
Lúcio S. Passos
Rosaldo J. F. Rossetti
Joaquim Gabriel

Diagnosis of Unwanted Behaviours
in Multi-Agent Systems

11th European Workshop on Multi-Agent Systems

Outline

Part I – Introduction

Part II – Relevant Works

Part III – Extended Spectrum-Based Fault Diagnosis

for MAS

Part IV – The Cleaning Agents Example

Part V – Conclusion

Introduction

Part I

Research Scope

Multi-agent Systems (MAS) has a set of features to
be deployed in real-world applications.

However, agents are under-explored in real
deployments (Mckean et al., 2008; Pechoucek and Marík, 2008).

One reason is the lack of reliability of MAS.

To overcome this, a set of works incorporate fault
tolerance features and propose better testing
techniques.

• Both rely on the correct diagnosis of an unforeseen event.

Research Motivation

A diagnosis process demands for some knowledge
about the system.

• This approach better suit deterministic systems.

Agents add novel research challenges because of
their non-determinism.

A requirement to deal with agents is treat them as a
black-box component.

• Multi-agent diagnosis should not rely on a priori
knowledge.

Aim and Goals

Main goal of the proposed research is
Diagnose agents with unwanted behaviour that affect the

system's performance relying on minimal a priori information.

Specific goals of this paper:

• To propose an Extended Spectrum-based Fault
Localization approach to Multi-Agent Systems (ESFL-MAS).

• To instantiate the proposal with cleaning agents in a grid-

form environment.

• To demonstrate that the ESFL-MAS is able to locate a
faulty agent with minimal a priori knowledge.

Relevant Work

Part II

Relevant Work

Diagnosis process is triggered by a detected
deviation from the desired behaviour.

Further, it locates responsible cause(s) for the
undesired situation.

The literature focus on two types of information:

• Fault-based: rely on all known faults in a given domain.

• Model-based: depend on a system’s model while any
abnormality is classified as a fault.

Lack in the Literature

Summary:
The assumption of a priori (either correct or
faulty) knowledge is a constant in agent diagnosis
endeavours.

Our technique aims to decouple the diagnosis
process from given information.

Extended Spectrum-Based Fault
Diagnosis for MAS

Part III

Spectrum-based Fault Localization

It is a statistical technique which analyses the
software behaviour over multiples runs to find the
faulty component.

• Program spectrum is a set of runtime profiles that gives a
specific view of a software behaviour.

• Testing results inform the SFL whether the program
behaves correctly (passed) or not (failed)

Our proposed approach aims to extend some of its
characteristics to cover MAS applications.

Extended SFL for MAS

Test Suite:
• A multi-agent system must be executed throughout

several time steps to observe its behaviour.
• We must execute several rounds of the same test case to

cover as many variations as possible to enhance coverage.

Spectra:

• Metric-based spectra: agents are assessed using a certain
performance threshold respectively.

Performance Assessment:

• Measure how effectively the multi-agent system
performs.

• is a set of test cases;
• Test case considers a set of environmental variables;
• is the number of executions per test case;
• is the total number of time steps in a given execution;
• is the spectrum matrix;
• is a vector of Boolean variables, where

ESFL-MAS Components
Information of a multi-agent system P analysed by
the ESFL-MAS.

The Algorithm
Input: Multi-agent system, set of test cases, number of executions, and
similarity coefficient
Output: Diagnosis report
begin
 Get the number of Agents
 Initialize counter
 Run MAS and keep spectra
 for each test case and execution
 Get the number of time steps
 for each agent
 Feed the respective counter
 end
 end
 for each agent
 Calculate similarity
 end
 Sort agents by crescent value of similarity
 Return diagnosis report
end

The Algorithm

Input: Multi-agent system, set of test cases, number
of executions, and similarity coefficient
Output: Diagnosis report
begin
 Get the number of Agents
 Initialize counter
 Run MAS and keep spectra
 for each test case and execution
 Get the number of time steps
 for each agent
 Feed the respective counter
 end
 end
 for each agent
 Calculate similarity
 end
 Sort agents by crescent value of similarity
 Return diagnosis report
end

The Algorithm
Input: Multi-agent system, set of test cases, number of executions, and similarity
coefficient
Output: Diagnosis report
begin
 Get the number of Agents
 Initialize counter
 Run MAS and keep spectra
 for each test case and execution
 Get the number of time steps
 for each agent
 Feed the respective counter
 end
 end
 for each agent
 Calculate similarity
 end
 Sort agents by crescent value of similarity
 Return diagnosis report
end

The Algorithm
Input: Multi-agent system, set of test cases, number of executions, and similarity
coefficient
Output: Diagnosis report
begin
 Get the number of Agents
 Initialize counter
 Run MAS and keep spectra
 for each test case and execution
 Get the number of time steps
 for each agent
 Feed the respective counter
 end
 end
 for each agent
 Calculate similarity
 end
 Sort agents by crescent value of similarity
 Return diagnosis report
end

The Algorithm
Input: Multi-agent system, set of test cases, number of executions, and similarity
coefficient
Output: Diagnosis report
begin
 Get the number of Agents
 Initialize counter
 Run MAS and keep spectra
 for each test case and execution
 Get the number of time steps
 for each agent
 Feed the respective counter
 end
 end
 for each agent
 Calculate similarity
 end
 Sort agents by crescent value of similarity
 Return diagnosis report
end

The Algorithm
Input: Multi-agent system, set of test cases, number of executions, and similarity
coefficient
Output: Diagnosis report
begin
 Get the number of Agents
 Initialize counter
 Run MAS and keep spectra
 for each test case and execution
 Get the number of time steps
 for each agent
 Feed the respective counter
 end
 end
 for each agent
 Calculate similarity
 end
 Sort agents by crescent value of similarity
 Return diagnosis report
end

Remarks about ESFL-MAS

The technique essentially consists in identifying the
agent whose column vector resembles the
underperformance vector the most.

• Similarity coefficient quantifies these resemblances.

Must highlight:

• It not the “silver bullet” for fault diagnosis in MAS.

• Only applicable to close multi-agent systems that work
within a static environment.

The Cleaning Agents Example

Part IV

Cleaning Agents Example
Example characteristics:

• Close multi-agent system upon a static
environment and at discrete time.

• 3 cleaner agents, 3 wastes, and 1 recycling
station. One agent with a injected fault.

• Allowed actions:
 Move: UP, DOWN, LEFT, and RIGHT.
 With waste: PICK and DROP.

• Agent have a priori knowledge about the
recycling station’s location.

• The environment is represented as a grid.

• No communication between agents.

Test Conditions – Part 1

Both are simple and domain-dependent.

We assume that external entities assess each agent

Agent metric-based
spectra:

• an agent must pick up a
waste in four time steps

• an agent must drop a
waste in four time steps

Test Conditions – Part 2

We adopted a simple metric to assess the overall
performance:

• The recycling station must receive one waste each 4 time
steps.

Similarity Coefficient

The similarity coefficient indicates the probability of
a certain agent to be the faulty one.

For the example we use the Ochiai coefficient, given
by:

Obtained Results:

• It was able to diagnose agent 2 as the faulty one.

• The D = {agent 2, agent 1, agent 3} with values of
similarity equal to 0.304, 0.225, and 0.091 respectively.

Conclusion

Part V

Final Remarks

Diagnosing faults in MAS is a very challenging task.

We propose a diagnosis technique for MAS relying
on minimal given information.

ESFL-MAS collects run-time spectra and identify the
underlying causes of a failure.

• However this first appraisal addresses close MAS and
static environments

By the illustrate example, we conclude that ESFL-
MAS was able to identify the faulty agent.

• ESFL-MAS must be validated in more complex scenarios

Future Research Directions

Study the influence of similarity coefficients and
metrics on the accuracy of the ESFL-MAS.

Domain-independent metric which would be based
on individual and global utilities.

Take into account the social interactions when
diagnosing the potential faulty agents.

Investigate the cleaning scenario in a more realistic
condition.

• Larger environment, more agents, different test cases and
executions.

29

Lúcio Sanchez Passos
lucio.san.passos@gmail.com
pro09026@fe.up.pt

Thank You!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

