# Topological Dynamics and Decidability of Infinite Constraint Satisfaction 

B. Klin, E. Kopczyński, J. Ochremiak, S. Toruńczyk University of Warsaw

FICS/GI meeting, I I/09/20I5

## Puzzle I

$a, b, c, d, \ldots \in \mathbb{A}$

## Puzzle I

A graph:
$\begin{array}{lcl}\text { - nodes: } & a b & a \neq b \\ \text { - edges: } & a b — b c & a \neq c\end{array}$

## Puzzle I

A graph:

- nodes:
$a b$
$a b-b c$
$a \neq b$
- edges: $a b — b c$
$a \neq c$



## Puzzle I

A graph:

- nodes:
$a b$
$a b-b c$
$a \neq b$
- edges: $a b — b c$
$a \neq c$



## Puzzle I

A graph:

- nodes:
$a b$
$a b-b c$
$a \neq b$
- edges: $a b — b c$
$a \neq c$

Is it 3-colorable?


## Puzzle I

A graph:

- nodes: $a b$
- edges: $a b — b c$ $a \neq b$
$a \neq c$
Is it 3-colorable?



## Puzzle I

 $a, b, c, d, \ldots \in \mathbb{A}$A graph:
$\begin{array}{lcl}\text { - nodes: } & a b & a \neq b \\ \text { - edges: } & a b-b c & a \neq c\end{array}$
Is it 3-colorable?


No.

## Puzzle I

 $a, b, c, d, \ldots \in \mathbb{A}$A graph:

- nodes: $\quad a b \quad a \neq b$
- edges: $a b — b c$
$a \neq c$
Is it 3-colorable?


No.

## Is 3-colorability decidable?

## Doubly periodic graphs



## Doubly periodic graphs



$$
\begin{aligned}
& v_{i j 1}-v_{i j 4} \\
& v_{i j 1}-v_{i(j+1) 5} \\
& v_{i j 4}-v_{(i+1) j 5}
\end{aligned}
$$

## Doubly periodic graphs



## Doubly periodic graphs



## Thm: [Freedman'98]

3-colorability of doubly periodic graphs is undecidable.

## Doubly periodic graphs



## Thm: [Freedman'98]

3-colorability of doubly periodic graphs is undecidable.

What if we only use $=$ ?

## Puzzle II

A system of equations over $\mathbb{Z}_{2}$ :

- variables: $\quad a b \quad a \neq b$
- equations: $a b+b c+c a=0$


## Puzzle II

A system of equations over $\mathbb{Z}_{2}$ :

- variables: $\quad a b \quad a \neq b$
- equations: $a b+b c+c a=0$

Does it have a solution?

## Puzzle II

A system of equations over $\mathbb{Z}_{2}$ :

- variables: $\quad a b \quad a \neq b$
- equations: $a b+b c+c a=0$

$$
a b+b a=1
$$

Does it have a solution?

## Puzzle II

A system of equations over $\mathbb{Z}_{2}$ :

- variables: $a b \quad a \neq b$
- equations: $a b+b c+c a=0$

$$
a b+b a=1
$$

## Does it have a solution?

$$
\begin{align*}
& a b+b a \\
& \begin{aligned}
& =1 \\
& =0 \\
& =0 \\
d a & =0 \\
+a e+e c & =0 \\
d b+d a & =0 \\
d b+b e+e c & =0 \\
a e+e d & =0 \\
a+e d+d a & =0
\end{aligned}  \tag{No.}\\
& a b+b c+c a \\
& \begin{aligned}
& =1 \\
& =0 \\
& =0 \\
d a & =0 \\
+a e+e c & =0 \\
d b+d a & =0 \\
d b+b e+e c & =0 \\
a e+e d & =0 \\
a+e d+d a & =0
\end{aligned} \\
& b a \quad+a c+c b \\
& b c \\
& \begin{array}{ccc}
c a & & \\
& a c & \\
& & \\
& & c d
\end{array}
\end{align*}
$$

## Puzzle II

A system of equations over $\mathbb{Z}_{2}$ :

- variables: $a b \quad a \neq b$
- equations: $a b+b c+c a=0$

$$
a b+b a=1
$$

Does it have a solution?

$$
\begin{align*}
& a b+b a \\
& =1 \\
& a b+b c+c a \\
& =0 \\
& b a \quad+a c+c b \\
& b c \quad+c d+d b \\
& =0 \\
& \text { ca } \\
& a c{ }_{c b}{ }^{+c d} \\
& \begin{aligned}
+d a & =0 \\
+b e+e c & =0 \\
d b+b e+e d & =0 \\
a e+e d+d a & =0
\end{aligned} \tag{No.}
\end{align*}
$$

## Is solvability decidable?

## Topological dynamics

For decidability, we will use

## Thm: [Pestov'98]

Every continuous action of $\operatorname{Aut}(\mathbb{Q},<)$ on a non-empty compact space has a fixpoint.

## Topological dynamics

For decidability, we will use

Thm: [Pestov'98]
Every continuous action of $\operatorname{Aut}(\mathbb{Q},<)$ on a non-empty compact space has a fixpoint.

## Topological dynamics

For decidability, we will use

Thm: [Pestov'98]
Every continuous action of $\operatorname{Aut}(\mathbb{Q},<)$ on a non-empty compact space has a fixpoint.

(proof: by Ramsey Theorem)

## CSPs

An instance:

- a set $V$ of variables
- a set $T$ of values
- a set of constraints: $(\underbrace{x_{1}, \ldots, x_{k}}_{\overparen{\Pi}} ; ~ \overbrace{T^{k}} \quad R)$


## CSPs

An instance:

- a set $V$ of variables
- a set $T$ of values
- a set of constraints: $(\underbrace{x_{1}, \ldots, x_{k}}_{\overparen{\Pi}} ; ~ ; ~ T^{k}$

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.

## CSPs

An instance:

- a set $V$ of variables
- a set $T$ of values
- a set of constraints: $(\underbrace{x_{1}, \ldots, x_{k}}_{\overparen{N}} ; ~ ; ~ T^{k}$

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.
CSP: does a given instance have a solution?

## CSPs

An instance:

- a set $V$ of variables
- a set $T$ of values

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.
CSP: does a given instance have a solution?


## CSPs

An instance:

- a set $V$ of variables
- a set $T$ of values
- a set of constraints: $(\underbrace{x_{1}, \ldots, x_{k}}_{\overparen{\Pi}} ; ~ ; ~ T^{k}$

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.
CSP: does a given instance have a solution?
Decidable, NP-complete

## CSP examples

## Graph 3-colorability:

## variables - nodes <br> values - <br> constraints - $(x, y ; \neq)$, f.e. edge $x-y$

## CSP examples

## Graph 3-colorability:

## variables - nodes <br> values -

constraints - $(x, y ; \neq)$, f.e. edge $x-y$
Solving equations mod 2:

## variables - variables

values - 0,1
constraints $-(x, y, z ; R)$, f.e. eqn. $x+y+z=0$

$$
\begin{aligned}
& R \subseteq\{0,1\}^{3} \\
& R=\{(0,0,0),(0,1,1),(1,0,1),(1,1,0)\}
\end{aligned}
$$

## CSPs and homomorphisms

A CSP instance $\left(V, T,\left(\bar{x}_{i}, R_{i}\right)_{i \in I}\right)$ defines:

- a signature $\left\{R_{i} \mid i \in I\right\}$


## CSPs and homomorphisms

A CSP instance $\left(V, T,\left(\bar{x}_{i}, R_{i}\right)_{i \in I}\right)$ defines:

- a signature $\left\{R_{i} \mid i \in I\right\}$
- a structure $\mathcal{A}$ :
-- universe $V$
-- $R_{i}$ interpreted as $\left\{\bar{x}_{j} \mid j \in I, R_{j}=R_{i}\right\}$


## CSPs and homomorphisms

A CSP instance $\left(V, T,\left(\bar{x}_{i}, R_{i}\right)_{i \in I}\right)$ defines:

- a signature $\left\{R_{i} \mid i \in I\right\}$
- a structure $\mathcal{A}$ :
-- universe $V$
-- $R_{i}$ interpreted as $\left\{\bar{x}_{j} \mid j \in I, R_{j}=R_{i}\right\}$
- a structure $\mathcal{B}$ : (template)
-- universe $T$
-- $R_{i}$ interpreted as $R_{i}$


## CSPs and homomorphisms

A CSP instance $\left(V, T,\left(\bar{x}_{i}, R_{i}\right)_{i \in I}\right)$ defines:

- a signature $\left\{R_{i} \mid i \in I\right\}$
- a structure $\mathcal{A}$ :
-- universe $V$
-- $R_{i}$ interpreted as $\left\{\bar{x}_{j} \mid j \in I, R_{j}=R_{i}\right\}$
- a structure $\mathcal{B}$ : (template)
-- universe $T$
-- $R_{i}$ interpreted as $R_{i}$
Instance solutions $=$ homomorphisms $\mathcal{A} \rightarrow \mathcal{B}$


## CSPs for fixed templates

$\mathcal{B}$ - a relational structure
$\operatorname{CSP}(\mathcal{B})$ - instances with template $\mathcal{B}$
Example:

$$
\text { 3-colorability }=\operatorname{CSP}(\bigwedge)
$$

## CSPs for fixed templates

$\mathcal{B}$ - a relational structure
$\operatorname{CSP}(\mathcal{B})$ - instances with template $\mathcal{B}$
Example:

$$
\text { 3-colorability }=\operatorname{CSP}(\bigwedge)
$$

Conjecture: [Feder-Vardi'98]
For any $\mathcal{B}$, the problem $\operatorname{CSP}(\mathcal{B})$ is eitner NP-complete or in PTIME

## Infinite CSPs

- infinite templates ( $\mathcal{B}$ )
-- example: instance $=$ set of triples $(x, y, z) \in V^{3}$

$$
\begin{aligned}
\text { solution }= & f: V \rightarrow \mathbb{Q} \text { such that } \\
& x<y<z \text { or } z<y<x
\end{aligned}
$$

## Infinite CSPs

- infinite templates ( $\mathcal{B}$ )
-- example: instance $=$ set of triples $(x, y, z) \in V^{3}$

$$
\begin{aligned}
\text { solution }= & f: V \rightarrow \mathbb{Q} \text { such that } \\
& x<y<z \text { or } z<y<x
\end{aligned}
$$

- infinite instances $(\mathcal{A})$
-- examples: Puzzles I and II


## Infinite CSPs

- infinite templates ( $\mathcal{B}$ )
-- example: instance $=$ set of triples $(x, y, z) \in V^{3}$

$$
\begin{aligned}
\text { solution }= & f: V \rightarrow \mathbb{Q} \text { such that } \\
& x<y<z \text { or } z<y<x
\end{aligned}
$$

- infinite instances $(\mathcal{A})$
-- examples: Puzzles I and II
Problem: input needs to be finitely presented


## Infinite CSPs

- infinite templates ( $\mathcal{B}$ )
-- example: instance $=$ set of triples $(x, y, z) \in V^{3}$

$$
\begin{aligned}
\text { solution }= & f: V \rightarrow \mathbb{Q} \text { such that } \\
& x<y<z \text { or } z<y<x
\end{aligned}
$$

- infinite instances $(\mathcal{A})$
-- examples: Puzzles I and II
Problem: input needs to be finitely presented
- infinite instances and templates


## Sets with atoms

Also known as nominal sets [GP'99], FM-sets, ...

## Sets with atoms

Also known as nominal sets [GP'99], FM-sets, ...
Atoms: $\mathbb{A} \ni a, b, c, d, \ldots$

## Sets with atoms

Also known as nominal sets [GP'99], FM-sets, ...
Atoms: $\mathbb{A} \ni a, b, c, d, \ldots$
A set with atoms:

- a set $X$
- a group action _._ $: \operatorname{Aut}(\mathbb{A}) \times X \rightarrow X$


## Sets with atoms

Also known as nominal sets [GP'99], FM-sets, ...
Atoms: $\mathbb{A} \ni a, b, c, d, \ldots$
A set with atoms:

- a set $X$
- a group action .-. $: \operatorname{Aut}(\mathbb{A}) \times X \rightarrow X$

$$
\begin{aligned}
& S \subseteq \mathbb{A} \text { supports } x \in X \text { if } \\
& \quad \forall a \in S \cdot \pi(a)=a \quad \Longrightarrow \quad \pi \cdot x=x
\end{aligned}
$$

## Sets with atoms

Also known as nominal sets [GP'99], FM-sets, ...
Atoms: $\mathbb{A} \ni a, b, c, d, \ldots$
A set with atoms:

- a set $X$
- a group action .-. $\operatorname{Aut}(\mathbb{A}) \times X \rightarrow X$

$$
\begin{aligned}
S \subseteq \mathbb{A} \text { supports } x \in X \text { if } \\
\forall a \in S \cdot \pi(a)=a \quad \Longrightarrow \quad \pi \cdot x=x
\end{aligned}
$$

## Sets with atoms

Also known as nominal sets [GP'99], FM-sets, ...
Atoms: $\mathbb{A} \ni a, b, c, d, \ldots$
A set with atoms:

- a set $X$
- a group action .-- $\operatorname{Aut}(\mathbb{A}) \times X \rightarrow X$
$S \subseteq \mathbb{A}$ supports $x \in X$ if
$\quad \forall a \in S . \pi(a)=a \quad \Longrightarrow \quad \pi \cdot x=x$
- such that every $x \in X$ has a finite support.


## Sets with atoms

Also known as nominal sets [GP'99], FM-sets, ...
Atoms: $\mathbb{A} \ni a, b, c, d, \ldots$
A set with atoms:

- a set $X$
- a group action .-- $\operatorname{Aut}(\mathbb{A}) \times X \rightarrow X$

$$
\begin{aligned}
& S \subseteq \mathbb{A} \text { supports } x \in X \text { if } \\
& \forall a \in S \cdot \pi(a)=a \quad \Longrightarrow \quad \pi \cdot x=x
\end{aligned}
$$

- such that every $x \in X$ has a finite support.

Equivariant functions: $f: X \rightarrow Y$ such that

$$
f(\pi \cdot x)=\pi \cdot f(x)
$$

## Orbit-finite sets

Orbit of $x \in X: \quad\{\pi \cdot x \mid \pi \in \operatorname{Aut}(\mathbb{A})\} \subseteq X$

## Orbit-finite sets

Orbit of $x \in X: \quad\{\pi \cdot x \mid \pi \in \operatorname{Aut}(\mathbb{A})\} \subseteq X$
Define orbit-finite sets by set expressions:

- variables (ranging over $\mathbb{A}$ )
- set builders $\left\{e: v_{1}, \ldots, v_{k} \in \mathbb{A}: \phi\right\}$
expression variables
f.o. formula with $=$
- unions, tuples


## Orbit-finite sets

Orbit of $x \in X: \quad\{\pi \cdot x \mid \pi \in \operatorname{Aut}(\mathbb{A})\} \subseteq X$
Define orbit-finite sets by set expressions:

- variables (ranging over $\mathbb{A}$ )
- set builders $\left\{e: v_{1}, \ldots, v_{k} \in \mathbb{A}: \phi\right\}$


## expression variables

f.o. formula with $=$

- unions, tuples


## Examples:

$$
\begin{aligned}
& \{(a, b): a, b \in \mathbb{A}: a \neq b\} \\
& \{\{(a, b, c),(b, c, a),(c, a, b)\}: a, b, c \in \mathbb{A}: \top\}
\end{aligned}
$$

## CSPs with atoms

An instance:

- a set $V$ of variables
- a set $T$ of values

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.


## CSPs with atoms

An instance:

- a set $V$ of variables


## finite

- a set $T$ of values
- a set of constraints: $(\underbrace{x_{1}, \ldots, x_{k}}_{\overparen{N}} ; ~ T^{k}$

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.

## CSPs with atoms

An instance:

## orbit-finite

- a set $V$ of variables finite
- a set $T$ of values
- a set of constraints: $(\underbrace{x_{1}, \ldots, x_{k}}_{\stackrel{\Pi}{V}} ; ~ T_{\mathrm{N}} ; R)$

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.

## CSPs with atoms

An instance:

- a set $V$ of variables finite
- a set $T$ of values
- a set of constraints: $(\underbrace{\text { | }}_{\underset{V}{x_{1}, \ldots, x_{k}} ; ~} \underset{T^{k}}{R}$

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.
CSP: does a given instance have a solution?

## CSPs with atoms

An instance:

- a set $V$ of variables finite
- a set $T$ of values

A solution: $f: V \rightarrow T$
such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
for each constraint.
CSP: does a given instance have a solution? equivariant?


## Examples

## Graph from Puzzle I:

- nodes:
$a b$
$a \neq b$
- edges: $a b — b c$
$a \neq c$



## Examples

Graph from Puzzle I:

- nodes:
$a b$
$a \neq b$
- edges: $a b-b c$
$a \neq c$

- nodes: $\{(a, b): a, b \in \mathbb{A}: a \neq b\}$
- edges: $\{\{(a, b),(b, c)\}: a, b, c \in \mathbb{A}$

$$
: a \neq b \wedge b \neq c \wedge a \neq c\}
$$

## Examples

## Equation system from Puzzle II:

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

## Examples

## Equation system from Puzzle II:

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

$$
\{((a, b),(b, c),(c, a), 1): a, b, c \in \mathbb{A}
$$

$$
: a \neq b \wedge b \neq c \wedge a \neq c\}
$$

$$
\cup
$$

$$
\{((a, b),(b, a), 0): a, b \in \mathbb{A}: a \neq b\}
$$

## Solving CSPs, equivariantly

Does a given instance have an equivariant solution?

## Solving CSPs, equivariantly

Does a given instance have an equivariant solution?
Decidable.

## Solving CSPs, equivariantly

Does a given instance have an equivariant solution?

## Algorithm:

## Decidable.

I. Compute orbits of variables.

## Solving CSPs, equivariantly

Does a given instance have an equivariant solution?
Algorithm:
representatives of
Decidable.
I. Compute orbits of variables.

## Solving CSPs, equivariantly

Does a given instance have an equivariant solution?
Algorithm: representatives of

Decidable.
I. Compute orbits of variables.
2.Assign values to variable orbits

## Solving CSPs, equivariantly

Does a given instance have an equivariant solution?
Algorithm: representatives of

## Decidable.

I. Compute orbits of variables.
2.Assign values to variable orbits
3. Check every constraint

## Solving CSPs, equivariantly

Does a given instance have an equivariant solution?
Algorithm: representatives of

## Decidable.

I. Compute orbits of variables.
2.Assign values to variable orbits
3. Check every constraint
4. If failed, try 2. again

## Solving CSPs, equivariantly

Does a given instance have an equivariant solution?
Algorithm: representatives of

## Decidable.

I. Compute orbits of variables.
2.Assign values to variable orbits
3. Check every constraint
4. If failed, try 2. again

Complexity: exponential slowdown

- 3-colorability: NEXPTIME-complete
- equation solving: EXPTIME


## Examples

## Puzzle I:



## Examples

## Puzzle I:

- one orbit of nodes



## Examples

## Puzzle I:

- one orbit of nodes
- edges exist



## Examples

## Puzzle I:

- one orbit of nodes
- edges exist
- so: no equivariant coloring



## Examples

## Puzzle I:

- one orbit of nodes
- edges exist
- so: no equivariant coloring



## Puzzle II:

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

## Examples

## Puzzle I:

- one orbit of nodes
- edges exist
- so: no equivariant coloring



## Puzzle II:

- one orbit of variables

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

## Examples

## Puzzle I:

- one orbit of nodes
- edges exist
- so: no equivariant coloring



## Puzzle II:

- one orbit of variables

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

- all-I assignment does not work


## Examples

## Puzzle I:

- one orbit of nodes
- edges exist
- so: no equivariant coloring



## Puzzle II:

- one orbit of variables

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

- all-I assignment does not work
- all-0 assignment does not work


## Examples

## Puzzle I:

- one orbit of nodes
- edges exist
- so: no equivariant coloring



## Puzzle II:

- one orbit of variables

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

- all-I assignment does not work
- all-0 assignment does not work
- so: no equivariant solution


## Solutions vs. equivariant solutions

Problem: the graph

- nodes:
$a b$
$a \neq b$
- edges: $a b-b a$


## Solutions vs. equivariant solutions

Problem: the graph

- nodes: $a b \quad a \neq b$
- edges: $a b-b a$
has
- a 2-coloring,
- no equivariant coloring


## Solutions vs. equivariant solutions

Problem: the graph

- nodes: $a b$

$$
a \neq b
$$

- edges: $a b-b a$
has
- a 2-coloring,
- no equivariant coloring

Solution: order atoms in some way, put $a b$ if $a<b, a b$ otherwise

## Solutions vs. equivariant solutions

Problem: the graph

- nodes: $a b \quad a \neq b$
- edges: $a b-b a$
has
- a 2-coloring,
- no equivariant coloring

Solution: order atoms in some way, put $a b$ if $a<b, a b$ otherwise

A monotone-equivariant solution

## Ordered atoms

$\mathbb{A}=\{a, b, c, d, \ldots\}$
can be replaced by
$\mathbb{Q}$

## Ordered atoms

$\mathbb{A}=\{a, b, c, d, \ldots\} \quad \operatorname{Aut}(\mathbb{A})$
can be replaced by

$\operatorname{Aut}(\mathbb{Q},<)$


## Ordered atoms

$\mathbb{A}=\{a, b, c, d, \ldots\} \quad \operatorname{Aut}(\mathbb{A})$
can be replaced by

(or by any countable homogenous structure)

## Ordered atoms

$\mathbb{A}=\{a, b, c, d, \ldots\} \quad \operatorname{Aut}(\mathbb{A})$
can be replaced by

(or by any countable homogenous structure)

## New orbit-finite sets:

$$
\{(a, b): a, b \in \mathbb{A}: a<b\}
$$

## Ordered atoms

$\mathbb{A}=\{a, b, c, d, \ldots\} \quad \operatorname{Aut}(\mathbb{A})$
can be replaced by

$$
\operatorname{Aut}(\mathbb{Q},<)
$$


(or by any countable homogenous structure)

## New orbit-finite sets:

$$
\{(a, b): a, b \in \mathbb{A}: a<b\}
$$

- definable sets remain definable
- equivariant functions are monotone-equivariant


## Solving CSPs

Let $\mathbb{A}=\mathbb{Q}$, totally ordered.

## Solving CSPs

Let $\mathbb{A}=\mathbb{Q}$, totally ordered.

## Theorem: if an instance has a solution, it has a monotone-equivariant one.

## Solving CSPs

Let $\mathbb{A}=\mathbb{Q}$, totally ordered.
Theorem: if an instance has a solution, it has a monotone-equivariant one.

Proof:

- solutions form a compact space


## Solving CSPs

Let $\mathbb{A}=\mathbb{Q}$, totally ordered.
Theorem: if an instance has a solution, it has a monotone-equivariant one.

## Proof:

- solutions form a compact space
- the group $\operatorname{Aut}(\mathbb{Q},<)$ acts on it


## Solving CSPs

Let $\mathbb{A}=\mathbb{Q}$, totally ordered.
Theorem: if an instance has a solution, it has a monotone-equivariant one.

## Proof:

- solutions form a compact space
- the group $\operatorname{Aut}(\mathbb{Q},<)$ acts on it
- monotone-equiv. solutions are fixpoints of this action


## Solving CSPs

Let $\mathbb{A}=\mathbb{Q}$, totally ordered.
Theorem: if an instance has a solution, it has a monotone-equivariant one.

## Proof:

- solutions form a compact space
- the group $\operatorname{Aut}(\mathbb{Q},<)$ acts on it
- monotone-equiv. solutions are fixpoints of this action
- Pestov's theorem: Every continuous action of $\operatorname{Aut}(\mathbb{Q},<)$ on a nonempty compact space has a fixpoint.


## Solving CSPs

Let $\mathbb{A}=\mathbb{Q}$, totally ordered.
Theorem: if an instance has a solution, it has a monotone-equivariant one.

Proof:

- solutions form a compact space
- the group $\operatorname{Aut}(\mathbb{Q},<)$ acts on it
- monotone-equiv. solutions are fixpoints of this action
- Pestov's theorem: Every continuous action of $\operatorname{Aut}(\mathbb{Q},<)$ on a nonempty compact space has a fixpoint.

And existence of monotone-equivariant solutions is decidable!

## Examples

Puzzle I:


## Examples

Puzzle I:

- two orbits of nodes

$$
\begin{aligned}
& \{(a, b): a, b \in \mathbb{A}: a<b\} \\
& \{(a, b): a, b \in \mathbb{A}: a>b\}
\end{aligned}
$$



## Examples

## Puzzle I:

- two orbits of nodes

$$
\begin{aligned}
& \{(a, b): a, b \in \mathbb{A}: a<b\} \\
& \{(a, b): a, b \in \mathbb{A}: a>b\}
\end{aligned}
$$



- triangles exist


## Examples

## Puzzle I:

- two orbits of nodes

$$
\begin{aligned}
& \{(a, b): a, b \in \mathbb{A}: a<b\} \\
& \{(a, b): a, b \in \mathbb{A}: a>b\}
\end{aligned}
$$



- triangles exist
- so: no monotone-equivariant coloring


## Examples

## Puzzle I:

- two orbits of nodes

$$
\begin{aligned}
& \{(a, b): a, b \in \mathbb{A}: a<b\} \\
& \{(a, b): a, b \in \mathbb{A}: a>b\}
\end{aligned}
$$



- triangles exist
- so: no monotone-equivariant coloring

Puzzle II:

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

## Examples

## Puzzle I:

- two orbits of nodes

$$
\begin{aligned}
& \{(a, b): a, b \in \mathbb{A}: a<b\} \\
& \{(a, b): a, b \in \mathbb{A}: a>b\}
\end{aligned}
$$



- triangles exist
- so: no monotone-equivariant coloring


## Puzzle II:

- two orbits of variables

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

## Examples

## Puzzle I:

- two orbits of nodes

$$
\begin{aligned}
& \{(a, b): a, b \in \mathbb{A}: a<b\} \\
& \{(a, b): a, b \in \mathbb{A}: a>b\}
\end{aligned}
$$



- triangles exist
- so: no monotone-equivariant coloring


## Puzzle II:

- two orbits of variables

$$
\begin{aligned}
a b+b c+c a & =0 \\
a b+b a & =1
\end{aligned}
$$

- four assignments, none works


## Examples

## Puzzle I:

- two orbits of nodes

$$
\begin{aligned}
& \{(a, b): a, b \in \mathbb{A}: a<b\} \\
& \{(a, b): a, b \in \mathbb{A}: a>b\}
\end{aligned}
$$



- triangles exist
- so: no monotone-equivariant coloring


## Puzzle II:

- two orbits of variables

$$
\begin{array}{r}
a b+b c+c a=0 \\
a b+b a=1
\end{array}
$$

- four assignments, none works
- so: no monotone-equivariant solution


## Complexity

## Complexity

## $\operatorname{InfCSP}(\mathcal{B})$ - definable instances, template $\mathcal{B}$

## Complexity

$\operatorname{InfCSP}(\mathcal{B})$ - definable instances, template $\mathcal{B}$
Thm: $\operatorname{InfCSP}(\mathcal{B})$ is decidable for all finite $\mathcal{B}$

## Complexity

$\operatorname{InfCSP}(\mathcal{B})$ - definable instances, template $\mathcal{B}$
Thm: $\operatorname{InfCSP}(\mathcal{B})$ is decidable for all finite $\mathcal{B}$
Thm: if $\operatorname{CSP}(\mathcal{B})$ is $\mathbf{C}$-complete, then
$\operatorname{InfCSP}(\mathcal{B})$ is $\exp (\mathbf{C})$-complete

## Complexity

$\operatorname{InfCSP}(\mathcal{B})$ - definable instances, template $\mathcal{B}$
Thm: $\operatorname{InfCSP}(\mathcal{B})$ is decidable for all finite $\mathcal{B}$
Thm: if $\operatorname{CSP}(\mathcal{B})$ is $\mathbf{C}$-complete, then
$\operatorname{InfCSP}(\mathcal{B})$ is $\exp (\mathbf{C})$-complete

Examples: for definable instances,

- 3-colorability is NEXPTIME-complete
- Horn-SAT is EXPTIME-complete
- 2-colorability is PSPACE-complete
- etc.


## Generalizations

## Locally finite CSP:

- orbit-finite set of values,
- only finite relations allowed in constraints.


## Generalizations

## Locally finite CSP:

- orbit-finite set of values,
- only finite relations allowed in constraints.

Still decidable, the same proof works.

## Generalizations

## Locally finite CSP:

- orbit-finite set of values,
- only finite relations allowed in constraints.

Still decidable, the same proof works.

Orbit-finite CSPs: the following is undecidable:
Given orbit-finite relational structures $\mathcal{A}$ and $\mathcal{B}$, is there a homomorphism from $\mathcal{A}$ to $\mathcal{B}$ ?

## Paper


B. Klin, E. Kopczyński, J. Ochremiak, S.Toruńczyk: Locally finite constraint satisfaction problems, Procs. LICS 2015

## Paper


B. Klin, E. Kopczyński, J. Ochremiak, S.Toruńczyk: Locally finite constraint satisfaction problems, Procs. LICS 2015

