

A Multi-Agent System for Autonomous Control of Game Parameters

Luc Pons Institut de **R**echerche en Informatique de **T**oulouse SMAC Team www.irit.fr/SMAC

Games and Serious Games

- Growing interest for both games and serious games
- > The objective is either learning or entertainment
- The experience is effective when the player reaches the state of flow [Csikszentmihalyi90]
 - Believabilty

Games and Serious Games

Games are getting more and more complex

- Large number of parameters
- Nonlinear
- Difficult if not impossible to model

Players are human beings

- Large populations of players may involve original individuals
- Human reasoning is unpredictable
- "The holy grail of game design is to make a game where [...] the difficulty curve is perfect and adjusts itself to exactly our skill level." Raph Koster, Theory of fun, 2004

General Question

How to

- Adapt a game experience so it is profitable for all players?
- Preserve the consistency and believability ?

Given that

- Potentially all players are different
- All game engines are different

While keeping

- Real time activity
- General concepts

How it has been done so far?

Machine Learning

- Q-Learning with Markov Decision Processes [Andrade04]
 - Needs many iterations with a static player
- Case-Based Reasoning [Sharma07]
 - Experts need to exhaustively list cases
- Rules Re-ordering [Spronck06]
 - Limited to plan-based agents

Optimization

- Genetic Algorithms [Zook 12] & Artificial Neural Networks [Stanley05]
 - Large amounts of data needed with many iterations

Proposition

New paradigms to overcome complexity

- Use of collective intelligence
- (Logically) Distributed computation
- Bottom-up approach

A Multi-Agent System for Autonomous Control of Game Parameters

Problem Definition: A General Scenario

• Example

Enemy 1 health points Enemy 2 health points Enemy 1 robustness Enemy 2 firepower Player attack power Player shooting range

Tower Defense Game

A Multi-Agent System for Autonomous Control of Game Parameters

Problem Definition: A General Scenario

Enemy 1 health points Enemy 2 health points Enemy 1 robustness Enemy 2 firepower Player attack power Player shooting range

. . .

Constraints

Enemy 1 health points \in [5;10] Enemy 2 health points \in [8; 13] Enemy 2 hp > Enemy 1 hp Player hp > 3 * Enemy 2 hp Etc... Score $\approx 75 \%$ Completion time < 1min30

A Multi-Agent Modeling

Agents have a local perception of their environment

A Multi-Agent Modeling

Constraints and objectives compute their satisfaction level

Works fine where there is no problem

When a conflict occurs, behaviours need to be cooperative

Behaviour - Parameter Agents (1)

Behaviour - Parameter Agents (2)

At the Global Level

Local cooperative interactions lead to a global optimization of the satisfaction

Successfully applied

- To a population equilibrium simulation
- To a tower defense game

Conclusion

- Real time adaptivity
- Minimal information from the domain is needed
- Concepts are general enough to be applied to various kinds of games

Thank you

- [Andrade04] G. D. ANDRADE, H. P. SANTANA, A. W. B. FURTADO, A. R. G. A. LEITÃO and G. L. RAMALHO: Online Adaptation of Computer Games Agents : A Reinforcement Learning Approach. In 1st Brazilian Symposium on Computer Games and Digital Entertainment (SBGames'04).
- [Sharma04] Manu SHARMA, Michael HOLMES, Juan SANTAMARIA, Arya IRANI, Charles ISBELLet Ashwin RAM: Transfer learning in real-time strategy games using hybrid cbr/rl. In Proceedings of the 20th international joint conference on Artifical intelligence, IJCAI'07, pages 1041–1046, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc. URL
- [Spronck06] P. SPRONCK, M. PONSEN, I. SPRINKHUIZEN-KUYPERet E. POSTMA: Adaptive Game AI with Dynamic Scripting.Machine Learning, 63(3):217–248, June 2006.
- [Stanley05] K. O. STANLEY, B. D. BRYANTet R. MIIKKULAINEN: Real-time Neuroevolution in the NERO Video Game.Transactions on Evolutionary Computation, 9(6):653–668, December 2005.
- [Zook12] Alexander ZOOK, Stephen LEE-URBAN, Mark O. RIEDL, Heather K. HOLDEN, Robert A. SOTTILAREet Keith W. BRAWNER: Automated Scenario Generation : Toward Tailored and Optimized Military Training in Virtual Environments. Dans Proceedings of the International Conference on the Foundations of Digital Games, FDG'12, pages 164–171, 2012.

Dependencies Matrix

	Player HP	Enemy HP	Defense firepower	Enemy speed	Enemy frequency
Score	+	-	+	-	-
Completion time				+	+

Adaptive Value Tracker

