Accelerated optimization methods for large-scale medical image reconstruction

Jeffrey A. Fessler
EECS Dept., BME Dept., Dept. of Radiology University of Michigan
web. eecs.umich.edu/~fessler

CIMI Workshop, Toulouse
25 June 2013

Disclosure

- Research support from GE Healthcare
- Research support to GE Global Research
- Supported in part by NIH grants R01 HL-098686 and P01 CA-87634
- Equipment support from Intel

Statistical image reconstruction: a CT revolution

- A picture is worth 1000 words
- (and perhaps several 1000 seconds of computation?)

Thin-slice FBP
Seconds

ASIR
A bit longer

Statistical
Much longer
(Same sinogram, so all at same dose)

Outline

- Image denoising (review)
- Image restoration

Antonios Matakos, Sathish Ramani, JF, IEEE T-IP, May 2013
Accelerated edge-preserving image restoration without boundary artifacts

- Low-dose X-ray CT image reconstruction

Sathish Ramani \& JF, IEEE T-MI, Mar. 2012

A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction Donghwan Kim, Sathish Ramani, JF, Fully3D June 2013
Accelerating X-ray CT ordered subsets image reconstruction with Nesterov's first-order methods

- Model-based MR image reconstruction

Sathish Ramani \& JF, IEEE T-MI, Mar. 2011
Parallel MR image reconstruction using augmented Lagrangian methods

- Image in-painting (e.g., from cutset sampling) using sparsity

Image denoising

Denoising using sparsity

Measurement model:

Object model: assume $Q x$ is sparse (compressible) for some orthogonal sparsifying transform \boldsymbol{Q}, such as an orthogonal wavelet transform (OWT).

Sparsity regularized estimator:

$$
\hat{x}=\underset{x}{\arg \min } \underbrace{\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}}_{\text {data fit }}+\beta \underbrace{\|\boldsymbol{Q} x\|_{p}}_{\text {sparsity }} .
$$

Regularization parameter β determines trade-off.
Equivalently (because $\boldsymbol{Q}^{-1}=\boldsymbol{Q}^{\prime}$ is an orthonormal matrix):

$$
\hat{\boldsymbol{x}}=\boldsymbol{Q}^{\prime} \hat{\boldsymbol{\theta}}, \quad \hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\arg \min } \frac{1}{2}\|\boldsymbol{Q} \boldsymbol{y}-\boldsymbol{\theta}\|_{2}^{2}+\beta\|\boldsymbol{\theta}\|_{p}=\operatorname{shrink}(\boldsymbol{Q} \boldsymbol{y}: \beta, p)
$$

Non-iterative solution!

Orthogonal transform thresholding

Equation:

$$
\hat{\boldsymbol{x}}=\boldsymbol{Q}^{\prime} \operatorname{shrink}(\boldsymbol{Q} y: \beta, p)
$$

Block diagram:

todo: show shrink function for $p=1$ and $p=0$

But sparsity in orthogonal transforms often yields artifacts.
Spin cycling...

Hard thresholding example

$p=0$, orthonormal Haar wavelets

Sparsity using shift-invariant models

Analysis form:
Assume $\boldsymbol{R} \boldsymbol{x}$ is sparse for some sparsifying transform \boldsymbol{R}.
Often R is a "tall" matrix, e.g., finite differences along horizontal and vertical directions, i.e., anisotropic total variation (TV).
Often \boldsymbol{R} is shift invariant: $\|\boldsymbol{R} \boldsymbol{x}\|_{p}=\|\boldsymbol{R} \operatorname{circshift}(\boldsymbol{x})\|_{p}$ and $\boldsymbol{R}^{\prime} \boldsymbol{R}$ is circulant.

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min } \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}+\beta \underbrace{\|\boldsymbol{R} \boldsymbol{x}\|_{\mathcal{D}}} .
$$

transform sparsity
Synthesis form
Assume $\boldsymbol{x}=\boldsymbol{S} \boldsymbol{\theta}$ where coefficient vector $\boldsymbol{\theta}$ is sparse.
Often \boldsymbol{S} is a "fat" matrix (over-complete dictionary) and $\boldsymbol{S}^{\prime} \boldsymbol{S}$ is circulant.

$$
\hat{\boldsymbol{x}}=\boldsymbol{S} \hat{\boldsymbol{\theta}}, \quad \hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\arg \min } \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{S} \boldsymbol{\theta}\|_{2}^{2}+\beta\|\boldsymbol{\theta}\|_{p}
$$

sparse coefficients
Analysis form preferable to synthesis form?
(Elad et al., Inv. Prob., June 2007)

Constrained optimization

Unconstrained estimator (analysis form for illustration):

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min } \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}+\beta\|\boldsymbol{R} \boldsymbol{x}\|_{p} .
$$

(Nonnegativity constraint or box constraints easily added.)
Equivalent constrained optimization problem:

$$
\min _{x, v} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}+\beta\|\boldsymbol{v}\|_{p} \text { sub. to } v=\boldsymbol{R} x \text {. }
$$

(Y. Wang et al., SIAM J. Im. Sci., 2008)
(M Afonso, J Bioucas-Dias, M Figueiredo, IEEE T-IP, Sep. 2010)
(The auxiliary variable v is discarded after optimization; keep only \hat{x}.)
Penalty approach:

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min } \min _{v} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}+\beta\|\boldsymbol{v}\|_{p}+\frac{\mu}{2}\|v-\boldsymbol{R} x\|_{2}^{2} .
$$

Large μ better enforces the constraint $\boldsymbol{v}=\boldsymbol{R} \boldsymbol{x}$, but can worsen conditioning.
Preferable (?) approach: augmented Lagrangian.

Augmented Lagrangian method: V1

General linearly constrained optimization problem:

$$
\min _{\boldsymbol{u}} \Psi(\boldsymbol{u}) \text { sub. to } \boldsymbol{C} \boldsymbol{u}=\boldsymbol{b} \text {. }
$$

Form augmented Lagrangian:

$$
L(\boldsymbol{u}, \boldsymbol{\gamma}) \triangleq \Psi(\boldsymbol{u})+\boldsymbol{\gamma}(\boldsymbol{C} \boldsymbol{u}-\boldsymbol{b})+\frac{\rho}{2}\|\boldsymbol{C} \boldsymbol{u}-\boldsymbol{b}\|_{2}^{2}
$$

where $\boldsymbol{\gamma}$ is the dual variable or Lagrange multiplier vector.
AL method alternates between minimizing over \boldsymbol{u} and gradient ascent on $\boldsymbol{\gamma}$:

$$
\begin{aligned}
\boldsymbol{u}^{(n+1)} & =\underset{\boldsymbol{u}}{\arg \min } L\left(\boldsymbol{u}, \boldsymbol{\gamma}^{(n)}\right) \\
\boldsymbol{\gamma}^{(n+1)} & =\boldsymbol{\gamma}^{(n)}+\rho\left(\boldsymbol{C} \boldsymbol{u}^{(n+1)}-\boldsymbol{b}\right) .
\end{aligned}
$$

Desirable convergence properties.
AL penalty parameter ρ affects convergence rate, not solution!
Unfortunately, minimizing over \boldsymbol{u} is impractical here:

$$
v=\boldsymbol{R x} \quad \text { equivalent to } \quad C \boldsymbol{u}=\boldsymbol{b}, \quad \boldsymbol{C}=\left[\begin{array}{ll}
\boldsymbol{R} & -\boldsymbol{I}
\end{array}\right], \quad \boldsymbol{u}=\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{v}
\end{array}\right], \quad \boldsymbol{b}=\mathbf{0} .
$$

Augmented Lagrangian method: V2

General linearly constrained optimization problem:

$$
\min _{\boldsymbol{u}} \Psi(\boldsymbol{u}) \text { sub. to } \boldsymbol{C} \boldsymbol{u}=\boldsymbol{b}
$$

Form (modified) augmented Lagrangian by completing the square:

$$
L(\boldsymbol{u}, \boldsymbol{\eta}) \triangleq \Psi(\boldsymbol{u})+\frac{\rho}{2}\|\boldsymbol{C} \boldsymbol{u}-\boldsymbol{\eta}\|_{2}^{2}+C_{\boldsymbol{\eta}},
$$

where $\boldsymbol{\eta} \triangleq \boldsymbol{b}-\frac{1}{\rho} \boldsymbol{\gamma}$ is a modified dual variable or Lagrange multiplier vector.
AL method alternates between minimizing over \boldsymbol{u} and gradient ascent on $\boldsymbol{\eta}$:

$$
\begin{aligned}
\boldsymbol{u}^{(n+1)} & =\underset{\boldsymbol{u}}{\arg \min } L\left(\boldsymbol{u}, \boldsymbol{\gamma}^{(n)}\right) \\
\boldsymbol{\eta}^{(n+1)} & =\boldsymbol{\eta}^{(n)}-\left(\boldsymbol{C} \boldsymbol{u}^{(n+1)}-\boldsymbol{b}\right) .
\end{aligned}
$$

Desirable convergence properties.
AL penalty parameter ρ affects convergence rate, not solution!
Unfortunately, minimizing over \boldsymbol{u} is impractical here:

$$
v=\boldsymbol{R x} \quad \text { equivalent to } \quad C u=\boldsymbol{b}, \quad \boldsymbol{C}=\left[\begin{array}{ll}
\boldsymbol{R} & -\boldsymbol{I}
\end{array}\right], \quad \boldsymbol{u}=\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{v}
\end{array}\right], \quad \boldsymbol{b}=\mathbf{0} .
$$

Alternating direction method of multipliers (ADMM)

When \boldsymbol{u} has multiple component vectors, e.g., $\boldsymbol{u}=\left[\begin{array}{l}x \\ \boldsymbol{v}\end{array}\right]$, rewrite (modified) augmented Lagrangian in terms of all component vectors:

$$
\begin{aligned}
L(\boldsymbol{x}, \boldsymbol{v} ; \boldsymbol{\eta}) & =\Psi(\boldsymbol{x}, \boldsymbol{v})+\frac{\rho}{2}\|\boldsymbol{R} \boldsymbol{x}-\boldsymbol{v}-\boldsymbol{\eta}\|_{2}^{2} \\
& =\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}+\beta\|\boldsymbol{v}\|_{p}+\frac{\rho}{2} \underbrace{\|\boldsymbol{x}-v-\boldsymbol{\eta}\|_{2}^{2}}_{\text {cf. penalty! }}
\end{aligned}
$$

because here $C \boldsymbol{u}=\boldsymbol{R} \boldsymbol{x}-\boldsymbol{v}$.
Alternate between minimizing over each component vector:

$$
\begin{aligned}
\boldsymbol{x}^{(n+1)} & =\underset{\boldsymbol{x}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{v}^{(n)}, \boldsymbol{\eta}^{(n)}\right) \\
\boldsymbol{v}^{(n+1)} & =\underset{\boldsymbol{v}}{\arg \min } L\left(\boldsymbol{x}^{(n+1)}, \boldsymbol{v}, \boldsymbol{\eta}^{(n)}\right) \\
\boldsymbol{\eta}^{(n+1)} & =\boldsymbol{\eta}^{(n)}+\left(\boldsymbol{R} \boldsymbol{x}^{(n+1)}-\boldsymbol{v}^{(n+1)}\right) .
\end{aligned}
$$

Reasonably desirable convergence properties. (Inexact inner minimizations!) Sufficient conditions on matrix \boldsymbol{C}.
(Eckstein \& Bertsekas, Math. Prog., Apr. 1992)
(Douglas and Rachford, Tr. Am. Math. Soc., 1956, heat conduction problems)

ADMM for image denoising

Augmented Lagrangian:

$$
L(\boldsymbol{x}, \boldsymbol{v} ; \boldsymbol{\eta})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}+\beta\|\boldsymbol{v}\|_{p}+\frac{\rho}{2}\|\boldsymbol{R} \boldsymbol{x}-\boldsymbol{v}-\boldsymbol{\eta}\|_{2}^{2}
$$

Update of primal variable (unknown image):

$$
\boldsymbol{x}^{(n+1)}=\underset{\boldsymbol{x}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{v}^{(n)}, \boldsymbol{\eta}^{(n)}\right)=\underbrace{\left[\boldsymbol{I}+\rho \boldsymbol{R}^{\prime} \boldsymbol{R}\right]^{-1}}_{\text {Wiener filter }}\left(\boldsymbol{y}+\boldsymbol{\rho} \boldsymbol{R}^{\prime}\left(\boldsymbol{v}^{(n)}+\boldsymbol{\eta}^{(n)}\right)\right)
$$

Update of auxiliary variable:
(No "corner rounding" needed for ℓ_{1}.)

$$
\boldsymbol{v}^{(n+1)}=\underset{\boldsymbol{v}}{\arg \min } L\left(\boldsymbol{x}^{(n+1)}, \boldsymbol{v}, \boldsymbol{\eta}^{(n)}\right)=\operatorname{shrink}\left(\boldsymbol{R} \boldsymbol{x}^{(n+1)}-\boldsymbol{\eta}^{(n)} ; \beta / \rho, p\right)
$$

Update of multiplier: $\boldsymbol{\eta}^{(n+1)}=\boldsymbol{\eta}^{(n)}+\left(\boldsymbol{R} \boldsymbol{x}^{(n+1)}-\boldsymbol{v}^{(n+1)}\right)$
Equivalent to "split Bregman" approach.
(Goldstein \& Osher, SIAM J. Im. Sci. 2009)
Each update is simple and exact (non-iterative) if $\left[I+\rho R^{\prime} R\right]^{-1}$ is easy.

ADMM image denoising example

R : horizontal and vertical finite differences (anisotropic TV), $p=1$ (i.e., ℓ_{1}), $\beta=1 / 2, \rho=1$ (condition number of $\left(\boldsymbol{I}+\rho \boldsymbol{R}^{\prime} \boldsymbol{R}\right)$ is 9)

ADMM image denoising iterates

X-ray CT image reconstruction Part 1: ADMM

X-ray CT review 1

X-ray source transmits X -ray photons through object. Recorded signal relates to line integral of attenuation along photon path.

X-ray CT review 2

X-ray source and detector rotate around object.

X-ray CT review 3

Detector elements

Measurement data \mathbf{y}

Collection of recorded views called a sinogram. Goal is to reconstruct (3D) image of object attenuation from sinogram.

Lower-dose X-ray CT

Radiation dose proportional to X-ray source intensity. Reducing dose \Longrightarrow fewer recorded photons \Longrightarrow lower SNR Conventional filter back-project (FBP) method derived for noiseless data

Conventional FBP reconstruction

Statistical image reconstruction

Low-dose X-ray CT image reconstruction

Regularized estimator:

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x} \succeq 0}{\arg \min } \frac{1}{\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{W}^{2}}+\underbrace{\beta}_{\text {data fit }} \underbrace{\|\boldsymbol{R} \boldsymbol{x}\|_{p}}_{\text {sparsity }} .
$$

Complications:

- Large problem size
- $x: 512 \times 512 \times 800 \approx 2 \cdot 10^{8}$ unknown image volume
- $y: 888 \times 64 \times 7000 \approx 4 \cdot 10^{8}$ measured sinogram
- $\boldsymbol{A}:\left(4 \cdot 10^{8}\right) \times\left(2 \cdot 10^{8}\right)$ system matrix
$\circ \boldsymbol{A}$ is sparse but still too large to store
- Projection $A x$ and back-projection $A^{\prime} r$ operations computed on the fly
- Computing gradient $\nabla \Psi(\boldsymbol{x})=\boldsymbol{A}^{\prime} \boldsymbol{W}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y})+\beta \nabla \mathrm{R}(\boldsymbol{x})$ requires projection and back-projection operations that dominate computation
- $\boldsymbol{A}^{\prime} \boldsymbol{A}$ is not circulant (but "approximately Toeplitz" in 2D)
- $A^{\prime} W A$ is highly shift variant due to huge dynamic range of weighting W
- Non-quadratic (edge-preserving) regularizer e.g., $\mathrm{R}(\boldsymbol{x})=\|\boldsymbol{R} \boldsymbol{x}\|_{p}$
- Nonnegativity constraint
- Goal: fast parallelizable algorithms that "converge" in a few iterations

Basic ADMM for X-ray CT

Basic equivalent constrained optimization problem (cf. split Bregman):

$$
\min _{\boldsymbol{x} \succeq 0, v} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{W}^{2}+\beta\|\boldsymbol{v}\|_{p} \text { sub. to } v=\boldsymbol{R} x \text {. }
$$

Corresponding (modified) augmented Lagrangian (cf. "split Bregman"):

$$
L(\boldsymbol{x}, \boldsymbol{v} ; \boldsymbol{\eta})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{\boldsymbol{W}}^{2}+\beta\|\boldsymbol{v}\|_{p}+\frac{\rho}{2}\|\boldsymbol{R} \boldsymbol{x}-\boldsymbol{v}-\boldsymbol{\eta}\|_{2}^{2}
$$

ADMM update of primal variable (unknown image):

$$
\boldsymbol{x}^{(n+1)}=\underset{\boldsymbol{x}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{v}^{(n)}, \boldsymbol{\eta}^{(n)}\right)=\left[\boldsymbol{A}^{\prime} \boldsymbol{W} \boldsymbol{A}+\rho \boldsymbol{R}^{\prime} \boldsymbol{R}\right]^{-1}\left(\boldsymbol{A}^{\prime} \boldsymbol{W}^{\prime} \boldsymbol{y}+\rho \boldsymbol{R}^{\prime}\left(\boldsymbol{v}^{(n)}+\boldsymbol{\eta}^{(n)}\right)\right)
$$

Drawbacks:

- Ignores nonnegativity constraint
- $\left[\boldsymbol{A}^{\prime} \boldsymbol{W} \boldsymbol{A}+\rho \boldsymbol{R}^{\prime} \boldsymbol{R}\right]^{-1}$ requires iteration (e.g., PCG) but hard to precondition. "second order method"
- Auxiliary variable $v=R x$ is enormous in 3D CT

Improved ADMM for X-ray CT

$$
\min _{x \succeq 0, u, v} \frac{1}{2}\|y-u\|_{W}^{2}+\beta\|v\|_{p} \text { sub. to } v=R x, \quad u=A x
$$

Corresponding (modified) augmented Lagrangian:
$L\left(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v} ; \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}\right)=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{u}\|_{\boldsymbol{w}}^{2}+\beta\|\boldsymbol{v}\|_{p}+\frac{\rho_{1}}{2}\left\|R x-v-\boldsymbol{\eta}_{1}\right\|_{2}^{2}+\frac{\rho_{2}}{2}\left\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{u}-\boldsymbol{\eta}_{2}\right\|_{2}^{2}$
ADMM update of primal variable (ignoring nonnegativity):

$$
\underset{\boldsymbol{x}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}\right)=\left[\rho_{2} \boldsymbol{A}^{\prime} \boldsymbol{A}+\rho_{1} \boldsymbol{R}^{\prime} \boldsymbol{R}\right]^{-1}\left(\rho_{1} \boldsymbol{R}^{\prime}\left(\boldsymbol{v}+\boldsymbol{\eta}_{1}\right)+\rho_{2} \boldsymbol{A}^{\prime}\left(\boldsymbol{u}+\boldsymbol{\eta}_{2}\right)\right)
$$

For 2D CT, $\left[\rho_{2} \boldsymbol{A}^{\prime} \boldsymbol{A}+\rho_{1} \boldsymbol{R}^{\prime} \boldsymbol{R}\right]^{-1}$ is approximately Toeplitz so a circulant preconditioner is very effective.

ADMM update of auxiliary variable \boldsymbol{u} :

$$
\underset{\boldsymbol{u}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}\right)=\underbrace{\left[\boldsymbol{W}+\rho_{2} \boldsymbol{I}\right]^{-1}}_{\text {diagonal }}\left(\boldsymbol{W} \boldsymbol{y}+\rho_{2}\left(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{\eta}_{2}\right)\right)
$$

v update is shrinkage again. Reasonably simple to code.

2D X-ray CT image reconstruction results: quality

PWLS with ℓ_{1} regularization of shift-invariant Haar wavelet transform.
No nonnegativity constraint, but probably unimportant if well-regularized.

2D X-ray CT image reconstruction results: speed

Circulant preconditioner for $\left[\rho_{2} A^{\prime} A+\rho_{1} R^{\prime} R\right]^{-1}$ is crucial to acceleration.
Similar results for real head CT scan in paper.

Lower-memory ADMM for X-ray CT

$$
\min _{\boldsymbol{x}, \boldsymbol{u}, z \succeq 0} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{u}\|_{W}^{2}+\beta\|\boldsymbol{R} z\|_{p} \text { sub. to } z=x, \quad \boldsymbol{u}=\boldsymbol{A} \boldsymbol{x} .
$$

(M McGaffin, S Ramani, JF, SPIE 2012)

Corresponding (modified) augmented Lagrangian:
$L\left(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{z} ; \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}\right)=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{u}\|_{\boldsymbol{W}}^{2}+\beta\|\boldsymbol{R} \boldsymbol{z}\|_{p}+\frac{\rho_{1}}{2}\left\|x-z-\boldsymbol{\eta}_{1}\right\|_{2}^{2}+\frac{\rho_{2}}{2}\left\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{u}-\boldsymbol{\eta}_{2}\right\|_{2}^{2}$
ADMM update of primal variable (nonnegativity not required, use PCG):

$$
\underset{\boldsymbol{x}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{z}, \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}\right)=\left[\rho_{2} \boldsymbol{A}^{\prime} \boldsymbol{A}+\rho_{1} \boldsymbol{I}\right]^{-1}\left(\rho_{1}\left(\boldsymbol{z}+\boldsymbol{\eta}_{1}\right)+\rho_{2} \boldsymbol{A}^{\prime}\left(\boldsymbol{u}+\boldsymbol{\eta}_{2}\right)\right) .
$$

ADMM update of auxiliary variable z :

$$
\underset{z \succeq 0}{\arg \min } L\left(x, \boldsymbol{u}, z, \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}\right)=\underset{z \succeq 0}{\arg \min } \frac{\rho_{1}}{2}\left\|x-z-\boldsymbol{\eta}_{1}\right\|_{2}^{2}+\beta\|\boldsymbol{R} \boldsymbol{z}\|_{p} .
$$

Use nonnegatively constrained, edge-preserving image denoising.
ADMM updates of auxiliary variables \boldsymbol{u} and \boldsymbol{v} same as before. Variations...

3D X-ray CT image reconstruction results

Awaiting better preconditioner for $\left[\rho_{2} \boldsymbol{A}^{\prime} \boldsymbol{A}+\rho_{1} \boldsymbol{I}\right]^{-1}$ in 3 DCT ... This is not an "easy problem" like in (idealized) image restoration...

X-ray CT image reconstruction Part 2: OS+Momentum

OS+Momentum preview

- Optimization transfer (aka majorize-minimize, half-quadratic)
- Ordered-subsets (OS) acceleration (aka incremental gradient, block iterative)
- Nesterov's momentum-based acceleration
- Proposed OS+Momentum approach combines both

Donghwan Kim, Sathish Ramani, JF, Fully3D June 2013
Accelerating X-ray CT ordered subsets image reconstruction with Nesterov's first-order methods

Optimization transfer method

(aka majorization-minimization or half-quadratic)

- At nth iteration, replace original cost function $\Psi(x)$ by a surrogate function $\phi^{(n)}(\boldsymbol{x})$ that is easier to minimize:

$$
\boldsymbol{x}^{(n+1)}=\underset{\boldsymbol{x} \succeq 0}{\arg \min } \phi^{(n)}(\boldsymbol{x})
$$

- To monotonically decrease $\Psi(x)$, i.e., $\Psi\left(\boldsymbol{x}^{(n+1)}\right) \leq \Psi\left(\boldsymbol{x}^{(n)}\right)$, surrogate should satisfy the following majorization conditions:

$$
\begin{aligned}
\phi^{(n)}\left(\boldsymbol{x}^{(n)}\right) & =\Psi\left(\boldsymbol{x}^{(n)}\right) \\
\phi^{(n)}(\boldsymbol{x}) & \geq \Psi(\boldsymbol{x}), \quad \forall \boldsymbol{x} \succeq \mathbf{0}
\end{aligned}
$$

Separable quadratic surrogate (SQS)

Quadratic surrogate functions are particularly convenient:

$$
\Psi(x) \leq \phi^{(n)}(x) \triangleq \Psi\left(\boldsymbol{x}^{(n)}\right)+\nabla \Psi\left(\boldsymbol{x}^{(n)}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{(n)}\right)+\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{(n)}\right\|_{\boldsymbol{D}}^{2},
$$

where \boldsymbol{D} is a specially designed diagonal matrix:

$$
\boldsymbol{D}=\boldsymbol{D}_{L}+\beta \boldsymbol{D}_{R}, \quad \boldsymbol{D}_{L} \triangleq \operatorname{diag}\left\{\boldsymbol{A}^{\prime} \boldsymbol{W} \boldsymbol{A} \mathbf{1}\right\}, \quad \boldsymbol{D}_{R} \triangleq \lambda_{\max }\left(\nabla^{2} \mathrm{R}(\boldsymbol{x})\right) \boldsymbol{I} .
$$

(Erdoğan and Fessler, PMB, 1999)

(Easier to compute \boldsymbol{D}_{L} than to find Lipschitz constant of $\boldsymbol{A}^{\prime} \boldsymbol{W} \boldsymbol{A}$.)
SQS leads to trivial M-step:

$$
\boldsymbol{x}^{(n+1)}=\underset{x \succeq 0}{\arg \min } \phi^{(n)}(\boldsymbol{x})=\left[x^{(n)}-D^{-1} \nabla \Psi\left(x^{(n)}\right)\right]_{+}
$$

"diagonally preconditioned gradient projection method"

Convergence rate of SQS method

Asymptotic convergence rate:

$$
\rho\left(I-D^{-1} \nabla^{2} \Psi(\hat{x})\right)
$$

Slightly generalizing Theorem 3.1 of Beck and Teboulle:

$$
\Psi\left(x^{(n)}\right)-\Psi(\hat{\boldsymbol{x}}) \leq \frac{\left\|x^{(0)}-\hat{x}\right\|_{D}^{2}}{2 n} .
$$

(Beck and Teboulle, SIAM J Im. Sci., 2009)
Pro: easily parallelized
Con: very slow convergence

Accelerating SQS using Nesterov's momemtum

SQS+Momentum Algorithm:

- Initialize image $\boldsymbol{x}^{(0)}$ and $z^{(0)}$
- for $n=0,1, \ldots$

$$
\begin{aligned}
\boldsymbol{x}^{(n+1)} & =\underset{x \geq 0}{\arg \min } \phi^{(n)}\left(z^{(n)}\right)=\left[z^{(n)}-D^{-1} \nabla \Psi\left(z^{(n)}\right)\right]_{+} \\
t_{n+1} & =\left(1+\sqrt{1+4 t_{n}^{2}}\right) / 2 \\
z^{(n+1)} & =x^{(n+1)}+\frac{t_{n}-1}{t_{n+1}}\left(x^{(n+1)}-x^{(n)}\right)
\end{aligned}
$$

Convergence rate of SQS+Momentum method:

$$
\Psi\left(x^{(n)}\right)-\Psi(\hat{x}) \leq \frac{2\left\|x^{(0)}-\hat{x}\right\|_{D}^{2}}{(n+1)^{2}} .
$$

Simple generalization of Thm. 4.4 for FISTA of
(Beck and Teboulle, SIAM J Im. Sci., 2009)
Pro: Almost same computation per iteration; slightly more memory needed.
Con: still converges too slowly for X-ray CT

Ordered subsets (OS) methods

- Recall: Projection operator \boldsymbol{A} is computationally expensive.
- OS methods group projection views into M subsets, and use each subset per each update, instead of using all measurement data.
(Hudson and Larkin, IEEE T-MI, 1994)
(Erdoğan and Fessler, PMB, 1999)
cf block-iterative incremental sub-gradient for machine learning

OS projection view grouping

Detector elements

Measurement data \mathbf{Y}

OS methods with $\mathbf{M}=\mathbf{3}$

Subset of measurement data \mathbf{Y}_{1}

OS projection view grouping

Detector elements

Measurement data \mathbf{Y}

OS methods with $\mathbf{M}=3$

Subset of measurement data \mathbf{Y}_{2}

OS projection view grouping

Detector elements

Measurement data \mathbf{Y}

OS methods with $\mathbf{M}=3$

Subset of measurement data $\mathbf{Y}_{\mathbf{3}}$

OS algorithm

Cost function decomposition:

$$
\Psi(\boldsymbol{x})=\sum_{m=1}^{M} \Psi_{m}(\boldsymbol{x}), \quad \Psi_{m}(\boldsymbol{x})=\frac{1}{2}\left\|\boldsymbol{y}_{m}-\boldsymbol{A}_{m} \boldsymbol{x}\right\|_{W_{m}}^{2}+\frac{1}{M} R(\boldsymbol{x})
$$

y_{m}, A_{m}, W_{m} : sinogram rows, system matrix rows, weighting elements for m th subset of projection views

Intuition: in early iterations (when $\boldsymbol{x}^{(n)}$ is far from $\hat{\boldsymbol{x}}$):

$$
M \nabla \Psi_{m}\left(\boldsymbol{x}^{(n)}\right) \approx \nabla \Psi\left(\boldsymbol{x}^{(n)}\right)
$$

OS-SQS Algorithm

- Initialize image $\boldsymbol{x}^{(0)}$
- for $n=0,1, \ldots$
- for $m=0, \ldots, M-1$

$$
\boldsymbol{x}^{(n+(m+1) / M)}=\underset{\boldsymbol{x} \succeq \mathbf{0}}{\arg \min }\left[\boldsymbol{x}^{(n+m / M)}-\boldsymbol{D}^{-1} M \nabla \Psi_{m}\left(\boldsymbol{x}^{(n+m / M)}\right)\right]_{+}
$$

OS-SQS algorithm properties

- One iteration corresponds to updating all M subsets.

Computation cost similar to original SQS (one full forward \boldsymbol{A} and back-projection \boldsymbol{A}^{\prime} per iteration)

- + Highly parallelizable
- + In early iterations, "we expect" the sequence $\left\{\boldsymbol{x}^{(n)}\right\}$ to satisfy

$$
\Psi\left(x^{(n)}\right)-\Psi(\hat{x}) \lesssim \frac{\left\|x^{(0)}-\hat{x}\right\|_{D}^{2}}{2 n M} .
$$

M times acceleration!

- - Does not converge to \hat{x}

Approaches a limit cycle, size related to M
Luo, Neural Computation, June 1991

- - Computing $\nabla \mathrm{R}(\boldsymbol{x})$ for each of M subsets \Longrightarrow prefer small M
- Since about 1997, OS methods have been used for (unregularized) PET reconstruction in nearly every PET scanner sold.
- Still undesirably slow (for small M) or unstable (for large M) in X-ray CT.

OS+Momentum algorithm

- Initialize image $\boldsymbol{x}^{(0)}$ and $z^{(0)}$
- for $n=0,1, \ldots$
- for $m=0,1, \ldots$

$$
\begin{aligned}
\boldsymbol{x}^{(n+(m+1) / M)} & =\left[z^{(n+m / M)}-\boldsymbol{D}^{-1} M \nabla \Psi_{m}\left(z^{(n+m / M)}\right)\right]_{+} \\
t_{\text {new }} & =\left(1+\sqrt{1+4 t_{\text {old }}^{2}}\right) / 2 \\
z^{(n+(m+1) / M)} & =x^{(n+(m+1) / M)}+\frac{t_{\text {old }}-1}{t_{\text {new }}}\left(x^{(n+(m+1) / M)}-x^{(n+m / M)}\right) \\
t_{\text {old }} & :=t_{\text {new }}
\end{aligned}
$$

- + In early iterations, "we expect" the sequence $\left\{\boldsymbol{x}^{(n)}\right\}$ to satisfy

$$
\Psi\left(x^{(n)}\right)-\Psi(\hat{x}) \lesssim \frac{\left\|x^{(0)}-\hat{x}\right\|_{D}^{2}}{2(n M)^{2}} .
$$

M^{2} times acceleration!

- + Very similar computation as OS-SQS
- + Easily implemented
- - Unknown convergence properties

Summary of convergence rates

SQS (optimization transfer) methods:

- Convergence rate
- SQS: $O\left(\frac{1}{n}\right)$
- SQS+Momentum: $O\left(\frac{1}{n^{2}}\right)$
- Expected convergence rate with OS method in early iterations
- OS-SQS: $O\left(\frac{1}{n M}\right)$
- Proposed OS-SQS+Momentum: $O\left(\frac{1}{(n M)^{2}}\right)$
- Pros: Owing to M^{2} times acceleration from OS methods, we can use small M, improving stability and reducing regularizer computation.
- Cons: Behavior of OS methods with momentum is unknown, while ordinary OS methods approach a limit-cycle. (Luo, Neural Comp., Jun. 1991)

Patient 3D helical CT scan results

- 3D cone-beam helical CT scan with pitch 1.0
- 3D image $x: 512 \times 512 \times 109$
- voxel size: $1.369 \mathrm{~mm} \times 1.369 \mathrm{~mm} \times 0.625 \mathrm{~mm}$
- measured sinogram data y : $888 \times 32 \times 7146$ (detector columns \times detector rows \times projection views)

Convergence rates (empirical)

- Root mean square difference (RMSD) between current $\boldsymbol{x}^{(n)}$ and converged image $\hat{\boldsymbol{x}}$

$$
\mathrm{RMSD} \triangleq \frac{\left\|\boldsymbol{x}^{(n)}-\hat{\boldsymbol{x}}\right\|_{2}}{\sqrt{N_{p}}}[\mathrm{HU}],
$$

where $N_{p}=512 \times 512 \times 109$ is the number of image voxels in \boldsymbol{x}.

- Normalized RMSD:

$$
\mathrm{NRMSD} \triangleq 20 \log _{10}\left(\frac{\left\|\boldsymbol{x}^{(n)}-\hat{\boldsymbol{x}}\right\|_{2}}{\|\hat{\boldsymbol{x}}\|_{2}}\right)[\mathrm{dB}] .
$$

- \hat{x} obtained by many iterations of several convergent algorithms

Convergence rate: RMSD [HU]

- Slow convergence without OS methods.
- OS methods with $M=24$ subsets needed 20% extra compute time per iteration due to $\nabla \mathrm{R}(\boldsymbol{x})$.
- OS-SQS-Momentum "converges" very rapidly in early iterations!
- Does not reach RMSD=0...

Convergence rate: Normalized RMSD [dB]

Combining incremental (sub)gradient with Nesterov-type momentum acceleration may help other "big data" estimation problems.

Images

Images

Reconstructed images at 12th iteration. ([800 1200] HU)
OS-SQS+Momentum with $M=24$ subsets much closer to minimizer $\hat{\boldsymbol{x}}$

Difference images

Difference between reconstructed images at 12th iteration and converged image \hat{x}.

Newer Nesterov method

Remains stable even for $M=48$ subsets. (Nesterov, Math. Prog., May 2005)

Some research problems in CT

$$
\hat{x}=\underset{x \succeq 0}{\arg \min } \frac{1}{2}\|y-\boldsymbol{A} \boldsymbol{x}\|_{\boldsymbol{W}}^{2}+\beta R(\boldsymbol{x}) .
$$

Reasonably mature research areas

- Design and implementation of system model \boldsymbol{A}
- Statistical modeling W

Open problems

- Design of regularizer $\mathrm{R}(x)$ to maximize radiologist performance
- Faster parallelizable algorithms (argmin) with global convergence
- Distributed computation - reducing communication
- Algorithms for more complete/complicated physical models (e.g., dual energy or spectral CT)
- Dynamic imaging / motion compensated image reconstruction
- Analysis of statistical properties of (highly nonlinear) estimator \hat{x}

Image reconstruction for parallel MRI

Parallel MRI

Undersampled Cartesian k-space, multiple receive coils, ... (Pruessmann et al., MRM, Nov. 1999)

Compressed sensing parallel MRI = further (random) under-sampling Lustig et al., IEEE Sig. Proc. Mag., Mar. 2008

Model-based image reconstruction in parallel MRI

Regularized estimator:

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min } \underbrace{\frac{1}{\|}\|\boldsymbol{y}-\boldsymbol{F S} \boldsymbol{x}\|_{2}^{2}}_{\text {data fit }}+\beta \underbrace{\|\boldsymbol{R} \boldsymbol{x}\|_{p}}_{\text {sparsity }} .
$$

\boldsymbol{F} is under-sampled DFT matrix (fat)
Features:

- coil sensitivity matrix \boldsymbol{S} is block diagonal (Pruessmann et al., MRM, Nov. 1999)
- $\boldsymbol{F}^{\prime} \boldsymbol{F}$ is circulant

Complications:

- Data-fit Hessian $\boldsymbol{S}^{\prime} \boldsymbol{F}^{\prime} \boldsymbol{F S}$ is highly shift variant due to coil sensitivity maps
- Non-quadratic (edge-preserving) regularization $\|\cdot\|_{p}$
- Complex quantities
- Large problem size (if 3D)

Basic ADMM for parallel MRI

Basic equivalent constrained optimization problem (cf. split Bregman):

$$
\min _{x, v} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{F} \boldsymbol{S} \boldsymbol{x}\|_{2}^{2}+\beta\|\boldsymbol{v}\|_{p} \text { sub. to } v=\boldsymbol{R} x .
$$

Corresponding (modified) augmented Lagrangian (cf. "split Bregman"):

$$
L(\boldsymbol{x}, \boldsymbol{v} ; \boldsymbol{\eta})=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{F} \boldsymbol{S} \boldsymbol{x}\|_{2}^{2}+\beta\|\boldsymbol{v}\|_{p}+\frac{\rho}{2}\|R x-v-\boldsymbol{\eta}\|_{2}^{2}
$$

(Skipping technical details about complex vectors.)
ADMM update of primal variable (unknown image):

$$
\boldsymbol{x}^{(n+1)}=\underset{\boldsymbol{x}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{v}^{(n)}, \boldsymbol{\eta}^{(n)}\right)=\left[\boldsymbol{S}^{\prime} \boldsymbol{F}^{\prime} \boldsymbol{F} \boldsymbol{S}+\rho \boldsymbol{R}^{\prime} \boldsymbol{R}\right]^{-1}\left(\boldsymbol{S}^{\prime} \boldsymbol{F}^{\prime} \boldsymbol{y}+\boldsymbol{\rho} \boldsymbol{R}^{\prime}\left(\boldsymbol{v}^{(n)}+\boldsymbol{\eta}^{(n)}\right)\right)
$$

- $\left[\boldsymbol{S}^{\prime} \boldsymbol{F}^{\prime} \boldsymbol{F} \boldsymbol{S}+\rho \boldsymbol{R}^{\prime} \boldsymbol{R}\right]^{-1}$ requires iteration (e.g., PCG) but hard to precondition
- (Trivial for single coil case with $\boldsymbol{S}=\boldsymbol{I}$.)
- The "problem" matrix is on opposite side:
- MRI: FS
- Restoration: TA

Improved ADMM for parallel MRI

$$
\min _{x, u, v, z} \frac{1}{2}\|y-\boldsymbol{F} \boldsymbol{u}\|_{2}^{2}+\beta\|v\|_{p} \text { sub. to } v=R z, \quad u=S x, \quad z=x
$$

Corresponding (modified) augmented Lagrangian:
$\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{F} \boldsymbol{u}\|_{2}^{2}+\beta\|\boldsymbol{v}\|_{p}+\frac{\rho_{1}}{2}\left\|\boldsymbol{R z}-\boldsymbol{v}-\boldsymbol{\eta}_{1}\right\|_{2}^{2}+\frac{\rho_{2}}{2}\left\|\boldsymbol{S} \boldsymbol{x}-\boldsymbol{u}-\boldsymbol{\eta}_{2}\right\|_{2}^{2}+\frac{\rho_{3}}{2}\left\|x-z-\boldsymbol{\eta}_{3}\right\|_{2}^{2}$
ADMM update of primal variable

$$
\underset{\boldsymbol{x}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z} ; \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \boldsymbol{\eta}_{3}\right)=\underbrace{\left[\rho_{2} \boldsymbol{S}^{\prime} \boldsymbol{S}+\rho_{3} \boldsymbol{I}\right]^{-1}}_{\text {diagonal }}\left(\rho_{2} \boldsymbol{S}^{\prime}\left(\boldsymbol{u}+\boldsymbol{\eta}_{2}\right)+\rho_{3}\left(\boldsymbol{z}+\boldsymbol{\eta}_{3}\right)\right)
$$

ADMM update of auxiliary variables:

$$
\underset{\boldsymbol{u}}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z} ; \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \boldsymbol{\eta}_{3}\right)=\underbrace{\left[\boldsymbol{F}^{\prime} \boldsymbol{F}+\rho_{2} \boldsymbol{I}\right]^{-1}}_{\text {circulant }}\left(\boldsymbol{F}^{\prime} \boldsymbol{y}+\rho_{2}\left(\boldsymbol{S} \boldsymbol{x}-\boldsymbol{\eta}_{2}\right)\right)
$$

$\underset{z}{\arg \min } L\left(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{z} ; \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \boldsymbol{\eta}_{3}\right)=\underbrace{\left[\rho_{1} \boldsymbol{R}^{\prime} \boldsymbol{R}+\rho_{3} \boldsymbol{I}\right]^{-1}}_{\text {circulant }}\left(\rho_{1} \boldsymbol{R}^{\prime}\left(\boldsymbol{v}+\boldsymbol{\eta}_{1}\right)+\rho_{3}\left(\boldsymbol{x}-\boldsymbol{\eta}_{3}\right)\right)$
v update is shrinkage again.
Simple, but does not satisfy sufficient conditions.
(Sathish Ramani \& JF, IEEE T-MI, Mar. 2011)

2.5D parallel MR image reconstruction results: data

Fully sampled body coil image of human brain
Poisson-disk-based k-space sampling, 16\% sampling (acceleration 6.25) Square-root of sum-of-squares inverse FFT of zero-filled k-space data

2.5D parallel MR image reconstruction results: IQ

- Fully sampled body coil image of human brain
- Regularized reconstruction $\boldsymbol{x}^{(\infty)}$ (1000s of iterations of MFISTA)
(A Beck \& M Teboulle, SIAM J. Im. Sci, 2009)
Combined TV and ℓ_{1} norm of two-level undecimated Haar wavelets
- Difference image magnitude

2.5D parallel MR image reconstruction results: speed

AL approach converges to $x^{(\infty)}$ much faster than MFISTA and CG

Current and future directions with ADMM

- Motion-compensated image reconstruction: $\boldsymbol{y}=\boldsymbol{A T}(\boldsymbol{\alpha}) \boldsymbol{x}+\boldsymbol{\varepsilon}$
(J H Cho, S Ramani, JF, 2nd CT meeting, 2012)
(J H Cho, S Ramani, JF, IEEE Stat. Sig. Proc. W., 2012)
- Dynamic image reconstruction
- Improved preconditioners for ADMM for 3D CT
(M McGaffin and JF, Submitted to Fully 3D 2013)
- Combining ADMM with ordered subsets (OS) methods (H Nien and JF, Submitted to Fully 3D 2013)
- Generalize parallel MRI algorithm to include spatial support constraint (M Le, S Ramani, JF, To appear at ISMRM 2013)
- Non-Cartesian MRI (combine optimization transfer and variable splitting) (S Ramani and JF, ISBI 2013, to appear.)
- SPECT-CT reconstruction with non-local means regularizer (S Y Chun, Y K Dewaraja, JF, Submitted to Fully 3D 2013)
- Estimation of coil sensitivity maps (quadratic problem!)
(M J Allison, S Ramani, JF, IEEE T-MI, Mar. 2013)
- L1-SPIRiT for non-Cartesian parallel MRI (D S Weller, S Ramani, JF, IEEE T-MI, 2013, submitted)
- Multi-frame super-resolution
- Selection of AL penalty parameter ρ to optimize convergence rate
- Other non-ADMM methods...

Acknowledgements

CT group

- Jang Hwan Cho
- Donghwan Kim
- Jungkuk Kim
- Madison McGaffin
- Hung Nien
- Stephen Schmitt

MR group

- Michael Allison
- Mai Le
- Antonis Matakos
- Matthew Muckley

Post-doctoral fellows

- Se Young Chun
- Sathish Ramani
- Daniel Weller

UM collaborators

- Doug Noll
- Jon-Fredrik Nielsen
- Mitch Goodsitt
- Ella Kazerooni
- Tom Chenevert
- Charles Meyer

GE collaborators

- Bruno De Man
- Jean-Baptiste Thibault

Image reconstruction toolbox

MATLAB (and increasingly Octave) toolbox for imaging inverse problems (MRI, CT, PET, SPECT, Deblurring)
web. eecs.umich.edu/~fessler

Bibliography

[1] A. Matakos, S. Ramani, and J. A. Fessler. Accelerated edge-preserving image restoration without boundary artifacts. IEEE Trans. Im. Proc., 22(5):2019-29, May 2013.
[2] S. Ramani and J. A. Fessler. A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction. IEEE Trans. Med. Imag., 31(3):677-88, March 2012.
[3] D. Kim, S. Ramani, and J. A. Fessler. Accelerating X-ray CT ordered subsets image reconstruction with Nesterov's first-order methods. In Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, pages 22-5, 2013.
[4] D. Kim, S. Ramani, and J. A. Fessler. Ordered subsets with momentum for accelerated X-ray CT image reconstruction. In Proc. IEEE Conf. Acoust. Speech Sig. Proc., pages 920-3, 2013.
[5] S. Ramani and J. A. Fessler. Parallel MR image reconstruction using augmented Lagrangian methods. IEEE Trans. Med. Imag., 30(3):694-706, March 2011.
[6] M. Elad, P. Milanfar, and R. Rubinstein. Analysis versus synthesis in signal priors. Inverse Prob., 23(3):947-68, June 2007.
[7] I. W. Selesnick and Mário A T Figueiredo. Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors. In Proc. SPIE 7446 Wavelets XIII, page 74460D, 2009. Wavelets XIII.
[8] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci., 1(3):248-72, 2008.
[9] M. V. Afonso, José M Bioucas-Dias, and Mário A T Figueiredo. Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Im. Proc., 19(9):2345-56, September 2010.
[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. \& Trends in Machine Learning, 3(1):1-122, 2010.
[11] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford spliting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming, 55(1-3):293-318, April 1992.
[12] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two and three space variables. tams, 82(2):421-39, July 1956.
[13] T. Goldstein and S. Osher. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci., 2(2):323-43, 2009.
[14] S. J. Reeves. Fast image restoration without boundary artifacts. IEEE Trans. Im. Proc., 14(10):1448-53, October 2005.
[15] M. G. McGaffin, S. Ramani, and J. A. Fessler. Reduced memory augmented Lagrangian algorithm for 3D iterative X-ray CT image reconstruction. In Proc. SPIE 8313 Medical Imaging 2012: Phys. Med. Im., page 831327, 2012.
[16] H. Erdoğan and J. A. Fessler. Ordered subsets algorithms for transmission tomography. Phys. Med. Biol., 44(11):2835-51, November 1999.
[17] H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imag., 13(4):601-9, December 1994.
[18] Z. Q. Luo. On the convergence of the LMS algorithm with adaptive learning rate for linear feedforward networks. Neural Computation, 32(2):226-45, June 1991.
[19] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-52, May 2005.
[20] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger. SENSE: sensitivity encoding for fast MRI. Mag. Res. Med., 42(5):952-62, November 1999.
[21] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed sensing MRI. IEEE Sig. Proc. Mag., 25(2):72-82, March 2008.
[22] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci,, 2(1):183-202, 2009.
[23] M. J. Allison, S. Ramani, and J. A. Fessler. Accelerated regularized estimation of MR coil sensitivities using augmented Lagrangian methods. IEEE Trans. Med. Imag., 32(3):556-64, March 2013.
[24] M. J. Allison and J. A. Fessler. Accelerated computation of regularized field map estimates. In Proc. Intl. Soc. Mag. Res. Med., page 0413, 2012.
[25] J. H. Cho, S. Ramani, and J. A. Fessler. Motion-compensated image reconstruction with alternating minimization. In Proc. 2nd Intl. Mtg. on image formation in X-ray CT, pages 330-3, 2012.
[26] J. H. Cho, S. Ramani, and J. A. Fessler. Alternating minimization approach for multi-frame image reconstruction. In IEEE Workshop on Statistical Signal Processing, pages 225-8, 2012.
[27] M. McGaffin and J. A. Fessler. Sparse shift-varying FIR preconditioners for fast volume denoising. In Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, pages 284-7, 2013.
[28] H. Nien and J. A. Fessler. Combining augmented Lagrangian method with ordered subsets for X-ray CT image reconstruction. In Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, pages 280-3, 2013.
[29] M. Le, S. Ramani, and J. A. Fessler. An efficient variable splitting based algorithm for regularized SENSE reconstruction with support constraint. In Proc. Intl. Soc. Mag. Res. Med., page 2654, 2013. To appear.
[30] S. Ramani and J. A. Fessler. Accelerated non-Cartesian SENSE reconstruction using a majorize-minimize algorithm combining variable-splitting. In Proc. IEEE Intl. Symp. Biomed. Imag., pages 700-3, 2013.
[31] S. Y. Chun, Y. K. Dewaraja, and J. A. Fessler. Alternating direction method of multiplier for emission tomography with non-local regularizers. In Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med, pages 62-5, 2013.
[32] D. Weller, S. Ramani, and J. A. Fessler. Augmented Lagrangian with variable splitting for faster non-Cartesian L1-SPIRiT MR image reconstruction. IEEE Trans. Med. Imag., 2013. Submitted.
[33] J. A. Fessler and W. L. Rogers. Spatial resolution properties of penalized-likelihood image reconstruction methods: Spaceinvariant tomographs. IEEE Trans. Im. Proc., 5(9):1346-58, September 1996.

