

Saver Self-Adaptive Energy Saver

SUMMARY

- 1. Some figures about energy
- 2. Adaptive Multi-agent System Theory
- 3. Saver architecture
- 4. Application example and results
- 5. Conclusion

SOME FIGURES

ENERGY EFFICIENCY

- Bring smartness from production to consumption.
 - Individual economy
 - Global management of the production and consumption variations.

WHAT IS EFFICIENT ENERGY MANAGEMENT?

- Managing is controlling devices in an efficient way.
- Controlling efficiently :
 - Keep giving them the appropriate set points over the time.

IF A PERFECT SYSTEM EXISTS ...

- Multi-agent system : system composed by autonomous and independent entities.
- Each agent adapts itself to the situation it perceives.
- The whole system behavior can be stated as emergent.

A weak individual intelligence FOR
A great collective intelligence

THEORETICAL APPROACH

Agent

Autonomous entity

Multi-agent system

Group of interacting agents

Cooperation

- Perception : all perceived signals must be understood without ambiguity
- Decision : received information is useful for the agent's reasoning
- Action : reasoning leads to useful actions towards others
- Cooperation as the engine for Self-organisation.

PRINCIPLE OF SELF-ORGANISATION IN AMAS

PLUGIN SAVER TO BUILDING

SAVER ARCHITECTURE

CONTEXT AGENT

"If the building is in this state and you apply this action, then this will happen"

Set point 20° C

	Satisfaction Forecast
Constraint 1	+10
Constraint 2	-25
•••	•••
Objective 1	+12
•••	•••

CONTEXT AGENTS

- Propose an action to apply in the current state of the building
- Learn the consequences of its action

CONTROL AGENTS

Select the best Context agent in order to apply its action proposition.

BUILDING INERTIA EXAMPLE

- Orders regulated by micro-ajustements at key moments
- Perpetual adjustments to building specificities and external factors
- Reduce consumption peaks

OPTIMAL SOLUTION ESTIMATION

Exhaustive evaluation of night time set-point in four external temperature conditions.

Those results will be ignored by the multi-agent Saver.
They serve as optimal references for evaluation of the Saver regulation proposals.

EXPERIMENT 1:FROM DIFFERENT INITIAL POINTS

From different initial points, Saver converge to the same final set point which is close to the optimal one.

EXP 2: FROM DIFFERENT OUTSIDE TEMPERATURE

For every outside condition considered, Saver successfully converge to different set-points which are close to the optimal ones.

MULTI-AGENT SYSTEMS BENEFITS

- The building is in a constant control and observation loop.
- Focus on the user needs.
- Open a way to cross domain solution.
- Give an understanding of building usage.
- Allow scalability.
- No mandatory model of the building.

PERSPECTIVES: SMART GRID

- Consumption optimisation through Demand Response :
 - Peak flattening
 - Adapt to the variability of the production

Expand to the scale of a city

Thank you for your attention