Alternating Direction Optimization for Imaging Inverse Problems

Mário A. T. Figueiredo

Instituto Superior Técnico, Technical University of Lisbon

INSTITUTO SUPERIOR TÉCNICO

Universidade Técnica de Lisboa

and

Instituto de Telecomunicações

PORTUGAL

Joint work with:

Manya Afonso

José Bioucas-Dias

Mariana Almeida

Outline

- 1. Variational/optimization approaches to inverse problems
- 2. Formulations and key tools
- 3. The canonical ADMM and its extension for more than two functions
- 4. Linear-Gaussian observations: the SALSA algorithm.
- 5. Poisson observations: the PIDAL algorithm
- 6. Handling non periodic boundaries
- 7. Into the non-convex realm: blind deconvolution

Inference/Learning via Optimization

Many inference criteria (in signal processing, machine learning) have the form

$$\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \tau c(\mathbf{x})$$

 $f:\mathbb{R}^n o \mathbb{R}$ data fidelity, observation model, negative log-likelihood, loss,... ... usually **smooth** and **convex**.

$$c:\mathbb{R}^n o \bar{\mathbb{R}}$$
 regularization/penalty function, negative log-prior, typically **convex**, often **non-differentiable** (to induce sparsity)

Examples: signal/image restoration/reconstruction, sparse representations, compressive sensing/imaging, linear regression, logistic regression, channel sensing, support vector machines, ...

Unconstrained Versus Constrained Optimization

Unconstrained optimization formulation

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} f(\mathbf{x}) + \tau c(\mathbf{x}) \qquad \text{(Tikhonov regularization)}$$

Constrained optimization formulations

$$\hat{\mathbf{x}} \in \underset{\mathbf{x}}{\arg\min} c(\mathbf{x})$$
 (Morozov regularization) s. t. $f(\mathbf{x}) \leq \varepsilon$

$$\hat{\mathbf{x}} \in \underset{\mathbf{x}}{\arg\min} f(\mathbf{x})$$
 (Ivanov regularization) s. t. $c(\mathbf{x}) \leq \delta$

All "equivalent", under mild conditions; often not equally convenient/easy [Lorenz, 12]

A Fundamental Dichotomy: Analysis vs Synthesis

[Elad, Milanfar, Rubinstein, 2007], [Selesnick, F, 2010],

$$\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \tau c(\mathbf{x})$$

Synthesis regularization:

X contains **representation** coefficients (not the signal/image itself)

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{A}\mathbf{x}) + \tau c(\mathbf{x})$$

 ${f A}={f B}{f W}$, where ${f B}$ is the observation operator

 ${f W}$ is a synthesis operator; e.g., a Parseval frame ${f W}{f W}^*={f I}$

$$\mathcal{L}$$
 depends on the noise model; e.g., $\mathcal{L}(\mathbf{z}) = \frac{1}{2} \|\mathbf{z} - \mathbf{y}\|_2^2$

typical (sparseness-inducing) regularizer:

$$c(\mathbf{x}) = \|\mathbf{x}\|_1$$

proper, lower semi-continuous (lsc), convex (not strictly), coercive.

A Fundamental Dichotomy: Analysis vs Synthesis (II)

[Elad, Milanfar, Rubinstein, 2007], [Selesnick, F, 2010],

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \mathcal{L}(\mathbf{A}\mathbf{x}) + \tau c(\mathbf{x})$$

Analysis regularization

 ${f x}$ is the signal/image itself, ${f A}$ is the observation operator

typical frame-based analysis regularizer:

$$c(\mathbf{x}) = \|\mathbf{P}\,\mathbf{x}\|_1$$
 analysis operator (e.g., of a Parseval frame, $\mathbf{P}^*\mathbf{P} = \mathbf{I}$)

proper, lsc, convex (not strictly), and coercive.

Total variation (TV) is also "analysis"; proper, lsc, convex (not strictly), ... but not coercive.

Typical Convex Data Terms

Let:
$$f(\mathbf{x}) = \mathcal{L}(\mathbf{A}\mathbf{x})$$
 where $\mathcal{L}(\mathbf{z}) \equiv \sum_{i=1}^{i} \xi(z_i, y_i)$

where ξ is one (e.g.) of these functions (log-likelihoods):

Gaussian observations:
$$\xi_{\mathrm{G}}(z,y) = \frac{1}{2}(z-y)^2$$
 \longrightarrow \mathcal{L}_{G}

Poissonian observations:
$$\xi_{\mathrm{P}}(z,y) = z + \iota_{\mathbb{R}_+}(z) - y \log(z_+) o \mathcal{L}_{\mathrm{P}}$$

Multiplicative noise:
$$\xi_{\mathrm{M}}(z,y) = L(z+e^{y-z})$$
 \longrightarrow \mathcal{L}_{M}

...all proper, lower semi-continuous (lsc), coercive, convex.

 \mathcal{L}_{G} and \mathcal{L}_{M} are strictly convex. \mathcal{L}_{P} is strictly convex if $y_i > 0, \ \forall_i$

A Key Tool: The Moreau Proximity Operator

The Moreau proximity operator [Moreau 62], [Combettes, Pesquet, Wajs, 01, 03, 05, 07, 10, 11].

$$\operatorname{prox}_{\tau c}(\mathbf{u}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{u}\|_{2}^{2} + \tau c(\mathbf{x})$$

Classical cases:

Classical cases. Euclidean projection on convex set
$$\mathcal{C}$$

$$c(\mathbf{z}) = \iota_{\mathcal{C}}(\mathbf{z}) = \begin{cases} 0 & \Leftarrow & \mathbf{z} \in \mathcal{C} \\ +\infty & \Leftarrow & \mathbf{z} \notin \mathcal{C} \end{cases} \Rightarrow \operatorname{prox}_{\tau c}(\mathbf{u}) = \Pi_{\mathcal{C}}(\mathbf{u})$$

$$c(\mathbf{z}) = \frac{1}{2} \|\mathbf{z}\|_{2}^{2} \Rightarrow \operatorname{prox}_{\tau c}(\mathbf{u}) = \frac{\mathbf{u}}{1+\tau}$$

$$c(\mathbf{z}) = \|\mathbf{z}\|_1 \Rightarrow \operatorname{prox}_{\tau c}(\mathbf{u}) = \operatorname{soft}(\mathbf{u}, \tau) = \operatorname{sign}(\mathbf{u}) \odot \max(|\mathbf{u}| - \tau, 0)$$

Separability:
$$c(\mathbf{z}) = \sum_{i} c_i(z_i) \Rightarrow (\operatorname{prox}_{\tau c}(\mathbf{u}))_i = \operatorname{prox}_{\tau c_i}(u_i)$$

Moreau Proximity Operators

...many more!
[Combettes, Pesquet, 2010]

	$\phi(x)$	$\operatorname{prox}_{\phi} x$
i	$\iota_{[\underline{\omega},\overline{\omega}]}(x)$	$P_{[\underline{\omega},\overline{\omega}]} x$
ii	$\sigma_{[\underline{\omega},\overline{\omega}]}(x) = \begin{cases} \underline{\omega}x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ \overline{\omega}x & \text{otherwise} \end{cases}$	$\operatorname{soft}_{[\underline{\omega},\overline{\omega}]}(x) = \begin{cases} x - \underline{\omega} & \text{if } x < \underline{\omega} \\ 0 & \text{if } x \in [\underline{\omega},\overline{\omega}] \\ x - \overline{\omega} & \text{if } x > \overline{\omega} \end{cases}$
iii	$\psi(x) + \sigma_{[\underline{\omega},\overline{\omega}]}(x)$ $\psi \in \Gamma_0(\mathbb{R})$ differentiable at 0 $\psi'(0) = 0$	$\operatorname{prox}_{\psi}\left(\operatorname{soft}_{[\underline{\omega},\overline{\omega}]}(x)\right)$
iv	$\max\{ x -\omega,0\}$	$\begin{cases} x & \text{if } x < \omega \\ \text{sign}(x)\omega & \text{if } \omega \le x \le 2\omega \\ \text{sign}(x)(x - \omega) & \text{if } x > 2\omega \end{cases}$
v	$\kappa x ^q$	$\operatorname{sign}(x)p,$ where $p \ge 0$ and $p + q\kappa p^{q-1} = x $
vi	$\begin{cases} \kappa x^2 & \text{if } x \le \omega/\sqrt{2\kappa} \\ \omega\sqrt{2\kappa} x - \omega^2/2 & \text{otherwise} \end{cases}$	where $p \ge 0$ and $p + q\kappa p^{q-1} = x $ $\begin{cases} x/(2\kappa + 1) & \text{if } x \le \omega(2\kappa + 1)/\sqrt{2\kappa} \\ x - \omega\sqrt{2\kappa}\operatorname{sign}(x) & \text{otherwise} \end{cases}$
vii	$\omega x + \tau x ^2 + \kappa x ^q$	$\operatorname{sign}(x)\operatorname{prox}_{\kappa \cdot ^q/(2\tau+1)}\frac{\max\{ x -\omega,0\}}{2\tau+1}$
viii	$\omega x - \ln(1 + \omega x)$	$(2\omega)^{-1}\operatorname{sign}(x)\left(\omega x -\omega^2-1\right.$ $\left.+\sqrt{\left \omega x -\omega^2-1\right ^2+4\omega x }\right)$
ix	$\begin{cases} \omega x & \text{if } x \ge 0 \\ +\infty & \text{otherwise} \end{cases}$	$\begin{cases} x - \omega & \text{if } x \ge \omega \\ 0 & \text{otherwise} \end{cases}$
x	$\begin{cases} -\omega x^{1/q} & \text{if } x \ge 0 \\ +\infty & \text{otherwise} \end{cases}$	$p^{1/q}$, where $p > 0$ and $p^{2q-1} - xp^{q-1} = q^{-1}\omega$
xi	$\begin{cases} \omega x^{-q} & \text{if } x > 0 \\ +\infty & \text{otherwise} \end{cases}$	p > 0 such that $p^{q+2} - xp^{q+1} = \omega q$
xii	$\begin{cases} x \ln(x) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ +\infty & \text{otherwise} \end{cases}$	$W(e^{x-1}),$ where W is the Lambert W-function
xiii	$+\infty$ otherwise	$\begin{cases} \frac{1}{2} \left(x + \underline{\omega} + \sqrt{ x - \underline{\omega} ^2 + 4} \right) & \text{if } x < 1/\underline{\omega} \\ \frac{1}{2} \left(x + \overline{\omega} - \sqrt{ x - \overline{\omega} ^2 + 4} \right) & \text{if } x > 1/\overline{\omega} \\ 0 & \text{otherwise} \end{cases}$
xiv	$ \frac{\underline{\omega} < 0 < \overline{\omega}}{\begin{cases} -\kappa \ln(x) + \tau x^2/2 + \alpha x & \text{if } x > 0\\ +\infty & \text{otherwise} \end{cases} } $	(see Figure 1) $\frac{1}{2(1+\tau)} \left(x - \alpha + \sqrt{ x-\alpha ^2 + 4\kappa(1+\tau)} \right)$
xv	$\begin{cases} -\kappa \ln(x) + \alpha x + \omega x^{-1} & \text{if } x > 0 \\ +\infty & \text{otherwise} \end{cases}$	p > 0 such that $p^3 + (\alpha - x)p^2 - \kappa p = \omega$
xvi	$\begin{cases} -\kappa \ln(x) + \omega x^q & \text{if } x > 0 \\ +\infty & \text{otherwise} \end{cases}$	p > 0 such that $q\omega p^q + p^2 - xp = \kappa$
xvii	$\begin{cases} -\underline{\kappa} \ln(x - \underline{\omega}) - \overline{\kappa} \ln(\overline{\omega} - x) \\ \text{if } x \in]\underline{\omega}, \overline{\omega}[\\ +\infty \text{otherwise} \end{cases}$	$p \in]\underline{\omega}, \overline{\omega}[$ such that $p^3 - (\underline{\omega} + \overline{\omega} + x)p^2 + (\underline{\omega}\overline{\omega} - \underline{\kappa} - \overline{\kappa} + (\underline{\omega} + \overline{\omega})x)p = \underline{\omega}\overline{\omega}x - \underline{\omega}\overline{\kappa} - \overline{\omega}\underline{\kappa}$

Iterative Shrinkage/Thresholding (IST)

$$\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \tau c(\mathbf{x})$$

$$\mathbf{x}_{k+1} = \operatorname{prox}_{\tau c/\alpha} \left(\mathbf{x}_k - \frac{1}{\alpha} \nabla f(\mathbf{x}_k) \right)$$

Iterative shrinkage thresholding (IST) a.k.a. forward-backward splitting a.k.a proximal gradient algorithm

[Bruck, 1977], [Passty, 1979], [Lions, Mercier, 1979], [F, Nowak, 01, 03], [Daubechies, Defrise, De Mol, 02, 04], [Combettes and Wajs, 03, 05], [Starck, Candés, Nguyen, Murtagh, 03], [Combettes, Pesquet, Wajs, 03, 05, 07, 11],

Key condition in convergence proofs: ∇f is Lipschtz

...not true, e.g., with Poisson or multiplicative noise.

Not directly applicable with analysis formulations (see [Loris, Verhoeven, 11])

IST is usually **slow** (specially if τ is small); several accelerated versions:

- Two-step IST (TwIST) [Bioucas-Dias, F, 07]
- Fast IST (FISTA) [Beck, Teboulle, 09], [Tseng, 08]
- Continuation [Hale, Yin, Zhang, 07], [Wright, Nowak, F, 07, 09]
- SpaRSA [Wright, Nowak, F, 08, 09]

Alternating Direction Method of Multipliers (ADMM)

Unconstrained (convex) optimization problem: $\min_{\mathbf{z} \in \mathbb{R}^d} \ f_1(\mathbf{z}) + f_2(\mathbf{G} \ \mathbf{z})$

ADMM [Glowinski, Marrocco, 75], [Gabay, Mercier, 76], [Gabay, 83], [Eckstein, Bertsekas, 92]

$$\mathbf{z}_{k+1} = \arg\min_{\mathbf{z}} f_1(\mathbf{z}) + \frac{\mu}{2} \|\mathbf{G} \mathbf{z} - \mathbf{u}_k - \mathbf{d}_k\|^2$$

$$\mathbf{u}_{k+1} = \arg\min_{\mathbf{u}} f_2(\mathbf{u}) + \frac{\mu}{2} \|\mathbf{G} \mathbf{z}_{k+1} - \mathbf{u} - \mathbf{d}_k\|^2$$

$$\mathbf{d}_{k+1} = \mathbf{d}_k - (\mathbf{G} \mathbf{z}_{k+1} - \mathbf{u}_{k+1})$$

Interpretations: variable splitting + augmented Lagrangian + NLBGS;

Douglas-Rachford splitting on the dual [Eckstein, Bertsekas, 92]

split-Bregman approach [Goldstein, Osher, 08]

A Cornerstone Result on ADMM

[Eckstein, Bertsekas, 1992]

The problem

$$\min_{\mathbf{z} \in \mathbb{R}^d} f_1(\mathbf{z}) + f_2(\mathbf{G}\,\mathbf{z})$$

 f_1 and f_2 are closed, proper, convex; ${\bf G}$ has full column rank.

 $(\mathbf{z}_k,\ k=0,1,2,...)$ is the sequence produced by ADMM, with $\,\mu>0\,$ then, if the problem has a solution, say $\,\mathbf{\bar{z}}_{}$, then

$$\lim_{k\to\infty}\mathbf{z}_k=\bar{\mathbf{u}}$$

(inexact minimizations allowed, as long as the errors are absolutely summable).

Applying ADMM

$$\min_{\mathbf{x}} \mathcal{L}(\mathbf{BWx}) + \tau c(\mathbf{x})$$

Template problem for ADMM

$$\min_{\mathbf{z}} f_1(\mathbf{z}) + f_2(\mathbf{G}\,\mathbf{z})$$

$$\mathbf{G} = \mathbf{BW}, \quad f_1 = \tau c, \quad f_2 = \mathcal{L}$$

ADMM

$$\mathbf{z}_{k+1} = \arg\min_{\mathbf{z}} \ \tau c(\mathbf{z}) + \frac{\mu}{2} ||\mathbf{B} \mathbf{W} \mathbf{z} - \mathbf{u}_k - \mathbf{d}_k||^2$$

usually hard!

$$\mathbf{u}_{k+1} = \arg\min_{\mathbf{u}} \ \mathcal{L}(\mathbf{u}) + \frac{\mu}{2} \|\mathbf{B} \mathbf{W} \mathbf{z}_{k+1} - \mathbf{u} - \mathbf{d}_k\|^2$$

usually easy $\text{prox}_{\mathcal{L}/\mu}$

$$\mathbf{d}_{k+1} = \mathbf{d}_k - (\mathbf{B} \mathbf{W} \mathbf{z}_{k+1} - \mathbf{u}_{k+1})$$

Applying ADMM

Analysis formulation:

$$\min_{\mathbf{x}} \mathcal{L}(\mathbf{B}\mathbf{x}) + \tau c(\mathbf{P}\mathbf{x})$$

$$\uparrow \qquad \uparrow$$

$$\min_{\mathbf{r}} f_1(\mathbf{z}) + f_2(\mathbf{G}\mathbf{z})$$

Template problem for ADMM

Naïve mapping:
$$\mathbf{G} = \mathbf{P}, \quad f_1 = \mathcal{L} \circ \mathbf{B}, \quad f_2 = \tau c$$

$$\mathbf{z}_{k+1} = \arg\min_{\mathbf{z}} \ \mathcal{L}(\mathbf{B}\,\mathbf{z}) + \frac{\mu}{2} \|\mathbf{P}\,\mathbf{z} - \mathbf{u}_k - \mathbf{d}_k\|^2$$

$$\mathbf{u}_{k+1} = \arg\min_{\mathbf{u}} \ \tau c(\mathbf{u}) + \frac{\mu}{2} ||\mathbf{P} \mathbf{z}_{k+1} - \mathbf{u} - \mathbf{d}_k||^2$$

$$\mathbf{d}_{k+1} = \mathbf{d}_k - (\mathbf{P} \mathbf{z}_{k+1} - \mathbf{u}_{k+1})$$

Easy if: $\mathcal L$ is quadratic and

 ${f B}$ and ${f P}$ diagonalized by common transform (e.g., DFT) (split-Bregman [Goldstein, Osher, 08])

 $ext{prox}_{ au\,c/\mu}$

General Template for ADMM with Two or More Functions

Consider a more general problem $\min_{\mathbf{z}\in\mathbb{R}^d}\sum_{j=1}^J g_j(\mathbf{H}^{(j)}\mathbf{z})$ (P) $g_j:\mathbb{R}^{p_j}\to\bar{\mathbb{R}}$ $\mathbf{H}^{(j)}\in\mathbb{R}^{p_j imes d}$

Proper, closed, convex functions

There are many ways to write (P) as

$$\min_{\mathbf{z} \in \mathbb{R}^d} \ f_1(\mathbf{z}) + f_2(\mathbf{G}\,\mathbf{z})$$

We propose:

$$f_1(\mathbf{z}) = 0,$$
 $\mathbf{G} = \begin{bmatrix} \mathbf{H}^{(1)} \\ \vdots \\ \mathbf{H}^{(J)} \end{bmatrix},$ $f_2 \left(\begin{bmatrix} \mathbf{u}^{(1)} \\ \vdots \\ \mathbf{u}^{(J)} \end{bmatrix} \right) = \sum_{j=1}^{J} g_j(\mathbf{u}^{(j)})$

Arbitrary matrices

ADMM for Two or More Functions

$$\min_{\mathbf{z} \in \mathbb{R}^d} \sum_{j=1}^J g_j(\mathbf{H}^{(j)}\mathbf{z}), \quad \min_{\mathbf{z} \in \mathbb{R}^d} \ f_2(\mathbf{G}\,\mathbf{z}), \quad \mathbf{G} = egin{bmatrix} \mathbf{H}^{(1)} \ dots \ \mathbf{H}^{(J)} \end{bmatrix}, \quad \mathbf{u} = egin{bmatrix} \mathbf{u}^{(1)} \ dots \ \mathbf{u}^{(J)} \end{bmatrix}$$

$$\mathbf{z}_{k+1} = \left(\sum_{j=1}^{J} (\mathbf{H}^{(j)})^* \mathbf{H}^{(j)}\right)^{-1} \sum_{j=1}^{J} (\mathbf{H}^{(j)})^* \left(\mathbf{u}_k^{(j)} + \mathbf{d}_k^{(j)}\right)$$

$$\mathbf{u}_{k+1}^{(1)} = \arg\min_{\mathbf{u}} g_1(\mathbf{u}) + \frac{\mu}{2} \|\mathbf{u} - \mathbf{H}^{(1)} \mathbf{z}_{k+1} + \mathbf{d}_k^{(1)}\|^2 = \operatorname{prox}_{g_1/\mu} (\mathbf{H}^{(1)} \mathbf{z}_{k+1} - \mathbf{d}_k^{(j)})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{u}_{k+1}^{(J)} = \arg\min_{\mathbf{u}} g_J(\mathbf{u}) + \frac{\mu}{2} \|\mathbf{u} - \mathbf{H}^{(J)} \mathbf{z}_{k+1} + \mathbf{d}_k^{(J)}\|^2 = \operatorname{prox}_{g_J/\mu} (\mathbf{H}^{(J)} \mathbf{z}_{k+1} - \mathbf{d}_k^{(J)})$$

$$\mathbf{d}_{k+1}^{(1)} = \mathbf{d}_k^{(1)} - (\mathbf{H}^{(1)} \mathbf{z}_{k+1} - \mathbf{u}_{k+1}^{(1)})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{d}_{k+1}^{(J)} = \mathbf{d}_k^{(J)} - (\mathbf{H}^{(J)} \mathbf{z}_{k+1} - \mathbf{u}_{k+1}^{(J)})$$

CIMI, Toulouse, 2013

ADMM for Two or More Functions

$$\mathbf{z}_{k+1} = \left(\sum_{j=1}^{J} (\mathbf{H}^{(j)})^* \mathbf{H}^{(j)}\right)^{-1} \sum_{j=1}^{J} (\mathbf{H}^{(j)})^* \left(\mathbf{u}_k^{(j)} + \mathbf{d}_k^{(j)}\right)$$

$$\mathbf{u}_{k+1}^{(1)} = \operatorname{prox}_{g_1/\mu} (\mathbf{H}^{(1)} \mathbf{z}_{k+1} - \mathbf{d}_k^{(j)})$$

$$\vdots$$

$$\mathbf{u}_{k+1}^{(J)} = \operatorname{prox}_{g_1/\mu} (\mathbf{H}^{(J)} \mathbf{z}_{k+1} - \mathbf{d}_k^{(j)})$$

$$\mathbf{d}_{k+1}^{(1)} = \mathbf{d}_k^{(1)} - (\mathbf{H}^{(1)} \mathbf{z}_{k+1} - \mathbf{u}_{k+1}^{(1)})$$

$$\vdots \qquad \vdots$$

$$\mathbf{d}_{k+1}^{(J)} = \mathbf{d}_k^{(J)} - (\mathbf{H}^{(J)} \mathbf{z}_{k+1} - \mathbf{u}_{k+1}^{(J)})$$

Conditions for easy applicability:

inexpensive proximity operators
inexpensive matrix inversion
...a cursing and a blessing!

ADMM for Two or More Functions

Applies to sum of convex terms

$$\min_{\mathbf{z} \in \mathbb{R}^d} \sum_{j=1}^J g_j(\mathbf{H}^{(j)} \mathbf{z})$$

Computation of proximity operators is parallelizable

Handling of matrices is isolated in a pure quadratic problem

Conditions for easy applicability: inexpensive proximity operators

inexpensive matrix inversion

Matrix inversion may be a *curse or a blessing!* (more later)

Similar algorithm: simultaneous directions method of multipliers (SDMM)

[Setzer, Steidl, Teuber, 2010], [Combettes, Pesquet, 2010]

Other ADMM versions for more than two functions

[Hong, Luo, 2012, 2013], [Ma, 2012]

Linear/Gaussian Observations: Frame-Based Analysis

Problem:
$$\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \tau \|\mathbf{P}\mathbf{x}\|_1$$

Template:
$$\min_{\mathbf{z} \in \mathbb{R}^d} \sum_{j=1}^J g_j(\mathbf{H}^{(j)}\mathbf{z})$$

Mapping:
$$J=2$$
, $g_1(\mathbf{z})=rac{1}{2}\|\mathbf{z}-\mathbf{y}\|_2^2$, $g_2(\mathbf{z})= au \|\mathbf{z}\|_1$

$$\mathbf{H}^{(1)} = \mathbf{A}, \qquad \qquad \mathbf{H}^{(2)} = \mathbf{P},$$

Convergence conditions: g_1 and g_2 are closed, proper, and convex.

$$\mathbf{G} = \left[egin{array}{c} \mathbf{A} \\ \mathbf{P} \end{array}
ight]$$
 has full column rank.

Resulting algorithm: SALSA

(split augmented Lagrangian shrinkage algorithm) [Afonso, Bioucas-Dias, F, 2009, 2010]

ADMM for the Linear/Gaussian Problem: SALSA

Key steps of SALSA (both for analysis and synthesis):

Moreau proximity operator of
$$g_1(\mathbf{z}) = \frac{1}{2} \|\mathbf{z} - \mathbf{y}\|_2^2,$$

$$\text{prox}_{g_1/\mu}(\mathbf{u}) = \arg\min_{\mathbf{z}} \frac{1}{2\mu} \|\mathbf{z} - \mathbf{y}\|_2^2 + \frac{1}{2} \|\mathbf{z} - \mathbf{u}\|_2^2 = \frac{\mathbf{y} + \mu \, \mathbf{u}}{1 + \mu}$$

Moreau proximity operator of $g_2(\mathbf{z}) = \tau \|\mathbf{z}\|_1$,

$$\operatorname{prox}_{g_2/\mu}(\mathbf{u}) = \operatorname{soft}(\mathbf{u}, \tau/\mu)$$

Matrix inversion:

$$\mathbf{z}_{k+1} = \left[\mathbf{A}^*\mathbf{A} + \mathbf{P}^*\mathbf{P}\right]^{-1} \left(\mathbf{A}^*\left(\mathbf{u}_k^{(1)} + \mathbf{d}_k^{(1)}\right) + \mathbf{P}^*\left(\mathbf{u}_k^{(2)} + \mathbf{d}_k^{(2)}\right)\right)$$

...next slide!

Handling the Matrix Inversion: Frame-Based Analysis

Frame-based analysis:
$$\left[\mathbf{A}^*\mathbf{A} + \mathbf{P}^*\mathbf{P}\right]^{-1} = \left[\mathbf{A}^*\mathbf{A} + \mathbf{I}\right]^{-1}$$

diagonal DFT (FFT)

 $\mathbf{P}^*\mathbf{P} = \mathbf{I}$ Parseval frame

Periodic deconvolution: $\mathbf{A} = \mathbf{U}^* \mathbf{D} \mathbf{U}$

$$O(n \log n)$$

$$\left[\mathbf{A}^*\mathbf{A} + \mathbf{I}\right]^{-1} = \mathbf{U}^* \left[|\mathbf{D}|^2 + \mathbf{I} \right]^{-1} \mathbf{U}$$

igchip subsampling matrix: $\mathbf{M}\mathbf{M}^* = \mathbf{I}$

subsampling matrix: S^*S is diagonal

Compressive imaging (MRI): $\mathbf{A} = \mathbf{M}\mathbf{U}$

$$O(n \log n)$$

$$\left[\mathbf{U}^*\mathbf{M}^*\mathbf{M}\mathbf{U} + \mathbf{I}\right]^{-1} = \mathbf{I} - \frac{1}{2}\mathbf{U}^*\mathbf{M}^*\mathbf{M}\mathbf{U}$$

matrix inversion lemma

Inpainting (recovery of lost pixels): $\mathbf{A} = \mathbf{S}$

O(n)

$$\left[\mathbf{S}^{*}\mathbf{S}+\mathbf{I}
ight]^{-1}$$
 is a diagonal inversion

CIMI, Toulouse, 2013

SALSA for Frame-Based Synthesis

Problem:
$$\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \tau \ \|\mathbf{x}\|_1$$
 observation matrix
$$\min_{\mathbf{z} \in \mathbb{R}^d} \sum_{j=1}^J g_j(\mathbf{H}^{(j)}\mathbf{z}) \qquad \mathbf{A} = \mathbf{B}\mathbf{W}$$
 synthesis matrix
$$\mathbf{Mapping:} \ J = 2 \,, \quad g_1(\mathbf{z}) = \frac{1}{2} \|\mathbf{z} - \mathbf{y}\|_2^2, \quad g_2(\mathbf{z}) = \tau \ \|\mathbf{z}\|_1$$

$$\mathbf{H}^{(1)} = \mathbf{A} = \mathbf{B}\mathbf{W} \qquad \mathbf{H}^{(2)} = \mathbf{I},$$

Convergence conditions: g_1 and g_2 are closed, proper, and convex.

$$\mathbf{G} = \left[\begin{array}{c} \mathbf{B} \, \mathbf{W} \\ \mathbf{I} \end{array} \right] \,$$
 has full column rank.

Handling the Matrix Inversion: Frame-Based Synthesis

Frame-based analysis:
$$\left[\sum_{j=1}^J (\mathbf{H}^{(j)})^* \mathbf{H}^{(j)}\right]^{-1} = \left[\mathbf{W}^* \mathbf{B}^* \mathbf{B} \mathbf{W} + \mathbf{I}\right]^{-1}$$

DF

Periodic deconvolution: $\mathbf{B} = \mathbf{U}^* \mathbf{D} \mathbf{U}$

Periodic deconvolution:
$$\mathbf{D} = \mathbf{U} \cdot \mathbf{D} \mathbf{U}$$

$$\left[\mathbf{W}^*\mathbf{B}^*\mathbf{B}\mathbf{W} + \mathbf{I}\right]^{-1} = \mathbf{I} - \mathbf{W}^*\mathbf{U}^*\mathbf{D}^*\left[|\mathbf{D}|^2 + \mathbf{I}\right]^{-1}\mathbf{D}\mathbf{U}\mathbf{W}$$

matrix inversion lemma + $WW^* = I$

subsampling matrix: $\mathbf{M}\mathbf{M}^* = \mathbf{I}$

subsampling matrix: $\mathbf{S}\mathbf{S}^* = \mathbf{I}$

diagonal matrix

Compressive imaging (MRI): $\mathbf{B} = \mathbf{M}\mathbf{U}$

$$O(n \log n)$$

 $O(n \log n)$

$$\left[\mathbf{W}^*\mathbf{U}^*\mathbf{M}^*\mathbf{M}\mathbf{U}\mathbf{W} + \mathbf{I}\right]^{-1} = \mathbf{I} - \frac{1}{2}\mathbf{W}^*\mathbf{U}^*\mathbf{M}^*\mathbf{M}\mathbf{U}\mathbf{W}$$

l

Inpainting (recovery of lost pixels): ${f B}={f S}$

$$O(n \log n)$$

$$\left[\mathbf{W}^*\mathbf{S}^*\mathbf{S}\mathbf{W} + \mathbf{I}\right]^{-1} = \mathbf{I} - \frac{1}{2}\mathbf{W}^*\mathbf{S}^*\mathbf{S}\mathbf{W}^*$$

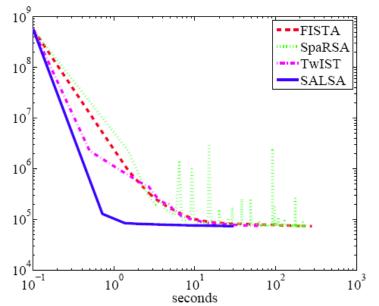
CIMI, Toulouse, 2013

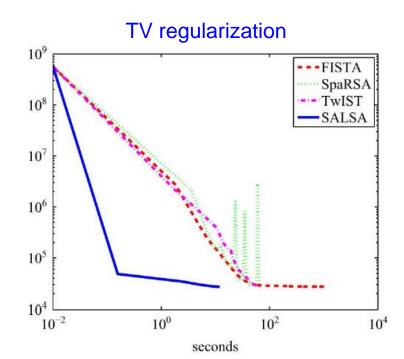
SALSA Experiments

9x9 uniform blur, 40dB BSNR



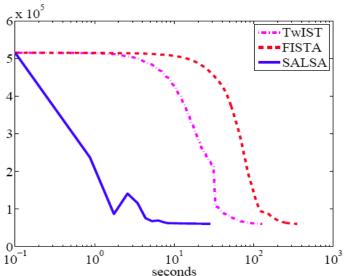
undecimated Haar frame, ℓ_1 regularization.





SALSA Experiments

Image inpainting (50% missing)



Alg.	Calls to \mathbf{B}, \mathbf{B}^H	Iter.	CPU time	MSE	ISNR
			(sec.)	MSE	(dB)
FISTA	1022	340	263.8	92.01	18.96
TwIST	271	124	112.7	100.92	18.54
SALSA	84	28	20.88	77.61	19.68

Conjecture: SALSA is fast because it's blessed by the matrix inversion

The inverted matrix (e.g., $\mathbf{A}^*\mathbf{A} + \mathbf{I}$) is (almost) the Hessian of the data term;

...second-order (curvature) information (as Newton's method)

CIMI, Toulouse, 2013

Frame-Based Analysis Deconvolution of Poissonian Images

Problem template:
$$\min_{\mathbf{u} \in \mathbb{R}^d} \sum_{j=1}^{J} g_j(\mathbf{H}^{(j)}\mathbf{u})$$
 $(P1)$

Frame-analysis regularization: $\widehat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \mathcal{L}_{P}(\mathbf{B}\,\mathbf{x}) + \lambda \|\mathbf{P}\,\mathbf{x}\|_{1} + \widehat{\iota_{\mathbb{R}^{n}_{+}}}(\mathbf{x})$

Same form as
$$(P1)$$
 with: $J=3, \quad g_1=\mathcal{L}_{\mathrm{P}}, \quad g_2=\|\cdot\|_1, \quad g_3=\iota_{\mathbb{R}^n_+}$

Convergence conditions: g_1 , g_2 , and g_3 are closed, proper, and convex.

$$\mathbf{G} = \left[egin{array}{c} \mathbf{B} \\ \mathbf{P} \\ \mathbf{I} \end{array}
ight] \hspace{0.5cm} ext{has full column rank}$$

Required inversion:
$$\left[\mathbf{B}^*\mathbf{B} + \mathbf{P}^*\mathbf{P} + \mathbf{I}\right]^{-1} = \left[\mathbf{B}^*\mathbf{B} + 2\,\mathbf{I}\right]^{-1}$$

...again, easy in periodic deconvolution, MRI, inpainting, ...

positivity constraint

Proximity Operator of the Poisson Log-Likelihood

Proximity operator of the Poisson log-likelihood

$$\operatorname{prox}_{\mathcal{L}/\mu}(\mathbf{u}) = \arg\min_{\mathbf{z}} \sum_{i} \xi(z_{i}, y_{i}) + \frac{\mu}{2} \|\mathbf{z} - \mathbf{u}\|_{2}^{2}$$
$$\xi(z, y) = z + \iota_{\mathbb{R}_{+}}(z) - y \log(z_{+})$$

Separable problem with closed-form (non-negative) solution

[Combettes, Pesquet, 09, 11]:

$$\operatorname{prox}_{\xi(\cdot,y)}(u) = \frac{1}{2} \left(u - \frac{1}{\mu} + \sqrt{\left(u - (1/\mu) \right)^2 + 4y/\mu} \right)$$

Proximity operator of $g_3=\iota_{\mathbb{R}^n_+}$ is simply $\operatorname{prox}_{\iota_{\mathbb{R}^n_+}}(\mathbf{x})=(\mathbf{x})_+$

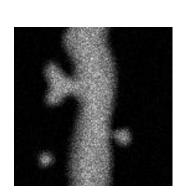
Experiments

Comparison with [Dupé, Fadili, Starck, 09] and [Starck, Bijaoui, Murtagh, 95]

PIDAL = Poisson image deconvolution by augmented Lagrangian

PIDAL-TV				PIDAL-FA		[Dupé, Fadili, Starck, 0			09] [Starck et al, 95]		5]		
Image	M	MAE	iterations	time	MAE	iterations	time	MAE	iterations	time		MAE	_
Cameraman	5	0.27	120	22	0.26	70	13	0.35	6	4.5		0.37	_
Cameraman	30	1.29	51	9.1	1.22	39	7.4	1.47	98	75		2.06	_
Cameraman	100	3.99	33	6.0	3.63	36	6.8	4.31	426	318		5.58	_
Cameraman	255	8.99	32	5.8	8.45	37	7.0	10.26	480	358		12.3	_
Neuron	5	0.17	117	3.6	0.18	66	2.9	0.19	6	3.9		0.19	_
Neuron	30	0.68	54	1.8	0.77	44	2.0	0.82	161	77		0.95	_
Neuron	100	1.75	43	1.4	2.04	41	1.8	2.32	427	199		2.88	_
Neuron	255	3.52	43	1.4	3.47	42	1.9	5.25	202	97		6.31	_
Cell	5	0.12	56	10	0.11	36	7.6	0.12	6	4.5		0.12	_
Cell	30	0.57	31	6.5	0.54	39	8.2	0.56	85	64		0.47	_
Cell	100	1.71	85	15	1.46	31	6.4	1.72	215	162		1.37	_
Cell	255	3.77	89	17	3.33	34	7.0	5.45	410	308		3.10	_







$$MAE \equiv \frac{\|\widehat{\mathbf{x}} - \mathbf{x}\|_1}{n}$$

CIMI, Toulouse, 2013

Morozov Formulation

Unconstrained optimization formulation:
$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \tau c(\mathbf{x})$$

Constrained optimization (Morozov) formulation:
$$\min_{\mathbf{x}} c(\mathbf{x})$$
 basis pursuit denoising, if $c(\mathbf{x}) = \|\mathbf{x}\|_1$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 \le \varepsilon$

Both analysis and synthesis can be used:

$$ullet$$
 frame-based analysis, $c(\mathbf{x}) = \|\mathbf{P}\mathbf{x}\|_1$

• frame-based synthesis
$$c(\mathbf{x}) = \|\mathbf{x}\|_1$$
 $\mathbf{A} = \mathbf{B}\,\mathbf{W}$

Proposed Approach for Constrained Formulation

Constrained problem:
$$\min_{\mathbf{x}} \ c(\mathbf{x})$$
 s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 \leq \varepsilon$

...can be written as
$$\min_{\mathbf{x}} \ c(\mathbf{x}) + \iota_{\mathcal{B}(\varepsilon,\mathbf{y})}(\mathbf{A}\,\mathbf{x})$$

$$\mathcal{B}(\varepsilon, \mathbf{y}) = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{y}\|_2 \cdot \varepsilon \}$$

...which has the form
$$\min_{\mathbf{u} \in \mathbb{R}^d} \sum_{j=1}^J g_j(\mathbf{H}^{(j)}\mathbf{u})$$
 $(P1)$

with
$$J=2, \quad g_1(\mathbf{z})=c(\mathbf{z}), \qquad \qquad \mathbf{H}^{(1)}=\mathbf{I}$$

$$g_2(\mathbf{z}) = \iota_{E(\varepsilon, \mathbf{y})}(\mathbf{z}), \quad \mathbf{H}^{(2)} = \mathbf{A}$$

 $\mathbf{G} = \left[egin{array}{c} \mathbf{I} \ \mathbf{A} \end{array}
ight]$

full column rank

Resulting algorithm: C-SALSA (constrained-SALSA)

[Afonso, Bioucas-Dias, F, 2010,2011]

Some Aspects of C-SALSA

Moreau proximity operator of $\iota_{\mathcal{B}(\varepsilon,\mathbf{y})}$ is simply a projection on an ℓ_2 ball:

$$\operatorname{prox}_{\iota_{\mathcal{B}(\varepsilon,\mathbf{y})}}(\mathbf{u}) = \arg\min_{\mathbf{z}} \iota_{\mathcal{B}(\varepsilon,\mathbf{y})} + \frac{1}{2} \|\mathbf{z} - \mathbf{u}\|_{2}^{2}$$

$$= \begin{cases} \mathbf{u} & \Leftarrow \|\mathbf{u} - \mathbf{y}\|_{2} \leq \varepsilon \\ \mathbf{y} + \frac{\varepsilon(\mathbf{u} - \mathbf{y})}{\|\mathbf{u} - \mathbf{y}\|_{2}} & \Leftarrow \|\mathbf{u} - \mathbf{y}\|_{2} > \varepsilon \end{cases}$$

As SALSA, also C-SALSA involves inversion of the form

$$\left[\mathbf{W}^*\mathbf{B}^*\mathbf{B}\mathbf{W} + \mathbf{I}\right]^{-1}$$
 or $\left[\mathbf{B}^*\mathbf{B} + \mathbf{P}^*\mathbf{P}\right]^{-1}$

...all the same tricks as above.

C-SALSA Experiments: Image Deblurring

Image deconvolution benchmark problems:

Experiment	blur kernel	σ^2
1	9×9 uniform	0.56^{2}
2A	Gaussian	2
2B	Gaussian	8
3A	$h_{ij} = 1/(1+i^2+j^2)$	2
3B	$h_{ij} = 1/(1+i^2+j^2)$	8

NESTA: [Becker, Bobin, Candès, 2011]

SPGL1: [van den Berg, Friedlander, 2009]

Frame-synthesis

Expt.	Avg. calls to \mathbf{B}, \mathbf{B}^H (min/max)			Iterations			CPU time (seconds)		
	SPGL1	NESTA	C-SALSA	SPGL1	NESTA	C-SALSA	SPGL1	NESTA	C-SALSA
1	1029 (659/1290)	3520 (3501/3541)	398 (388/406)	340	880	134	441.16	590.79	100.72
2A	511 (279/663)	4897 (4777/4981)	451 (442/460)	160	1224	136	202.67	798.81	98.85
2B	377 (141/532)	3397 (3345/3473)	362 (355/370)	98	849	109	120.50	557.02	81.69
3A	675 (378/772)	2622 (2589/2661)	172 (166/175)	235	656	58	266.41	423.41	42.56
3B	404 (300/475)	2446 (2401/2485)	134 (130/136)	147	551	41	161.17	354.59	29.57

Frame-analysis

Expt.	Avg. calls to B, I	Iter	ations	CPU time (seconds)		
	NESTA	C-SALSA	NESTA	C-SALSA	NESTA	C-SALSA
1	2881 (2861/2889)	413 (404/419)	720	138	353.88	80.32
2A	2451 (2377/2505)	362 (344/371)	613	109	291.14	62.65
2B	2139 (2065/2197)	290 (278/299)	535	87	254.94	50.14
3A	2203 (2181/2217)	137 (134/143)	551	42	261.89	23.83
3B	1967 (1949/1985)	116 (113/119)	492	39	236.45	22.38

Total-variation

Expt.	Avg. calls to B, E	Iter	ations	CPU time (seconds)		
	NESTA	C-SALSA	NESTA	C-SALSA	NESTA	C-SALSA
1	7783 (7767/7795)	695 (680/710)	1945	232	311.98	62.56
2A	7323 (7291/7351)	559 (536/578)	1830	150	279.36	38.63
2B	6828 (6775/6883)	299 (269/329)	1707	100	265.35	25.47
3A	6594 (6513/6661)	176 (98/209)	1649	59	250.37	15.08
3B	5514 (5417/5585)	108 (104/110)	1379	37	210.94	9.23

Non-Periodic Deconvolution

Analysis formulation for deconvolution $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \tau c(\mathbf{x})$

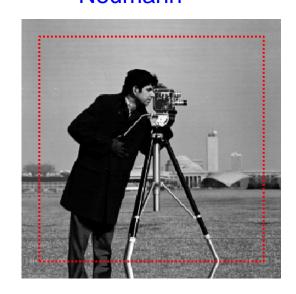
ADMM / SALSA handles this "easily" if A is circulant (periodic convolution)

Periodicity is an artificial assumption

A is (block) circulant

...as are other boundary conditions (BC)

Neumann



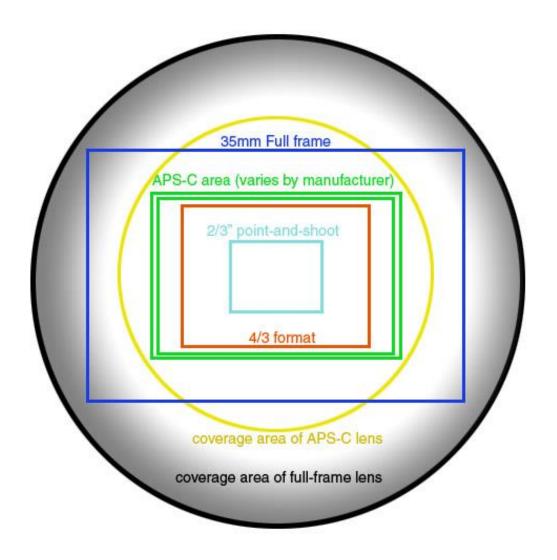
A is (block) Toeplitz + Hankel [Ng, Chan, Tang, 1999]

Dirichlet

A is (block) Toeplitz

CIMI, Toulouse, 2013

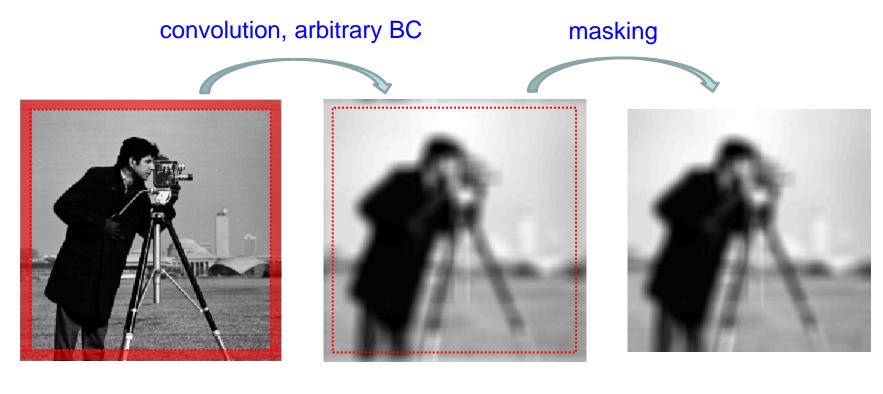
Why Periodic, Neumann, Dirichlet Boundary Conditions are "wrong"



Non-Periodic Deconvolution

A natural BC: unknown values

[Chan, Yip, Park, 05], [Reeves, 05], [Sorel, 12], [Almeida, F, 12,13], [Matakos, Ramani, Fessler, 12, 13]



unknown values

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{M}\mathbf{B}\mathbf{x} - \mathbf{y}\|_2^2 + \tau c(\mathbf{x})$$
mask periodic convolution

CIMI, Toulouse, 2013

Non-Periodic Deconvolution (Frame-Analysis)

Problem:
$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{M}\mathbf{B}\mathbf{x} - \mathbf{y}\|_2^2 + \tau \|\mathbf{P}\mathbf{x}\|_1$$

Template:
$$\min_{\mathbf{z} \in \mathbb{R}^d} \sum_{j=1}^J g_j(\mathbf{H}^{(j)}\mathbf{z})$$

Naïve mapping:
$$J=2$$
 , $g_1(\mathbf{z})=rac{1}{2}\|\mathbf{z}-\mathbf{y}\|_2^2, \quad g_2(\mathbf{z})= au\,\|\mathbf{z}\|_1$ $\mathbf{H}^{(1)}=\mathbf{MB}$ $\mathbf{H}^{(2)}=\mathbf{P},$

Difficulty: need to compute
$$\left[\mathbf{B}^*\mathbf{M}^*\mathbf{M}\mathbf{B} + \mathbf{P}^*\mathbf{P}\right]^{-1} = \left[\mathbf{B}^*\mathbf{M}^*\mathbf{M}\mathbf{B} + \mathbf{I}\right]^{-1}$$

...tricks above no longer applicable.

Non-Periodic Deconvolution (Frame-Analysis)

Problem:
$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{MBx} - \mathbf{y}||_2^2 + \tau ||\mathbf{Px}||_1$$

Template:
$$\min_{\mathbf{z} \in \mathbb{R}^d} \sum_{i=1}^J g_j(\mathbf{H}^{(j)}\mathbf{z})$$

Better mapping:
$$J=2$$
, $g_1(\mathbf{z})=rac{1}{2}\|\mathbf{M}\mathbf{z}-\mathbf{y}\|_2^2$, $g_2(\mathbf{z})= au\,\|\mathbf{z}\|_1$ $\mathbf{H}^{(1)}=\mathbf{B}$ $\mathbf{H}^{(2)}=\mathbf{P},$

$$\left[\mathbf{B}^*\mathbf{B} + \mathbf{P}^*\mathbf{P}\right]^{-1} = \left[\mathbf{B}^*\mathbf{B} + \mathbf{I}\right]^{-1}$$
 easy via FFT (Bis circulant)

$$\begin{aligned} & \operatorname{prox}_{g_2/\mu}(\mathbf{u}) = \arg\min_{\mathbf{z}} \frac{1}{2\mu} \|\mathbf{M}\mathbf{z} - \mathbf{y}\|_2^2 + \frac{1}{2} \|\mathbf{z} - \mathbf{u}\|_2^2 \\ &= \underbrace{\left(\mathbf{M}^T \mathbf{M} + \mu \mathbf{I}\right)^{-1}}_{\text{diagonal}} \left(\mathbf{M}^T \mathbf{y} + \mu \mathbf{u}\right) \end{aligned}$$

Non-Periodic Deconvolution: Example (19x19 uniform blur)

original (256×256)

observed (238×238)

Assuming periodic BC

FA-BC (ISNR = -2.52dB)

Edge tapering

FA-ET (ISNR = 3.06dB)

Proposed

FA-MD (ISRN = 10.63dB)

Non-Periodic Deconvolution: Example (19x19 motion blur)

original (256×256)

observed (238 \times 238)

TV-BC (ISNR = 0.91dB)

Edge tapering

TV-ET (ISNR = 9.38dB)

Proposed

TV-MD (ISNR = 12.59dB)

Non-Periodic Deconvolution + Inpainting

 $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{MBx} - \mathbf{y}||_2^2 + \tau c(\mathbf{x})$

Mask the boundary and missing pixels

periodic convolution

original (256×256)

observed (238 \times 238)

Also applicable to super-resolution (ongoing work)

FA-CG (SNR = 20.58dB)

FA-MD (SNR = 20.57dB)

Non-Periodic Deconvolution via Accelerated IST

The syntesis formulation is easily handled by IST (or FISTA, TwIST, SpaRSA,...)

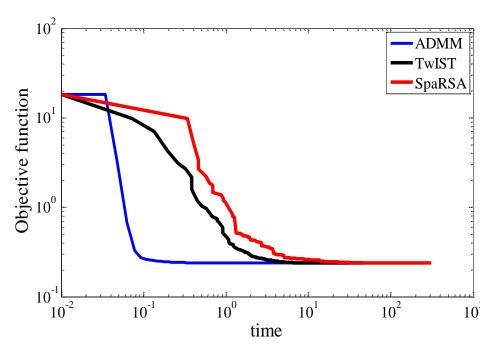
[Matakos, Ramani, Fessler, 12, 13]

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{M}\mathbf{B}\mathbf{W}\mathbf{x} - \mathbf{y}\|_2^2 + \tau \|\mathbf{x}\|_1$$
 mask Parseval frame synthesis

Ingredients:
$$\operatorname{prox}_{\tau \|\cdot\|_1}(\mathbf{u}) = \operatorname{soft}(\mathbf{u}, \tau)$$

$$\nabla \frac{1}{2} \|\mathbf{M}\mathbf{B}\mathbf{W}\mathbf{x} - \mathbf{y}\|_2^2 = \mathbf{W}^*\mathbf{B}^*\mathbf{M}^* \left(\mathbf{M}\mathbf{B}\mathbf{W}\mathbf{x} - \mathbf{y}\right)$$

(analysis formulation cannot be addressed by IST, FIST, SpaRSA, TwIST,...)



$$\mathbf{y} = \mathbf{h} * \mathbf{x} + \mathbf{n}$$

Both ${f X}$ and ${f h}$ are unknown

Objective function (non-convex):

$$\mathbf{C}_{\lambda}(\mathbf{x}, \mathbf{h}) = \frac{1}{2} \|\mathbf{y} - \mathbf{M}\|\mathbf{B}\|\mathbf{x}\|_{2}^{2} + \lambda \sum_{i=1}^{m} (\|\mathbf{F}_{i}\|\mathbf{x}\|_{2})^{q} + \iota_{\mathcal{S}^{+}}(\mathbf{h})$$
Indeed with the description of $\Phi(\mathbf{x})$

Boundary mask

the convolution with ${f h}$

[Almeida and F, 13]

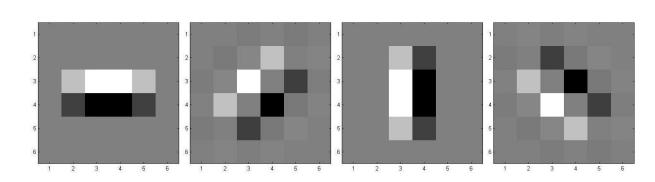
Support and

 $\Phi(\mathbf{x})$ is "enhanced" TV; $q \in (0,\,1]$ (typically 0.5);

 \mathbf{F}_i is the convolution with four "edge filters" at location i

$$\mathbf{F}_i \in \mathbb{R}^{4 \times m}$$

$$\mathbf{F}_i \mathbf{x} \in \mathbb{R}^4$$



Algorithm 1: Continuation-based BID.

- 1 Set $\hat{\mathbf{h}}$ to the identity filter, $\hat{\mathbf{x}} = \mathbf{y}$ and $\lambda = \lambda_0$; choose $\alpha < 1$.
- 2 repeat
- $\widehat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \mathbf{C}_{\lambda}(\mathbf{x}, \widehat{\mathbf{h}})$ update image estimate
- $\widehat{\mathbf{h}} \leftarrow \arg\min_{\mathbf{h}} \mathbf{C}_{\lambda}(\widehat{\mathbf{x}}, \mathbf{h}), \quad \text{update blur estimate} \ \lambda \leftarrow \alpha \ \lambda$
- 6 until stopping criterion is satisfied

[Almeida et al, 2010, 2013]

Updating the image estimate

$$\widehat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \frac{1}{2} ||\mathbf{y} - \mathbf{M}\mathbf{H}\mathbf{x}||^2 + \lambda \Phi(\mathbf{x})$$

Standard image deconvolution, with unknown boundaries; ADMM as above.

Updating the image estimate

$$\widehat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x} \in \mathbb{R}^m} \frac{1}{2} ||\mathbf{y} - \mathbf{M} \mathbf{B} \mathbf{x}||^2 + \lambda \sum_{i=1}^m (||\mathbf{F}_i \mathbf{x}||_2)^q$$

Template: $\min_{\mathbf{z} \in \mathbb{R}^d} \sum_{i=1}^{\sigma} g_j(\mathbf{H}^{(j)}\mathbf{z})$

Mapping:
$$J = m+1, \quad g_i(\mathbf{z}) = \|\mathbf{z}\|_2^q, \quad i = 1,...,m,$$

$$\mathbf{H}^{(i)} = \mathbf{F}_i, \;\; i = 1,...,m,$$

$$g_{m+1}(\mathbf{z}) = \frac{1}{2} ||\mathbf{M}\mathbf{z} - \mathbf{y}||_2^2, \quad \mathbf{H}^{(m+1)} = \mathbf{B}$$

All the matrices are circulant: matrix inversion step in ADMM easy with FFT.

Also possible to compute
$$\max_{\tau \, \|\cdot\|_2^q}(\mathbf{u}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{u}\|_2^2 + \tau \, \|\mathbf{x}\|_2^q$$
 for $q \in \left\{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\right\}$

CIMI, Toulouse, 2013

Algorithm 1: Continuation-based BID.

- 1 Set $\hat{\mathbf{h}}$ to the identity filter, $\hat{\mathbf{x}} = \mathbf{y}$ and $\lambda = \lambda_0$; choose $\alpha < 1$.
- 2 repeat
- $\widehat{\mathbf{x}} \leftarrow \arg\min_{\mathbf{x}} \mathbf{C}_{\lambda}(\mathbf{x}, \widehat{\mathbf{h}})$ update image estimate
- $\mathbf{4} \quad | \quad \widehat{\mathbf{h}} \leftarrow \arg \min_{\mathbf{h}} C_{\lambda}(\widehat{x}, \mathbf{h}), \quad \text{ update blur estimate}$
- 5 $\lambda \leftarrow \alpha \lambda$
- 6 until stopping criterion is satisfied

Updating the blur estimate: notice that $\mathbf{h} * \mathbf{x} = \mathbf{H} \mathbf{x} = \mathbf{X} \mathbf{h}$

$$\widehat{\mathbf{h}} \leftarrow \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{X}\mathbf{h}\|^2 + \iota_{\mathcal{S}^+}(\mathbf{h})$$

Like standard image deconvolution, with a support and positivity constraint.

Prox of support and positivity constraint is trivial: $\operatorname{prox}_{\iota_{\mathcal{S}^+}}(\mathbf{h}) = \Pi_{\mathcal{S}^+}(\mathbf{h})$

Algorithm 1: Continuation-based BID.

- 1 Set $\hat{\mathbf{h}}$ to the identity filter, $\hat{\mathbf{x}} = \mathbf{y}$ and $\lambda = \lambda_0$; choose $\alpha < 1$.
- 2 repeat
- $\widehat{\mathbf{x}} \leftarrow \operatorname{arg\,min}_{\mathbf{x}} \mathbf{C}_{\lambda}(\mathbf{x}, \widehat{\mathbf{h}})$
- $\mathbf{4} \qquad \widehat{\mathbf{h}} \leftarrow \arg\min_{\mathbf{h}} C_{\lambda}(\widehat{\mathbf{x}},\mathbf{h}),$
- 5 $\lambda \leftarrow \alpha \lambda$
- 6 until stopping criterion is satisfied

Question: when to stop? What value of λ to choose?

For non-blind deconvolution, many approaches for choosing λ

generalized cross validation, L-curve, SURE and variants thereof

[Thomson, Brown, Kay, Titterington, 92], [Hansen, O'Leary, 93], [Eldar, 09], [Giryes, Elad, Eldar 11],

[Luisier, Blu, Unser 09], [Ramani, Blu, Unser, 10], [Ramani, Liu, Rosen, Nielsen, Fessler, 12]

Bayesian methods (some for BID)

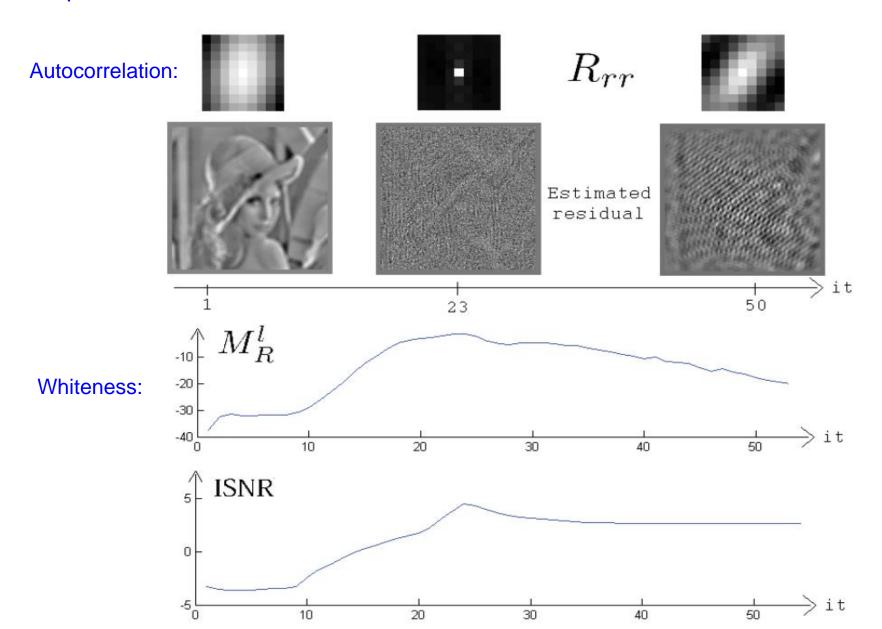
[Babacan, Molina, Katsaggelos, 09], [Fergus et al, 06], [Amizic, Babacan, Molina, Katsaggelos, 10], [Chantas, Galatsanos, Molina, Katsaggelos, 10], [Oliveira, Bioucas-Dias, F, 09]

No-reference quality measures

[Lee, Lai, Chen, 07], [Zhu, Milanfar, 10]

Blind Image Deconvolution: Stopping Criterion

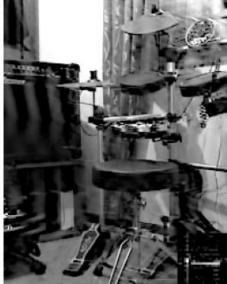
Proposed rationale: if the blur kernel is well estimated, the residual is white.



Experiment with real motion blurred photo

Blurred photo

[14], 70 seconds



[16], 100 seconds

Proposed method, 55 seconds

[Krishnan et al, 2011]

[Levin et al, 2011]

CIMI, Toulouse, 2013

Experiment with real out-of-focus photo

Observed photo.

[Almeida et al, 2010]

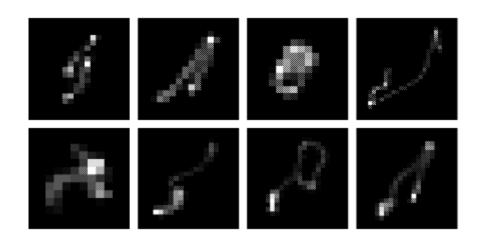
proposed

Blind Image Deconvolution (BID): Synthetic Results

Realistic motion blurs:

[Levin, Weiss, Durant, Freeman, 09]

Images: Lena, Cameraman



Average results over 2 images and 8 blurs:

	Method	∞ dB	40dB	30dB
ISNR* (dB)	[31]	6.14	5.90	4.91
	[35]	5.51	5.72	4.79
	[50]	4.70	4.70	4.30
	Ours	9.00	8.43	6.70
Time (s)	[31]	80	66	62
	[35]	399	399	399
	[50]	1.5^{2}	1.5^{2}	1.5^{2}
	Ours	70	55	45

[Krishnan et al, 11] [Levin et al, 11] [Xu, Jia, 10]

[Krishnan et al, 11]
[Levin et al, 11]
[Xu, Jia, 10] (GPU)

Blind Image Deconvolution (BID): Handling Staurations

Several digital images have saturated pixels (at 0 or max): this impacts BID!

Easy to handle in our approach: just mask them out

 $\min(\alpha \mathbf{x} * \mathbf{h}, 255)$

ignoring saturations

knowing saturations

out-of-focus (disk) blur

Summary:

- Alternating direction optimization (ADMM) is powerful, versatile, modular.
- Main hurdle: need to solve a linear system (invert a matrix) at each iteration...
- ...however, sometimes this turns out to be an advantage.
- State of the art results in several image/signal reconstruction problems.

Thanks!