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Inference/Learning via Optimization 

Many inference criteria (in signal processing, machine learning) have the form 

regularization/penalty function,  negative log-prior, … 

… typically convex, often non-differentiable (to induce sparsity)  

Examples:   signal/image restoration/reconstruction, sparse representations, 

compressive sensing/imaging, linear regression, logistic  

regression,  channel sensing,  support vector machines, ... 

  data fidelity, observation model, negative log-likelihood, loss,… 

 

 
… usually smooth and convex.  
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Unconstrained Versus Constrained Optimization 

x̂ 2 argmin
x

f(x) + ¿c(x)

Unconstrained optimization formulation 

Constrained optimization formulations 

(Morozov regularization) 

All “equivalent”, under mild conditions; often not equally convenient/easy 

[Lorenz, 12] 

(Ivanov regularization) 

(Tikhonov regularization) 
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A Fundamental Dichotomy: Analysis vs Synthesis 

proper, lower semi-continuous (lsc), convex (not strictly), coercive.  

typical (sparseness-inducing) regularizer: 

[Elad, Milanfar, Rubinstein, 2007], [Selesnick, F, 2010], 

Synthesis regularization:  

 
contains representation coefficients (not the signal/image itself) 

                         , where       is the observation operator  

 

             is a synthesis operator; e.g., a Parseval frame 

 

             depends on the noise model; e.g.,  L L(z) = 1
2
kz¡yk22
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Analysis regularization  

is the signal/image itself,       is the observation operator 

proper, lsc, convex (not strictly), and coercive.  

typical frame-based analysis regularizer: 

Total variation (TV)  is also “analysis”; proper, lsc, convex (not strictly),  

... but not coercive.  

analysis operator (e.g., of a Parseval frame,                  ) 

A Fundamental Dichotomy: Analysis vs Synthesis (II) 

[Elad, Milanfar, Rubinstein, 2007], [Selesnick, F, 2010], 
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Typical Convex Data Terms 

Let: 

where      is one (e.g.) of these functions (log-likelihoods): 

Gaussian observations:  

Poissonian observations:  

Multiplicative  noise: 

…all proper, lower semi-continuous (lsc), coercive, convex. 

        and         are strictly convex.           is strictly convex if          

where 

4 
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A Key Tool: The Moreau Proximity Operator 

The Moreau proximity operator  [Moreau 62], [Combettes, Pesquet, Wajs, 01, 03, 05, 07, 10, 11]. 

    

c(z) = 1
2
kzk22 ) prox¿c(u) =

u

1 + ¿ u

soft(u; ¿)

= sign(u)¯max(juj ¡ ¿;0)

c(z) = ¶C(z) =

½
0 ( z 2 C

+1 ( z 62 C ) prox¿c(u) = ¦C(u)

Classical cases:  
Euclidean projection on convex set C

c(z) =
X

i

ci(zi) )
¡
prox¿ c(u)

¢
i
= prox¿ ci(ui)Separability: 
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...many more!  

[Combettes, Pesquet, 2010]  

Moreau Proximity Operators 
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Key condition in convergence proofs:           is Lipschtz 

…not true, e.g., with Poisson or multiplicative noise. 

Iterative Shrinkage/Thresholding (IST)   

IST is usually slow (specially if     is small);  several accelerated versions: 

                                      Two-step IST  (TwIST)  [Bioucas-Dias, F, 07] 

                 

                                           Fast  IST (FISTA)  [Beck, Teboulle, 09], [Tseng, 08] 

 

                                       Continuation  [Hale, Yin, Zhang, 07], [Wright, Nowak, F, 07, 09]  

 

                                       SpaRSA  [Wright, Nowak, F, 08, 09] 

Iterative shrinkage thresholding (IST) 

a.k.a. forward-backward splitting  

a.k.a  proximal gradient algorithm 
[Bruck, 1977], [Passty, 1979],  [Lions, Mercier, 1979],  

[F, Nowak, 01, 03], [Daubechies, Defrise, De Mol, 02, 04], 

[Combettes and Wajs, 03, 05], [Starck, Candés, Nguyen, 

Murtagh, 03], [Combettes, Pesquet, Wajs, 03, 05, 07, 11], 

 

 

 

   

 

Not directly applicable with analysis formulations (see [Loris, Verhoeven, 11]) 
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Unconstrained (convex) optimization problem: 

ADMM  [Glowinski, Marrocco, 75], [Gabay, Mercier, 76], [Gabay, 83], [Eckstein, Bertsekas, 92] 

Interpretations:  variable splitting + augmented Lagrangian + NLBGS; 

                            Douglas-Rachford splitting on the dual  [Eckstein, Bertsekas, 92] 

                            split-Bregman approach [Goldstein, Osher, 08] 

Alternating Direction Method of Multipliers (ADMM) 

Explosion of applications in signal processing, machine learning, statistics, ... 
[Giovanneli, Coulais, 05], Giannakis et al, 08, 09,...], [Tomioka et al, 09], [Boyd et al, 11], [Goldfarb, Ma, 10,...],  

[Fessler et al, 11, ...], [Mota et al, 10], [Jakovetić et al, 12], [Banerjee et al, 12], [Esser, 09], [Ng et al, 20], 

[Setzer, Steidl, Teuber, 09], [Yang, Zhang, 11], [Combettes, Pesquet, 10,...], [Chan, Yang, Yuan, 11], ............... 
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A Cornerstone Result on ADMM   
[Eckstein, Bertsekas, 1992] 

The problem  

     and        are closed, proper, convex;       has full column rank. 

(inexact minimizations allowed, as long as the errors are absolutely summable). 

                                         is the sequence produced by ADMM, with  

then, if the problem has a solution, say     ,  then 

   

Google scholar citations 
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min
z

f1(z) + f2(Gz)

min
x
L(BWx) + ¿c(x)

Applying ADMM 

Synthesis formulation: 

Template problem for ADMM 

Naïve mapping: G=BW; f1 = ¿c; f2 = L

uk+1 = argmin
u

L(u) + ¹

2
kBWzk+1 ¡u¡dkk2

dk+1 = dk ¡ (BWzk+1 ¡uk+1)

zk+1 = argmin
z

¿ c(z) +
¹

2
kBWz¡uk ¡dkk2

proxL=¹
usually easy 

usually hard! 

ADMM 



14 CIMI, Toulouse, 2013 

min
z

f1(z) + f2(Gz)

min
x
L(Bx) + ¿c(Px)

Applying ADMM 

Analysis formulation: 

Template problem for ADMM 

Naïve mapping: G=P; f1 = L±B; f2 = ¿ c

uk+1 = argmin
u

¿c(u) +
¹

2
kPzk+1 ¡u¡dkk2

dk+1 = dk ¡ (Pzk+1 ¡uk+1)

zk+1 = argmin
z
L(Bz) + ¹

2
kPz¡uk ¡ dkk2

Easy if:      is quadratic and 

                  and      diagonalized by common transform (e.g., DFT) 

             (split-Bregman [Goldstein, Osher, 08]) 

    

L
B P

prox¿ c=¹
usually easy 
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General Template for ADMM with Two or More Functions 

min
z2Rd

JX

j=1

gj(H
(j)z)Consider  a more general problem  

Proper, closed, convex functions Arbitrary matrices 

G =

2
64
H(1)

...

H(J)

3
75 ; f2

0
B@

2
64
u(1)

...

u(J)

3
75

1
CA =

JX

j=1

gj(u
(j))

We propose: 

There are many ways to write          as 

[F and Bioucas-Dias, 2009] 
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d
(1)

k+1 = d
(1)

k ¡ (H(1)zk+1 ¡u(1)k+1)

d
(J)

k+1 = d
(J)

k ¡ (H(J)zk+1 ¡u(J)k+1)

min
z2Rd

JX

j=1

gj(H
(j)z); min

z2Rd
f2(Gz);

ADMM for Two or More Functions 

G =

2
64
H(1)

...

H(J)

3
75 ; u =

2
64
u(1)

...

u(J)

3
75

zk+1 =

µ JX

j=1

(H(j))¤H(j)

¶¡1 JX

j=1

(H(j))¤
³
u
(j)

k + d
(j)

k

´
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zk+1 =

µ JX

j=1

(H(j))¤H(j)

¶¡1 JX

j=1

(H(j))¤
³
u
(j)

k + d
(j)

k

´

Conditions for easy applicability: 

inexpensive  matrix  inversion 

u
(J)

k+1 = proxg1=¹(H
(J)zk+1 ¡d(j)k )

inexpensive proximity operators 

u
(1)

k+1 = proxg1=¹(H
(1)zk+1 ¡d(j)k )

ADMM for Two or More Functions 

...a cursing and a blessing! 
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Applies to sum of convex terms 

Computation of proximity operators is parallelizable 

Conditions for easy applicability: 

inexpensive  matrix  inversion 

inexpensive proximity operators 

ADMM for Two or More Functions 

Handling of matrices is isolated in a pure quadratic problem  

Similar algorithm: simultaneous directions method of multipliers (SDMM)  

[Setzer, Steidl, Teuber, 2010],  [Combettes, Pesquet, 2010] 

Other ADMM versions for more than two functions  

[Hong, Luo, 2012, 2013],  [Ma, 2012] 

Matrix inversion may be a curse or a blessing! (more later) 



19 CIMI, Toulouse, 2013 

Linear/Gaussian Observations: Frame-Based Analysis 

Problem: 

Template: 

Convergence conditions:          and        are closed, proper, and convex. 

has full column rank. 

Mapping:               ,    

Resulting algorithm: SALSA  

(split augmented Lagrangian shrinkage algorithm)  [Afonso, Bioucas-Dias, F, 2009, 2010] 
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Key steps of SALSA (both for analysis and synthesis): 

Moreau proximity operator of    

Moreau proximity operator of    

proxg2=¹(u) = soft
³
u; ¿=¹

´

ADMM for the Linear/Gaussian Problem: SALSA 

Matrix inversion: 

 

 

 

                     ...next slide! 

zk+1 =
h
A¤A+P¤P

i¡1µ
A¤
³
u
(1)

k + d
(1)

k

´
+P¤

³
u
(2)

k + d
(2)

k

´¶
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Handling the Matrix Inversion: Frame-Based Analysis 

£
A¤A+P¤P

¤¡1
=
£
A¤A+ I

¤¡1
Frame-based analysis: 

Parseval frame 

Compressive imaging (MRI): 

subsampling matrix: 

Inpainting (recovery of lost pixels): 

subsampling matrix:           is diagonal 

is a diagonal inversion 

matrix 

inversion 

lemma 

Periodic deconvolution: 

DFT (FFT) diagonal 



22 CIMI, Toulouse, 2013 

SALSA for Frame-Based Synthesis 

Problem: 

Convergence conditions:          and        are closed, proper, and convex. 

has full column rank. 

Mapping:               ,    

Template: A=BW

synthesis matrix 

observation matrix 
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Handling the Matrix Inversion: Frame-Based Synthesis 

Frame-based analysis: 

Compressive imaging (MRI): 

subsampling matrix: 

Inpainting (recovery of lost pixels): 

subsampling matrix: 

diagonal matrix Periodic deconvolution: 

DFT 

matrix inversion lemma +  
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SALSA Experiments 

9x9 uniform blur,  

40dB BSNR 

blurred restored 

undecimated Haar frame,      regularization. TV regularization 
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SALSA Experiments 

Image inpainting  

(50% missing) 

Conjecture: SALSA is fast because it’s blessed by the matrix inversion 

The inverted matrix (e.g.,                  ) is (almost) the Hessian of the data term; 

...second-order (curvature) information (as Newton’s method) 

A¤A+ I
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Frame-analysis regularization: 

Frame-Based Analysis Deconvolution of Poissonian Images 

Problem template: 

Convergence conditions:         ,        ,  and        are closed, proper, and convex. 

has full column rank 

Same form as           with:  

h
B¤B+P¤P+ I

i¡1
=
h
B¤B+2 I

i¡1
Required inversion: 

…again, easy in periodic deconvolution, MRI, inpainting, … 

positivity 

constraint 
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Proximity Operator of the Poisson Log-Likelihood 

Proximity  operator of the Poisson log-likelihood 

»(z; y) = z+ ¶R+(z)¡ y log(z+)

Proximity  operator of                        is simply 

proxL=¹(u) = argmin
z

X

i

»(zi; yi) +
¹

2
kz¡uk22

Separable problem with closed-form  (non-negative) solution 

[Combettes, Pesquet, 09, 11]: 

prox»(¢;y)(u) =
1

2

µ
u¡ 1

¹
+

q¡
u¡ (1=¹)

¢2
+ 4 y=¹

¶
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Experiments 
Comparison with [Dupé, Fadili, Starck, 09] and [Starck, Bijaoui, Murtagh, 95] 

[Dupé, Fadili, Starck, 09] [Starck et al, 95] 

PIDAL = Poisson image deconvolution by augmented Lagrangian 
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Morozov  Formulation 

Unconstrained optimization formulation: 

Both analysis and synthesis can be used:  

                                

  frame-based analysis,  

                                                               

                             frame-based synthesis 

Constrained optimization (Morozov) formulation: 

basis pursuit denoising, if   

[Chen, Donoho, Saunders, 1998] 

c(x) = kxk1
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Constrained problem: 

Proposed Approach for Constrained Formulation 

…can be written as  min
x

c(x) + ¶B(";y)(Ax)

B(";y) = fx 2 Rn : kx¡yk2 · "g

Resulting algorithm: C-SALSA (constrained-SALSA)  

                                     [Afonso, Bioucas-Dias, F, 2010,2011] 

full column rank 

…which has the form 

with 
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Some Aspects of C-SALSA 

prox¶B(";y)(u) = argmin
z

¶B(";y) +
1

2
kz¡uk22

¶B(";y)Moreau proximity operator  of                 is simply a projection on an       ball:  

As SALSA, also C-SALSA involves inversion of the form  

·
W¤B¤BW+ I

¸¡1
or 

·
B¤B+P¤P

¸¡1

…all the same tricks as above. 
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C-SALSA Experiments: Image Deblurring 

Image deconvolution benchmark problems: 

Frame-synthesis 

Frame-analysis 

Total-variation 

NESTA: [Becker,  Bobin, Candès, 2011] 

SPGL1: [van den Berg, Friedlander, 2009] 
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Non-Periodic Deconvolution 

x̂ 2 argmin
x

1

2
kAx¡ yk22 + ¿c(x)

ADMM / SALSA  handles  this “easily” if        is circulant  (periodic convolution) 

Analysis  formulation  for  deconvolution 

A

Periodicity is an 

artificial assumption  

A is (block) circulant 

…as are other boundary conditions (BC)  

Neumann Dirichlet 

A is (block) Toeplitz A is (block) Toeplitz + Hankel 

[Ng, Chan, Tang, 1999] 
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Why Periodic, Neumann, Dirichlet Boundary Conditions are “wrong”  
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Non-Periodic Deconvolution 

A natural BC:  unknown values     
[Chan, Yip, Park, 05], [Reeves, 05], [Sorel, 12], [Almeida, F, 12,13], [Matakos, Ramani, Fessler, 12, 13] 

unknown values 

convolution, arbitrary BC masking 

x̂ 2 argmin
x

1

2
kMBx¡ yk22 + ¿c(x)

mask periodic convolution 
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Non-Periodic Deconvolution (Frame-Analysis) 

Template: 

x̂ 2 argmin
x

1

2
kMBx¡ yk22 + ¿kPxk1Problem: 

Naïve mapping:                  ,    

H(2) = P;H(1) =MB

Difficulty:   need to compute 

 

                  ...tricks above no longer applicable. 

 

                    

·
B¤M¤MB+P¤P

¸¡1
=

·
B¤M¤MB+ I

¸¡1
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proxg2=¹(u) = argmin
z

1

2¹
kMz¡ yk22 +

1

2
kz¡uk22

=
¡
MTM+¹I

¢¡1¡
MTy+ ¹u

¢
diagonal 

Template: 

x̂ 2 argmin
x

1

2
kMBx¡ yk22 + ¿kPxk1Problem: 

Better mapping:                ,    g1(z) =
1

2
kMz¡ yk22;

H(2) = P;H(1) =B
·
B¤B+P¤P

¸¡1
=

·
B¤B+ I

¸¡1
easy via FFT (    is circulant)    B

Non-Periodic Deconvolution (Frame-Analysis) 
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Non-Periodic Deconvolution: Example (19x19 uniform blur) 

Assuming periodic BC Edge tapering 

Proposed 
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Non-Periodic Deconvolution: Example (19x19 motion blur) 

Edge tapering Assuming periodic BC 

Proposed 
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Non-Periodic Deconvolution + Inpainting 

x̂ 2 argmin
x

1

2
kMBx¡ yk22 + ¿c(x)

Mask the boundary  

and missing pixels 

periodic convolution 

Also applicable to super-resolution 

(ongoing work) 
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Non-Periodic Deconvolution via Accelerated IST 

x̂ 2 argmin
x

1

2
kMBWx¡ yk22 + ¿kxk1

mask 

periodic convolution 

The syntesis formulation is easily handled by IST (or FISTA, TwIST, SpaRSA,...) 

[Matakos, Ramani, Fessler, 12, 13] 

Parseval frame synthesis 

Ingredients: prox¿k¢k1(u) = soft(u; ¿)

r1
2
kMBWx¡yk22 =W¤B¤M¤ (MBWx¡y)

(analysis formulation cannot  

be addressed by IST, FIST,  

SpaRSA, TwIST,...) 

10
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Objective function (non-convex): 

Blind Image Deconvolution (BID) 

Both      and      are unknown 

Matrix representation of 

the convolution with 

Boundary mask 

Support and  

positivity 

 [Almeida and F, 13] 

©(x) is “enhanced” TV;                       (typically 0.5);     

       is the  convolution with four  “edge filters” at location 

q 2 (0; 1]

Fi i

Fi 2 R4£m

Fi x 2 R4
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Blind Image Deconvolution (BID) 

Updating the image estimate 

Standard image deconvolution, with unknown boundaries; ADMM as above. 

update image estimate 

update blur estimate 

 [Almeida et al, 2010, 2013] 
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Updating the image estimate 

bxÃ arg min
x2Rm

1

2
ky¡MBxk2 + ¸

mX

i=1

¡
kFixk2

¢q

Blind Image Deconvolution (BID) 

Template: 

Mapping:  J =m+1; gi(z) = kzkq2; i = 1; :::;m;

H(i) = Fi; i = 1; :::;m;

gm+1(z) =
1
2
kMz¡yk22; H(m+1) =B

All the matrices are circulant: matrix inversion step in ADMM easy with FFT. 

Also possible to compute   prox¿ k¢kq2(u) = argmin
x

1

2
kx¡uk22 + ¿ kxkq2

for                                                q 2
©
0; 1

2
; 2
3
;1; 4

3
; 3
2
;2
ª
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Blind Image Deconvolution (BID) 

update image estimate 

update blur estimate 

Updating the blur estimate:  notice that  

Like standard image deconvolution, with a support and positivity constraint. 

prox¶S+
(h) = ¦S+(h)Prox of support and positivity constraint is trivial: 
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Blind Image Deconvolution (BID) 

Question:  when to stop? What value of     to choose? ¸

For non-blind deconvolution, many approaches for choosing  

         generalized cross validation, L-curve, SURE and variants thereof 

            [Thomson, Brown, Kay, Titterington, 92], [Hansen, O’Leary, 93], [Eldar, 09], [Giryes, Elad, Eldar 11],  

            [Luisier, Blu, Unser 09], [Ramani, Blu, Unser, 10], [Ramani, Liu,Rosen, Nielsen, Fessler, 12] 

Bayesian methods (some for BID) 

            [Babacan, Molina, Katsaggelos, 09], [Fergus et al, 06], [Amizic, Babacan, Molina, Katsaggelos, 10], 

            [Chantas, Galatsanos, Molina, Katsaggelos, 10],  [Oliveira, Bioucas-Dias, F, 09] 

No-reference quality measures 

          [Lee, Lai, Chen, 07], [Zhu, Milanfar, 10]          

¸
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Blind Image Deconvolution: Stopping Criterion 

Proposed rationale: if the blur kernel is well estimated, the residual is white. 

Autocorrelation: 

Whiteness: 
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Blind Image Deconvolution (BID) 

Experiment with real motion blurred photo 

 [Krishnan et al, 2011]  [Levin et al, 2011] 
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 [Almeida et al, 2010] proposed 

Blind Image Deconvolution (BID) 

Experiment with real out-of-focus photo 
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Blind Image Deconvolution (BID): Synthetic Results 

Realistic motion blurs: 

[Levin, Weiss, Durant, Freeman, 09] 

 

Images: Lena, Cameraman 

[Krishnan et al, 11] 

[Levin et al, 11] 

[Xu, Jia, 10] 

[Krishnan et al, 11] 

[Levin et al, 11] 

[Xu, Jia, 10]  (GPU) 

Average results over 2 images and 8 blurs: 
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Blind Image Deconvolution (BID): Handling Staurations 

Several digital images have saturated pixels (at 0 or max): this impacts BID! 

Easy to handle in our approach: just mask them out 

ignoring saturations knowing saturations min
¡
®x ¤h;255

¢

out-of-focus (disk) blur 
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Summary:  

Thanks! 

• Alternating direction optimization (ADMM) is powerful, versatile, modular. 

 

• Main hurdle: need to solve a linear system (invert a matrix) at each iteration… 

 

•   …however, sometimes this turns out to be an advantage. 

 

• State of the art results in several  image/signal reconstruction problems. 

 


