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    Diffraction limit:  Even a perfect optical imaging system has a resolution 

limit determined by the wavelength λ 
 The smallest observable detail is larger than ~ λ/2 
 This results in image smearing  
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 Can we recover the subwavelength data algorithmiclly from far field data? 
 Mathematically this amounts to recovering a signal from its low pass data 
 Standard regularization methods have not been able to yield satisfactory 

results 
 
 
 
 
 
 
 
 
 

``All methods for extrapolating bandwidth beyond the diffraction limit  
   are known to be extremely sensitive to both: 

  noise in the measured data and 
  the accuracy of the assumed a priori knowledge.” 

 
                                               J. W. Goodman, Introduction to Fourier Optics 



 Arises in many fields: microscopy, crystallography,  astronomy,   
optical imaging, and more 

 Given an optical image illuminated by coherent light, in the far field 
we obtain the Fourier transform of the image 

 Optical measurement devices measure the photon flux, which is 
proportional to the magnitude squared of the field 

 Phase retrieval can allow direct recovery of the image 

 Phase importance in imaging: Hayes, Lim, Oppenheim 80     
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Ultra-short optical pulse measurement 
Coherent Diffractive Imaging 

Crystallography 
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 Several challenges in optical imaging:  

 Bandwidth extrapolation 

 Nonlinear measurements: Phase retrieval 

 Exploit sparsity 
 
 
 

 Extend sparse recovery to lowpass data 
 Nonlinear compressed sensing 
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 Bandwidth extrapolation 

 Phase retrieval methods 

 Optimality conditions for nonlinear sparse recovery 

 Algorithms for nonlinear sparse recovery 

 Extended IHT: Nonlinear Iterative hard thresholding 

 Extended OMP: Greedy sparse simplex  

 Phase retrieval: GESPAR 

 Some application results 
 
References for nonlinear compressed sensing: 
 A. Beck and Y. C. Eldar, "Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms"
 Y. Shechtman, A. Beck and Y. C. Eldar "GESPAR: Efficient Phase Retrieval of Sparse Signals“ 
 Y. C. Eldar and S. Mendelson "Phase Retrieval: Stability and Recovery Guarantees" 
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  In subwavelength imaging the measurement matrix corresponds to the  

       low pass Fourier coefficients 

  Does not satisfy conditions of compressed sensing (RIP or coherence) 

  BP can be shown to recover spikes only if separation is 2/f (Candes et. al.‘ 12) 

 Nonlocal hard thresholding (NLHT): A specialized algorithm targeting 

sparse recovery from lowpass coefficients 

 An iterative recovery that searches for the zeros rather than the signal peaks 

 

 

S. Gazit, A. Szameit, Y. C. Eldar and M. Segev, Optics Express, (2009) 



 

 Close spikes cannot be recovered by basis pursuit 

 

 

 

 

 

 

 

 Erroneous spikes tend to occur but typically in the vicinity of the true spikes 

with width proportional to 1/f 

 Stretches of zero values tend to be correct 

 

 

 

 

 

 

 

 



Iteration #1  (BPDN): 
2μ 2μ 2μ 2μ 

Iteration #2  (BPDN with given support): 
Off-support 

Iteration #N  (BPDN with given support): 
Off-support 

Window width decreases 
and height increases with 
the iterations… 



microscope image reconstructed image SEM image 

Abbe limit 

100 nm 

Can be extended to incoherent light and partially incoherent light  
Y. Shechtman et al. (2010, 2011) 

A. Szameit et al., Nature Materials 2012 
  



  CDI: Recovering near field from freely diffracting intensity pattern 

       (i.e. from intensity of the Fourier transform)  

  Phase information is lost 

       Can we combine bandwidth extrapolation and phase retrieval? 

 Sub-wavelength image recovery from highly truncated Fourier spectrum 

         Mathematical formulation: 
 
 
 
 

  𝑦 are the measurements 

  F represents the low pass Fourier coefficients 

  Highly ill-posed problem! 

 
 
 
 



 There has been an explosion of work on recovery of sparse vectors from 
linear measurements 

 Basis of compressed sensing 
 
 
 
 
 
 
 
 
 
 

 Many applications in which the measurements are nonlinear 𝑦 = 𝑔 𝑥  
 Can we extend compressed sensing results to the nonlinear case? 
 Minimize 𝑦 − 𝑔 𝑥 2 subject to a sparsity constraint on x 



 We consider the problem 
min 𝑓 𝑥    𝑠. 𝑡. 𝑥 0 ≤ 𝑘 

 𝑓 𝑥  is an arbitrary continuously differentiable 
function 

 Not necessarily convex! 

 Special case: Phase retrieval 

𝑓 𝑥 = 𝐹𝑖𝑥
2 − 𝑦𝑖

2
𝑛

𝑖=1

 

 𝐹𝑖 -  ith row of Fourier matrix 

17 Beck and Eldar, (2013) 



 No uniqueness in 1D problems (Hofstetter  64) 

 Uniqueness in 2D if oversampled by factor 2 (Hayes 82) 

 No guarantee on stability 

 No known algorithms to achieve unique solution 

Need for regularization: 

 Support knowledge 

 Input magnitude 

 Positivity 
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Not sufficient to guarantee uniqueness, 
stability and algorithms



 Since analyzing Fourier measurements is hard we can look at 
random measurements  

 𝑦𝑖 = 𝑎𝑖 , 𝑥
2 +𝑤𝑖                     𝑥 ∈ 𝑅

𝑁   
      
 𝑀 = 4𝑁 − 2 measurements needed for uniqueness  
    (Balaw, Casazza, Edidin o6, Bandira et.al 13) 
 𝑀 = 𝑁log(𝑁) measurements needed for stability  
    (Eldar and Mendelson 12) 

 Solving   𝑦𝑖 − 𝑎𝑖 , 𝑥
2 𝑝𝑀

𝑖=1     1 < 𝑝 ≤ 2 provides stable 
solution (Eldar and Mendelson 12) 
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noise 

random vector 
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Basic Scheme (Variants exist): 

R. W. Gerchberg (1974), J. Fienup,  (1982) 
S. Mukherjee, ICASSP, (2012) 
 

Measurements 



 𝑎𝑘 , 𝑥
2 = Tr 𝐴𝑘𝑋  with 𝐴𝑘 = 𝑎𝑘𝑎𝑘

𝑇, 𝑋 = 𝑥𝑥𝑇  

 Phase retrieval can be written as                       

                             minimize   rank 𝑋  

                          subject to  𝐴 𝑋 = 𝑏 
                                                    𝑋 ≥ 0 
 SDP relaxation: replace rank 𝑋  by Tr 𝑋  or by logdet(𝑋 + 𝜀𝐼) and 

apply reweighting 
 
 
 Generally improves performance over Fienup 
 Computationally demanding 
 No optimality conditions for general measurements 
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Shechtman, Eldar, Szameit, Segev,  (2011) 
Candes, Eldar, Strohmer , Voroninski, (2012) 

 
Advantages/Disadvantages: 



 PR methods often perform poorly, no general optimality conditions 

 Sparsity can be added to improve performance (Moravec et. al 07, 

Shechtman et. al 11, Bahman et. al 11, Ohlsson et. al 12, Janganathan 12) 

  Both Fienup methods and SDP-based techniques can be modified to 
account for sparsity (Shechtman et. al 11, Mukherjee et. al 12) 

 SDP methods require 𝑘2log (𝑁) measurements (Candes et. al 12, Li 12) 

 𝑘log(𝑁/𝑘) measurements needed for stability (Eldar and Mendelson 12) 

 Solving   𝑦𝑖 − 𝑎𝑖 , 𝑥
2 𝑝𝑀

𝑖=1     1 < 𝑝 ≤ 2 subject to  a sparsity constraint 
provides stable solution (Eldar and Mendelson 12) 
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Can we efficiently solve the least-squares 
nonlinear sparse recovery problem? 



 

 General theory and algorithms for nonlinear sparse recovery 

 Derive conditions for optimal solution 

 Use them to generate algorithms 

 Since our problem in non-convex no simple necessary and 
sufficient conditions 

 We develop three necessary conditions 

 Basic feasibility 

 L-stationarity 

 CW-minima 
 

   Iterative Hard Thresholding 
    Greedy Sparse Simplex (OMP) 
 
 

23 Beck and Eldar, (2013) 



 For unconstrained differentiable problems a 
necessary condition is that  𝛻𝑓 𝑥∗ = 0 

 We expect a similar condition over the support S 

 

 

 

 Condition is quite weak – there can be many BF 

points 
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Theorem: Any optimal solution is a basic feasible vector: 
1. when 𝑥∗ 0 < 𝑘 , 𝛻𝑓 𝑥

∗ = 0 
2. when 𝑥∗ 0 = 𝑘 , 𝛻𝑓 𝑥

∗ = 0 for all 𝑖 ∈ 𝑆 
 



 For constrained problems min 𝑓 𝑥 : 𝑥 ∈ 𝐶  where C is convex, a 
necessary condition is stationarity 

<  𝛻𝑓 𝑥∗ , 𝑥 − 𝑥∗ > ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐶 

 For any 𝐿 > 0 a vector 𝑥∗ is stationary if and only if 

𝑥∗ = 𝑃𝑐(𝑥
∗ − 
1

𝐿
𝛻𝑓 𝑥∗ ) 

 Does not depend on L! 
 

 For our nonconvex setting we define an L-stationary point: 
𝑥∗ ∈ 𝑃𝑐(𝑥

∗ − 
1

𝐿
𝛻𝑓 𝑥∗ ) 

 The projection is no longer unique 
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Theorem: Let 𝛻𝑓 𝑥  be Lipschitz continuous.  
Then L-stationarity with L>L(f) is necessary for 
optimality  



Advantages: 

 L – stationarity is necessary for optimality 

 Implies basic feasibility 

 Simple algorithm that finds L – stationary points 
 
 
 
 
 

 Algorithm popular for compressed sensing when 𝑦 = 𝐴𝑥 (Blumensath and 
Davies, 08) 

 
Disadvantages: 

 Requires knowledge of Lipschitz constant 

 Often converges to wrong solution – not a strong condition 
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Iterative  Hard Thresholding: 

𝑥𝑘+1 ∈ 𝐻(𝑥𝑘 − 
1

𝐿
𝛻𝑓 𝑥𝑘 ) 

where 𝐻(𝑥)=hard thresholding of 𝑥 



 For an unconstrained problem 𝑥∗ is a coordinate-wise minima (CW) 
if 𝑥𝑖
∗ is a minimum with respect to the ith component 

 
𝑥𝑖
∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓(𝑥1

∗, . . , 𝑥𝑖−1
∗ , 𝑥𝑖, 𝑥𝑖+1

∗ , … 𝑥𝑛
∗) 

 

 For our  constrained problem we define CW as: 

1. 𝑥∗ 0 < 𝑘 𝑎𝑛𝑑 𝑓 𝑥
∗ = min

𝑡∈𝑅
𝑓(𝑥∗ + 𝑡𝑒𝑖)    

2. 𝑥∗ 0 = 𝑘  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 ∈ 𝑆  
 𝑓 𝑥∗ ≤ min

𝑡∈𝑅
𝑓(𝑥∗ − 𝑥𝑖

∗𝑒𝑖 + 𝑡𝑒𝑗)    
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Theorem: Any optimal solution is a CW minima 



 Does not require Lipschitz continuity 
 Any optimal solution is a CW minima 
 Implies basic feasibility 
 If gradient is Lipschitz continuous: 

 
 
 

 In fact, CW minima implies L’ stationarity with 𝐿’ < 𝐿 
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Optimal solution            CW-minima            L’-stationarity         L-stationarity 

 

Optimal solution          CW-minima          L-stationarity         BF 



 Generalization of matching pursuit to nonlinear objectives 

 Additional correction step which improves OMP 

 

 

 

 

 Converges to CW minima (stronger than IHT guarantee) 

 Does not require Lipschitz continuity 
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General step 𝑥∗ 0 ≤ 𝑘 : find coordinate that minimizes 𝑓(𝑥) 

𝑡𝑖 ∈ 𝑎𝑟𝑔min
𝑡
𝑓(𝑥𝑘 + 𝑡𝑒𝑖)                  𝑓𝑖 = min

𝑡
𝑓(𝑥𝑘 + 𝑡𝑒𝑖) 

𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑖∗𝑒𝑖∗  

Swap 𝑥∗ 0 = 𝑘 : Swap index i with best j if lower objective 



 Converges to CW-minima: strongest necessary condition 

 Applicable to general functions 

 No need to know Lipschitz constant 

 Generalizes OMP to nonlinear setting 

 Improves on OMP in linear case 

 Arbitrary initial points 

 Correction stage 

30 



 Generate a matrix 𝐴 of size 4x5 

 𝑦 = 𝐴𝑥 where 𝑥 = [−1 − 1 0 0 0 ]𝑇 

 In this problem there are 10 BF points 

 We implement IHT and the greedy method with 1000 randomly generated 

values 𝑥0 

Number of times method converged to each BF 
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BF vector 1 2 3 4 5 6 7 8 9 10 

IHT 329 50 63 92 229 0 130 0 61 46 

Greedy 813 0 0 112 0 0 75 0 0 0 

L - stationarity 

CW minima 



 Iterations of greedy method with 𝑥0 = [0 1 5 0 0 0]
𝑇   

 
 

32  𝑥 = [−1 − 1 0 0 0 ]𝑇  



 Specializing our general algorithm to phase retrieval 

 Local search method with update of support 

 For given support solution found via Damped Gauss Newton 

 Efficient and more accurate than current techniques  
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1. For a given support: minimizing objective over support by  
     linearizing the function around current support and solve for 𝑦𝑘  

 𝑧𝑘 = 𝑧𝑘−1 + 𝑡𝑘(𝑦𝑘 − 𝑧𝑘−1)  
 

 

2. Find  support by finding best swap: swap index with small value 

     𝑥𝑖  with index with large value 𝛻𝑓(𝑥𝑗)   
    

 

determined by backtracking 

Shechtman, Beck and Eldar, (2013) 



 

 

 

 
 
 

Each point = 
100 signals 

n=64 
m=128 
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SEM image Sparse recovery 
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 Szameit et al., Nature Materials, (2012) 



Concept :  
 A short x-ray pulse is scattered from a 3D 

molecule combined of known elements. The 
3D scattered diffraction pattern is then 
sampled in  a single shot 

 
 Recover a 3D molecule using 2D sample 

 

 K.S. Raines et al. Nature 463, 214 ,(2010). 
 Mutzafi et. al., (2013). 
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Measurements
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True input

without sparsity

Y. Shechtman et. al. (2013) 
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Dynamically varying Object 

Far Field Diffraction Measurement:  
Fourier Magnitude 

Coherent illumination 

 Assumption: Sparse difference between consecutive frames 
 Can be used to decrease acquisition time  improve temporal 

resolution 

 
Y. Shechtman et al.  2013 
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Sparse CDI 
(quadratic CS): 

2
,  is sparsei iy F x x

Sparse 
difference CDI 
(quadratic CS): 

 
2

,  is sparse

                                 is known

i iy F x x x

x

   

“Clean” first frame  41 



1225 unknowns, 676 samples, practically noiseless 
42 



1225 unknowns, 676 samples, practically noiseless 
43 



 Prior knowledge of sparsity compensates for loss of optical 

information 

 Subwavelength imaging and CDI 

 Necessary optimality conditions for nonlinear sparse recovery 

 Efficient greedy algorithm that extends OMP to general nonlinear 

sparse recovery 

 GESPAR: Efficient phase retrieval method 

 Applications to optics 

44 

Exploring connections between sparse recovery and 
optical imaging can be fruitful in both directions 
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