About *Natural* Image Denoising:

- *Optimal* Denoising in this setup ? Relation to geometry and density of natural image patches ?

- Are we there yet ? How much better can we improve on BM3D or other denoising algorithms ?

First consider denoising algorithms that estimate the central pixel x_c from a $k \times k$ window around it, dimension $d = k^2$.

In other words, think of x, y as both $k \times k$ patches.

Goal: Given y = x + n, estimate central pixel of x as best as possible.

Quality Measure: Mean Squared Error (MSE)

$$MSE = \mathbb{E}[(\hat{y}_c - x_c)^2],$$
$$PSNR = -10 \log_{10} MSE$$

伺い イヨト イヨト

The Bayesian Minimum Mean Squared Error Estimator

$$\mu(y) = \mathbb{E}[x_c | y] = \int p(x_c | y) x_c dx$$
$$= \frac{\int p(y|x) x_c dx}{\int p_d(x) p(y|x) dx}$$

where $p_d(x)$ - density of $d = k \times k$ patches of natural images.

同 と く ヨ と く ヨ と

The Bayesian Minimum Mean Squared Error Estimator

$$\mu(y) = \mathbb{E}[x_c | y] = \int p(x_c | y) x_c dx$$
$$= \frac{\int p(y|x) x_c dx}{\int p_d(x) p(y|x) dx}$$

where $p_d(x)$ - density of $d = k \times k$ patches of natural images. NL-means

$$\hat{y}(x_i) = \frac{\sum_j K(\mathbf{y}(x_j), \mathbf{y}(x_i)) y_c(x_j)}{\sum_j K(\mathbf{y}(x_i), \mathbf{y}(x_j))}$$

白 ト イヨト イヨト

The Bayesian Minimum Mean Squared Error Estimator

$$\mu(y) = \mathbb{E}[x_c | y] = \int p(x_c | y) x_c dx$$
$$= \frac{\int p(y|x) x_c dx}{\int p_d(x) p(y|x) dx}$$

where $p_d(x)$ - density of $d = k \times k$ patches of natural images. NI -means

$$\hat{y}(x_i) = \frac{\sum_j \mathcal{K}(\mathbf{y}(x_j), \mathbf{y}(x_i)) y_c(x_j)}{\sum_j \mathcal{K}(\mathbf{y}(x_i), \mathbf{y}(x_j))}$$

can be viewed as non-parametric approximation of the MMSE estimator using noisy image patches.

伺下 イヨト イヨト

If $p_d(x)$ were known - in principle could compute MMSE and see how far we are from optimality (at fixed window size d). If $p_d(x)$ were known - in principle could compute MMSE and see how far we are from optimality (at fixed window size d).

Challenge: Derive lower bound on $MMSE_d$ w/out knowing $p_d(x)$?

If $p_d(x)$ were known - in principle could compute MMSE and see how far we are from optimality (at fixed window size d).

Challenge: Derive lower bound on $MMSE_d$ w/out knowing $p_d(x)$?

Solution: A trick ...

同 と く ヨ と く ヨ と

Approximate two identical yet *different* representations of MSE.

Approximate two identical yet *different* representations of MSE. ERROR representation

$$MSE = \int p(x) \int p(y \mid x) (\hat{\mu}(y) - x_c)^2 dy dx$$

Approximate two identical yet *different* representations of MSE. ERROR representation

$$MSE = \int p(x) \int p(y \mid x) (\hat{\mu}(y) - x_c)^2 dy dx$$

VARIANCE representation

$$MSE = \int p_{\sigma}(y) \int p(x \mid y) (\hat{\mu}(y) - x_c)^2 dx dy$$

個 と く ヨ と く ヨ と

Consider a huge set of $N = 10^{10}$ natural image patches. Approximate MMSE_d non-parametrically.

$$\hat{\mu}(y) = \frac{\frac{1}{N} \sum_{i} p(y|x_i) x_{i,c}}{\frac{1}{N} \sum_{i} p(y|x_i)}, \qquad (1)$$

where for Gaussian noise

$$p(y|x) = \frac{1}{(2\pi\sigma^2)^{d/2}} e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$
(2)

and $d = k^2$.

Upper and Lower Bound on MMSE

Given a set of *M* noisy pairs $\{(\tilde{x}_j, y_j)\}_{j=1}^M$ and another independent set of *N* clean patches $\{x_i\}_{i=1}^N$, both randomly sampled from natural images, we compute

$$MMSE^{U} = \frac{1}{M} \sum_{j} (\hat{\mu}(y_{j}) - \tilde{x}_{j,c})^{2}$$
(3)
$$MMSE^{L} = \frac{1}{M} \sum_{j} \hat{\mathcal{V}}(y_{j})$$
(4)

where $\hat{\mathcal{V}}(y_j)$ is the approximated variance:

$$\hat{\mathcal{V}}(y_j) = \frac{\frac{1}{N} \sum_i p(y_j | x_i) (\hat{\mu}(y_j) - x_{i,c})^2}{\frac{1}{N} \sum_i p(y_j | x_i)}$$
(5)

Upper and Lower Bound on MMSE

Given a set of *M* noisy pairs $\{(\tilde{x}_j, y_j)\}_{j=1}^M$ and another independent set of *N* clean patches $\{x_i\}_{i=1}^N$, both randomly sampled from natural images, we compute

$$MMSE^{U} = \frac{1}{M} \sum_{j} (\hat{\mu}(y_{j}) - \tilde{x}_{j,c})^{2}$$
(3)
$$MMSE^{L} = \frac{1}{M} \sum_{j} \hat{\mathcal{V}}(y_{j})$$
(4)

where $\hat{\mathcal{V}}(y_j)$ is the approximated variance:

$$\hat{\mathcal{V}}(y_j) = \frac{\frac{1}{N} \sum_i p(y_j | x_i) (\hat{\mu}(y_j) - x_{i,c})^2}{\frac{1}{N} \sum_i p(y_j | x_i)}$$
(5)

Key Difference: MMSE^U knows true noise-free patch \tilde{x} , MMSE^L does not know \tilde{x} ,

$MMSE^U$ is the MSE of yet another (not very fast) denoising algorithm. It is an *upper bound* on the optimal MSE.

$MMSE^U$ is the MSE of yet another (not very fast) denoising algorithm. It is an *upper bound* on the optimal MSE.

Claim: In expectation, $MMSE^{L}$ is a *lower bound* on the MSE.

MMSE^{*U*} is the MSE of yet another (not very fast) denoising algorithm. It is an *upper bound* on the optimal MSE.

Claim: In expectation, $MMSE^{L}$ is a *lower bound* on the MSE.

If $N \gg 1$ is sufficiently large so that $MMSE^U \approx MMSE^L$ - then we have an accurate estimate of the MMSE !

Claim

$$\mathbb{E}_{N}[\hat{\mathcal{V}}(y)] = \mathcal{V}(y) + C(y)\mathcal{B}(y) + o\left(\frac{1}{N}\right),$$
(6)

with

$$\mathcal{B}(y) = \mathbb{E}[x_{c}^{2}|y] - 3\mathbb{E}[x_{c}|y]^{2} - 2\mathbb{E}_{\sigma^{*}}[x_{c}^{2}|y] + 4\mathbb{E}[x_{c}|y]\mathbb{E}_{\sigma^{*}}[x_{c}|y]$$
(7)
$$C(y) = \frac{1}{N} \frac{p_{\sigma^{*}}(y)}{(4\pi\sigma^{2})^{d/2}p(y)^{2}}$$
(8)

where p_{σ^*} and $\mathbb{E}_{\sigma^*}[\cdot]$ denote probability and expectation of random variables whose noise standard deviation is reduced from σ to $\sigma^* = \sigma/\sqrt{2}$.

・ 回 と ・ ヨ と ・ モ と …

æ

Next, we consider a local Gaussian approximation for p(x) around x = y, e.g., a Laplace approximation consisting of a second order Taylor expansion of $\ln p(x)$.

For a Gaussian distribution analytic computation of bias

Claim

```
For a Gaussian distribution, \mathcal{B}(y) \leq 0 for all y.
```

Numerical Example

< ≣⇒

æ

Set of $N = 10^{10}$ natural image patches out of 20K images from LabelMe dataset.

Independent set of M = 2000 patches from same dataset \tilde{x} .

Add noise at different levels, $\sigma = 18, 55, 170$, and with different window sizes, $k = 3, 4, \ldots, 20$.

Compared MMSE^{*L*}, MMSE^{*U*} as well as MSE of various state-of-the-art denoising algorithms.

Experiments: $\sigma = 18$

・ロト ・回ト ・ヨト ・ヨト

æ

MMSE_d vs window size

For small patches / large noise non-parametric approach can accurately estimate $\mathsf{MMSE}.$

Boaz Nadler Optimal Image Denoising

[Levin and N. CVPR 2011]

MMSE_d vs window size

Extrapolation: What happens as $d \to \infty$?

-

向下 イヨト イヨト

Open Questions:

高 とう モン・ く ヨ と

Open Questions:

-How much gain is possible by increasing patch size ?

Open Questions:

-How much gain is possible by increasing patch size ?

- Computational issues aside, what is the optimal possible restoration ? Does it have a zero error ?

Empirical Results: Assign each pixel to group G_d where d is largest window size with reliable estimation.
Patch Complexity vs. PSNR gain

Empirical Results: Assign each pixel to group G_d where d is largest window size with reliable estimation.

PSNR vs. number of pixels in window, for different groups G_d

Higher curves correspond to *smooth regions*, which flatten at larger patch dimensions, require smaller external database.

Lower curves correspond to *textured regions*, which not only run out of samples sooner, but also their curves flatten earlier, and require huge external database.

Key conclusion:

Law of Marginal Return

回 と く ヨ と く ヨ と

æ

Key conclusion:

Law of Marginal Return

When increasing window size,

Smooth regions: large gain, no need to increase sample size

▲ 문 ▶ | ▲ 문 ▶

Key conclusion:

Law of Marginal Return

When increasing window size,

Smooth regions: large gain, no need to increase sample size

Texture / edges: small gain, large increase in sample size

For each pixel x_i , find largest window w_d for which $\hat{\mu}_d$ is still reliable.

回 と く ヨ と く ヨ と

For each pixel x_i , find largest window w_d for which $\hat{\mu}_d$ is still reliable.

σ	20	35	50	75	100
Optimal Fixed	32.4	30.1	28.7	27.2	26.0
Adaptive	33.0	30.5	29.0	27.5	26.4
BM3D	33.2	30.3	28.6	26.9	25.6

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

For each pixel x_i , find largest window w_d for which $\hat{\mu}_d$ is still reliable.

σ	20	35	50	75	100
Optimal Fixed	32.4	30.1	28.7	27.2	26.0
Adaptive	33.0	30.5	29.0	27.5	26.4
BM3D	33.2	30.3	28.6	26.9	25.6

Similar idea suggested for adaptive Non-Local Means [Kervrann and Boulanger. 2006].

Challenge: Develop Practical Algorithm Based on this Adaptivity Principle

回 と く ヨ と く ヨ と

PSNR vs. window size

What is convergence rate of $MMSE_d$ to $MMSE_\infty$?

@▶ 《 ≧ ▶

- < ≣ →

æ

What is convergence rate of $MMSE_d$ to $MMSE_\infty$?

Empirically:

$$\mathsf{MMSE}_d = e + rac{c}{d^lpha} \quad ext{with} \ lpha pprox 1$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Empirically:

$$\mathsf{MMSE}_d = e + rac{c}{d^lpha} \quad ext{with} \ lpha pprox 1$$

Can this be predicted theoretically ?

(4回) (4回) (4回)

Simple Image Formation Model: Dead Leaves [Matheron 68']

▲御▶ ▲ 臣▶ ▲ 臣▶

Simple Image Formation Model: Dead Leaves [Matheron 68'] Image = random collection of finite size piece-wise constant regions Region intensity = random variable with uniform distribution.

個 と く ヨ と く ヨ と …

Scale Invariance: many natural image statistics are scale invariant: Down-sampling natural images does not change gradient distribution, segment sizes, etc.

[Ruderman 97', Field 78, etc.]

Scale Invariance: many natural image statistics are scale invariant: Down-sampling natural images does not change gradient distribution, segment sizes, etc.

[Ruderman 97', Field 78, etc.]

Claim Under scale invariance

 $\Pr[\text{pixel belongs to region of size s pixels}] \propto 1/s$

[Alvarez, Gousseau, Morel, 99']

Our Key Contribution:

Claim

Dead leaves model with scale invariance (and edge oracle) implies strictly positive $MMSE_{\infty}$ and power law convergence

$$\textit{MMSE}_{d} = \textit{e} + rac{\textit{c}}{\textit{d}^{lpha}}$$

with $\alpha = 1$

Our Key Contribution:

Claim

Dead leaves model with scale invariance (and edge oracle) implies strictly positive $MMSE_\infty$ and power law convergence

$$MMSE_d = e + rac{c}{d^{lpha}}$$

with $\alpha = 1$

Note that

$$e = \mathsf{MMSE}_{\infty}$$

so we can extrapolate empirical curve and estimate $PSNR_{\infty}$.

σ	35	50	75	100
Extrapolated bound	30.6	28.8	27.3	26.3
KSVD	28.7	26.9	25.0	23.7
BM3D	30.0	28.1	26.3	25.0
EPLL	29.8	28.1	26.3	25.1

▲御▶ ▲注▶ ▲注▶

σ	35	50	75	100
Extrapolated bound	30.6	28.8	27.3	26.3
KSVD	28.7	26.9	25.0	23.7
BM3D	30.0	28.1	26.3	25.0
EPLL	29.8	28.1	26.3	25.1

Still some modest room for improvement

◆□ > ◆□ > ◆臣 > ◆臣 > ○

(4回) (4回) (4回)

Summary

- Understanding the relation between natural image statistics and restoration taks is a fundamental problem.

- Statistical framework to study optimal natural image denoising.

→ Ξ →

- ∢ ⊒ ⊳

- Statistical framework to study optimal natural image denoising.
- Non-parametric methods law of diminishing return.

A B K A B K

- Understanding the relation between natural image statistics and restoration taks is a fundamental problem.
- Statistical framework to study optimal natural image denoising.
- Non-parametric methods law of diminishing return.
- most further gain in smooth regions \rightarrow *adaptive* approach.

高 とう モン・ く ヨ と

- Statistical framework to study optimal natural image denoising.
- Non-parametric methods law of diminishing return.
- most further gain in smooth regions \rightarrow *adaptive* approach.

- Natural image statistics pose inherent limits on denoising. Empirically, power law convergence vs. window size, supported by Dead Leaves + Scale Invariance model.

伺い イヨト イヨト

- Statistical framework to study optimal natural image denoising.
- Non-parametric methods law of diminishing return.
- most further gain in smooth regions \rightarrow *adaptive* approach.

- Natural image statistics pose inherent limits on denoising. Empirically, power law convergence vs. window size, supported by Dead Leaves + Scale Invariance model.

- Still room for improvement (not by non-parametric method).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Statistical framework to study optimal natural image denoising.
- Non-parametric methods law of diminishing return.
- most further gain in smooth regions \rightarrow *adaptive* approach.

- Natural image statistics pose inherent limits on denoising. Empirically, power law convergence vs. window size, supported by Dead Leaves + Scale Invariance model.

- Still room for improvement (not by non-parametric method).
- Implications to other low level vision tasks deconvolution, super-resolution.

(4回) (4回) (4回)

- Statistical framework to study optimal natural image denoising.
- Non-parametric methods law of diminishing return.
- most further gain in smooth regions \rightarrow *adaptive* approach.

- Natural image statistics pose inherent limits on denoising. Empirically, power law convergence vs. window size, supported by Dead Leaves + Scale Invariance model.

- Still room for improvement (not by non-parametric method).
- Implications to other low level vision tasks deconvolution, super-resolution.

THE END / THANK YOU !

→ 同 → → 目 → → 目 →