ABSTRACT MDP REWARD SHAPING FOR MULTI-AGENT REINFORCEMENT LEARNING

> Kyriakos Efthymiadis, Sam Devlin and Daniel Kudenko, Department of Computer Science, The University of York

BACKGROUND MATERIAL

REINFORCEMENT LEARNING

Traditional RL assumes no prior knowledge

Including domain knowledge can improve the learning process
Reward Shaping

Shaping and SARSA

SARSA, a popular RL algorithm - $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma Q(s', a') - Q(s, a)]$

Reward Shaping can provide heuristic knowledge by an additional reward

 $-Q(s,a) \leftarrow Q(s,a) + \alpha[r + F(s,s') + \gamma Q(s',a') - Q(s,a)]$

Can change the optimal policy when designed poorly

POTENTIAL-BASED REWARD SHAPING

Ng, Russell and Harada (1999)

Formal definition

$$F(s,s') = \gamma \Phi(s') - \Phi(s)$$

Guarantees

- Equivalence to Q-table initialisation
- Policy invariance (optimal policy unchanged) in single agent

Can

- Increase / Decrease time taken to learn optimal policy

MULTI-AGENT POTENTIAL-BASED SHAPING

Devlin and Kudenko (2011)

Guarantees

- Equivalence to Q-table initialisation
- Nash Equilibria not altered

Can

- Increase / Decrease time to reach a stable joint policy
- Change final joint policy

(SEMI-)AUTOMATIC REWARD SHAPING

Automatic

- Requires no prior knowledge of the environment
- Still improves time to learn optimal policy

Semi-Automatic

- Encodes prior knowledge into a potential function
- Performs better than automatic reward shaping if provided knowledge is suitable

ABSTRACT MDP REWARD SHAPING

Marthi (2007)

Domain knowledge is provided as an abstract MDP

- Automatic method
 - Samples the environment to form estimations of states, actions and reward function
- Solved using dynamic programming
- Resulting V(s) shapes the agent

Modified version to benefit from expert domain knowledge

- Provide state, action and reward abstractions
- Need to find right parameter settings
- Semi-Automatic method

PLAN-BASED REWARD SHAPING

Grzes and Kudenko (2008)

Domain knowledge is provided as a STRIPS plan

- Semi-Automatic method
- Abstraction of the low level environment
 - Start state, goal state, available actions and effects
- Popular existing tool, familiar to many
- Easy to generate

Generated plan is used to shape the agent

- Low level states are compared to high level plan states
- Extra reward is given according to the step in the plan

KNOWLEDGE-BASED RL

EVALUATION DOMAIN

FLAG COLLECTION DOMAIN

RoomA			Α	Ra	on	ıB			Ra	on	ıE	
					В							
											F	
HallA				Ha	allE	3						
		S1								S 2		
RoomD												
	D											
				Ra	pon	iC						
								С				
Goa												
												Ε

Cooperative, Multi-Agent, Deterministic, Discrete Flag Collecting

SHAPING THE AGENT

Transformation

in(roomA)

in(roomA)
 have(flagA)

in(roomB)
 have(flagA)

in(roomB)
 have(flagA,flagB)

in(roomC)
 have(flagA,flagB)

SHAPING THE AGENT

$F(s,s') = \gamma \Phi(s') - \Phi(s)$ **During Simulation** ABS **35** *in*(roomA) in(roomA) 40 in(roomA) 2 in (roomA) have(flagA) have(flagA) 3 in(roomB) 59 in(roomB) have(flagA) have(flagA) **70** in(roomB) *in*(roomB) 4 have(flagA, flagB) have(flagA, flagB) 97 in(roomC) in(roomC) 5 have(flagA, flagB) have(flagA, flagB)

SHAPING FOR MULTIPLE AGENTS

Joint

- Centralised planning
- Agents share goals and capabilities
- Provides coordination knowledge to agents

Individual

- Decentralised planning
- Agents not required to share information
- Efficient use of available resources
- Smaller state-action space
- Conflicting goals

Setup

Variation of the flag collection domain

- 6 flags and 7 rooms, 12 flags and 7 rooms, 12 flags and 12 rooms

Use of a centralised agent as an upper bound
joint-plan-based

Compare abstract MDP vs plan-based agents receiving decentralised shaping

6 flags 7 rooms

THE UNIVERSITY of York

12 flags 7 rooms

THE UNIVERSITY of York

12 flags 12 rooms

THE UNIVERSITY of York

JOINT-PLAN / ABSTRACT MDP

Sample Paths

INDIVIDUAL PLAN-BASED

Sample Paths

PLAN-BASED REVISITED

During Simulation

1 in(roomA)

 PB

4 in(roomB)
 have(flagA, flagB)

5 in(roomC)
 have(flagA, flagB)

ABSTRACT MDP REVISITED

During Simulation AB. **35** *in*(roomA) **40** in (roomA) have(flagA) **59** *in* (roomB) have(flagA) **70** *in*(roomB) have(flagA, flagB) **97** *in*(roomC) have(flagA, flagB)

ABSTRACT MDP REVISITED

CONCLUSION

- Proposed abstract MDP shaping for multi-agent environments
- Abstract MDP agents can cooperate despite given decentralised reward shaping
- Eliminates the impact of conflicting goals
- Can be used both as a shaping method (speed up the learning process) as well as for conflict resolution (learn better policies)
- Can be tricky to formulate and get the parameters "right"
- Cost of solving the MDP can be high in very large environments

