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Absolute Phase Estimation problem 

  Given a set of observations                                              

  for                                , determine        (up to a constant) 

Continuous/discrete flavor: 

Phase Unwrapping (PU) 

Estimation of  

Phase Denoising (PD) 

Estimation of  

(wrapped phase) 
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nonlinear and ill-posed inverse problem is 2¼-periodic ) 
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Applications 
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  Synthetic aperture radar/sonar  

  Magnetic resonance imaging 

  Doppler weather radar 

  Doppler echocardiography 

  Optical interferometry 

  Diffraction tomography 
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Absolute Phase Estimation in InSAR  (Interferometric  SAR) 

InSAR Problem: Estimate 2-1 from signals read by s1 and s2 
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InSAR Example 

Mountainous terrain around  

Long’s Peak, Colorado 

Interferogram 
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Differential Interferometry 

7 mm/year 

-17 mm/year 

Height variation 
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Differential Interferometry 

Differential InSAR derived subsidence in Las Vegas between 1992 and 

1997 (from [Amelung et al., 1999]). 
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Magnetic Resonance Imaging - MRI 

  Interferomeric phase 
 measure temperature 

 visualize veins in tissues 

 water-fat separation 

 map the principal magnetic field 

Interferometric phase Intensity 
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Forward Problem: Sensor Model  
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Real  Interferograms  

MRI 
MRI 

InSAR InSAR 
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data density: 

prior (MRF): 

clique set   

clique potential (pairwise interaction)   

Bayesian Approach  
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Enforces smoothness 

convex 

Enforces piecewise smoothness  

 (discontinuity preserving) 

non-convex 
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Maximum a Posteriori Estimation Criterion   

  posterior density 
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 Phase unwrapping (               ):  
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[B & Leitao, 01] (exact) ! sequence of positive cycles on  

 a graph  

  

[Frey et al., 01] (approx) ! belief propagation on a 1st order MRF  

  

[Flynn, 97] (exact) ! sequence of positive cycles on a graph  

[Costantini, 98] (exact) !  min-cost flow on a graph  

convex   

[B & Valadao, 05,07,09] (exact) ! Sequence of K min cuts (                  ) 

[B & G. Valadao, 05, 07,09] !  Sequence of min cuts (                  ) 

[Ghiglia, 96] ! LPN0 (continuous relaxation) 

non-convex   

Phase Unwrapping Algorithms  
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PUMA finds a sequence of steepest descent binary images 

PUMA (Phase Unwrapping MAx-flow)  
[B & Valadao, 05,07,09]  

              success == false 

success = true 
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        [Veksler, 99] (1-jump moves ) 

        [Murota, 03] (steepest descent algorithm for  L-convex functions) 

        [Ishikawa, 03] (MRFs with convex priors) 

        [Kolmogorov & Shioura, 05,07], [Darbon, 05] (Include unary terms) 

        [Ahuja, Hochbaum, Orlin, 03]  (convex dual network flow problem) 

 Related algorithms 

PUMA: Convex Priors   

 A local minimum is a global minimum 

 Takes at most K iterations 

 

     is submodular:   

                       
each binary  optimization  has the complexity  

of a min cut 
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Results        
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Results                     Convex priors do not preserve discontinuities 
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Epq is not graph representable 
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PUMA:  Non-convex priors 

Shortcomings 
 Local minima are no more global minima 

 Energy contains nonsubmodular terms (NP-hard) 

Ex: 

-15 -10 -5 0 5 10 15
0

5

10

15

20

20 

Models discontinuities 

Models Gaussian noise 

Proposed suboptimal solution: majorization minimization applied 

To PUMA binary problem 

Other suboptimal approaches 
 Quadratic Pseudo Boolean Optimization  (Probing [Boros et al., 2006],  

     Improving [Rother et al., 2007]) 

 Sequencial Tree-Reweighted Message Passing (TRW-S)  [Kolmogorov, 2006] 

  Dual decomposition (DD) [Komodakis et al., 2011]  
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Majorizing Nonsubmodular Terms  

Majorization Minimization (MM) [Lange & Fessler, 95]  

[Rother et al., 05] ! similar approach for alpha expansion  moves 

Non-increasing property 
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Results with PUMA (MM)  
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PU works 

Interferometric Phase Denoising 
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Interferometric Phase Denoising 

objective: estimate             from      

phase modulo 2¼ 

original interf. image observed  interf. image 
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State-of-the-art  Interferometric Phase Estimation 

 parametric model for           

PEARLS [B et al., 2008]:   local first order approximation for phase   

and adaptive window selection (ICI [Katkovnik et al., 2006]) 

 denoise            

WFT [Kemao, 2007]:  windowed Fourier thresholding  

 non-local means filtering            

NL-InSAR [Deledalle, et al., 2011]: patch similarity criterion suitable to 

SAR images and a weighted maximum likelihood estimation 

interferogram with weights derived in a data-driven way  
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Dictionary Based  Interferometric Phase Estimation 

Motivation   

 

1) sparse and redundant representations are at the heart of many  

       state-of-the-art applications namely in image restoration 

 

2) phase images exhibit a high level of self-similarity. So they admit  

       sparse representations on suitable dictionaries.  

Challenge: the observation mechanism  linking the observed phase  

    with the interferometric phase         is nonlinear. 

Observation:  the fact that the phase image     is self-similar implies 

that         is self-similar 

Our approach:  learn  sparse representations for        and from  

them infer  
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Complex valued image 

Interferometric Phase Estimation via Sparse Regression 

observed  vector 

original vector 

noise vector 

patch of size                     at pixel i 

dictionary with respect to which      admits  a 

sparse representation 

  estimation error                         

iid noise 
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Interferometric Phase Estimation 

the set of estimates of       obtained from  

patches  

the set of patches  containing the pixel k 

Maximum likelihood estimate of  

(assume that                                is                )   

where 

in practice      is very hard to  compute and we take   
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Dictionary Learning 

find a dictionary representing accurately the image patches with 

the smallest possible number of atoms. 

formalization under the regularization framework 

where 

and 

DL Algorithm:  alternating proximal minimization (APM)  

Convergence (based on the Kurdyka- Lojasiewicz inequality) 

[Attouch et al. 10], [Xu, Yin, 2012] 
31 
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Dictionary Learning 

drawback:  alternating proximal minimization takes too long (order of 104  sec)  

in a typical  image scenario (Np = 100000, m = 100, and k = 200) 

another DL algorithm: Direct Optimization (DM) method  

(non-convex proximal splitting results)  [Rakotomamonjy, 2012]  

drawback:  direct optimization yields local minima poorer than APM  

another DL algorithm: Online Dictionary Learning (ODL): [Mairal et al. 2010]  

32 

projection on the unit sphere 

soft threshold 
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Dictionary Learning 

Online Dictionary Learning (ODL): [Mairal et al. 2010]  

     converges to the  

stationary points of  

fast sparse coding via ADMM [B & Figueiredo, 2010]  

33 

computational complexity: 
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The Proposed Algorithm 

SpInPHASE  [Hongxing, B, Katkovnik, 2013] 

 
(complex valued image) 

(absolute phase estimate) 

(extract patches) 

(learn the dictionary) 

(sparse coding) 

(path estimate) 

(path compose) 

(interferometric phase estimate) 

(phase unwrapping) 
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DL (APM): Example (truncated Gaussian -  ¾ = 0.3) 

(learned dictionary – APM) 

RMSE  = 0.048 (rad) 

PSNR   = 42.35  dB 

time      =  7182 sec 

(histogram of  ||®||0) 
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DL (ODL): Example (truncated Gaussian -  ¾ = 0.3) 

(learned dictionary – ODL) 

RMSE  = 0.048 (rad) 

PSNR   = 42.28  dB 

time      =  71 sec 

(histogram of  ||®||0) 
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Restored Images 

RMSE = 0.052 RMSE = 0.108 RMSE = 0.174 

¾ = 0.5 ¾ = 1.0 ¾ = 1.5 
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Results 
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Dictionary Learned from 6 Images (shown before) 
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DL: Online (ODL) Versus Batch (APM) 
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Comparisons with Competitors 
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Non-Gaussian and Non-additive Noise  

quite often, we are just given  interferferograms  

if                  additive noise 

Define  

Example: Intereferometric SAR (InSAR)  

Intereferometric  coherence  
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Application to InSAR 
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Concluding Remarks  

 New interferometric phase estimation via sparse coding in 

the complex domain 

 

 Exploits the self similarity of the complex valued images 

 

 SpInPHASE in short  

 Online dictionary learning 

  ADMM to solve the  ODL BPDN step 

  Sparse coding via OMP 

  PUMA to solve the phase unwraping step 

 

 State-of-the-art results, namely regarding the preservation of 

discontinuities coded in the interferometric phase 

 

 Future research directions 

 Multisource phase estimation  

 Analysis dictionaries 
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Phase Unwrapping Path Following Methods  

Then 

PU ) summing                     over walks 

Why isn’t PU a trivial problem? 

Discontinuities 

High phase rate 

Noise  

Assume that 
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