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Absolute Phase Estimation problem 

  Given a set of observations                                              

  for                                , determine        (up to a constant) 

Continuous/discrete flavor: 

Phase Unwrapping (PU) 

Estimation of  

Phase Denoising (PD) 

Estimation of  

(wrapped phase) 
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nonlinear and ill-posed inverse problem is 2¼-periodic ) 
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Applications 
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  Synthetic aperture radar/sonar  

  Magnetic resonance imaging 

  Doppler weather radar 

  Doppler echocardiography 

  Optical interferometry 

  Diffraction tomography 
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Absolute Phase Estimation in InSAR  (Interferometric  SAR) 

InSAR Problem: Estimate 2-1 from signals read by s1 and s2 
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InSAR Example 

Mountainous terrain around  

Long’s Peak, Colorado 

Interferogram 

6 



CIMI-UT, 2013 

Differential Interferometry 

7 mm/year 

-17 mm/year 

Height variation 
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Differential Interferometry 

Differential InSAR derived subsidence in Las Vegas between 1992 and 

1997 (from [Amelung et al., 1999]). 
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Magnetic Resonance Imaging - MRI 

  Interferomeric phase 
 measure temperature 

 visualize veins in tissues 

 water-fat separation 

 map the principal magnetic field 

Interferometric phase Intensity 
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Forward Problem: Sensor Model  
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Real  Interferograms  

MRI 
MRI 

InSAR InSAR 

12 



CIMI-UT, 2013 

data density: 

prior (MRF): 

clique set   

clique potential (pairwise interaction)   

Bayesian Approach  
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Enforces smoothness 

convex 

Enforces piecewise smoothness  

 (discontinuity preserving) 

non-convex 
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Maximum a Posteriori Estimation Criterion   

  posterior density 
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 Phase unwrapping (               ):  
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[B & Leitao, 01] (exact) ! sequence of positive cycles on  

 a graph  

  

[Frey et al., 01] (approx) ! belief propagation on a 1st order MRF  

  

[Flynn, 97] (exact) ! sequence of positive cycles on a graph  

[Costantini, 98] (exact) !  min-cost flow on a graph  

convex   

[B & Valadao, 05,07,09] (exact) ! Sequence of K min cuts (                  ) 

[B & G. Valadao, 05, 07,09] !  Sequence of min cuts (                  ) 

[Ghiglia, 96] ! LPN0 (continuous relaxation) 

non-convex   

Phase Unwrapping Algorithms  
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PUMA finds a sequence of steepest descent binary images 

PUMA (Phase Unwrapping MAx-flow)  
[B & Valadao, 05,07,09]  

              success == false 

success = true 
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        [Veksler, 99] (1-jump moves ) 

        [Murota, 03] (steepest descent algorithm for  L-convex functions) 

        [Ishikawa, 03] (MRFs with convex priors) 

        [Kolmogorov & Shioura, 05,07], [Darbon, 05] (Include unary terms) 

        [Ahuja, Hochbaum, Orlin, 03]  (convex dual network flow problem) 

 Related algorithms 

PUMA: Convex Priors   

 A local minimum is a global minimum 

 Takes at most K iterations 

 

     is submodular:   

                       
each binary  optimization  has the complexity  

of a min cut 
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Results        
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Results                     Convex priors do not preserve discontinuities 
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Epq is not graph representable 
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PUMA:  Non-convex priors 

Shortcomings 
 Local minima are no more global minima 

 Energy contains nonsubmodular terms (NP-hard) 

Ex: 

-15 -10 -5 0 5 10 15
0

5

10

15

20

20 

Models discontinuities 

Models Gaussian noise 

Proposed suboptimal solution: majorization minimization applied 

To PUMA binary problem 

Other suboptimal approaches 
 Quadratic Pseudo Boolean Optimization  (Probing [Boros et al., 2006],  

     Improving [Rother et al., 2007]) 

 Sequencial Tree-Reweighted Message Passing (TRW-S)  [Kolmogorov, 2006] 

  Dual decomposition (DD) [Komodakis et al., 2011]  
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Majorizing Nonsubmodular Terms  

Majorization Minimization (MM) [Lange & Fessler, 95]  

[Rother et al., 05] ! similar approach for alpha expansion  moves 

Non-increasing property 
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Results with PUMA (MM)  
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PU works 

Interferometric Phase Denoising 
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Interferometric Phase Denoising 

objective: estimate             from      

phase modulo 2¼ 

original interf. image observed  interf. image 
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State-of-the-art  Interferometric Phase Estimation 

 parametric model for           

PEARLS [B et al., 2008]:   local first order approximation for phase   

and adaptive window selection (ICI [Katkovnik et al., 2006]) 

 denoise            

WFT [Kemao, 2007]:  windowed Fourier thresholding  

 non-local means filtering            

NL-InSAR [Deledalle, et al., 2011]: patch similarity criterion suitable to 

SAR images and a weighted maximum likelihood estimation 

interferogram with weights derived in a data-driven way  
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Dictionary Based  Interferometric Phase Estimation 

Motivation   

 

1) sparse and redundant representations are at the heart of many  

       state-of-the-art applications namely in image restoration 

 

2) phase images exhibit a high level of self-similarity. So they admit  

       sparse representations on suitable dictionaries.  

Challenge: the observation mechanism  linking the observed phase  

    with the interferometric phase         is nonlinear. 

Observation:  the fact that the phase image     is self-similar implies 

that         is self-similar 

Our approach:  learn  sparse representations for        and from  

them infer  
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Complex valued image 

Interferometric Phase Estimation via Sparse Regression 

observed  vector 

original vector 

noise vector 

patch of size                     at pixel i 

dictionary with respect to which      admits  a 

sparse representation 

  estimation error                         

iid noise 
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Interferometric Phase Estimation 

the set of estimates of       obtained from  

patches  

the set of patches  containing the pixel k 

Maximum likelihood estimate of  

(assume that                                is                )   

where 

in practice      is very hard to  compute and we take   
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Dictionary Learning 

find a dictionary representing accurately the image patches with 

the smallest possible number of atoms. 

formalization under the regularization framework 

where 

and 

DL Algorithm:  alternating proximal minimization (APM)  

Convergence (based on the Kurdyka- Lojasiewicz inequality) 

[Attouch et al. 10], [Xu, Yin, 2012] 
31 
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Dictionary Learning 

drawback:  alternating proximal minimization takes too long (order of 104  sec)  

in a typical  image scenario (Np = 100000, m = 100, and k = 200) 

another DL algorithm: Direct Optimization (DM) method  

(non-convex proximal splitting results)  [Rakotomamonjy, 2012]  

drawback:  direct optimization yields local minima poorer than APM  

another DL algorithm: Online Dictionary Learning (ODL): [Mairal et al. 2010]  

32 

projection on the unit sphere 

soft threshold 
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Dictionary Learning 

Online Dictionary Learning (ODL): [Mairal et al. 2010]  

     converges to the  

stationary points of  

fast sparse coding via ADMM [B & Figueiredo, 2010]  

33 

computational complexity: 
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The Proposed Algorithm 

SpInPHASE  [Hongxing, B, Katkovnik, 2013] 

 
(complex valued image) 

(absolute phase estimate) 

(extract patches) 

(learn the dictionary) 

(sparse coding) 

(path estimate) 

(path compose) 

(interferometric phase estimate) 

(phase unwrapping) 
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DL (APM): Example (truncated Gaussian -  ¾ = 0.3) 

(learned dictionary – APM) 

RMSE  = 0.048 (rad) 

PSNR   = 42.35  dB 

time      =  7182 sec 

(histogram of  ||®||0) 
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DL (ODL): Example (truncated Gaussian -  ¾ = 0.3) 

(learned dictionary – ODL) 

RMSE  = 0.048 (rad) 

PSNR   = 42.28  dB 

time      =  71 sec 

(histogram of  ||®||0) 
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Restored Images 

RMSE = 0.052 RMSE = 0.108 RMSE = 0.174 

¾ = 0.5 ¾ = 1.0 ¾ = 1.5 
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Results 
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Dictionary Learned from 6 Images (shown before) 
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DL: Online (ODL) Versus Batch (APM) 
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Comparisons with Competitors 
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Non-Gaussian and Non-additive Noise  

quite often, we are just given  interferferograms  

if                  additive noise 

Define  

Example: Intereferometric SAR (InSAR)  

Intereferometric  coherence  
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Application to InSAR 
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Concluding Remarks  

 New interferometric phase estimation via sparse coding in 

the complex domain 

 

 Exploits the self similarity of the complex valued images 

 

 SpInPHASE in short  

 Online dictionary learning 

  ADMM to solve the  ODL BPDN step 

  Sparse coding via OMP 

  PUMA to solve the phase unwraping step 

 

 State-of-the-art results, namely regarding the preservation of 

discontinuities coded in the interferometric phase 

 

 Future research directions 

 Multisource phase estimation  

 Analysis dictionaries 
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Phase Unwrapping Path Following Methods  

Then 

PU ) summing                     over walks 

Why isn’t PU a trivial problem? 

Discontinuities 

High phase rate 

Noise  

Assume that 
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