Causality in the context of multiple agents

Robert Demolombe¹

¹Institut de Recherche en Informatique de Toulouse

December 2013

Aim:

To find a formal definition of causality when several agents are acting together

Aim:

To find a formal definition of causality when several agents are acting together

Example:

It is forbidden to disseminate a password Agent i has transmitted the beginning Agent j has simultaneously transmitted the end Formalization in the semantics of a Modal Logic

"Standard" causality definition

Agent i has caused that ϕ holds by doing action A iff

- 1. It is sufficient that i does A to obtain ϕ
- 2. It is necessary that i does A to obtain ϕ i.e. counterfactual condition if i had not done A then (cotoris paribus) ϕ might no
- if i had not done A then (ceteris paribus) ϕ might not have obtained

Academic example of joint actions

 ϕ : there are 4 grams of poison, or more, in a given glass Action A_n : to put n grams of poison in the glass

Case 1

Agent i and agent j have simultaneously performed A_2 Their joint action has caused that there are 4 grams of poison

Academic example of joint actions

 ϕ : there are 4 grams of poison, or more, in a given glass Action A_n : to put n grams of poison in the glass

Case 1

Agent i and agent j have simultaneously performed A_2 Their joint action has caused that there are 4 grams of poison

Case 2

Agent i has performed A_2

After: agent j has performed A_2

Agent j has caused that there are 4 grams of poison

Agent i did not cause that there are 4 grams of poison

Agent i has offered to j the opportunity to cause that there are 4 grams of poison

grams of poison

Academic example of joint actions

 ϕ : there are 4 grams of poison, or more, in a given glass Action A_n : to put n grams of poison in the glass

Case 1

Agent i and agent j have simultaneously performed A_2 Their joint action has caused that there are 4 grams of poison

Case 2

Agent i has performed A_2

After: agent j has performed A_2

Agent j has caused that there are 4 grams of poison

Agent i did not cause that there are 4 grams of poison

Agent i has offered to j the opportunity to cause that there are 4 grams of poison

Case 3

Agent i and agent j have simultaneously performed A_4 Does i has caused that there 4 grams of poison or more? "Standard definition": in a counterfactual world j is acting Then, the answer is "no" ... which is counterintuitive

7

Formal definition of the logic

Actions are defined by:

- the actor i
- \blacktriangleright the type of action A_6
- \blacktriangleright the effects ϕ

Agent i by doing an action of the type A_6 has brought it about that there are more than 4 grams of poison in the glass A pair i: A_6 is called an "act"

Formal definition of the logic

Actions are defined by:

- ▶ the actor i
- \blacktriangleright the type of action A_6
- \blacktriangleright the effects ϕ

Agent i by doing an action of the type A_6 has brought it about that there are more than 4 grams of poison in the glass

A pair $i: A_6$ is called an "act"

Inspiration:

I. Pörn: $E_i\phi$ (no action type)

Agent i has brought it about that ϕ

K. Segerberg: $\langle i, A_6, p \rangle$ (no counterfactual condition)

Agent i has performed the instance p of an action of type A6

Language

```
Propositional Modal Language  \phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid Done_{act}^+ \phi \mid Done_{act}^- \phi \mid JE_{act}^+ \phi \mid RJE_{act,act'}^+ \mid SJE_{act^*}^+ \phi   act, \ act' : \ sets \ of \ acts   Example: \ act = \{i : A_2, i : B, j : A_2\}   act^* : \ set \ of \ set \ of \ acts   Example: \ act^* = \{\{i : A_2, i : B, j : A_2\}, \{k : A_4, k : C\}\}.
```

 $JE_{act}^+\phi$: the agents in act are going to bring it about that ϕ by doing exactly the set of acts act

Frame, Model

Frame

 $F = \langle W, R_{act}^*, CR_{act-act'}^* \rangle$

W: non empty set of worlds

 R^*_{act} is a set of binary relations defined on W imes W

 $R_{act}(w, w')$: performance of the set of acts act has started in w and ended in w'

Frame, Model

Frame

 $F = \langle W, R_{act}^*, CR_{act-act'}^* \rangle$

W: non empty set of worlds

 R^*_{act} is a set of binary relations defined on W imes W

 $R_{act}(w, w')$: performance of the set of acts act has started in w and ended in w'

 $CR^*_{act-act'}$ is a set of ternary relations defined on $W \times W \times W$ $R_{act-act'}(w,w',w'')$: performance of the set of acts act has started in w and ended in w', and in w'' the acts in act' have not been performed ($ceteris\ paribus$)

w'' is a counterfactual world of w'

Frame, Model

Frame

 $F = \langle W, R_{act}^*, CR_{act-act'}^* \rangle$

W: non empty set of worlds

 R^*_{act} is a set of binary relations defined on W imes W

 $R_{act}(w, w')$: performance of the set of acts act has started in w and ended in w'

 $CR^*_{act-act'}$ is a set of ternary relations defined on $W \times W \times W$ $R_{act-act'}(w,w',w'')$: performance of the set of acts act has started in w and ended in w', and in w'' the acts in act' have not been performed ($ceteris\ paribus$)

w'' is a counterfactual world of w'

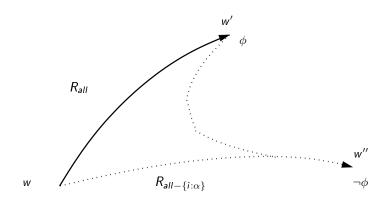
Model

 $M = \langle F, v \rangle$ where F

v: function which assigns to each atomic proposition a subset of W

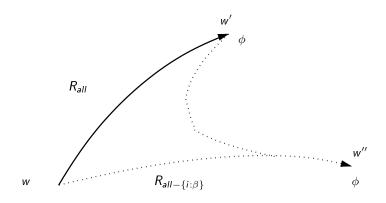

```
Semantics of JE_{act}^+\phi act \subseteq all M, w \models JE_{act}^+\phi iff 1) for all w' (R_{all}(w, w') \Rightarrow M, w' \models \phi) and 2) for all i:\alpha in act, there exist w' and w'' such that (R_{all-\{i:\alpha\}}(w,w',w'') and M,w'' \models \neg \phi) and 3) for all j:\beta in all which are not in act for all w' and w'' (R_{all-\{i:\beta\}}(w,w',w'') \Rightarrow M,w'' \models \phi).
```

1) guarantees that the set of acts act is sufficient to obtain ϕ and that the other acts in all do not prevent their performance



2) for all $i: \alpha$ in act, there exist w' and w'' such that $(R_{all-\{i:\alpha\}}(w,w',w''))$ and $M,w'' \models \neg \phi)$ 2) guarantees that every act $i:\alpha$ in act is necessary to obtain ϕ

4□ > 4□ > 4□ > 4□ > 4□ > 900



- 3) for all $j:\beta$ in all which are not in act for all w' and w'' $(R_{all-\{j:\beta\}}(w,w',w'') \Rightarrow M,w'' \models \phi)$.
- 3) guarantees that the acts $j:\beta$ which are not in act are not necessary to obtain ϕ

Theorems Non monotonicity property If $act' \subset act$, we have: $(NM1) \models JE^+_{act}\phi \rightarrow \neg JE^+_{act'}\phi$. If $act \subset act'$, we have: $(NM2) \models JE^+_{act}\phi \rightarrow \neg JE^+_{act'}\phi$. $JE^+_{act}\phi$ characterizes exactly the set of acts that have caused ϕ

Theorem Closure

$$(\mathsf{CL}) \models (JE_{\mathit{act}_1}^+ \phi \land JE_{\mathit{act}_2}^+ \psi) \to JE_{\mathit{act}_1 \cup \mathit{act}_2}^+ (\phi \land \psi)$$

(CL) does not contradict non monotonicity because we have:

Theorem Closure

(CL)
$$\models$$
 $(JE^+_{act_1}\phi \wedge JE^+_{act_2}\psi) \rightarrow JE^+_{act_1\cup act_2}(\phi \wedge \psi)$ (CL) does not contradict non monotonicity because we have: If $\vdash \phi \leftrightarrow \psi$ and $act_1 \neq act_2$, then $\models (JE^+_{act_1}\phi \wedge JE^+_{act_2}\psi) \rightarrow \bot$ If $\not\vdash \phi \rightarrow \psi$, then $\not\models JE^+_{act_1\cup act_2}(\phi \wedge \psi) \rightarrow JE^+_{act_1\cup act_2}\phi$

Extended example

```
Sets of acts
badmen = \{John : A_2, Jack : A_2\},
badwomen = \{Mary : A_1, Miriam : A_3\}
B: to put wine in the glass
C: to put whisky in the glass
others = \{Robert : B, Andrew : C\}
bad = \{badmen, badwomen\}
\phi: there is at least 4 grams of poison in the glass
If the set of all the acts performed in w is: all = badmen \cup others
we have:
M, w \models JE_{hadmen}^+ \phi
```

Extended example

```
Sets of acts
badmen = \{John : A_2, Jack : A_2\},
badwomen = \{Mary : A_1, Miriam : A_3\}
B: to put wine in the glass
C: to put whisky in the glass
others = \{Robert : B, Andrew : C\}
bad = \{badmen, badwomen\}
\phi: there is at least 4 grams of poison in the glass
If the set of all the acts performed in w is: all = badmen \cup others
we have:
M, w \models JE_{hadmen}^+ \phi
If the set of all the acts performed in w is:
all = badmen \cup badwomen \cup others we have:
M, w \models \neg JE_{hadmen}^+ \phi and M, w \models \neg JE_{hadwomen}^+ \phi
counterintuitive
```

Restricted Joint Action Operator

 $RJE^+_{act,act'}$: the agents in act are going to bring it about that ϕ by doing exactly act while the acts in act' are not performed Like JE^+_{act} except that in 2) and 3) all is replaced by $all \setminus act'$

Restricted Joint Action Operator

 $RJE^+_{act,act'}$: the agents in act are going to bring it about that ϕ by doing exactly act while the acts in act' are not performed Like JE^+_{act} except that in 2) and 3) all is replaced by $all \setminus act'$

```
M, w \models RJE^+_{act,act'}\phi iff

1) for all w' ( R_{all}(w,w') \Rightarrow M, w' \models \phi) and

2) for all i:\alpha in act, there exist w' and w'' such that

(R_{(all\setminus act')-\{i:\alpha\}}(w,w',w'') and M,w'' \models \neg \phi) and

3) for all j:\beta which is not in act for all w' and w''

(R_{(all\setminus act')-\{i:\beta\}}(w,w',w'') \Rightarrow M,w'' \models \phi))
```

Restricted Joint Action Operator

 $RJE^+_{act,act'}$: the agents in act are going to bring it about that ϕ by doing exactly act while the acts in act' are not performed Like JE^+_{act} except that in 2) and 3) all is replaced by $all \setminus act'$

```
M, w \models RJE_{act,act'}^+ \phi iff
```

- 1) for all w' ($R_{all}(w, w') \Rightarrow M, w' \models \phi$) and
- 2) for all $i:\alpha$ in act, there exist w' and w'' such that
- $(R_{(all\setminus act')-\{i:\alpha\}}(w,w',w'')$ and $M,w''\models \neg\phi)$ and

$$(R_{(all\setminus act')-\{j:\beta\}}(w,w',w'') \Rightarrow M,w'' \models \phi))$$

Example: act = badmen, act' = badwomen,

- $all = badmen \cup badwomen \cup others$
- 2) all \setminus act' = badmen \cup others, in w'' no bad woman is acting
- 3) $j:\beta$ may be any act in badwoman or other

We have:

$$M, w \models RJE_{badmen,badwomen}^+\phi$$

$$M, w \models RJE_{badwomen,badmen}^+\phi$$

Set of Joint Action Operator

 $SJE^+_{act^*}\phi$: every member act of act* is going independently of other acts to bring it about that ϕ

Set of Joint Action Operator

 $SJE^+_{act^*}\phi$: every member act of act^* is going independently of other acts to bring it about that ϕ

- 1) Performance of all the acts in all does not prevent to obtain ϕ
- 2) For every act_i in act^* , performance of act_i alone (ceteris paribus) is sufficient to obtain ϕ
- 3) In the context where act_i is the only element of act^* which is performed (ceteris paribus), performance of every act in act_i is necessary to obtain ϕ
- 4) There is no act, which is in all and which is not in act* (ceteris paribus), which is necessary to obtain ϕ

```
M, w \models SJE_{act^*}^+ \phi iff

1) for all w' (R_{all}(w, w') \Rightarrow M, w' \models \phi) and

2) for every act_i in act^*: for all w' and w''

(R_{all-(act^*\setminus act_i)}(w, w', w'') \Rightarrow M, w'' \models \phi) and

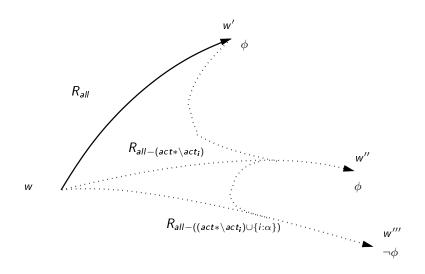
3) for every i: \alpha in act_i there exist w'' and w''' such that

(R_{all-(act^*\setminus act_i)}(w, w', w'') and

R_{all-((act^*\setminus act_i)\cup \{i:\alpha\})}(w, w'', w''') and M, w''' \models \neg \phi) and

4) for all j: \beta in all which are not in act^* for all w' and w''

(R_{all-\{j:\beta\}}(w, w', w'') \Rightarrow M, w'' \models \phi).
```



In w'' the only acts in act^* which are performed are those in act_i In w''' the same acts are performed as in w'' except $i:\alpha$

Set of Joint Action Operator

Theorem

If act_i is in act^* , then $\models SJE^+_{act^*}\phi \rightarrow RJE^+_{act_i,(act^*\setminus act_i)}\phi$

Example

$$\models \mathit{SJE}^+_{\mathit{bad}} \phi \rightarrow \mathit{RJE}^+_{\mathit{badmen},\mathit{badwomen}} \phi$$

$$\models \mathit{SJE}^+_\mathit{bad}\phi o \mathit{RJE}^+_\mathit{badwomen,badmen}\phi$$

Indirect Joint Action Operator

 $IJE_{act}^+\phi$: the set of acts act is going to bring it about that further joint acts are going to bring it about that ϕ

Formal definition

$$JJE_{act}^+\phi \stackrel{\text{def}}{=} JE_{act}^+(JE_{act_1}^+(JE_{act_2}^+\dots(JE_{act_n}^+\phi)\dots))$$

Indirect Joint Action Operator

 $IJE_{act}^+\phi$: the set of acts act is going to bring it about that further joint acts are going to bring it about that ϕ

Formal definition

$$IJE_{act}^+\phi \stackrel{\text{def}}{=} JE_{act}^+(JE_{act_1}^+(JE_{act_2}^+\dots(JE_{act_n}^+\phi)\dots))$$

Theorem

 $M, w \models IJE_{act}^+ \phi$ entails (informally):

- 1) performance of the sequence : $act,\ act_1,\ \dots\ ,act_n$ is sufficient to obtain ϕ
- 2) every $i: \alpha$ in act is necessary to cause performance of the sequence act_1, \ldots, act_n
- 3) if $j:\beta$ is not in act, then $j:\beta$ performance is not necessary to have 1)

Conclusion

The operator $JE_{act}^+\phi$ characterizes exactly the set of acts that have caused ϕ (no evaluation of the contribution of each act) The operator $SJE_{act^*}^+\phi$ characterizes a set of set of acts such that every element in act^* causes ϕ (in a similar sense as in $JE_{act}^+\phi$) The operator $IJE_{act}^+\phi$ characterizes indirect joint acts

Further works

Relationships with responsibility

In act* there is no assumption about coordination between agents in a set

Example. Two representations of the same situation:

```
badmen = \{John : A_2, Jack : A_2\},

badwomen = \{Mary : A_1, Miriam : A_3\}
```

versus

 $fairhair = \{John : A_2, Mary : A_1\},$

 $brownhair = \{Jack : A_2, Miriam : A_3\}$

