Reasoning about the opinions of groups of agents

Asma Belhadi¹ and Didier Dubois² and Faiza Khellaf-Haned¹ and Henri Prade²

LRIA, Univ. Sci. & Tech. Houari Boumediene, Alger
 IRIT, Université de Toulouse

1

- reasoning about pieces of (uncertain) information held by subgroups of agents
 - (p, A) "all agents in A are certain that p is true"
- *not so much* to try to take the best of the information provided by sets of agents viewed as sources as in fusion

rather to understand what claims a group of agents supports with what other groups they are in conflict, about what

• to distinguish the individual inconsistency of agents from the global inconsistency of a group of agents

Contents

- multiple-agent logic
- standard possibilistic logic
- *multiple-agent* possibilistic logic

• propagating trust

Multiple-agent logic - Syntax

- pairs (p_i, A_i) p_i proposition $A_i \neq \emptyset$ subset of agents $A_i \subseteq ALL$
- multiple-agent logic base = conjunction of such pairs
- $(\neg p \lor q, A), (p \lor r, B) \vdash (q \lor r, A \cap B))$
- inconsistency of K: $inc(K) = \cup \{A | K \vdash (\bot, A)\}$
- inc(K) subset of the agents individually inconsistent
- one may have $inc(K) = \emptyset$ even if K^* is inconsistent

$$K^* = \{p_i | (p_i, A_i) \in K\}$$

• Example $K = \{(p, B), (\neg p, \overline{B})\}$

Multiple-agent logic - Semantics

- (p_i, A_i) $\mathbf{N}(p_i) \supseteq A_i$ set necessity $\mathbf{N}(p \land q) = \mathbf{N}(p) \cap \mathbf{N}(q)$
- $\mathbf{N}(p) = \overline{\mathbf{\Pi}(\neg p)}$ and $\mathbf{\Pi}(p) = \bigcup_{\omega: \omega \models p} \pi_K(\omega)$
- *set-valued* possibility distribution $\pi_K(\omega) =$

 $\pi_{\{(p_i,A_i)|i=1,m\}}(\omega) = \bigcap_{i=1,m}([p_i](\omega) \cup \overline{A_i}))$ $[p_i](\omega) = ALL \text{ if } \omega \vDash p_i \text{ ; } [p_i](\omega) = \emptyset \text{ otherwise}$

- $K \vDash (p, A)$ iff $\forall \omega, \pi_K(\omega) \subseteq \pi_{\{(p,A)\}}(\omega)$
- $inc(K) = \bigcap_{\omega} \overline{\pi_K(\omega)}$ $inc(K) = \emptyset$ weaker than

 $\exists \omega, \pi_K(\omega) = ALL$: the agents are collectively consistent

- pairs (p_i, α_i) p_i proposition α_i certainty level
- standard possibilistic base = conjunction of such pairs
- $(\neg p \lor q, \alpha), (p \lor r, \beta) \vdash (q \lor r, \min(\alpha, \beta))$
- inconsistency level of a base K: $inc(K) = \max\{\alpha | K \vdash (\bot, \alpha)\}$
- inc(K) = 0 iff K^* is consistent $K^* = \{p_i | (p_i, \alpha_i) \in K\}$
- $K \vdash (p, \alpha)$ iff $K_{\alpha}^* \vdash p$ and $\alpha > inc(K)$

$$K_{\alpha}^* = \{ (p_i, \alpha_i) \in K, \alpha_i \ge \alpha \}$$

Standard possibilistic logic - Semantics

•
$$(p_i, \alpha_i)$$
 $N(p_i) \ge \alpha_i$
necessity $N(p \land q) = \min(N(p), N(q))$

- $N(p) = 1 \Pi(\neg p)$ and $\Pi(p) = \max_{\omega: \omega \models p} \pi_K(\omega)$
- possibility distribution

$$\pi_K(\omega) = \pi_{\{(p_i,\alpha_i)|i=1,m\}}(\omega)$$
$$= \min_{i=1,m} \max([p_i](\omega), 1 - \alpha_i)$$

 $[p_i](\omega) = 1$ if $\omega \vDash p_i$; $[p_i](\omega) = 0$ otherwise

- $K \vDash (p, \alpha)$ iff $\forall \omega, \pi_K(\omega) \le \pi_{\{(p,\alpha)\}}(\omega)$
- $inc(K) = 1 \max_{\omega} \pi_K(\omega)$

Multiple-agent possibilistic logic. Syntax

- pairs (p_i, α_i/A_i) p_i prop., α_i certainty level, A_i subs.
 agents
- Multiple-agent possibilistic logic base: conjunction of such pairs
- $(\neg p \lor q, \alpha/A), (p \lor r, \beta/B) \vdash (q \lor r, \min(\alpha, \beta)/A \cap B)$
- inconsistency level of a base K: $inc(K) = \bigcup \{ \alpha/A \mid K \vdash (\bot, \alpha/A) \}$
- inc(K) fuzzy subset of agents individually inconsistent

Multiple-agent possibilistic logic - Semantics

- $(p_i, \alpha_i/A_i)$ $\mathbf{N}(p_i) \supseteq \alpha_i/A_i$ $\alpha_i/A_i(a) = \alpha_i \text{ if } a_i \in A_i \text{ et } \alpha_i/A_i(a) = 0 \text{ si } a_i \notin A_i$ more generally $(p_i, \bigcup_j \alpha_{i,j}/A_{ij})$ *fuzzy* set-valued necessity $\mathbf{N}(p \land q) = \mathbf{N}(p) \cap \mathbf{N}(q)$ $\mathbf{N}(q) = \mathbf{N}(q) \cap \mathbf{N}(q)$
- $\mathbf{N}(p) = \mathbf{\Pi}(\neg p)$ and $\mathbf{\Pi}(p) = \bigcup_{\omega: \omega \vDash p} \pi_K(\omega)$
- inc(K) describes to what extent

different subsets of agents are inconsistent

to different degrees

Conclusion

- Multiple agent possibilistic logic
 - (A. Belhadi, D. Dubois, F. Khellaf-Haned, H. Prade)
 - J. of Applied Non-Classical Logics, Dec. 2013
- extensions

at most the agents in A believe *p at least one* agent in A believes *p* generalized possibilistic logic

- agent a trusts agent b at level θ: (b, θ/{a})
 b stands for "any proposition about which b is certain"
- agent b is certain at level α that p is true:

 $(p, \alpha/\{b\}) \quad (= ((p, \alpha), 1/\{b\}))$ $(p, \alpha/\{b\}), (\mathbf{b}, \theta/\{a\}) \vdash (p, \min(\alpha, \theta)/\{a\})$

agent a is certain at level min(α, θ) that p is true substituting (p, α) to b in (b, θ/{a}) yields ((p, α), θ/{a}), it reduces to (p, min(α, θ)/{a}) in the possibilistic setting