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Outline

 Discrete amplitude inverse problems
 Use of graph cuts for discrete problems
 Graph-cuts and inverse problems

 The inverse problem messes things up

 New ideas:
 Idea 1: Separable approximation approach
 Idea 2: Understand structure

 Graph representable class of inverse problems
 Idea 3: Exploit structure

 Graph-cut based dual decomposition method for inverse 
problems

 Examples
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Overview

 Inverse problems:
 Medical tomography – images from projections
 Scanning electron tomography of materials – grains
 Security scanning – imaging inside luggage
 Deblurring, Super-resolution – fusion and deblurring

 Discrete-amplitude inverse problems
 Medical tomography – bone, tissue, interventional instrument
 Material science – grain volume fractions
 Security – threat classification
 Deblurring – segmentation

Graph-cut methods for joint reconstruction and labeling
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Examples
 Electron Tomography for Material Science:

 Deblurring (coded aperture “flutter shutter”)

Graph-cut methods for joint reconstruction and labeling
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Common problem characteristics

 Indirect or “coded” observation y of latent variables x
 Few amplitudes are of interest: x discrete
 Scene structure is important

 Focus on locations with specific values – where stuff is

 Data is limited, “information poor”
 Ad hoc methods perform poorly

Graph-cut methods for joint reconstruction and labeling
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Problem Formulation

 Observations:

 Estimate discrete level image x by cost minimization:

 Data Fidelity:

 Prior (MRFs, TV, sparse, etc):

Graph-cut methods for joint reconstruction and labeling
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x̂  argmin
x Disc Amp 

J(x)  argmin
x Disc Amp 

Jdata (x)  Jprior (x) NP Hard!

nCxy 
Data Vector Imaging 

Operator
Discrete

Amplitude Image Noise

2

2
)( CxyxJdata 

1

1
)( DxxJ prior 
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Approach #1

 Two-step decoupled process
 Continuous relaxation

1. Relax discrete assumption on x
2. Solve resulting continuous inverse problem (e.g. with TV)
3. Segment continuous reconstruction result

 Ad hoc, wastes information

Graph-cut methods for joint reconstruction and labeling
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argmin
x Disc Amp 

yCx
2

2   Jprior (x) argmin
xn

yCx
2

2   Jprior (x)
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Approach #2: DART (Discrete ART)

 Algorithm for discrete tomography
 Idea: Interior regions are “reliable”
 DART Algorithm flow chart 

 “Free pixels” are boundary + random pixels 

 No explicit regularization
 Discretization decoupled from reconstruction
 Very popular in materials science
 Iterative variant of Approach #1

Graph-cut methods for joint reconstruction and labeling
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Approach #3: Graph-cut Methods

 Direct solution of underlying discrete problem
 All start by representing problem on a graph
 Powerful and efficient methods for these problems 

exist
 Some nice performance results  Global optimality!
 Efficient algorithms

 Min-cut/Max-flow
 Polynominal time

Graph-cut methods for joint reconstruction and labeling
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Graph Cuts when C=I, Binary Case

 “Segmentation” case
 Vertices are pixel values
 Edges are costs
 Graph representation  “Submodularity” of 

pairwise terms

 Submodular when C = I since pairwise terms arise 
from smoothness prior 

Graph-cut methods for joint reconstruction and labeling
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argmin
x 0,1 

y x
2

2   Jprior (x)  argmin
x 0,1 

 p(xp )
p


Unary Terms
 

  p,q (xp, xq )
p,q


Pairwise Terms
  
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argmin

xLn
y x

2

2   Jprior (x)  argmin
xLn

 p(xp )
p


Unary Terms
 

  p,q (xp, xq )
p,q


Pairwise Terms
  

Graph Cuts when C=I, Multi-label case

 Pixel values from set Ln

 Can’t exploit binary graph-cut machinery
 Multi-label extensions exist, but clumsy

 Typically break problem into sequence of 
binary problems
 - swap – iteratively minimize wrt pairs of labels 
  expansion – iteratively minimize all labels wrt label 

 Only obtain approximate solutions
 but good behavior in practice

 Sub-problems still need to be submodular!
 Still true when C = I. Things work well in this case

Graph-cut methods for joint reconstruction and labeling
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 Overall cost is not submodular (graph representable)
 Conventional graph-cut approaches do not work

 Problem is with data term:

 [Raj `05] Coupling of pixels due to non-diagonal C
makes Jdata non-graph-representable

Graph-cut methods for joint reconstruction and labeling
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CxCxCxyyyCxyxJ TTTT
data  2)( 2

2

Contains general cross terms involving xpxq

argmin
x Disc Amp 

yCx
2

2   Jprior (x)  argmin
x Disc Amp 

 p(xp )
p


Unary Terms
 

  p,q (xp, xq )
p,q


Pairwise Terms
  

Graph Cuts when C ≠ I (Inversion)
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Related work on graph-cuts, inversion
 Graph Cuts

 [Raj `05] : Deconvolution
 Approximate non-submodular cross-terms in Jdata

 Replace non-submodular cross-terms Cpqxpxq
with linear terms Cpq [xp

(0)xq + xpxq
(0)]

 Method is for - swap algorithm 
 Assumes non-negative C

 [Raj `06, Rother `07] : MRI Reconstruction
 Use of “roof-duality” to remap some non-submodular terms (QPBO)
 Cannot always be done
 Can leave pixels unlabeled

 [Cremers 06] : Learned submodular models

 Inverse Problems
 [Wright , Nowak , Figueiredo `09] : Sparse reconstruction

 Continuous amplitude problems (not focused on graph cuts)
 Separable approximation of data term

 Discrete Tomography
 [Batenburg, `11]: DART

 Ad hoc iterative thresholding method

Graph-cut methods for joint reconstruction and labeling
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Idea #1: Use separable approximation of Jdata

 Relax discrete assumption on x
 Perform Taylor expansion of Jdata(x) around x0

 Approximate Hessian by scaled diagonal 
 Separable approximation  eliminates cross-pixel coupling

Graph-cut methods for joint reconstruction and labeling
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CxCxCxyyyCxyxJ TTTT
data  2)( 2

2

Ĵdata (x | x0, )  Jdata (x0 )Jdata (x0 )T (x  x0 ) 1
2

(x  x0 )T D (x  x0 )

Parameterion Approximat
)(diag)2(diag

22)(
2

00







data

T

TT
data

JCCD

CxCyCxJ Diagonal of Hessian 
diag[CTC]

(Wright `09)
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Overall new approach
 Replace original cost with surrogate cost

 Surrogate cost is graph representable (submodular)

 Any multi-label graph-cut method can now minimize 
 -expansion in this work

 Iteratively minimize surrogate cost

Graph-cut methods for joint reconstruction and labeling
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Graph Cuts w/Separable Approximation (GCWSA)

GCWSA Algorithm:
1. Initialize: x(0)

2. Use graph-cut algorithm to minimize surrogate cost

3. k Update (Acceptance test):
a. If J(x(k+1))>J(x(k)) increase k and redo 2. (forces smaller step size)

b. If J(x(k+1))<J(x(k)) accept updated estimate, set  k  k+1 and goto 2.

GCWSA Algorithm:
1. Initialize: x(0)

2. Use graph-cut algorithm to minimize surrogate cost

3. k Update (Acceptance test):
a. If J(x(k+1))>J(x(k)) increase k and redo 2. (forces smaller step size)

b. If J(x(k+1))<J(x(k)) accept updated estimate, set  k  k+1 and goto 2.

Graph-cut methods for joint reconstruction and labeling

16

CIMI 2013

 
)( ),|(ˆargmin )(

Amp Disc

)1( xJxxJx priork
k

data
x

k  






Boston University Slideshow Title Goes Here

Efficient computation for relaxation parameter k

 Good choice of  improves solution
 Repeated computation for different 

 Observation: 
 Changing k only affects unary terms (via diagonal approx)
 Pairwise terms remain unchanged (many of these)

 Flow Recycling [Kohli, 2005]
 Reuse min-flow results
 Modify previous residual graph
 Most terms remain unchanged

 Order of magnitude faster than naïve way!

Graph-cut methods for joint reconstruction and labeling
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Ĵdata (x | x0, )  Jdata (x0 )Jdata (x0 )T (x  x0 ) 1
2

(x  x0 )T D (x  x0 )

Diagonal of CTC
scaled by 

p




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Experiment: Noisy Multi-level

 256 x 256 Image
 Known Intensity Levels {0, 5, 10}. 
 Projections over 120 degree angular span
 1 degree separation between projections
 362 detector values per angle
 30 dB AWGN

Graph-cut methods for joint reconstruction and labeling
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Ground truth image
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Experiment: Noisy Multi-level

Graph-cut methods for joint reconstruction and labeling CIMI 2013

True FBP Non-neg SART Unregularized GCWSA 

Segmented FBP Segmented SART Regularized GCWSA DART

Streaks persist
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GCWSA
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Noiseless
30dB Noise

Reconstruction Errors of Different Methods

 Mislabeled Pixels: Multi-label Phantom

Graph-cut methods for joint reconstruction and labeling CIMI 2013
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Experiment: Multi-level Deblurring
Graph-cut methods for joint reconstruction and labeling
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Blurred image
20 pixel motion blur at 45 deg.

Ground truth image

 150X150 synthetic image
 Pixel values,  L = {1, 2, 3, 4, 5}
 Linear motion blur, length 20 @ 45o

 AWGN for 10 dB SNR.
 Jprior : Total-variation

Noisy blurred image Joint Inversion and Labeling
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Summary so far…

 GCWSA:
 New approximation-based method for graph-cut solution of discrete 

linear inverse problems
 Based on separable approximation of data term

 Question:
 Can structure be exploited?
 Are there special classes of operators C which lead to submodular

problems?
 No approximation is necessary in this case!

 Answer: Yes!... next

Graph-cut methods for joint reconstruction and labeling
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Variable flipping/re-labeling
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• Idea of variable re-labeling/flipping (Hammer 1984, Kolmogorov 2007):

10

0

0

10






p
q q






p
re-label q

Non-submodular 
term

Submodular
term

p q p q

r

p q

r s

• In which graphs can you get all submodular interactions through relabelling?

frustrated cycle

q 1 q

 p,q (0, 0) p,q (1,1)  p,q (0,1) p,q(1, 0)

• Submodularity condition (binary case):

Non-submodular
Submodular

10

0

0

10
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Flipping Schemes

Lemma 1. Flipping scheme for a set of nodes represented by an acyclic graph 
to make all interactions submodular:

r p q s x

w(i, j) 
1 if the pair i, j  is nonsubmodular
0 if the pair i, j  is submodular




d(r, p)=1 d(r, q)=2 d(r, s)=2

 Flip nodes with an odd distance to a root node

24
Non-submodular
Submodular
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Flipping Schemes
Theorem. A flipping scheme for a set of arbitrarily connected nodes 
exists iff there is an even number of non-submodular interactions in 
each cycle 

Flipping Scheme: Flip any spanning tree of the graph as given in Lemma 1.

root

d = 1

d = 1d = 2d = 3d = 4d = 5

d = 6 25

p q

r

NoYes

Non-submodular
Submodular

CIMI 2013Graph-cut methods for joint reconstruction and labeling
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Implications for discrete inverse problems 

 Structure of CTC :
1. First off-diagonal  acyclic interactions
2. Odd off-diagonals  even (“flipable”) cycles
3. Even off-diagonals  odd (frustrated) cycles

26

x1 x1 x1 x2 x1 x3 x1 x4 … x1 xN

x2 x1 x2 x2 x2 x3 x2 x4 … x2 xN

x3 x1 x3 x2 x3 x3 x3 x4 … x3 xN

x4 x1 x4 x2 x4 x3 x4 x4 … x4 xN

xN x1 xN x2 xN x3 xN x4 … xN xN

... ... ... ... ... ...

CxCxCxyyyCxyxJ TTTT  2)( 2

2data

1 2 3 4 5 6

1 2 3 4 5 6 7 8

1 2 3 4 5

1. First off-diagonal 

2. Odd off-diagonals

3. Even off-diagonals

CIMI 2013Graph-cut methods for joint reconstruction and labeling
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Submodular

Idea #2: Special class of systems: No odd cycles

 These systems are guaranteed graph representable!

27

CxCxCxyyyCxyxJ TTTT  2)( 2

2data

Odd-banded and 
non-negative CTC

Ground truth image Blurred image Graph Cut Reconstruction























**0*0*
***0*0
0***0*
*0***0
0*0***
*0*0**

CCT

e.g. Cholesky
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Dual Decomposition Inversion Approach

 DD idea: Break single hard problem into multiple easy 
to solve problems
 Slave problems are solved independently
 Master coordinates, enforces consistency via Lagragian dual
 E.g. Loopy graph solution via overlapping trees, message passing

Graph-cut methods for joint reconstruction and labeling
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Master 
Problem

Slave 1 Slave 2 Slave 3 Slave M...

Easily optimizable slave problems

Master problem coordinates 
the slave problems.
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Idea #3: Efficient DD slaves for inverse problems

 Decomposition exploiting structure
 All odd off-diagonals (boxes) form a single, 

submodular subproblem
 Each even off-diagonal forms a separate 

tree subproblem

 Number of subproblems ~ number 
of bands

 For FIR convolution problem, 
number of subproblems limited by 
size of kernel (not size of image)

Graph-cut methods for joint reconstruction and labeling
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x1 x1 x1 x2 x1 x3 x1 x4 … x1 xN

x2 x1 x2 x2 x2 x3 x2 x4 … x2 xN

x3 x1 x3 x2 x3 x3 x3 x4 … x3 xN

x4 x1 x4 x2 x4 x3 x4 x4 … x4 xN

xN x1 xN x2 xN x3 xN x4 … xN xN

... ... ... ... ... ...
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Efficient master huristics

 After many iterations some node labels obtain 
“obvious” consensus

 “Strong Nodes”: 
 Nodes where slaves agree

 Fix strong nodes and remove them from problem
 Greatly reduces frustrated cycles

Graph-cut methods for joint reconstruction and labeling
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Pixel Label 1 Label 2

p 900 100

q 950 50

r 450 550

After 1000 iterations:
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Experiment: Dual Decomposition
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Binary image Blurred image Blurred + noisy DD + no MRF

QPBO-I + no MRF DD + MRF QPBO-I + MRF DD + MRF

Noisy Case

CIMI 2013Graph-cut methods for joint reconstruction and labeling
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Method Missed 
Pixels

Unlabeled 
Pixels

QPBO - %95

QPBO-P %48 %0

QPBO-I %19 %0

GCDD %7 %0

Experiment: Dual Decomposition Performance

Graph-cut methods for joint reconstruction and labeling
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Method Missed 
Pixels

Unlabeled 
Pixels

QPBO - %65

QPBO-P %21 %0

QPBO-I %13 %0

GCDD %0 %0

3x3 Convolution kernel 5x5 Convolution kernel
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Summary

 Idea #1: GCWSA graph-cut algorithm for general 
inverse problems.
 Based on separable approximation of data term

 Idea #2: Specification of conditions and flipping 
scheme for obtaining submodularity for an inverse 
problem

 Idea #3: Identification of special banded inverse 
problem structure for graph representability

 Idea #4: Exploitation of special structure for efficient 
graph-cut based dual decomposition

Graph-cut methods for joint reconstruction and labeling
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