Graph-cut methods for joint reconstruction and segmentation

W. Clem Karl

Department of Electrical and Computer Engineering Department of Biomedical Engineering Boston University

Joint work with A. Tuysuzoglu, D. Castanon

Outline

- Discrete amplitude inverse problems
- Use of graph cuts for discrete problems
- Graph-cuts and inverse problems
 - The inverse problem messes things up
- New ideas:
 - Idea 1: Separable approximation approach
 - Idea 2: Understand structure
 - Graph representable class of inverse problems
 - Idea 3: Exploit structure
 - Graph-cut based dual decomposition method for inverse problems
- Examples

Overview

- Inverse problems:
 - Medical tomography images from projections
 - Scanning electron tomography of materials grains
 - Security scanning imaging inside luggage
 - Deblurring, Super-resolution fusion and deblurring
- Discrete-amplitude inverse problems
 - Medical tomography bone, tissue, interventional instrument
 - Material science grain volume fractions
 - Security threat classification
 - Deblurring segmentation

Examples

Electron Tomography for Material Science:

Deblurring (coded aperture "flutter shutter")

Common problem characteristics

- Indirect or "coded" observation y of latent variables x
- Few amplitudes are of interest: x discrete
- Scene structure is important
 - Focus on locations with specific values where stuff is
- Data is limited, "information poor"
 - Ad hoc methods perform poorly

Problem Formulation

Estimate discrete level image x by cost minimization:

 $\hat{x} = \underset{x \in \{\text{Disc Amp}\}}{\operatorname{argmin}} J(x) = \underset{x \in \{\text{Disc Amp}\}}{\operatorname{argmin}} J_{data}(x) + \lambda J_{prior}(x) \text{ NP Hard!}$

Data Fidelity:
$$J_{data}(x) = \|y - Cx\|_2^2$$

• Prior (MRFs, TV, sparse, etc):
$$J_{prior}(x) = \|Dx\|_1^1$$

Approach #1

- Two-step decoupled process
- Continuous relaxation
 - 1. Relax discrete assumption on x
 - 2. Solve resulting continuous inverse problem (e.g. with TV)
 - 3. Segment continuous reconstruction result
- Ad hoc, wastes information

 $\underset{x \in \{\text{Disc Amp}\}}{\operatorname{argmin}} \left\| y - Cx \right\|_{2}^{2} + \lambda J_{prior}(x) \Longrightarrow \underset{x \in \Re^{n}}{\operatorname{argmin}} \left\| y - Cx \right\|_{2}^{2} + \lambda J_{prior}(x)$

Approach #2: DART (Discrete ART)

- Algorithm for discrete tomography
- Idea: Interior regions are "reliable"
- DART Algorithm flow chart →
 - "Free pixels" are boundary + random pixels
- No explicit regularization
- Discretization decoupled from reconstruction
- Very popular in materials science
- Iterative variant of Approach #1

Approach #3: Graph-cut Methods

- <u>Direct</u> solution of underlying discrete problem
- All start by <u>representing problem on a graph</u>
- Powerful and efficient methods for these problems exist
- Some nice performance results → Global optimality!
- Efficient algorithms
 - Min-cut/Max-flow
 - Polynominal time

$$\underset{x \in \{0,1\}}{\operatorname{argmin}} \left\| y - x \right\|_{2}^{2} + \lambda J_{prior}(x) = \underset{x \in \{0,1\}}{\operatorname{argmin}} \underbrace{\sum_{p \in \{0,1\}} \theta_{p}(x_{p})}_{\text{Unary Terms}} + \underbrace{\sum_{p,q} \theta_{p,q}(x_{p}, x_{q})}_{\text{Pairwise Terms}}$$

- "Segmentation" case
- Vertices are pixel values
- Edges are costs
- Graph representation ←→ "<u>Submodularity</u>" of pairwise terms

$$\theta_{p,q}(0,0) + \theta_{p,q}(1,1) \le \theta_{p,q}(0,1) + \theta_{p,q}(1,0)$$

 Submodular when C = I since pairwise terms arise from smoothness prior

Graph Cuts when C=I, Multi-label case

- Pixel values from set Lⁿ
- Can't exploit binary graph-cut machinery
 - Multi-label extensions exist, but clumsy
- Typically break problem into sequence of binary problems
 - α - β swap iteratively minimize wrt pairs of labels α , β
 - α expansion iteratively minimize all labels wrt label α
- Only obtain approximate solutions
 - but good behavior in practice

BOSTON university

- Sub-problems still need to be submodular!
 - Still true when C = I. Things work well in this case

Graph Cuts when $C \neq I$

(Inversion)

- Overall cost is <u>not</u> submodular (graph representable)
 Conventional graph-cut approaches do not work
- Problem is with data term:

$$J_{data}(x) = \|y - Cx\|_{2}^{2} = y^{T}y - 2y^{T}Cx + x^{T}C^{T}Cx$$

Contains general cross terms involving $x_p x_q$

 [Raj `05] Coupling of pixels due to non-diagonal C makes J_{data} non-graph-representable

Related work on graph-cuts, inversion

- Graph Cuts
 - [Raj `05] : Deconvolution
 - Approximate non-submodular cross-terms in J_{data}
 - Replace non-submodular cross-terms $C_{pq}x_px_q$ with linear terms $C_{pq}[x_p^{(0)}x_q + x_px_q^{(0)}]$
 - Method is for α - β swap algorithm
 - Assumes non-negative C
 - [Raj `06, Rother `07] : MRI Reconstruction
 - Use of "roof-duality" to remap some non-submodular terms (QPBO)
 - Cannot always be done
 - Can leave pixels unlabeled
 - [Cremers 06] : Learned submodular models
- Inverse Problems
 - [Wright, Nowak, Figueiredo `09] : Sparse reconstruction
 - Continuous amplitude problems (not focused on graph cuts)
 - Separable approximation of data term
- Discrete Tomography
 - [Batenburg, `11]: DART
 - Ad hoc iterative thresholding method

dat

BC UN

Idea #1: Use separable approximation of J_{data}

- Relax discrete assumption on x
- Perform Taylor expansion of $J_{data}(x)$ around x_0 (Wright `09)
- Approximate Hessian by scaled diagonal
 - Separable approximation → eliminates cross-pixel coupling

Overall new approach

Replace original cost with surrogate cost

$$J(x) = J_{data}(x) + \lambda J_{prior}(x)$$
Not Graph
Representable
$$\hat{J}(x) = \hat{J}_{data}(x \mid x_0, \gamma) + \lambda J_{prior}(x)$$
Not Graph
Representable

- Surrogate cost is graph representable (submodular)
- Any multi-label graph-cut method can now minimize
 - α -expansion in this work
- Iteratively minimize surrogate cost

Graph Cuts w/Separable Approximation (GCWSA)

GCWSA Algorithm:

- 1. Initialize: $x^{(0)}$
- 2. Use graph-cut algorithm to minimize surrogate cost

$$x^{(k+1)} = \underset{x \in \{\text{Disc Amp}\}}{\operatorname{argmin}} \hat{J}_{data}(x \mid x^{(k)}, \gamma_k) + \lambda J_{prior}(x)$$

3. γ_k Update (Acceptance test):

- a. If $J(x^{(k+1)}) > J(x^{(k)})$ increase γ_k and redo 2. (forces smaller step size)
- b. If $J(x^{(k+1)}) \le J(x^{(k)})$ accept updated estimate, set $k \rightarrow k+1$ and goto 2.

Efficient computation for relaxation parameter γ_k

$$\hat{J}_{data}(x \mid x_0, \gamma) = J_{data}(x_0) + \nabla J_{data}(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T [\gamma D] (x - x_0)$$

- Good choice of γ improves solution
 - Repeated computation for different γ
- Observation:
 - Changing γ_k only affects unary terms (via diagonal approx)
 - Pairwise terms remain unchanged (many of these)
- Flow Recycling [Kohli, 2005]
 - Reuse min-flow results
 - Modify previous residual graph
 - Most terms remain unchanged
- Order of magnitude faster than naïve way!

Diagonal of $C^T C$

scaled by γ

Experiment: Noisy Multi-level

Ground truth image

- 256 x 256 Image
- Known Intensity Levels {0, 5, 10}.
- Projections over 120 degree angular span
- 1 degree separation between projections
- 362 detector values per angle
- 30 dB AWGN

Experiment: Noisy Multi-level

Reconstruction Errors of Different Methods

Mislabeled Pixels: Multi-label Phantom

Experiment: Multi-level Deblurring

Ground truth image

20 pixel motion blur at 45 deg.

Noisy blurred image

Joint Inversion and Labeling

- 150X150 synthetic image
- Pixel values, L = {1, 2, 3, 4, 5}
- Linear motion blur, length 20 @ 45°
- AWGN for 10 dB SNR.
- J_{prior} : Total-variation

Summary so far...

• GCWSA:

- New approximation-based method for graph-cut solution of discrete linear inverse problems
- Based on separable approximation of data term

Question:

- Can structure be exploited?
- Are there special classes of operators C which lead to submodular problems?
 - No approximation is necessary in this case!
- Answer: Yes!... next

Variable flipping/re-labeling

• Submodularity condition (binary case):

$$\theta_{p,q}(0,0) + \theta_{p,q}(1,1) \le \theta_{p,q}(0,1) + \theta_{p,q}(1,0)$$

• Idea of variable re-labeling/flipping (Hammer 1984, Kolmogorov 2007):

• In which graphs can you get all *submodular* interactions through relabelling?

Flipping Schemes

Lemma 1. Flipping scheme for a set of nodes represented by an acyclic graph to make all interactions submodular:

$$d(r, p)=1 \qquad d(r, q)=2 \qquad d(r, s)=2$$

$$r \qquad p \qquad q \qquad s \qquad x$$

 $w(i, j) = \begin{cases} 1 \text{ if the pair } i, j \text{ is nonsubmodular} \\ 0 \text{ if the pair } i, j \text{ is submodular} \end{cases}$

> Flip nodes with an odd distance to a root node

Non-submodular

Submodular

CIMI 2013

Flipping Schemes

Theorem. A flipping scheme for a set of arbitrarily connected nodes exists iff there is an *even* number of non-submodular interactions in each cycle

Flipping Scheme: Flip any spanning tree of the graph as given in Lemma 1.

Implications for discrete inverse problems

$$J_{data}(x) = \|y - Cx\|_{2}^{2} = y^{T} y - 2y^{T} Cx + x^{T} C^{T} Cx,$$

- Structure of $C^T C$:
 - 1. First off-diagonal
 - 2. Odd off-diagonals
 - 3. Even off-diagonals
- ➔ acyclic interactions
- → even ("flipable") cycles
- → odd (frustrated) cycles

Idea #2: Special class of systems: No odd cycles

$$J_{data}(x) = \|y - Cx\|_{2}^{2} = y^{T}y - 2y^{T}Cx + x^{T}C^{T}Cx$$

Odd-banded and
non-negative $C^{T}C$
Submodular

$$C^{T}C = \begin{bmatrix} * & * & 0 & * & 0 & * \\ * & * & * & 0 & * & 0 \\ 0 & * & * & * & 0 & * \\ * & 0 & * & * & * & 0 \\ 0 & * & * & * & 0 & * \\ * & 0 & * & 0 & * & * \\ * & 0 & * & 0 & * & * \end{bmatrix}$$

These systems are guaranteed graph representable!

Dual Decomposition Inversion Approach

- DD idea: Break single hard problem into multiple easy to solve problems
 - Slave problems are solved independently
 - Master coordinates, enforces consistency via Lagragian dual
 - E.g. Loopy graph solution via overlapping trees, message passing

Idea #3: Efficient DD slaves for inverse problems

- Decomposition exploiting structure
 - All odd off-diagonals (boxes) form a single, submodular subproblem
 - Each even off-diagonal forms a separate tree subproblem
- Number of subproblems ~ number of bands
- For FIR convolution problem, number of subproblems limited by size of kernel (not size of image)

Efficient master huristics

- After many iterations some node labels obtain "obvious" consensus
- "Strong Nodes":
 - Nodes where slaves agree
- Fix strong nodes and remove them from problem
 - Greatly reduces frustrated cycles

CIMI 2013

CIMI 2013

Experiment: Dual Decomposition

Experiment: Dual Decomposition Performance

3x3 Convolution kernel

Method	Missed Pixels	Unlabeled Pixels
QPBO	-	%65
QPBO-P	%21	%0
QPBO-I	%13	%0
GCDD	%0	%0

5x5 Convolution kernel

Method	Missed Pixels	Unlabeled Pixels
QPBO	-	%95
QPBO-P	%48	%0
QPBO-I	%19	%0
GCDD	%7	%0

Summary

- Idea #1: GCWSA graph-cut algorithm for general inverse problems.
 - Based on separable approximation of data term
- Idea #2: Specification of conditions and flipping scheme for obtaining submodularity for an inverse problem
- Idea #3: Identification of special banded inverse problem structure for graph representability
- Idea #4: Exploitation of special structure for efficient graph-cut based dual decomposition

