
Copatterns: Programming Infinite Structures by
Observations

Andreas Abel (LMU Munich)
Talk given and Slides prepared by Anton Setzer (Swansea, UK)

(Joint work of Andreas Abel, Brigitte Pientka, Anton Setzer, David
Thibodeau)

Types 2013 Toulouse, Wed, 24 April 2013

Andreas Abel and Anton Setzer Copatterns 1/ 38



From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Defining Fibonacci Numbers by Copattern Matching

Simulating Codata Types in Coalgebras

Conclusion

Andreas Abel and Anton Setzer Copatterns 2/ 38



From Codata to Coalgebras

From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Defining Fibonacci Numbers by Copattern Matching

Simulating Codata Types in Coalgebras

Conclusion

Andreas Abel and Anton Setzer Copatterns 3/ 38



From Codata to Coalgebras

Coalgebras in Functional Programming

I Originally functional programming based on
I function types,
I inductive data types.

I In computer science, many computations are interactive.
I Since interactions might go on forever (if not terminated by the user),

they correspond to non-wellfounded data types
I Streams, which are infinite lists,
I non-wellfounded trees (IO-trees).

Andreas Abel and Anton Setzer Copatterns 4/ 38



From Codata to Coalgebras

Codata Type

I Idea of Codata Types:

codata Stream : Set where
cons : N→ Stream→ Stream

I Same definition as inductive data type but we are allowed to have
infinite chains of constructors

cons n0 (cons n1 (cons n2 · · · ))

I Problem 1: Non-normalisation.
I Problem 2: Equality between streams is equality between all

elements, and therefore undecidable.
I Problem 3: Underlying assumption is

∀s : Stream.∃n, s ′.s = cons n s ′

which results in undecidable equality.

Andreas Abel and Anton Setzer Copatterns 5/ 38



From Codata to Coalgebras

Subject Reduction Problem

I In order to repair problem of normalisation restrictions on reductions
were introduced.

I Resulted in Coq in a long known problem of subject reduction.
I In order to avoid this, in Agda dependent elimination for coalgebras

disallowed.
I Makes it difficult to use.

Andreas Abel and Anton Setzer Copatterns 6/ 38



Problem of Subject reduction:

data == {A : Set} (a : A) : A→ Set where
refl : a == a

codata Stream : Set where
cons : N→ Stream→ Stream

zeros : Stream
zeros = cons 0 zeros

force : Stream→ Stream
force s = case s of (cons x y)→ cons x y

lem1 : (s : Stream)→ s == force(s))
lem1 s = case s of (cons x y)→ refl

lem2 : zeros == cons 0 zeros
lem2 = lem1 zeros
lem2 −→ refl but ¬(refl : zeros == cons 0 zeros)



From Codata to Coalgebras

Coalgebraic Formulation of Coalgebras

I Solution is to follow the long established categorical formulation of
coalgebras.

Andreas Abel and Anton Setzer Copatterns 8/ 38



Algebras and Coalgebras

From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Defining Fibonacci Numbers by Copattern Matching

Simulating Codata Types in Coalgebras

Conclusion

Andreas Abel and Anton Setzer Copatterns 9/ 38



Algebras and Coalgebras

Initial F-Algebras

I Inductive data types correspond to initial F-Algebras.

I E.g. the natural numbers can be formulated as

F (X ) = 1 + X
intro : F (N)→ N
intro (inl ∗) = 0
intro (inl n) = S n

and we get the diagram

1 + N = F (N)
intro

- N

1 + A = F (A)

1 + g = F (g)

? f
- A

∃!g

?

Andreas Abel and Anton Setzer Copatterns 10/ 38



Algebras and Coalgebras

Iteration

Existence of unique g corresponds to unique iteration (example N):

1 + N
intro

- N

1 + A

1 + g

? f
- A

∃!g

?

g 0 = g (intro inl) = f inl
g (S n) = g (intro (inr n)) = f (inr (g n))

By choosing arbitrary f we can define g by pattern matching on its
argument n:

g 0 = a0
g (S n) = f (g n) for some f : N→ N

Andreas Abel and Anton Setzer Copatterns 11/ 38



Algebras and Coalgebras

Recursion and Induction

I From the principle of unique iteration one can derive the principle of
recursion:
Assume

a0 : A
f0 : N→ A→ A

We can then define g : N→ A s.t.

g 0 = a0
g (S n) = f0 n (g n)

I Induction is as recursion but now

g : (n : N)→ A n

Andreas Abel and Anton Setzer Copatterns 12/ 38



Algebras and Coalgebras

Coalgebras

Final coalgebras F∞ are obtained by reversing the arrows in the diagram
for F-algebras:

A
f

- F(A)

F∞

∃!g

? case
- F(F∞)

F(g)

?

Andreas Abel and Anton Setzer Copatterns 13/ 38



Algebras and Coalgebras

Coalgebras

Consider Streams = F∞ where F(X ) = N× X :

A
f

- N× A

Stream

∃!g

? case
- N× Stream

id× g

?

Let
case s = 〈head s, tail s〉

and
f a = 〈f0 a, f1 a〉

Andreas Abel and Anton Setzer Copatterns 14/ 38



Algebras and Coalgebras

Guarded Recursion

A
〈f0, f1〉 - N× A

Stream

∃!g

? 〈head, tail〉
- N× Stream

id× g

?

Resulting equations:

head (g a) = f0 a
tail (g a) = g (f1 a)

Andreas Abel and Anton Setzer Copatterns 15/ 38



Algebras and Coalgebras

Example of Guarded Recursion

head (g a) = f0 a
tail (g a) = g (f1 a)

describes a schema of guarded recursion (or better coiteration)
As an example, with A = N, f0 n = n, f1 n = n + 1 we obtain:

inc : N→ Stream
head (inc n) = n
tail (inc n) = inc (n + 1)

Andreas Abel and Anton Setzer Copatterns 16/ 38



Algebras and Coalgebras

Corecursion

In coiteration we need to make in tail always a recursive call:

tail (g a) = g (f1 a)

Corecursion allows for tail to escape into a previously defined stream.
Assume

A : Set
f0 : A→ N
f1 : A→ (Stream + A)

we get g : A→ Stream s.t.

head (g a) = f0 a
tail (g a) = s if f1 a = inl s
tail (g a) = g a′ if f1 a = inr a′

Andreas Abel and Anton Setzer Copatterns 17/ 38



Algebras and Coalgebras

Definition of cons by Corecursion

head (g a) = f0 a
tail (g a) = s if f1 a = inl s
tail (g a) = g a′ if f1 a = inr a′

cons : N→ Stream→ Stream
head (cons n s) = n
tail (cons n s) = s

Andreas Abel and Anton Setzer Copatterns 18/ 38



Algebras and Coalgebras

Nested Corecursion

stutter : N→ Stream
head (stutter n) = n
head (tail (stutter n)) = n
tail (tail (stutter n)) = stutter (n + 1)

Even more general schemata can be defined.

Andreas Abel and Anton Setzer Copatterns 19/ 38



Algebras and Coalgebras

Definition of Coalgebras by Observations

I We see now that elements of coalgebras are defined by their
observations:
An element s of Stream is given by defining

head s : N
tail s : Stream

I This generalises the function type.
Functions f : A→ B are as well determined by observations, namely
by defining

f a : B

I An f : A→ B is any program which applied to a : A returns some
b : B.

I Inductive data types are defined by construction
coalgebraic data types and functions by observations.

Andreas Abel and Anton Setzer Copatterns 20/ 38



Algebras and Coalgebras

Relationship to Objects in Object-Oriented Programming

I Objects in Object-Oriented Programming are types which are defined
by their observations.

I Therefore objects are coalgebraic types by nature.

Andreas Abel and Anton Setzer Copatterns 21/ 38



Algebras and Coalgebras

Weakly Final Coalgebra

I Equality for final coalgebras is undecidable:
Two streams

s = (a0 , a1 , a2 , . . .
t = (b0 , b1 , b2 , . . .

are equal iff ai = bi for all i .

I Even the weak assumption

∀s.∃n, s ′.s = cons n s ′

results in an undecidable equality.

I Weakly final coalgebras obtained by omitting uniqueness of g in
diagram for coalgebras.

I However, one can extend schema of coiteration as above, and still
preserve decidability of equality.

I Those schemata are usually not derivable in weakly final coalgebras.

Andreas Abel and Anton Setzer Copatterns 22/ 38



Patterns and Copatterns

From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Defining Fibonacci Numbers by Copattern Matching

Simulating Codata Types in Coalgebras

Conclusion

Andreas Abel and Anton Setzer Copatterns 23/ 38



Patterns and Copatterns

Patterns and Copatterns

I We can define now functions by patterns and copatterns.

I Example define stream:
f n =
n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

Andreas Abel and Anton Setzer Copatterns 24/ 38



Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

Andreas Abel and Anton Setzer Copatterns 25/ 38



Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f = ?

Pattern match on f : N→ Stream:

f : N→ Stream
f n = ?

Andreas Abel and Anton Setzer Copatterns 25/ 38



Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
f n = ?

Copattern matching on f n : Stream:

f : N→ Stream
head (f n) = ?
tail (f n) = ?

Andreas Abel and Anton Setzer Copatterns 25/ 38



Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f n) = ?
tail (f n) = ?

Pattern matching on the first n : N:

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f n) = ?

Andreas Abel and Anton Setzer Copatterns 25/ 38



Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f n) = ?

Pattern matching on second n : N:

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f 0) = ?
tail (f (S n)) = ?

Andreas Abel and Anton Setzer Copatterns 25/ 38



Patterns and Copatterns

Patterns and Copatterns

f n = n, n, n−1, n−1, . . . 0, 0,N,N,N−1,N−1, . . . 0, 0,N,N,N−1,N−1,

f : N→ Stream
head (f 0) = ?
head (f (S n)) = ?
tail (f 0) = ?
tail (f (S n)) = ?

Copattern matching on tail (f 0) : Stream

f : N→ Stream
head (f 0 ) = ?
head (f (S n))= ?
head (tail (f 0 ))= ?
tail (tail (f 0 ))= ?
tail (f (S n ))= ?

Andreas Abel and Anton Setzer Copatterns 25/ 38



Patterns and Copatterns

Patterns and Copatterns

f : N→ Stream
head (f 0 ) = ?
head (f (S n))= ?
head (tail (f 0 ))= ?
tail (tail (f 0 ))= ?
tail (f (S n ))= ?

Copattern matching on tail (f (S n)) : Stream:

f : N→ Stream
head (f 0 ) = ?
head (f (S n)) = ?
head (tail (f 0 )) = ?
tail (tail (f 0 )) = ?
head (tail (f (S n)))= ?
tail (tail (f (S n)))= ?

Andreas Abel and Anton Setzer Copatterns 25/ 38



Patterns and Copatterns

Patterns and Copatterns

We resolve the goals:

f : N→ Stream
head (f 0 ) = 0
head (tail (f 0 )) = 0
tail (tail (f 0 )) = f N
head (f (S n)) = S n
head (tail (f (S n)))= S n
tail (tail (f (S n)))= f n

Andreas Abel and Anton Setzer Copatterns 25/ 38



Patterns and Copatterns

Results of paper in POPL (2013)

I Development of a recursive simply typed calculus (no termination
check).

I Allows to derive schemata for pattern/copattern matching.

I Proof that subject reduction holds.

t : A, t −→ t ′ implies t ′ : A

Andreas Abel and Anton Setzer Copatterns 26/ 38



Defining Fibonacci Numbers by Copattern Matching

From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Defining Fibonacci Numbers by Copattern Matching

Simulating Codata Types in Coalgebras

Conclusion

Andreas Abel and Anton Setzer Copatterns 27/ 38



Defining Fibonacci Numbers by Copattern Matching

Fibonacci Numbers

Efficient Haskell version adapted to our codata notation:

codata Stream : Set where
cons : N→ Stream→ Stream

tail : Stream→ Stream
tail (cons n l) = l

addStream : Stream→ Stream→ Stream
addStream (cons n l) (cons n′ l ′) = cons (n + n′) (addStream l l ′)

fib : Stream
fib = cons 1 (cons 1 (addStream fib (tail fib)))

Requires lazy evaluation.

Andreas Abel and Anton Setzer Copatterns 28/ 38



Defining Fibonacci Numbers by Copattern Matching

Fibonacci Numbers using Coalgebras

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

addStream : Stream→ Stream→ Stream
head (addStream l l ′) = head l + head l ′

tail (addStream l l ′) = addStream (tail l) (tail l ′)

fib : Stream
head fib = 1
head (tail fib) = 1
tail (tail fib) = addStream fib (tail fib)

No laziness required. Requires full corecursion (but terminates).

Andreas Abel and Anton Setzer Copatterns 29/ 38



Simulating Codata Types in Coalgebras

From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Defining Fibonacci Numbers by Copattern Matching

Simulating Codata Types in Coalgebras

Conclusion

Andreas Abel and Anton Setzer Copatterns 30/ 38



Simulating Codata Types in Coalgebras

Multiple Constructors in Algebras and Coalgebras

I Having more than one constructor in algebras correspond to disjoint
union:

data N : Set where
0 : N
S : N→ N

corresponds to
data N : Set where

intro : (1 + N)→ N

Andreas Abel and Anton Setzer Copatterns 31/ 38



Simulating Codata Types in Coalgebras

Multiple Constructors in Algebras and Coalgebras

I Dual of disjoint union is products, and therefore multiple destructors
correspond to product:

coalg Stream : Set where
head : Stream→ N
tail : Stream→ Stream

corresponds to

coalg Stream : Set where
case : Stream→ (N× Stream)

Andreas Abel and Anton Setzer Copatterns 32/ 38



Simulating Codata Types in Coalgebras

Codata Types Correspond to Disjoint Union

I Consider
codata coList : Set where

nil : coList
cons : N→ coList→ coList

I Cannot be simulated by a coalgebra with several destructors.

Andreas Abel and Anton Setzer Copatterns 33/ 38



Simulating Codata Types in Coalgebras

Simulating Codata Types by Simultaneous
Algebras/Coalgebras

I Represent Codata as follows

mutual
coalg coList : Set where

unfold : coList→ coListShape

data coListShape : Set where
nil : coListShape
cons : N→ coList→ coListShape

Andreas Abel and Anton Setzer Copatterns 34/ 38



Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
append l l ′ =?

Andreas Abel and Anton Setzer Copatterns 35/ 38



Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
append l l ′ =?

We copattern match on append l l ′ : coList:

append : coList→ coList→ coList
unfold (append l l ′) =?

Andreas Abel and Anton Setzer Copatterns 35/ 38



Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
unfold (append l l ′) =?

We cannot pattern match on l .
But we can do so on (unfold l):

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → ?
(cons n l) → ?

Andreas Abel and Anton Setzer Copatterns 35/ 38



Simulating Codata Types in Coalgebras

Definition of Append

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → ?
(cons n l) → ?

We resolve the goals:

append : coList→ coList→ coList
unfold (append l l ′) =

case (unfold l) of
nil → unfold l ′

(cons n l) → cons n (append l l ′)

Andreas Abel and Anton Setzer Copatterns 35/ 38



Conclusion

From Codata to Coalgebras

Algebras and Coalgebras

Patterns and Copatterns

Defining Fibonacci Numbers by Copattern Matching

Simulating Codata Types in Coalgebras

Conclusion

Andreas Abel and Anton Setzer Copatterns 36/ 38



Conclusion

Conclusion

I Symmetry between
I algebras and coalgebras,
I iteration and coiteration,
I recursion and corecursion,
I patterns and copatterns.

I Final algebras are defined by constuction,
coalegbras and function types by observation.

I Codata construct assumes every element is introduced by a
constructor, which results in

I either undecidable equality
I or requires sophisticated restrictions on reduction rule which are

difficult to get right.
I Problem of subreduction in Coq.
I Too restrictive elimination principle in Agda.

I Weakly final coalgebras solve this problem, by having reduction rules
which can always be applied independent of context.

Andreas Abel and Anton Setzer Copatterns 37/ 38



Conclusion

More Details

I More details can be found in my proper talk tomorrow.
I Assumption ∀s : Stream.∃n, s ′.s = cons n s ′ results in undecidable

equality.
I How to replace copattern matching by combinators.

Andreas Abel and Anton Setzer Copatterns 38/ 38


	From Codata to Coalgebras
	Algebras and Coalgebras
	Patterns and Copatterns
	Defining Fibonacci Numbers by Copattern Matching
	Simulating Codata Types in Coalgebras
	Conclusion

