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Classical Statistical Estimation vs. Image Restoration

Classical Statistical Inference:

{xi}ni=1 are n i.i.d. random samples (observations) from some
unknown density p(x)

(in parametric setting, p(x) = pθ(x) ).

Task:
Given {xi} wish to estimate p(x) (or θ).

Key result: Consistency
As n → ∞, p̂(x) → p(x), and θ̂ → θ
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Restoration Tasks and Image Priors

Many image restoration tasks: denoising, super-resolution,
deblurring, etc, are different:

Have only one (or even less) noisy observation per each unknown.

Image Restoration Tasks are ill-posed problems.

Given a degraded image y , there are multiple valid explanations x .

Natural image priors are crucial to rule out unlikely solutions.
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On the Strength of Natural Image Priors

Natural k × k patches are extremely sparse in the set of 256k×k patches
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Optimal Image Restoration

Practical / Computational issues limit most current image priors to
local patches.

Hence, the restoration results are suboptimal.
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Towards Optimal Image Restoration

Fundamental Theoretical Questions:

- How accurate are currently used priors ?

- How much gain is possible by increasing patch size ?

- Computational issues aside, what is the optimal possible
restoration ? Does it have a zero error ?

- How do these questions relate to natural image statistics ?

This talk will try to address some of these
issues for a specific task: denoising
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Outline

Denoising of Natural Images:

- Ill posed problem - solved using priors

- Optimal prior = (unknown) density of natural images

Questions:

i) What is the optimal achievable denoising ? How is it related to
the multiscale geometry and density of natural images ?

ii) How far from optimal are current algorithms with approximate
priors ?

iii) How can we further improve current algorithms ?
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Image Denoising - The Final Frontier

[Is denoising dead ? / Chatterjee & Milanfar]

Should you do your Ph.D. in image denoising ?

Answer at end of talk...
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Natural Image Denoising

Problem Setting:

x : unknown noise free natural image

y = x + n : observed image corrupted by noise.

In this talk, n - additive iid Gaussian N(0, σ2).

Task:
Given y , construct clean version ŷ (estimate of x).

Performance Measure:
MSE = E[∥x − ŷ∥2]

Challenge:
Ill posed problem: #unknowns = #observations
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Challenge:
Ill posed problem: #unknowns = #observations

Boaz Nadler Optimal Image Denoising



. . . . . .

Natural Image Denoising

Problem Setting:

x : unknown noise free natural image

y = x + n : observed image corrupted by noise.

In this talk, n - additive iid Gaussian N(0, σ2).

Task:
Given y , construct clean version ŷ (estimate of x).

Performance Measure:
MSE = E[∥x − ŷ∥2]
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Denoising Algorithms

Priors: All denoising algorithms employ implicitly or explicitly
some prior on the unknown (noise-free) image.

Many different priors and denoising algorithms.

1980’s - Gabor filters, anisotropic diffusion

1990’s - wavelet based methods, total variation

2000’s - sparse representations,

05’ Non-Local Means Algorithm
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The NL-Means Algorithm

L. Yaroslavsky already suggested similar ideas in 1985.
[Buades & al 2005]

[Awate & Whittaker 2006]
[Barash & Comaniciu 2004]

ŷ(xi ) =
1

D(xi )

∑
pixels j

Kε(y(xi ), y(xj))y(xj)

where
D(xi ) =

∑
pixels j

Kε(y(xi ), y(xj))

In matrix form
ŷ = D−1Wy

One interpretation: Random walk on image patches.
[Singer, Shkolnisky, N. 08’]
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Example: Input Image
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Example: Original noise-free image
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Example: Result of BM3D
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Example: Result of KSVD
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Image Denoising, Smoothness, Sparsity, Priors

Key Questions About Natural Image Denoising:

- Optimal Denoising in this setup ? Relation to geometry and
density of natural image patches ?

- Are we there yet ? How much better can we improve on BM3D
or other denoising algorithms ?
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Statistical Framework

First consider denoising algorithms that estimate the central pixel
xc from a k × k window around it, dimension d = k2.

In other words, think of x , y as both k × k patches.

Goal: Given y = x + n, estimate central pixel of x as best as
possible.

Quality Measure: Mean Squared Error (MSE)

MSE = E[(ŷc − xc)
2],

PSNR = −10 log10MSE
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Optimal Natural Image Denoising

The Bayesian Minimum Mean Squared Error Estimator

µ(y) = E[xc | y ] =
∫

p(xc | y)xcdx

=

∫
p(y |x)xcdx∫

pd(x)p(y |x)dx

where pd(x) - density of d = k × k patches of natural images.

NL-means

ŷ(xi ) =

∑
j K (y(xj), y(xi ))yc(xj)∑

j K (y(xi ), y(xj))

can be viewed as non-parametric approximation of the MMSE
estimator using noisy image patches.
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Upper and Lower Bounds on MMSE

If pd(x) were known - in principle could compute MMSE and see
how far we are from optimality (at fixed window size d).

Challenge: Derive lower bound on MMSEd w/out knowing pd(x) ?

Solution: A trick ...
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A brute force / elegant non-parametric approach

Don’t know pd(x), but can sample from it.

Approximate two identical yet different representations of MSE.

ERROR representation

MSE =

∫
p(x)

∫
p(y | x)(µ̂(y)− xc)

2dydx

VARIANCE representation

MSE =

∫
pσ(y)

∫
p(x | y)(µ̂(y)− xc)

2dxdy
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A brute force / elegant non-parametric approach

Don’t know pd(x), but can sample from it.

Consider a huge set of N = 1010 natural image patches.
Approximate MMSEd non-parametrically.

µ̂(y) =
1
N

∑
i p(y |xi )xi,c

1
N

∑
i p(y |xi )

, (1)

where for Gaussian noise

p(y |x) = 1

(2πσ2)d/2
e−

∥x−y∥2

2σ2 (2)

and d = k2.
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Upper and Lower Bound on MMSE

Given a set of M noisy pairs {(x̃j , yj)}Mj=1 and another independent

set of N clean patches {xi}Ni=1, both randomly sampled from
natural images, we compute

MMSEU =
1

M

∑
j

(µ̂(yj)− x̃j ,c)
2 (3)

MMSEL =
1

M

∑
j

V̂(yj) (4)

where V̂(yj) is the approximated variance:

V̂(yj) =
1
N

∑
i p(yj |xi )(µ̂(yj)− xi,c)

2

1
N

∑
i p(yj |xi )

(5)

Key Difference:
MMSEU knows true noise-free patch x̃ ,
MMSEL does not know x̃ ,
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The Theoretical Part

MMSEU is the MSE of yet another (not very fast) denoising
algorithm. It is an upper bound on the optimal MSE.

Claim: In expectation, MMSEL is a lower bound on the MSE.

If N ≫ 1 is sufficiently large so that MMSEU ≈ MMSEL - then we
have an accurate estimate of the MMSE !
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The Theoretical Part

Claim

EN [V̂(y)] = V(y) + C (y)B(y) + o

(
1

N

)
, (6)

with

B(y) = E[x2c |y ]− 3E[xc |y ]2 − 2Eσ∗ [x2c |y ]
+4E[xc |y ]Eσ∗ [xc |y ] (7)

C (y) =
1

N

pσ∗(y)

(4πσ2)d/2p(y)2
(8)

where pσ∗ and Eσ∗ [·] denote probability and expectation of random
variables whose noise standard deviation is reduced from σ to
σ∗ = σ/

√
2.
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Theory Part II

Next, we consider a local Gaussian approximation for p(x) around
x = y , e.g., a Laplace approximation consisting of a second order
Taylor expansion of ln p(x).
For a Gaussian distribution analytic computation of bias

Claim
For a Gaussian distribution, B(y) ≤ 0 for all y .
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Numerical Example
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Experiment Design

Set of N = 1010 natural image patches out of 20K images from
LabelMe dataset.

Independent set of M = 2000 patches from same dataset x̃ .

Add noise at different levels, σ = 18, 55, 170, and with different
window sizes, k = 3, 4, . . . , 20.

Compared MMSEL, MMSEU as well as MSE of various
state-of-the-art denoising algorithms.

Boaz Nadler Optimal Image Denoising



. . . . . .

Experiments: σ = 18
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MMSEd vs window size

4 6 8 10 12
25

26

27

28

29

30

patch size

P
S

N
R

For small patches / large noise non-parametric approach can
accurately estimate MMSE.

[Levin and N. CVPR 2011]
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MMSEd vs window size
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Extrapolation: What happens as d → ∞?
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Towards Optimal Image Denoising

Results of Levin and Nadler [CVPR 2011] imply that with small
patches current algorithms are close to optimal.

Open Questions:

-How much gain is possible by increasing patch size ?

- Computational issues aside, what is the optimal possible
restoration ? Does it have a zero error ?
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Patch Complexity vs. PSNR gain

Empirical Results: Assign each pixel to group Gd where d is largest
window size with reliable estimation.

PSNR vs. number of pixels in window, for different groups Gd
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Patch Complexity vs. PSNR gain

Higher curves correspond to smooth regions, which flatten at
larger patch dimensions, require smaller external database.

Lower curves correspond to textured regions, which not only run
out of samples sooner, but also their curves flatten earlier, and
require huge external database.
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Patch Complexity vs. PSNR gain

Key conclusion:
Law of Marginal Return

When increasing window size,

Smooth regions: large gain, no need to increase sample size

Texture / edges: small gain, large increase in sample size
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Adaptive Non-parametric Denoising

For each pixel xi , find largest window wd for which µ̂d is still
reliable.

σ 20 35 50 75 100

Optimal Fixed 32.4 30.1 28.7 27.2 26.0
Adaptive 33.0 30.5 29.0 27.5 26.4
BM3D 33.2 30.3 28.6 26.9 25.6

Similar idea suggested for adaptive Non-Local Means [Kervrann
and Boulanger. 2006].

Challenge: Develop Practical Algorithm Based on this Adaptivity Principle
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PSNR vs. window size

What is convergence rate of MMSEd to MMSE∞ ?
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PSNR vs. window size

Empirically:

MMSEd = e +
c

dα
with α ≈ 1

Can this be predicted theoretically ?
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Dead Leaves Model

Simple Image Formation Model: Dead Leaves [Matheron 68’]

Image = random collection of finite size piece-wise constant regions

Region intensity = random variable with uniform distribution.
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Multiscale Geometry of Natural Images

Scale Invariance: many natural image statistics are scale
invariant: Down-sampling natural images does not change gradient
distribution, segment sizes, etc.

[Ruderman 97’, Field 78, etc.]

Claim
Under scale invariance

Pr[pixel belongs to region of size s pixels ] ∝ 1/s

[Alvarez, Gousseau, Morel, 99’]
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Scale Invariance and the dead leaves model

Our Key Contribution:

Claim
Dead leaves model with scale invariance (and edge oracle) implies
strictly positive MMSE∞ and power law convergence

MMSEd = e +
c

dα

with α = 1

Note that
e = MMSE∞

so we can extrapolate empirical curve and estimate PSNR∞.
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Extrapolated PSNR∞ vs. Current Algorithms

σ 35 50 75 100

Extrapolated bound 30.6 28.8 27.3 26.3
KSVD 28.7 26.9 25.0 23.7
BM3D 30.0 28.1 26.3 25.0
EPLL 29.8 28.1 26.3 25.1

Still some modest room for improvement
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. . . . . .

Summary

- Understanding the relation between natural image statistics and
restoration taks is a fundamental problem.

- Statistical framework to study optimal natural image denoising.

- Non-parametric methods - law of diminishing return.

- most further gain in smooth regions → adaptive approach.

- Natural image statistics pose inherent limits on denoising.
Empirically, power law convergence vs. window size, supported by
Dead Leaves + Scale Invariance model.

- Still room for improvement (not by non-parametric method).

- Implications to other low level vision tasks - deconvolution,
super-resolution.

THE END / THANK YOU !
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