

A Stepwise Refinement based Development of Self-Organizing Multi-Agent Systems: Application on the Foraging Ants

Zeineb GRAJA

zeineb.graja@irit.fr

Frédéric MIGEON, Christine MAUREL, Marie-Pierre GLEIZES, Amira REGAYEG, Ahmed HADJ KACEM

EUMAS'2013 12-13 Décembre 2013 Toulouse, France

Talk outline

- Context & Motivations
- Formal Development of SO-MAS
- Case Study: Foraging Ants
- Perspectives

Context & Motivations

What guarantees related to robustness and resilience can be given?

- → Need for rigourous approaches
- →Our proposition: an approach based on formal techniques.

The approach relies on:

Two levels of observation:Micro & Macro

Macro Level

Micro Level

The approach relies on:

Two levels of observation:
Micro & Macro

Stepwise refinement steps Event-B

Macro Level

→ To give guarantees about the correctness of the local behavior:

Deadlock free

The approach relies on:

Two levels of observation:
Micro & Macro

Stepwise refinement steps Event-B

Proof
Event-B / TLA

Macro Level

Micro Level

Robustness analysis: convergence and stability

Resilience analysis: ability of the SO mechanisms to recover from errors without explicitelly detecting an error

To give guarantees about the correctness of the local behavior:

Deadlock free

Foraging ants case Study: Description

- Micro Level
 - Every ant is an agent
 - Properties : current location
 - Representations: food, pheromone, obstacles and ants
 - Decision: choose the next location
 - Actions: Move, Drop pheromone, Harvest food, Drop food
 - Local properties
 - □ LocProp1: the ant functions according to the perceive-decide-act cycle
 - LocProp2, LocProp3: Deadlock freeness respectively in decide and act step of the ant life cycle
 - LocInv1: the ant should avoid obstacles.
 - □ LocInv2: a given location can not contain both obstacle and food.
- Macro level
 - □ C1. The ants are able to reach any source of food.
 - □ C2. The ants are able to bring all the food to the nest
 - □ S1. When a source of food is reached, the ants are able to focus on its exploitation
 - □ R1. The ants focusing on exploiting a source of food, are able to continue their foraging activity when this source of food suddenly disappears

Foraging ants case Study: Description

- Micro Level
 - Every ant is an agent
 - Properties : current location
 - Representations: food, pheromone, obstacles and ants
 - Decision: choose the next location
 - Actions: Move, Drop pheromone, Harvest food, Drop food
 - Local properties
 - □ LocProp1: the ant functions according to the perceive-decide-act cycle
 - □ LocProp2, LocProp3: Deadlock freeness respectively in decide and act step of the ant life cycle
 - LocInv1: the ant should avoid obstacles.
 - □ LocInv2: a given location can not contain both obstacle and food.
- Macro level
 - □ C1. The ants are able to reach any source of food.
 - □ C2. The ants are able to bring all the food to the nest
 - □ S1. When a source of food is reached, the ants are able to focus on its exploitation !
 - □ R1. The ants focusing on exploiting a source of food, are able to continue their foraging activity when this source of food suddenly disappears

Event-B and Rodin

- Event-B
 - A formal language for systems modelling and analysis based on set theory and first order logic.
 - Key feature: use of refinement to represent the system at different level of abstraction
 - An Event-B model can be
 - Context: static part
 - Machine: dynamic part
- Rodin tool
 - Gives an effective support for refinement and mathematical proof
 - Generating Proof Obligations
 - Offering an interactive environment for doing proof

Our Approach Applied to the Ants

Ants0 Machine

Three events:

- Perceive
- Decide
- Act

One variable:

- stepAgent
- →LocProp1

First Refinement

Ants1 Machine

- Refining the Act event
- 2 Introducing QuFood

and Obstacles

- → Locinv1
- → LocInv2
- → LocProp2: Deac freeness in the Ac

Ants2 Machine

- Refining the Decide event
- 2 Introducing the actuators and the nextLocation
- **3** Refining the Act
 - witnesses

Third Refinement

Ants3 Machine

Second Refinement

- Refining the Perceive event
- Introducing the sensors and the representations
- Introducing pheromone distribution
- Refining the Act events
- **S**Refining the Decide Events
- → LocProp3: Deadlock freeness in the Decide step

Micro Level Modelling

Global Properties Modelling – Stability

- Purpose: to prove the stability property
 - S1. When a source of food is reached in a particular location loc1, the ants are able to focus on its exploitation.
 - QuFood(loc1) will decrease
- More formally:
 - \square P \triangleq Inv \land QuFood(loc1)=n+1
 - \square Q_{Harvest} \triangleq Inv \land QuFood(loc1)=n

Global Properties Modelling – Stability (cont.)

```
SF1.1 P \land [N]_{QuFood(loc1)} \Rightarrow (P' \lor Q'_{Harvest})
SF1.2 P \land \langle N \land A_{Harvest} \rangle_{QuFood(loc1)} \Rightarrow Q'_{Harvest}
SF1.3 \Box P \land \Box [N]_{QuFood(loc1)} \Rightarrow \Diamond Enabled \langle A_{Harvest} \rangle_{QuFood(loc1)}
```

SF1.H
$$\Box[N]_{QuFood(loc1)} \land SF_{QuFood(loc1)}(A_{harvest}) \Rightarrow P \rightsquigarrow Q_{Harvest}$$

- □ A_{Harvest} ≜ Act_Harv_Food
- SF1.1: progress step, either P or Q_{Harvest} can be reached.
- □ SF1.2: inductive step, Q_{Harvest} is reached.
- \square SF1.3: $\langle A_{Harvest} \rangle_{QuFood(loc1)}$ will be eventually enabled
- $\Box SF_{QuFood(loc1)}(A_{Harvest}) \triangleq \Box \Diamond Enabled < A_{Harvest} >_{QuFood(loc1)} \Rightarrow \Box \Diamond < A_{Harvest} >_{QuFood(loc1)}$

Global Properties Modelling – Stability (cont.)

→ Assumption: Once an ant smells food on loc1, other ants will be able also to smell this food and follow it .

```
 \begin{aligned} & \mathsf{WF}_{\mathsf{QuFood}(\mathsf{loc1})}(\mathsf{A}_{\mathsf{FollowFood}}) \triangleq \Diamond \Box \mathsf{Enabled} \langle \mathsf{A}_{\mathsf{FollowFood}} \rangle_{\mathsf{QuFood}(\mathsf{loc1})} \Rightarrow \Box \Diamond \langle \mathsf{A}_{\mathsf{FollowFood}} \rangle_{\mathsf{QuFood}(\mathsf{loc1})} \\ & = \mathsf{SF1.3} \triangleq \Box \mathsf{P} \land \Box [\mathsf{N}]_{\mathsf{QuFood}(\mathsf{loc1})} \Rightarrow \Diamond \mathsf{Enabled} \langle \mathsf{A}_{\mathsf{Harvest}} \rangle_{\mathsf{QuFood}(\mathsf{loc1})} \\ & = \mathsf{Purpose: to prove} \\ & \mathsf{SF1.31} \triangleq \Box [\mathsf{N}]_{\mathsf{QuFood}(\mathsf{loc1})} \Rightarrow \mathsf{P} \rightsquigarrow \Diamond \mathsf{Enabled} \langle \mathsf{A}_{\mathsf{Harvest}} \rangle_{\mathsf{QuFood}(\mathsf{loc1})} \\ & \mathsf{Q}_{\mathsf{FollowFood}} \triangleq \mathsf{Enabled} \langle \mathsf{A}_{\mathsf{Harvest}} \rangle_{\mathsf{QuFood}(\mathsf{loc1})} \\ & \mathsf{A}_{\mathsf{FollowFood}} \triangleq \mathsf{Act\_Follow\_Food} \\ & \mathsf{WF1.311} \quad \mathsf{P} \land [\mathsf{N}]_{\mathsf{QuFood}(\mathsf{loc1})} \Rightarrow (P' \lor Q'_{FollowFood}) \\ & \mathsf{WF1.312} \quad \mathsf{P} \land \langle \mathsf{N} \land A_{FollowFood} \rangle_{\mathsf{QuFood}(\mathsf{loc1})} \Rightarrow Q'_{FollowFood} \\ & \mathsf{WF1.313} \quad \mathsf{P} \Rightarrow \mathsf{Enabled} \langle A_{FollowFood} \rangle_{\mathsf{QuFood}(\mathsf{loc1})} \end{aligned}
```

WF1.31
$$\square[N]_{QuFood(loc1)} \wedge WF_{QuFood(loc1)}(A_{FollowFood}) \Rightarrow P \rightsquigarrow Q_{FollowFood}$$

Perspectives

- ☐Global properties proof under Rodin tool
- Reasoning about the convergence and resilience global properties.
- ☐ Generalizing the approach by defining design patterns in order to automate the formal development.
- □ Integration of the proposed formal framework within a SO-MAS development method.

Thank You! Questions & Feedback are Welcome