Interferometric Phase Image Estimation via Sparse Coding in the Complex Domain

José M. Bioucas Dias

Instituto Superior Técnico and Instituto de Telecomunicações Technical University of Lisbon

PORTUGAL

bioucas@lx.it.pt, www.lx.it.pt/~bioucas

INSTITUTO SUPERIOR TÉCNICO

Joint work with Hao Hongxing (IST)
Gonçalo Valadão (IT)
Vladimir Katkovnik (TUT)

Outline

- 1. The phase estimation problem
- 2. Examples in InSAR and in MRI
- 3. Phase unwrapping
- 4. Interferometric phase estimation via sparse coding
- 5. Non-Gaussian and non-additive noise
- 6. Concluding remarks

Absolute Phase Estimation problem

Given a set of observations $e^{j\phi_p} \equiv (\cos\phi_p, \sin\phi_p),$ for $p \in \mathcal{V} \equiv \{1, \dots, n\}$, determine ϕ_p (up to a constant)

 $e^{j\phi_p}$ is 2π -periodic \Rightarrow nonlinear and ill-posed inverse problem

Continuous/discrete flavor:
$$\phi = \mathcal{W}[\phi] + 2k\pi$$
 $\mathcal{W}: \mathbb{R} \to [\pi, \pi[$

Phase Unwrapping (PU)

Estimation of $k \in \mathbb{Z}$

Phase Denoising (PD)

Estimation of $\mathcal{W}(\phi) \in [\pi, \pi[$ (wrapped phase)

Applications

- ☐ Synthetic aperture radar/sonar
- Magnetic resonance imaging
- Doppler weather radar
- Doppler echocardiography
- Optical interferometry
- Diffraction tomography

Absolute Phase Estimation in InSAR (Interferometric SAR)

InSAR Problem: Estimate ϕ_2 - ϕ_1 from signals read by s_1 and s_2

InSAR Example

Mountainous terrain around Long's Peak, Colorado

Interferogram $\mathcal{W}(\phi_1 - \phi_2)$

Differential Interferometry

Differential Interferometry

Differential InSAR derived subsidence in Las Vegas between 1992 and 1997 (from [Amelung et al., 1999]).

Magnetic Resonance Imaging - MRI

Intensity

Interferometric phase

Interferomeric phase

- measure temperature
- visualize veins in tissues
- water-fat separation
- map the principal magnetic field

Forward Problem: Sensor Model

$$z_i = \cos \phi + n_i$$
 $n = (n_i, n_q)$
 $z_q = \sin \phi + n_q$ $z = (z_i, z_q)$

$$(n_i, n_q) \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_2)$$

$$p(z|\phi) \propto c e^{\lambda \cos(\phi - \eta)}$$

$$\widehat{\phi}_{ML} = \eta + 2k\pi$$

$$\eta = \arg\left(z\right)$$

$$\lambda = \frac{2|z|}{\sigma^2}$$

Simulated Interferograms

Images of
$$\eta = \arg(e^{j\phi} + n)$$

$$SNR \equiv \frac{1}{2\sigma^2}$$

Real Interferograms

MRI

InSAR

MRI

InSAR

Bayesian Approach

data density:
$$p(\mathbf{z}|\pmb{\phi}) = \prod_{p\in\mathcal{V}} p(z_p|\phi_p)$$
 prior (MRF):
$$p(\pmb{\phi}) = \frac{1}{Z}e^{-\sum_{\{p,q\}\in\mathcal{E}} E_{pq}(\phi_p-\phi_q)}$$

- $\mathcal{E} = \{\{p,q\} : p \sim q\}$ clique set
- $E_{pq}(\cdot)$ clique potential (pairwise interaction)

$$E_{pq}(\cdot)$$
 convex $lacksquare$ Enforces smoothness

$$E_{pq}(\cdot)$$
 non-convex $lacktriangle$ Enforces piecewise smoothness (discontinuity preserving)

Maximum a Posteriori Estimation Criterion

$$E(\phi) = \sum_{p \in \mathcal{V}} -\lambda_p \cos(\phi_p - \eta_p) + \sum_{\{p,q\} \in \mathcal{E}} E_{pq}(\phi_p - \phi_q)$$

 $lue{}$ Phase unwrapping ($\lambda_p \to \infty$):

$$\phi_p = \eta_p + 2k\pi \text{ for } k_p \in \{0, 1, \dots, K - 1\}$$

$$\widehat{\phi} \in \arg\min_{\mathbf{k} \in \mathbb{Z}^n} E(\mathbf{k})$$

$$E(\mathbf{k}) = \sum_{\{p,q\} \in \mathcal{E}} V_{pq}(k_p - k_q)$$

$$V_{pq}(k_p - k_q) = E_{pq}(\eta_p - \eta_q + 2\pi(k_p - k_q))$$

Phase Unwrapping Algorithms

$$E(\mathbf{k}) = \sum_{\{p,q\}\in\mathcal{E}} V_{pq}(k_p - k_q)$$

- $\blacksquare E_{pq}(\cdot) = |\cdot|_{2\pi-\text{quantized}}$ [Flynn, 97] (exact) \rightarrow sequence of positive cycles on a graph [Costantini, 98] (exact) \rightarrow min-cost flow on a graph $(|\mathcal{V}| = n, |\mathcal{E}| = 4n)$
- $E_{pq}(\cdot) = (\cdot)^2$ [B & Leitao, 01] (exact) → sequence of positive cycles on a graph $(|\mathcal{V}| = n, |\mathcal{E}| = 4n)$ [Frey et al., 01] (approx) → belief propagation on a 1st order MRF
- \bullet $E_{pq}(\cdot)$ convex [B & Valadao, 05,07,09] (exact) \rightarrow Sequence of K min cuts (KT(n,6n))
- $E_{pq}(\cdot)$ non-convex [Ghiglia, 96] → LPN0 (continuous relaxation) [B & G. Valadao, 05, 07,09] \rightarrow Sequence of min cuts (KT(n,6n))

PUMA (Phase Unwrapping MAx-flow)

[B & Valadao, 05,07,09]

$$\boldsymbol{\phi}^{(0)} = \boldsymbol{\eta}$$

while success == false

$$\delta' := \arg\min_{\delta \in \{0,1\}^{|\mathcal{V}|}} E(\phi + 2\delta\pi)$$

if
$$E(\phi + 2\delta'\pi) < E(\phi)$$
 then $\phi := \phi + 2\delta'\pi$

else success = true

end

PUMA finds a sequence of steepest descent binary images

PUMA: Convex Priors

- □ A local minimum is a global minimum
- ☐ Takes at most K iterations
- \square E is submodular: $2V_{pq}(0) \leq V_{pq}(1) + V_{pq}(-1)$
 - ⇒ each binary optimization has the complexity of a min cut T(n,6n)

$$E(\mathbf{k}) = \sum_{p \in \mathcal{V}} U_p(k_p) + \sum_{\{p,q\} \in \mathcal{E}} V_{pq}(k_p - k_q)$$

Related algorithms

[Veksler, 99] (1-jump moves)

[Murota, 03] (steepest descent algorithm for L-convex functions)

[Ishikawa, 03] (MRFs with convex priors)

[Kolmogorov & Shioura, 05,07], [Darbon, 05] (Include unary terms)

[Ahuja, Hochbaum, Orlin, 03] (convex dual network flow problem)

Results

Convex priors do not preserve discontinuities

$$E_{pq}(x) = x^2$$

$$E_{pq}(x) = |x|$$

$$E_{pq}(x) = \begin{cases} x^2 & |x| \le \pi \\ \pi^2 |x/\pi|^{0.5} & |x| > \pi \end{cases}$$

PUMA: Non-convex priors

Ex:
$$E(x) = \min(x^2, \pi^2)$$

Models discontinuities

Models Gaussian noise

Shortcomings

- Local minima are no more global minima
- ☐ Energy contains nonsubmodular terms (NP-hard)

Proposed suboptimal solution: majorization minimization applied To PUMA binary problem

Other suboptimal approaches

- ☐ Quadratic Pseudo Boolean Optimization (Probing [Boros et al., 2006], Improving [Rother et al., 2007])
- ☐ Sequencial Tree-Reweighted Message Passing (TRW-S) [Kolmogorov, 2006]
- Dual decomposition (DD) [Komodakis et al., 2011]

Majorizing Nonsubmodular Terms

Majorization Minimization (MM) [Lange & Fessler, 95]

$$\begin{cases} \tilde{V}(\mathbf{k}) = V(\mathbf{k}) \\ \tilde{V}(\mathbf{k} + \boldsymbol{\delta}) \ge V(\mathbf{k} + \boldsymbol{\delta}) \end{cases}$$

$$\delta' = \arg\min_{\delta} \tilde{V}(\mathbf{k} + \delta)$$

Non-increasing property

$$V(\mathbf{k} + \boldsymbol{\delta}') \le V(\mathbf{k})$$

[Rother et al., 05] → similar approach for alpha expansion moves

Results with PUMA (MM)

Interferogram η

Interferogram η

Multi-jump version of PUMA (MM) jumps $d \in [1 \ 2 \ 3 \ 4]$

$$\boldsymbol{\delta}' := \arg\min_{\boldsymbol{\delta} \in \{0,d\}^{|\mathcal{V}|}} E(\boldsymbol{\phi} + 2\boldsymbol{\delta}\pi)$$

Interferometric Phase Denoising

PU Errors

Gaussian shaped image (100× 100, max ϕ = 20 π)

Interferometric Phase Denoising

objective: estimate $\mathcal{W}[\phi]$ from η phase modulo 2π

original interf. image $\; \phi_{2\pi} \equiv \mathcal{W}[oldsymbol{\phi}] \;$

State-of-the-art Interferometric Phase Estimation

$$z = e^{j\phi} + n$$

lacksquare parametric model for ϕ

PEARLS [B et al., 2008]: local first order approximation for phase and adaptive window selection (ICI [Katkovnik et al., 2006])

denoise z

WFT [Kemao, 2007]: windowed Fourier thresholding

non-local means filtering

NL-InSAR [Deledalle, et al., 2011]: patch similarity criterion suitable to SAR images and a weighted maximum likelihood estimation interferogram with weights derived in a data-driven way

Dictionary Based Interferometric Phase Estimation

Motivation

- sparse and redundant representations are at the heart of many state-of-the-art applications namely in image restoration
- phase images exhibit a high level of self-similarity. So they admit sparse representations on suitable dictionaries.

Challenge: the observation mechanism linking the observed phase η with the interferometric phase $\phi_{2\pi}$ is nonlinear.

Observation: the fact that the phase image ϕ is self-similar implies that $e^{j\phi}$ is self-similar

Our approach: learn sparse representations for $e^{j\phi}$ and from them infer ϕ

Interferometric Phase Estimation via Sparse Regression

Complex valued image

$$\mathbf{D} \equiv [\mathbf{d}_1, \dots, \mathbf{d}_k] \in \mathbb{C}^{m \times k}$$
 dictionary with respect to which \mathbf{x}_i admits a sparse representation

$$\widehat{\mathbf{x}}_i = \mathbf{D}\widehat{\boldsymbol{\alpha}}_i \quad \min_{\alpha} \|\boldsymbol{\alpha}\|_0, \quad \text{s.t.:} \quad \|\mathbf{D}\boldsymbol{\alpha} - \mathbf{z}_i\|_2^2 \leq \delta$$

estimation error
$$\boldsymbol{\varepsilon}_i = \widehat{\mathbf{x}}_i - \mathbf{x}_i$$

iid noise
$$\Rightarrow$$

$$\frac{\|\boldsymbol{\varepsilon}_i\|_2^2}{\|\mathbf{n}_i\|_2^2} \simeq \frac{p}{m}$$

$$p = \|\widehat{\boldsymbol{\alpha}}\|_0$$

Interferometric Phase Estimation

 $\mathcal{P}_k o$ the set of patches containing the pixel k

$$\widehat{x}_i = x_i + \varepsilon_i, \quad i \in \mathcal{P}_k$$
 the set of estimates of x_k obtained from patches $i \in \mathcal{P}_k$

Maximum likelihood estimate of $x_i = ae^{j\phi}$

(assume that $\varepsilon_i = [\varepsilon_1, \dots, \varepsilon_p]$ is $\mathcal{N}(\mathbf{0}, \mathbf{C})$)

$$\widehat{\phi}_{2\pi} = \arg\left(\sum_{j=1}^{q} \widehat{x}_j \gamma_j\right) \qquad \widehat{a} = \frac{\left|\sum_{j=1}^{q} \widehat{x}_j \gamma_j\right|}{\sum_{j=1}^{q} \gamma_j}$$

where $\gamma_{i} := \sum_{k=1}^{q} [\mathbf{C}^{-1}]_{ik}$.

in practice γ_j is very hard to compute and we take $\gamma_i = c^{te}$

Dictionary Learning

find a dictionary representing accurately the image patches with the smallest possible number of atoms.

formalization under the regularization framework

$$\min_{\mathbf{D}\in\mathcal{C},\mathbf{A}} L(\mathbf{D},\mathbf{A}) \qquad L(\mathbf{D},\mathbf{A}) = (1/2) \|\mathbf{Z} - \mathbf{D}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_1,$$

where
$$\mathcal{C}:=\left\{\mathbf{D}\in\mathbb{C}^{m imes k}\,:\,\left|\mathbf{d}_{j}^{H}\mathbf{d}_{j}\right|\leq1,\,j=1,\ldots,k\right\}$$

and
$$\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_{N_p}]$$
 and $\mathbf{A} = [\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{N_p}]$

DL Algorithm: alternating proximal minimization (APM)

$$\begin{cases} \mathbf{D}^{k+1} \in \arg\min_{\mathbf{D} \in \mathcal{C}} L(\mathbf{D}, \mathbf{A}^k) + \lambda \|\mathbf{D} - \mathbf{D}^k\|_F^2 \\ \mathbf{A}^{k+1} \in \arg\min_{\mathbf{A}} L(\mathbf{D}^{k+1}, \mathbf{A}) + \lambda \|\mathbf{A} - \mathbf{A}^k\|_F^2 \end{cases}$$

Convergence (based on the Kurdyka- Lojasiewicz inequality) [Attouch et al. 10], [Xu, Yin, 2012]

Dictionary Learning

drawback: alternating proximal minimization takes too long (order of 10⁴ sec) in a typical image scenario ($N_p = 100000$, m = 100, and k = 200)

another DL algorithm: Direct Optimization (DM) method (non-convex proximal splitting results) [Rakotomamonjy, 2012]

$$\begin{cases} \mathbf{D}^{k+1} = \underbrace{\operatorname{prox}_{\eta_k \iota_{\mathcal{D}}}} (\mathbf{D}^k - \eta_k (\mathbf{Z} - \mathbf{D}^k \mathbf{A}^k) (\mathbf{A})^H) \\ \mathbf{A}^{k+1} = \underbrace{\operatorname{prox}_{\eta_k \Omega_A}} (\mathbf{D}^k - \eta_k (\mathbf{D}^k)^H (\mathbf{Z} - \mathbf{D}^k \mathbf{A}^k)) \\ & \to \text{soft threshold} \end{cases}$$

drawback: direct optimization yields local minima poorer than APM

another DL algorithm: Online Dictionary Learning (ODL): [Mairal et al. 2010]

Dictionary Learning

Online Dictionary Learning (ODL): [Mairal et al. 2010]

Select randomly
$$\mathbf{z}^t \equiv [\mathbf{z}_i^t \ i = 1, \dots \eta]$$
 from \mathbf{z}

$$(Sparse \ coding: \ \mathrm{BPDN})$$

$$\boldsymbol{\alpha}^t := \arg\min_{\boldsymbol{\alpha} \in \mathbb{C}^{k \times \eta}} (1/2) \|\mathbf{z}^t - \mathbf{D}\boldsymbol{\alpha}\|_F^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

$$\min_{\mathbf{D} \in \mathcal{C}} \frac{1}{S_t} \sum_{i=1}^t w_i \left\{ (1/2) \|\mathbf{z}^i - \mathbf{D}\boldsymbol{\alpha}^i\|_F^2 + \lambda \|\boldsymbol{\alpha}^i\|_1 \right\}$$

D^t converges to the stationary points of

$$(1/2) \|\mathbf{Z} - \mathbf{D}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_1,$$

$$\mathbf{D} \in \mathcal{C}$$

fast sparse coding via ADMM [B & Figueiredo, 2010]

```
\alpha^t := \mathbf{D}^H \mathbf{z}^t
\mathbf{u}^t := \boldsymbol{\alpha}^t, \ \mathbf{v}^t := \mathbf{0}
\mathbf{F} = (\mathbf{D}^H \mathbf{D} + \mu \mathbf{I})^{-1}
while not converge do
       \mathbf{u}^t := \operatorname{soft}(\boldsymbol{\alpha}^t - \mathbf{v}^t, \lambda/\mu)
    \alpha^t := \mathbf{F}(\mathbf{D}^H \mathbf{z}^t + \mu(\mathbf{u}^t + \mathbf{v}^t))\mathbf{v}^t := \mathbf{v}^t - (\alpha^t - \mathbf{u}^t)
                                          computational complexity: O(km^2 + \eta km)
```

The Proposed Algorithm

SpinPHASE [Hongxing, B, Katkovnik, 2013]

```
Input: \mathbf{z} \in \mathbb{C}^{N_1 \times N_2}
                                                                                   (complex valued image)
Ouput: \widehat{oldsymbol{\phi}} \in \mathbb{R}^{N_1 	imes N_2}
                                                                                   (absolute phase estimate)
Begin
        \mathbf{z}_i \leftarrow \mathbf{M}_i \mathbf{z}, \ i = \dots, N_n
                                                                                   (extract patches)
        \mathbf{D} \leftarrow \mathrm{DL}(\mathbf{z}_i, i = 1, \dots, N_n)
                                                                                   (learn the dictionary)
         \alpha_i \leftarrow \text{OMP}(\mathbf{D}, \mathbf{z}_i, i = 1, \dots, N_p)
                                                                                   (sparse coding)
        \mathbf{x}_i \leftarrow \mathbf{D}\boldsymbol{\alpha}_i, i = 1, \dots, N_n
                                                                                   (path estimate)
         \mathbf{x} \leftarrow \text{compose}(\mathbf{x}_i, i = 1, \dots, N_n)
                                                                                   (path compose)
        \widehat{\boldsymbol{\phi}}_{2\pi} \leftarrow \arg(\mathbf{x})
                                                                                   (interferometric phase estimate)
        \widehat{\boldsymbol{\phi}} \leftarrow \text{PUMA}(\widehat{\boldsymbol{\phi}}_{2\pi})
                                                                                   (phase unwrapping)
```

End

DL (APM): Example (truncated Gaussian - σ = 0.3) \sqrt{m} = 12, k = 256

RMSE :=
$$\frac{\|\mathcal{W}(\widehat{\boldsymbol{\phi}}_{2\pi} - \boldsymbol{\phi}_{2\pi})\|_F}{\sqrt{N}}$$
$$PSNR := \frac{4N\pi^2}{\|\mathcal{W}(\widehat{\boldsymbol{\phi}}_{2\pi} - \boldsymbol{\phi}_{2\pi})\|_F^2}$$

$$\frac{\|\mathcal{W}(\boldsymbol{\eta} - \boldsymbol{\phi}_{2\pi})\|_F^2}{\|\mathcal{W}(\widehat{\boldsymbol{\phi}}_{2\pi} - \boldsymbol{\phi}_{2\pi})\|_F^2} = 20 \simeq \frac{1}{2} \frac{m}{\overline{p}}$$

(learned dictionary – APM)

DL (ODL): Example (truncated Gaussian - σ = 0.3) \sqrt{m} = 12, k = 256

$$\frac{\|\mathcal{W}(\eta - \phi_{2\pi})\|_F^2}{\|\mathcal{W}(\widehat{\phi}_{2\pi} - \phi_{2\pi})\|_F^2} = 20 \simeq \frac{1}{2} \frac{m}{\overline{p}}$$

(learned dictionary – ODL)

Restored Images

$$\sigma = 0.5$$

$$\sigma$$
 = 1.0

 σ = 1.5

RMSE = 0.052

RMSE = 0.108

RMSE = 0.174

Results

Dictionary Learned from 6 Images (shown before)

$$\sqrt{m} = 12, k = 512$$

DL: Online (ODL) Versus Batch (APM)

Comparisons with Competitors

		F	SNR (dB)		$PSNR_a$ (dB)			NELP			TIME (s)		
Surf.	σ	Sp(ld)	Sp(pd)	W	Sp(ld)	Sp(pd)	W	Sp(ld)	Sp(pd)	W	Sp(ld)	Sp(pd)	W
Trunc. Gauss.	0.3	42.51	42.88	40.29	42.51	42.88	40.29	0	0	0	69	6	10
	0.5	39.63	39.95	36.71	39.63	39.95	36.71	0	0	0	74	4	10
	0.7	35.69	36.96	34.26	35.85	36.98	34.37	8	3	10	72	3	10
	0.9	33.52	36.04	32.79	33.52	36.23	32.79	0	7	0	72	3	10
Sinu.	0.3	48.94	47.77	35.76	48.94	47.77	35.76	0	0	0	61	2	10
	0.5	41.91	43.50	31.48	41.91	43.50	31.48	0	0	0	65	2	10
	0.7	38.44	41.20	28.90	38.44	41.20	28.90	0	0	0	65	2	10
	0.9	36.42	39.30	26.36	36.42	39.30	26.36	0	0	0	63	2	10
Sinu. discon.	0.3	44.45	42.29	35.91	44.45	42.29	35.91	0	0	0	63	6	10
	0.5	39.41	38.61	31.86	39.41	38.61	31.86	0	0	0	72	3	10
	0.7	37.09	35.95	29.86	37.09	35.95	29.95	0	0	1	71	2	10
	0.9	34.17	34.00	27.64	34.17	34.00	27.71	0	0	6	66	2	10
	0.3	40.66	38.90	40.00	40.66	38.90	40.00	0	0	0	57	10	10
Mount.	0.5	37.20	35.66	36.55	37.20	35.66	36.55	0	0	0	60	6	10
Mount.	0.7	34.35	33.29	34.17	34.35	33.29	34.17	0	0	0	62	5	10
	0.9	32.55	31.66	32.31	32.70	31.79	32.31	1	1	0	60	4	10
Shear plane	0.3	49.36	47.01	40.67	49.36	47.01	40.67	0	0	0	57	23	10
	0.5	42.95	44.05	37.07	42.95	44.05	37.07	0	0	0	63	2	10
	0.7	38.39	39.58	34.13	38.39	39.58	34.13	0	0	0	68	2	10
	0.9	33.53	38.72	33.24	33.53	38.72	33.24	0	0	0	72	2	10
Long's Peak	0.3	35.49	35.68	35.40	35.51	35.6 9	35.41	28	28	28	515	179	31
	0.5	33.05	33.19	32.89	33.08	33.24	32.93	32	33	31	357	77	30
	0.7	31.32	31.46	31.19	31.46	31.53	31.28	26	48	32	326	42	30
	0.9	29.97	30.17	29.90	30.09	30.26	29.99	34	32	35	308	27	30

Non-Gaussian and Non-additive Noise

quite often, we are just given interferferograms $oldsymbol{\eta} = \mathcal{W}(oldsymbol{\phi} + oldsymbol{arepsilon})$

$$\Rightarrow e^{j\eta} = e^{j(\phi + \varepsilon)}$$

if
$$|\varepsilon| \ll \pi \Rightarrow e^{j\eta} \simeq e^{j\phi} + \left[j e^{j\phi} \varepsilon \right] \longrightarrow \text{ additive noise}$$

Define
$$\mathbf{z} = \frac{e^{\jmath \boldsymbol{\eta}}}{\sigma_{\boldsymbol{\varepsilon}}}$$

Example: Intereferometric SAR (InSAR)

$$\sigma_{\varepsilon}^{2}(\gamma) = \frac{\pi^{3}}{3} - \pi \arcsin(\gamma) + \arcsin^{2}(\gamma) + \frac{\text{Li}_{2}(\gamma)}{2}$$
Intereferometric coherence

Application to InSAR

		coherence						
Indicator	Algorithm	0.95	0.9	0.85	0.8			
PSNR	NL-InSAR	31.70	31.69	31.68	28.97			
(dB)	SpInPHASE	38.00	35.57	33.48	31.74			
$PSNR_a$	NL-InSAR	32.09	32.49	32.82	31.52			
(dB)	SpInPHASE	38.00	36.05	33.67	32.99			
NELP	NL-InSAR	23	45	24	202			
NELF	SpInPHASE	0	24	12	95			
TIME	NL-InSAR	34.07	33.43	32.60	32.07			
(s)	SpInPHASE	368.63	362.56	380.97	365.11			

Concluding Remarks

- New interferometric phase estimation via sparse coding in the complex domain
- lacktriangle Exploits the self similarity of the complex valued images $e^{j\phi}$
- ☐ SpInPHASE in short
 - Online dictionary learning
 - ADMM to solve the ODL BPDN step
 - Sparse coding via OMP
 - PUMA to solve the phase unwraping step
- State-of-the-art results, namely regarding the preservation of discontinuities coded in the interferometric phase
- ☐ Future research directions
 - Multisource phase estimation
 - Analysis dictionaries

Phase Unwrapping Path Following Methods

$$|\phi_p - \phi_a| < \pi$$

$$|\phi_p - \phi_q| < \pi \qquad \phi_p = \eta_p + 2k_p\pi \qquad \quad \phi_q = \eta_q + 2k_q\pi$$

$$\phi_q = \eta_q + 2k_q \pi$$

Then
$$\phi_p - \phi_q = \mathcal{W}(\phi_p - \phi_q) = \mathcal{W}(\eta_p - \eta_q)$$

 $PU \Rightarrow$ summing $W(\eta_p - \eta_q)$ over walks

Why isn't PU a trivial problem?

Discontinuities High phase rate Noise

$$|\phi_p - \phi_q| \ge \pi$$

