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OVERVIEW

I We introduce the logics E(G) for representing probabilistic expectation
over classes G of Łukasiewicz games.

I Based on these logics we define a new class of games where players aim
is to randomise their strategic choices in order to affect the other players’
expectations over an outcome as well as their own.

I We characterise the complexity for both the logics E(G) and the newly
introduced games.
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ŁUKASIEWICZ GAMES: OVERVIEW

E. M., M. Wooldridge. Łukasiewicz Games (2013).

I Łukasiewicz Games are inspired by, and greatly extend, Boolean games
[Harrenstein et al. 2001].

I In Boolean games each individual player strives for the satisfaction of a
goal, represented as a classical Boolean formula that encodes her payoff;

I The actions available to players correspond to valuations that can be
made to variables under their control.

I The use of Łukasiewicz logics makes it possible to more naturally
represent much richer payoff functions for players.
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ŁUKASIEWICZ LOGICS I

R. Cignoli, I. M. L. D’Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

I Language:
φ⊕ ψ | ¬φ | 0

I (Infinite-Valued Łukasiewicz Logic Ł∞) Valuations v : Var→ [0, 1]:

v(φ⊕ ψ) = min(v(φ) + v(ψ), 1) | v(¬φ) = 1− v(ψ) | e(0) = 0

I Ł∞ is complete with respect to valuations into [0, 1].

I In Ł∞ functions definable by formulas exactly coincide with the class of
continuous piecewise linear polynomial functions on [0, 1]n.
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ŁUKASIEWICZ LOGICS II

R. Cignoli, I. M. L. D’Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

I Finite-valued Łukasiewicz logics Łk have the same language as Ł∞.

I Valuations for Łk-formulas are restrictions of the Ł∞-valuations over the
set

Lk =

{
0,

1
k
, . . . ,

k− 1
k

, 1
}

I Each Łk is complete with respect to valuations into Lk.

I Łukasiewicz games are defined using the logics Łc
k, which are obtained

from Łk by adding constants c for each c ∈ Lk.

I The class of functions definable in Łc
k coincides with the set of all

functions f : (Lk)
n → Lk, for all n.
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ŁUKASIEWICZ GAMES: DEFINITION I

E. M., M. Wooldridge. Łukasiewicz Games (2013).

A Łukasiewicz game G on Łc
k is a tuple

G = 〈P,V, {Vi}, {Si}, {φi}〉

where:

1. P = {P1, . . . ,Pn} is a set of players;

2. V = {p1, p2, . . . } is a finite set of propositional variables;

3. Vi ⊆ V is the set of propositional variables under control of player Pi, so
that the sets Vi form a partition of V.
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ŁUKASIEWICZ GAMES: DEFINITION II

E. M., M. Wooldridge. Łukasiewicz Games (2013).

4. Si is the strategy set for player i that includes all valuations si : Vi → Lk

of the propositional variables in Vi, i.e.

Si = {si | si : Vi → Lk}.

5. φi(p1, . . . , pt) is an Łc
k-formula, built from variables in V, whose

associated function
fφi : (Lk)

t → Lk

corresponds to the payoff function of Pi, and whose value is determined
by the valuations in {S1, . . . ,Sn}.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

ŁUKASIEWICZ GAMES: DEFINITION II

E. M., M. Wooldridge. Łukasiewicz Games (2013).

4. Si is the strategy set for player i that includes all valuations si : Vi → Lk

of the propositional variables in Vi, i.e.

Si = {si | si : Vi → Lk}.

5. φi(p1, . . . , pt) is an Łc
k-formula, built from variables in V, whose

associated function
fφi : (Lk)

t → Lk

corresponds to the payoff function of Pi, and whose value is determined
by the valuations in {S1, . . . ,Sn}.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

EXAMPLES

I Traveler’s Dilemma.

I Auctions.

I Coordination Games.

I Matching Pennies.

I Weak-Link Games.
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ŁUKASIEWICZ GAMES: CLASSES I

Given a game G:

I A variable distribution function

δ : P→ {1, . . . ,m}

assigns to each player Pi the number of variables in Vi: i.e.: δ(Pi) = mi.

I The type of G is the triple 〈n,m, δ〉, where

1. n is the number of players,
2. m is the number of variables in V,
3. δ is the variable distribution function for G.
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ŁUKASIEWICZ GAMES: CLASSES II

I Let G and G′ be two games of type 〈n,m, δ〉 and 〈n,m, δ′〉.

I G and G′ belong to the same class G if there exists a permutation  of the
indices {1, . . . , n} such that, for all Pi,

δ
(
P(i)

)
= δ′(Pi).

I What matters is the distribution of the variables rather than which
variables are assigned to the players.
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ŁUKASIEWICZ GAMES: EXPECTED PAYOFF

I Given a game G, a mixed strategy πi for player Pi is a probability
distribution on the strategy space Si.

I Given a tuple (π1, . . . , πn) of mixed strategies for P1, . . . ,Pn, respectively,
the expected payoff for Pi of playing πi, when P−i play π−i, is given by

expϕi (πi, π−i) =
∑

~s=(s1,...,sn)∈S

 n∏
j=1

πj(sj)

 · fϕi (~s)


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LANGUAGE

Given a class of games G:

I Nonmodal formulas φ, ψ, · · · ∈ Łc
k with m propositional variables.

I Atomic modal formulas Eφ,Eψ, . . . .

I Modal formulas are build from the atomic ones with the connectives of
ŁΠ 1

2 .

I Nested modalities are not allowed.
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ŁΠ1
2

F. Esteva, L. Godo, F. Montagna. The ŁΠ and ŁΠ1/2 logics: two complete fuzzy logics joining Łukasiewicz and product logic.

ŁΠ 1
2 expands Łukasiewicz infinite-valued logic:

I Language:

φ⊕ ψ | ¬φ | 0 | φ� ψ | φ→ ψ

I Valuations v : Var→ [0, 1]:

v(φ� ψ) = v(φ) · v(ψ) | v(φ→ ψ) =

{
1 v(φ) ≤ v(ψ)
v(ψ)
v(φ)

I ŁΠ 1
2 is complete with respect to valuations into [0, 1].

I ŁΠ 1
2 is the logic of piecewise rational functions on [0, 1]n.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

ŁΠ1
2

F. Esteva, L. Godo, F. Montagna. The ŁΠ and ŁΠ1/2 logics: two complete fuzzy logics joining Łukasiewicz and product logic.

ŁΠ 1
2 expands Łukasiewicz infinite-valued logic:

I Language:

φ⊕ ψ | ¬φ | 0 | φ� ψ | φ→ ψ

I Valuations v : Var→ [0, 1]:

v(φ� ψ) = v(φ) · v(ψ) | v(φ→ ψ) =

{
1 v(φ) ≤ v(ψ)
v(ψ)
v(φ)

I ŁΠ 1
2 is complete with respect to valuations into [0, 1].

I ŁΠ 1
2 is the logic of piecewise rational functions on [0, 1]n.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

ŁΠ1
2

F. Esteva, L. Godo, F. Montagna. The ŁΠ and ŁΠ1/2 logics: two complete fuzzy logics joining Łukasiewicz and product logic.

ŁΠ 1
2 expands Łukasiewicz infinite-valued logic:

I Language:

φ⊕ ψ | ¬φ | 0 | φ� ψ | φ→ ψ

I Valuations v : Var→ [0, 1]:

v(φ� ψ) = v(φ) · v(ψ) | v(φ→ ψ) =

{
1 v(φ) ≤ v(ψ)
v(ψ)
v(φ)

I ŁΠ 1
2 is complete with respect to valuations into [0, 1].

I ŁΠ 1
2 is the logic of piecewise rational functions on [0, 1]n.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

ŁΠ1
2

F. Esteva, L. Godo, F. Montagna. The ŁΠ and ŁΠ1/2 logics: two complete fuzzy logics joining Łukasiewicz and product logic.

ŁΠ 1
2 expands Łukasiewicz infinite-valued logic:

I Language:

φ⊕ ψ | ¬φ | 0 | φ� ψ | φ→ ψ

I Valuations v : Var→ [0, 1]:

v(φ� ψ) = v(φ) · v(ψ) | v(φ→ ψ) =

{
1 v(φ) ≤ v(ψ)
v(ψ)
v(φ)

I ŁΠ 1
2 is complete with respect to valuations into [0, 1].

I ŁΠ 1
2 is the logic of piecewise rational functions on [0, 1]n.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

ŁΠ1
2

F. Esteva, L. Godo, F. Montagna. The ŁΠ and ŁΠ1/2 logics: two complete fuzzy logics joining Łukasiewicz and product logic.

ŁΠ 1
2 expands Łukasiewicz infinite-valued logic:

I Language:

φ⊕ ψ | ¬φ | 0 | φ� ψ | φ→ ψ

I Valuations v : Var→ [0, 1]:

v(φ� ψ) = v(φ) · v(ψ) | v(φ→ ψ) =

{
1 v(φ) ≤ v(ψ)
v(ψ)
v(φ)

I ŁΠ 1
2 is complete with respect to valuations into [0, 1].

I ŁΠ 1
2 is the logic of piecewise rational functions on [0, 1]n.
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SEMANTICS I

Given a class of games G, a model M for E(G) is a tuple 〈S, e, {πi}〉, such that:

1. S is the set of all strategy combinations

{~s = (s1, . . . , sn) | (s1, . . . , sn) ∈ S1 × · · · × Sn}.

2. e : (NModF× S)→ Lk is a valuation of non-modal formulas, such that,
for each ϕ ∈ NModF

e(ϕ,~s) = fϕ(~s),

where fϕ is the function associated to ϕ and~s = (s1, . . . , sn).

3. πi : Si → [0, 1] is a probability distribution, for each Pi.
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SEMANTICS II
The truth value of Φ in M at~s is defined as follows:

1. If Φ is a non-modal formula ϕ ∈ NModF, then

‖ϕ‖M,~s = e(ϕ,~s),

2. If Φ is an atomic modal formula Eϕ, then

‖Eϕ‖M,~s = expϕ(π1, . . . , πn) =
∑

~s=(s1,...,sn)∈S

 n∏
j=1

πj(sj)

 · e(ϕ,~s)
 .

3. If Φ is a non-atomic modal formula, its truth value is computed by
evaluating its atomic modal subformulas and then by using the truth
functions associated to the ŁΠ 1

2 -connectives occurring in Φ.

A modal formula Φ is satisfiable if there exists a model M such that
‖Φ‖M,~s = 1.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

SEMANTICS II
The truth value of Φ in M at~s is defined as follows:

1. If Φ is a non-modal formula ϕ ∈ NModF, then

‖ϕ‖M,~s = e(ϕ,~s),

2. If Φ is an atomic modal formula Eϕ, then

‖Eϕ‖M,~s = expϕ(π1, . . . , πn) =
∑

~s=(s1,...,sn)∈S

 n∏
j=1

πj(sj)

 · e(ϕ,~s)
 .

3. If Φ is a non-atomic modal formula, its truth value is computed by
evaluating its atomic modal subformulas and then by using the truth
functions associated to the ŁΠ 1

2 -connectives occurring in Φ.

A modal formula Φ is satisfiable if there exists a model M such that
‖Φ‖M,~s = 1.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

SEMANTICS II
The truth value of Φ in M at~s is defined as follows:

1. If Φ is a non-modal formula ϕ ∈ NModF, then

‖ϕ‖M,~s = e(ϕ,~s),

2. If Φ is an atomic modal formula Eϕ, then

‖Eϕ‖M,~s = expϕ(π1, . . . , πn) =
∑

~s=(s1,...,sn)∈S

 n∏
j=1

πj(sj)

 · e(ϕ,~s)
 .

3. If Φ is a non-atomic modal formula, its truth value is computed by
evaluating its atomic modal subformulas and then by using the truth
functions associated to the ŁΠ 1

2 -connectives occurring in Φ.

A modal formula Φ is satisfiable if there exists a model M such that
‖Φ‖M,~s = 1.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

SEMANTICS II
The truth value of Φ in M at~s is defined as follows:

1. If Φ is a non-modal formula ϕ ∈ NModF, then

‖ϕ‖M,~s = e(ϕ,~s),

2. If Φ is an atomic modal formula Eϕ, then

‖Eϕ‖M,~s = expϕ(π1, . . . , πn) =
∑

~s=(s1,...,sn)∈S

 n∏
j=1

πj(sj)

 · e(ϕ,~s)
 .

3. If Φ is a non-atomic modal formula, its truth value is computed by
evaluating its atomic modal subformulas and then by using the truth
functions associated to the ŁΠ 1

2 -connectives occurring in Φ.

A modal formula Φ is satisfiable if there exists a model M such that
‖Φ‖M,~s = 1.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

SEMANTICS II
The truth value of Φ in M at~s is defined as follows:

1. If Φ is a non-modal formula ϕ ∈ NModF, then

‖ϕ‖M,~s = e(ϕ,~s),

2. If Φ is an atomic modal formula Eϕ, then

‖Eϕ‖M,~s = expϕ(π1, . . . , πn) =
∑

~s=(s1,...,sn)∈S

 n∏
j=1

πj(sj)

 · e(ϕ,~s)
 .

3. If Φ is a non-atomic modal formula, its truth value is computed by
evaluating its atomic modal subformulas and then by using the truth
functions associated to the ŁΠ 1

2 -connectives occurring in Φ.

A modal formula Φ is satisfiable if there exists a model M such that
‖Φ‖M,~s = 1.



Łukasiewicz Games The Logics E(G) Games with Expectations Complexity

AXIOMATIZATION

1. All the Łc
k-tautologies in the variables p1, . . . , pm, for non-modal

formulas.

2. All the ŁΠ 1
2 -axioms and rules for modal formulas.

3. Probabilistic axioms for E, with ϕ,ψ, r ∈ NModF:

3.1 E(¬ϕ)↔ ¬Eϕ
3.2 E(ϕ⊕ ψ)↔ [(Eϕ→ E(ϕ&ψ))→ Eψ]
3.3 Er↔ r

4. Independence axioms for E, where p1i , . . . , pmi is the tuple of variables
assigned to Pi, for all tuples r11 , . . . , rm1 , . . . , r1n , . . . , rmn ∈ (Lk)

m:

4.1 E
(∧n

i=1

(∧mi
ji=1i

(
∆
(
pji ↔ rji

))))
↔
⊙n

i=1

(
E
(∧mi

ji=1i
∆
(
pji ↔ rji

)))
5. The following inference rules for E, with ϕ,ψ ∈ NModF:

5.1 Necessitation: from ϕ derive Eϕ
5.2 Monotonicity: from ϕ→ ψ derive Eϕ→ Eψ
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FUNCTIONAL REPRESENTATION

Let G be a class of Łukasiewicz games on Łc
k and let mŁc

k be the m-variable
fragment of Łc

k. The following statements are equivalent:

1. There exists a state σ : mŁc
k → [0, 1] such that for all tuples

r11 , . . . , rm1 , . . . , r1n , . . . , rmn ∈ (Lk)
m

σ

 n∧
i=1

 mi∧
ji=1i

(
∆
(
pji ↔ rji

)) =

n∏
i=1

σ
 mi∧

ji=1i

∆
(
pji ↔ rji

) ,

where p1i , . . . , pmi is the tuple of variables assigned to Pi.

2. There exists a probability distribution πi : Si → [0, 1] for each Pi, such
that, for all ϕ ∈ mŁc

k,

σ(ϕ) = expϕ(π1, . . . , πn).
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COMPLETENESS

Let Γ and Φ be a finite modal theory and a modal formula in E(G).

The following statements are equivalent:

1. Γ `E(G) Φ.

2. For every model M such that, for each Ψ ∈ Γ,

‖Ψ‖M = 1,

also
‖Φ‖M = 1.
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GAMES WITH EXPECTATIONS

A game with expectations EG on E(G) is a tuple

EG = 〈P,V, {Vi}, {Si}, {ϕi}, {Mi}, {Φi}〉,

where:

1. G = 〈P,V, {Vi}, {Si}, {ϕi}〉 is a Łukasiewicz game on Łc
k, with G ∈ G,

2. Mi is the set of all mixed strategies on Si of player Pi,

3. Φi is an E(G)-formula such that every atomic modal formula occurring
in Φi has the form Eψ, with ψ ∈ {ϕ1, . . . , ϕn}.
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EQUILIBRIA

I Let EG be a game with expectations on E(G).

I A model M = 〈S, e, {πi}〉 for E(G) is called a best response model for a
player Pi whenever, for all models M′ = 〈S, e, {π′i}〉with π′−i = π−i,

‖Φi‖M′ ≤ ‖Φi‖M.

I A game with expectations EG on E(G) is said to have a Nash Equilibrium,
whenever there exists a model M∗ that is a best response model for each
player Pi.
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EXAMPLE I

I Let EG be any game with expectations where each Pi is simply assigned
the formula Eϕi.

I This game corresponds to the the situation where each player cares only
about her own expectation and whose goal is its maximisation.

I By Nash’s Theorem, every EG of this form admits an Equilibrium
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EXAMPLE II

I Consider the game

EG = 〈P,V, {Vi}, {Si}, {ϕi}, {Mi}, {Φi}〉,

with i ∈ {1, 2}, where:

1. ϕ1 := p1 and ϕ2 := p2, and
2. Φ1 := ¬d(E(p1),E(p2)) and Φ2 := d(E(p1),E(p2)).

I The above game can be regarded as a particular version of Matching
Pennies with expectations.

I While P1 aims at matching P2’s expectation, P2’s goal is quite the
opposite, since she wants their expectations to be as far as possible.

I There is no model M that gives an equilibrium for EG .
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Pennies with expectations.

I While P1 aims at matching P2’s expectation, P2’s goal is quite the
opposite, since she wants their expectations to be as far as possible.

I There is no model M that gives an equilibrium for EG .
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COMPLEXITY I

I We make use of the first-order theory of real closed fields Th(R).

I A (quantified) formula in the language of ordered fields 〈+,−, ·, 0, 1, <〉
is a Boolean combination of polynomial equalities and inequalities with
rational coefficients.

I Deciding if a sentence in the language of ordered fields holds in Th(R)
requires time singly exponential in the number of variables and doubly
exponential in the number of quantifier alternations.

I Deciding if an existential sentence in the langue of ordered fields holds
in Th(R) is in PSPACE.
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COMPLEXITY II

I E(G)-formulas can be translated into formulas of the first-order theory
of real closed fields Th(R).

I This translation requires an exponential number of variables.

I The satisfiabiity of an E(G)-formula is equivalent to the validity of an
existential sentence in Th(R).

I Checking satisfiability for an E(G)-formula is in EXPSPACE.

I Given a game with expectations, the existence of an equilibrium can be
expressed through a sentence of Th(R) with a fixed alternation of
quantifiers.

I Checking the existence of an equilibrium for a game with expectation is
in 2-EXPTIME.
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THANKS!
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