| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

# LOGICS FOR NON-COOPERATIVE GAMES WITH EXPECTATIONS

#### Lluís Godo

Artificial Intelligence Research Institute - IIIA Spanish National Research Council - CSIC, Spain

#### ENRICO MARCHIONI

Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier, France

#### **EUMAS 2013**

12-13 December 2013

Toulouse, France

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

< □ > < @ > < E > < E > E のQ@

## OUTLINE

Łukasiewicz Games Basic Definitions

The Logics  $\mathsf{E}(\mathfrak{G})$ The Logics  $\mathsf{E}(\mathfrak{G})$ 

Games with Expectations Games with Expectations

Complexity Complexity

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| •000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## OUTLINE

Łukasiewicz Games Basic Definitions

The Logics E(&) The Logics E(&)

Games with Expectations Games with Expectations

Complexity Complexity

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-------------------------------|----------------------------------|--------------------|
|                                 |                               |                                  |                    |
|                                 |                               |                                  |                    |

### **OVERVIEW**

 We introduce the logics E(G) for representing probabilistic expectation over classes G of Łukasiewicz games.

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-------------------------------|----------------------------------|--------------------|
|                                 |                               |                                  |                    |
|                                 |                               |                                  |                    |

#### **OVERVIEW**

- We introduce the logics E(G) for representing probabilistic expectation over classes G of Łukasiewicz games.
- Based on these logics we define a new class of games where players aim is to randomise their strategic choices in order to affect the other players' expectations over an outcome as well as their own.

< □ > < @ > < E > < E > E のQ@

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-------------------------------|----------------------------------|--------------------|
|                                 |                               |                                  |                    |
|                                 |                               |                                  |                    |

## **OVERVIEW**

- We introduce the logics E(G) for representing probabilistic expectation over classes G of Łukasiewicz games.
- Based on these logics we define a new class of games where players aim is to randomise their strategic choices in order to affect the other players' expectations over an outcome as well as their own.
- ► We characterise the complexity for both the logics E(𝔅) and the newly introduced games.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

< □ > < @ > < E > < E > E のQ@

 Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Harrenstein et al. 2001].

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Harrenstein et al. 2001].
- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Harrenstein et al. 2001].
- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;
- The actions available to players correspond to valuations that can be made to variables under their control.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

- ► Łukasiewicz Games are inspired by, and greatly extend, Boolean games [Harrenstein et al. 2001].
- In Boolean games each individual player strives for the satisfaction of a goal, represented as a classical Boolean formula that encodes her payoff;
- The actions available to players correspond to valuations that can be made to variables under their control.
- The use of Łukasiewicz logics makes it possible to more naturally represent much richer payoff functions for players.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |
|                   |                   |                         |            |

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

(ロ)



 $\phi \oplus \psi \quad | \quad \neg \phi \quad | \quad \overline{0}$ 

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |
|                   |                   |                         |            |

т

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

► Language: 
$$\phi \oplus \psi \mid \neg \phi \mid \overline{0}$$

► (Infinite-Valued Łukasiewicz Logic  $\mathcal{L}_{\infty}$ ) Valuations  $v : Var \to [0, 1]$ :  $v(\phi \oplus \psi) = \min(v(\phi) + v(\psi), 1) \quad | \quad v(\neg \phi) = 1 - v(\psi) \quad | \quad e(\overline{0}) = 0$ 

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |
|                   |                   |                         |            |

т

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

• Language: 
$$\phi \oplus \psi \mid \neg \phi \mid \overline{0}$$

- ► (Infinite-Valued Łukasiewicz Logic  $\mathcal{L}_{\infty}$ ) Valuations  $v : Var \to [0, 1]$ :  $v(\phi \oplus \psi) = \min(v(\phi) + v(\psi), 1) \quad | \quad v(\neg \phi) = 1 - v(\psi) \quad | \quad e(\overline{0}) = 0$
- ▶ Ł<sub>∞</sub> is complete with respect to valuations into [0, 1].

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |
|                   |                   |                         |            |

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

- ► Language:  $\phi \oplus \psi \mid \neg \phi \mid \overline{0}$
- ► (Infinite-Valued Łukasiewicz Logic  $\mathcal{L}_{\infty}$ ) Valuations  $v : Var \to [0, 1]$ :  $v(\phi \oplus \psi) = \min(v(\phi) + v(\psi), 1) \quad | \quad v(\neg \phi) = 1 - v(\psi) \quad | \quad e(\overline{0}) = 0$
- ▶ L<sub>∞</sub> is complete with respect to valuations into [0, 1].
- ► In Ł∞ functions definable by formulas exactly coincide with the class of continuous piecewise linear polynomial functions on [0, 1]<sup>n</sup>.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |
|                   |                   |                         |            |

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

(ロ)

• Finite-valued Łukasiewicz logics  $L_k$  have the same language as  $L_{\infty}$ .

| Lukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
|                   | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

(ロ)

- Finite-valued Łukasiewicz logics  $L_k$  have the same language as  $L_{\infty}$ .
- ► Valuations for Ł<sub>k</sub>-formulas are restrictions of the L<sub>∞</sub>-valuations over the set

$$L_k = \left\{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\right\}$$

| Lukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
|                   | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

- Finite-valued Łukasiewicz logics  $L_k$  have the same language as  $L_{\infty}$ .
- ► Valuations for Ł<sub>k</sub>-formulas are restrictions of the L<sub>∞</sub>-valuations over the set

$$L_k = \left\{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\right\}$$

• Each  $\mathcal{L}_k$  is complete with respect to valuations into  $L_k$ .

| Lukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
|                   | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Finite-valued Łukasiewicz logics  $L_k$  have the same language as  $L_{\infty}$ .
- ► Valuations for Ł<sub>k</sub>-formulas are restrictions of the Ł<sub>∞</sub>-valuations over the set

$$L_k = \left\{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\right\}$$

- Each  $\mathcal{L}_k$  is complete with respect to valuations into  $L_k$ .
- ► Łukasiewicz games are defined using the logics  $L_k^c$ , which are obtained from  $L_k$  by adding constants  $\overline{c}$  for each  $c \in L_k$ .

| Lukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
|                   | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

R. Cignoli, I. M. L. D'Ottaviano, D. Mundici. Algebraic Foundations of Many-alued Reasoning

- ▶ Finite-valued Łukasiewicz logics Ł<sub>k</sub> have the same language as Ł<sub>∞</sub>.
- ► Valuations for Ł<sub>k</sub>-formulas are restrictions of the Ł<sub>∞</sub>-valuations over the set

$$L_k = \left\{0, \frac{1}{k}, \dots, \frac{k-1}{k}, 1\right\}$$

- Each  $\mathcal{L}_k$  is complete with respect to valuations into  $L_k$ .
- ► Łukasiewicz games are defined using the logics  $L_k^c$ , which are obtained from  $L_k$  by adding constants  $\overline{c}$  for each  $c \in L_k$ .
- ► The class of functions definable in Ł<sup>c</sup><sub>k</sub> coincides with the set of all functions f : (L<sub>k</sub>)<sup>n</sup> → L<sub>k</sub>, for all n.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### A Łukasiewicz game $\mathcal{G}$ on $\mathbb{L}_k^c$ is a tuple

 $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\} \rangle$ 

where:

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

#### A Łukasiewicz game $\mathcal{G}$ on $\mathbb{L}_k^c$ is a tuple

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\} \rangle$$

where:

1.  $P = \{P_1, ..., P_n\}$  is a set of *players*;

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

#### A Łukasiewicz game $\mathcal{G}$ on $\mathbb{L}_k^c$ is a tuple

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\} \rangle$$

where:

- 1.  $\mathbf{P} = \{P_1, \ldots, P_n\}$  is a set of *players*;
- 2.  $V = \{p_1, p_2, ...\}$  is a finite set of propositional variables;

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

#### A Łukasiewicz game $\mathcal{G}$ on $\mathbb{L}_k^c$ is a tuple

$$\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\phi_i\} \rangle$$

where:

- 1.  $P = \{P_1, ..., P_n\}$  is a set of *players*;
- 2.  $V = \{p_1, p_2, ...\}$  is a finite set of propositional variables;
- 3.  $V_i \subseteq V$  is the set of propositional variables under control of player  $P_i$ , so that the sets  $V_i$  form a partition of V.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

4. S<sub>i</sub> is the strategy set for player *i* that includes all valuations  $s_i : V_i \rightarrow L_k$  of the propositional variables in V<sub>i</sub>, i.e.

$$\mathbf{S}_i = \{ s_i \mid s_i : \mathbf{V}_i \to L_k \}.$$

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

E. M., M. Wooldridge. Łukasiewicz Games (2013).

4. S<sub>i</sub> is the strategy set for player *i* that includes all valuations  $s_i : V_i \rightarrow L_k$  of the propositional variables in V<sub>i</sub>, i.e.

$$\mathbf{S}_i = \{ s_i \mid s_i : \mathbf{V}_i \to L_k \}.$$

5.  $\phi_i(p_1, \ldots, p_i)$  is an  $\mathcal{L}_k^c$ -formula, built from variables in V, whose associated function

$$f_{\phi_i}: (L_k)^t \to L_k$$

corresponds to the *payoff function* of  $P_i$ , and whose value is determined by the valuations in  $\{S_1, \ldots, S_n\}$ .

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 00000000000       | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

< □ > < @ > < E > < E > E のQ@

## EXAMPLES

- ► Traveler's Dilemma.
- ► Auctions.
- Coordination Games.
- Matching Pennies.
- ► Weak-Link Games.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 00000000000       | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

# ŁUKASIEWICZ GAMES: CLASSES I

Given a game  $\mathcal{G}$ :

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 00000000000       | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

## ŁUKASIEWICZ GAMES: CLASSES I

Given a game  $\mathcal{G}$ :

A variable distribution function

 $\delta: \mathsf{P} \to \{1, \ldots, m\}$ 

assigns to each player  $P_i$  the number of variables in  $V_i$ : i.e.:  $\delta(P_i) = m_i$ .

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 00000000000       | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

## ŁUKASIEWICZ GAMES: CLASSES I

Given a game  $\mathcal{G}$ :

A variable distribution function

$$\delta: \mathbf{P} \to \{1, \ldots, m\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

assigns to each player  $P_i$  the number of variables in  $V_i$ : i.e.:  $\delta(P_i) = m_i$ .

- The *type* of  $\mathcal{G}$  is the triple  $\langle n, m, \delta \rangle$ , where
  - 1. *n* is the number of players,
  - 2. *m* is the number of variables in V,
  - 3.  $\delta$  is the variable distribution function for G.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

< □ > < @ > < E > < E > E のQ@

## ŁUKASIEWICZ GAMES: CLASSES II

• Let  $\mathcal{G}$  and  $\mathcal{G}'$  be two games of type  $\langle n, m, \delta \rangle$  and  $\langle n, m, \delta' \rangle$ .

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

# ŁUKASIEWICZ GAMES: CLASSES II

- Let  $\mathcal{G}$  and  $\mathcal{G}'$  be two games of type  $\langle n, m, \delta \rangle$  and  $\langle n, m, \delta' \rangle$ .
- G and G' belong to the same class 𝔅 if there exists a permutation 𝔅 of the indices {1,..., 𝑘} such that, for all 𝑘<sub>i</sub>,

$$\delta\left(P_{j(i)}\right) = \delta'(P_i).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

## ŁUKASIEWICZ GAMES: CLASSES II

- Let  $\mathcal{G}$  and  $\mathcal{G}'$  be two games of type  $\langle n, m, \delta \rangle$  and  $\langle n, m, \delta' \rangle$ .
- G and G' belong to the same class 𝔅 if there exists a permutation 𝔅 of the indices {1,..., 𝑘} such that, for all 𝑘<sub>i</sub>,

$$\delta\left(P_{j(i)}\right) = \delta'(P_i).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 What matters is the distribution of the variables rather than which variables are assigned to the players.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

## ŁUKASIEWICZ GAMES: EXPECTED PAYOFF

Given a game *G*, a *mixed strategy* π<sub>i</sub> for player P<sub>i</sub> is a probability distribution on the strategy space S<sub>i</sub>.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

## ŁUKASIEWICZ GAMES: EXPECTED PAYOFF

- Given a game *G*, a *mixed strategy* π<sub>i</sub> for player P<sub>i</sub> is a probability distribution on the strategy space S<sub>i</sub>.
- ► Given a tuple (π<sub>1</sub>,...,π<sub>n</sub>) of mixed strategies for P<sub>1</sub>,..., P<sub>n</sub>, respectively, the *expected payoff* for P<sub>i</sub> of playing π<sub>i</sub>, when P<sub>-i</sub> play π<sub>-i</sub>, is given by

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 000000000         | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

## ŁUKASIEWICZ GAMES: EXPECTED PAYOFF

- Given a game *G*, a *mixed strategy* π<sub>i</sub> for player P<sub>i</sub> is a probability distribution on the strategy space S<sub>i</sub>.
- ► Given a tuple (π<sub>1</sub>,...,π<sub>n</sub>) of mixed strategies for P<sub>1</sub>,..., P<sub>n</sub>, respectively, the *expected payoff* for P<sub>i</sub> of playing π<sub>i</sub>, when P<sub>-i</sub> play π<sub>-i</sub>, is given by

$$exp_{\varphi_i}(\pi_i, \pi_{-i}) = \sum_{\vec{s}=(s_1, \dots, s_n) \in \mathsf{S}} \left( \left( \prod_{j=1}^n \pi_j(s_j) \right) \cdot f_{\varphi_i}\left(\vec{s}\right) \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |
|                   |                   |                         |            |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## OUTLINE

Łukasiewicz Games Basic Definitions

 $\begin{array}{l} \text{The Logics } \mathsf{E}(\mathfrak{G}) \\ \text{The Logics } \mathsf{E}(\mathfrak{G}) \end{array}$ 

Games with Expectations Games with Expectations

Complexity Complexity

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

Given a class of games &:

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

Given a class of games &:

▶ Nonmodal formulas  $\phi$ ,  $\psi$ ,  $\cdots \in L_k^c$  with *m* propositional variables.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

Given a class of games  $\mathfrak{G}$ :

▶ Nonmodal formulas  $\phi$ ,  $\psi$ ,  $\cdots \in \mathbb{E}_k^c$  with *m* propositional variables.

• Atomic modal formulas  $\mathsf{E}\phi, \mathsf{E}\psi, \ldots$ 

| 000000000 <b>000000</b> 00000 0000 | Łukasiewicz Games | The Logics $E(\mathfrak{G})$ | Games with Expectations | Complexity |
|------------------------------------|-------------------|------------------------------|-------------------------|------------|
|                                    | 0000000000        | 0000000                      | 00000                   | 0000       |

Given a class of games  $\mathfrak{G}$ :

- ▶ Nonmodal formulas  $\phi$ ,  $\psi$ ,  $\cdots \in L_k^c$  with *m* propositional variables.
- Atomic modal formulas  $\mathsf{E}\phi, \mathsf{E}\psi, \ldots$
- Modal formulas are build from the atomic ones with the connectives of  $L\Pi^{\frac{1}{2}}$ .

< □ > < @ > < E > < E > E のQ@

| 000000000 <b>000000</b> 00000 0000 | Łukasiewicz Games | The Logics $E(\mathfrak{G})$ | Games with Expectations | Complexity |
|------------------------------------|-------------------|------------------------------|-------------------------|------------|
|                                    | 0000000000        | 0000000                      | 00000                   | 0000       |

Given a class of games  $\mathfrak{G}$ :

- ▶ Nonmodal formulas  $\phi$ ,  $\psi$ ,  $\cdots \in L_k^c$  with *m* propositional variables.
- Atomic modal formulas  $\mathsf{E}\phi, \mathsf{E}\psi, \ldots$
- Modal formulas are build from the atomic ones with the connectives of  $L\Pi^{\frac{1}{2}}$ .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Nested modalities are not allowed.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |
|                   |                   |                         |            |

# $L\Pi^1_{\overline{2}}$

 $F. Esteva, L. Godo, F. Montagna. The <math>L\Pi$  and  $L\Pi 1/2$  logics: two complete fuzzy logics joining Lukasiewicz and product logic.

### $L\Pi^{\frac{1}{2}}$ expands Łukasiewicz infinite-valued logic:

| Łukasiewicz Games<br>0000000000 | The Logics E( 𝔅 )<br>00●00000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-------------------------------|----------------------------------|--------------------|
|                                 |                               |                                  |                    |
|                                 |                               |                                  |                    |

# $L\Pi^1_2$

F. Esteva, L. Godo, F. Montagna. The ŁII and ŁII1/2 logics: two complete fuzzy logics joining Łukasiewicz and product logic.

#### $L\Pi_{\frac{1}{2}}$ expands Łukasiewicz infinite-valued logic:

► Language:

 $\phi \oplus \psi \quad | \quad \neg \phi \quad | \quad \overline{0} \quad | \quad \phi \odot \psi \quad | \quad \phi \rightarrow \psi$ 



| Łukasiewicz Games<br>0000000000 | The Logics E( 𝔅 )<br>00●00000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-------------------------------|----------------------------------|--------------------|
|                                 |                               |                                  |                    |
|                                 |                               |                                  |                    |

# $L\Pi \tfrac{1}{2}$

 $F. Esteva, L. Godo, F. Montagna. The <math>\pm\Pi$  and  $\pm\Pi1/2$  logics: two complete fuzzy logics joining  $\pm$ ukasiewicz and product logic.

#### $L\Pi_{2}^{1}$ expands Łukasiewicz infinite-valued logic:

► Language:

$$\phi \oplus \psi \quad | \quad \neg \phi \quad | \quad \overline{0} \quad | \quad \phi \odot \psi \quad | \quad \phi \to \psi$$

• Valuations  $v : Var \rightarrow [0, 1]$ :

$$v(\phi \odot \psi) = v(\phi) \cdot v(\psi) \quad | \quad v(\phi \to \psi) = \begin{cases} 1 & v(\phi) \le v(\psi) \\ \frac{v(\psi)}{v(\phi)} & \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

| Łukasiewicz Games<br>0000000000 | The Logics E( 𝔅 )<br>00●00000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-------------------------------|----------------------------------|--------------------|
|                                 |                               |                                  |                    |
|                                 |                               |                                  |                    |

# $L\Pi^1_{\overline{2}}$

F. Esteva, L. Godo, F. Montagna. The ŁII and ŁII1/2 logics: two complete fuzzy logics joining Łukasiewicz and product logic.

#### $L\Pi_{2}^{\frac{1}{2}}$ expands Łukasiewicz infinite-valued logic:

► Language:

$$\phi \oplus \psi \quad | \quad \neg \phi \quad | \quad \overline{0} \quad | \quad \phi \odot \psi \quad | \quad \phi \to \psi$$

• Valuations  $v : Var \rightarrow [0, 1]$ :

$$v(\phi \odot \psi) = v(\phi) \cdot v(\psi) \quad | \quad v(\phi \to \psi) = \begin{cases} 1 & v(\phi) \le v(\psi) \\ \frac{v(\psi)}{v(\phi)} & \end{cases}$$

(ロ)

•  $L\Pi_{\frac{1}{2}}$  is complete with respect to valuations into [0, 1].

| Łukasiewicz Games<br>0000000000 | The Logics E(𝔅)<br>00●00000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-----------------------------|----------------------------------|--------------------|
|                                 |                             |                                  |                    |
|                                 |                             |                                  |                    |

# $L\Pi^1_{\overline{2}}$

#### $L\Pi_{2}^{\frac{1}{2}}$ expands Łukasiewicz infinite-valued logic:

► Language:

$$\phi \oplus \psi \quad | \quad \neg \phi \quad | \quad \overline{0} \quad | \quad \phi \odot \psi \quad | \quad \phi \to \psi$$

• Valuations  $v : Var \rightarrow [0, 1]$ :

$$v(\phi \odot \psi) = v(\phi) \cdot v(\psi) \quad | \quad v(\phi \to \psi) = \begin{cases} 1 & v(\phi) \le v(\psi) \\ \frac{v(\psi)}{v(\phi)} & \end{cases}$$

- $L\Pi_{\frac{1}{2}}$  is complete with respect to valuations into [0, 1].
- $L\Pi_{\frac{1}{2}}$  is the logic of piecewise rational functions on  $[0, 1]^n$ .

| Łukasiewicz Games | The Logics E(𝔅) | Games with Expectations | Complexity |
|-------------------|-----------------|-------------------------|------------|
| 0000000000        | 000●0000        | 00000                   | 0000       |
|                   |                 |                         |            |

## Given a class of games $\mathfrak{G}$ , a model **M** for $\mathsf{E}(\mathfrak{G})$ is a tuple $(\mathsf{S}, e, \{\pi_i\})$ , such that:

| Łukasiewicz Games<br>0000000000 | The Logics E(𝔅)<br>000●0000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-----------------------------|----------------------------------|--------------------|
|                                 |                             |                                  | (                  |
|                                 |                             |                                  |                    |

Given a class of games  $\mathfrak{G}$ , a model **M** for  $\mathsf{E}(\mathfrak{G})$  is a tuple  $(\mathsf{S}, e, \{\pi_i\})$ , such that:

1. S is the set of all strategy combinations

 $\{\vec{s} = (s_1,\ldots,s_n) \mid (s_1,\ldots,s_n) \in \mathbf{S}_1 \times \cdots \times \mathbf{S}_n\}.$ 

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 < つ < c</li>

| Łukasiewicz Games<br>0000000000 | The Logics E(𝔅)<br>000●0000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-----------------------------|----------------------------------|--------------------|
|                                 |                             |                                  |                    |
|                                 |                             |                                  |                    |

Given a class of games  $\mathfrak{G}$ , a model **M** for  $\mathsf{E}(\mathfrak{G})$  is a tuple  $(\mathsf{S}, e, \{\pi_i\})$ , such that:

1. S is the set of all strategy combinations

$$\{\vec{s} = (s_1,\ldots,s_n) \mid (s_1,\ldots,s_n) \in \mathbf{S}_1 \times \cdots \times \mathbf{S}_n\}.$$

2.  $e : (NModF \times S) \rightarrow L_k$  is a valuation of non-modal formulas, such that, for each  $\varphi \in NModF$ 

$$e(\varphi, \vec{s}) = f_{\varphi}(\vec{s}),$$

where  $f_{\varphi}$  is the function associated to  $\varphi$  and  $\vec{s} = (s_1, \ldots, s_n)$ .

| Łukasiewicz Games<br>0000000000 | The Logics E(𝔅)<br>000●0000 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-----------------------------|----------------------------------|--------------------|
|                                 |                             |                                  |                    |
|                                 |                             |                                  |                    |

Given a class of games  $\mathfrak{G}$ , a model **M** for  $\mathsf{E}(\mathfrak{G})$  is a tuple  $(\mathsf{S}, e, \{\pi_i\})$ , such that:

1. S is the set of all strategy combinations

$$\{\vec{s} = (s_1,\ldots,s_n) \mid (s_1,\ldots,s_n) \in \mathbf{S}_1 \times \cdots \times \mathbf{S}_n\}.$$

2.  $e : (\text{NModF} \times \text{S}) \rightarrow L_k$  is a valuation of non-modal formulas, such that, for each  $\varphi \in \text{NModF}$ 

$$e(\varphi, \vec{s}) = f_{\varphi}(\vec{s}),$$

< □ > < @ > < E > < E > E のQ@

where  $f_{\varphi}$  is the function associated to  $\varphi$  and  $\vec{s} = (s_1, \ldots, s_n)$ .

3.  $\pi_i : S_i \to [0, 1]$  is a probability distribution, for each  $P_i$ .

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

The truth value of  $\Phi$  in **M** at  $\vec{s}$  is defined as follows:

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

The truth value of  $\Phi$  in **M** at  $\vec{s}$  is defined as follows:

1. If  $\Phi$  is a non-modal formula  $\varphi \in \mathsf{NModF}$ , then

 $\|\varphi\|_{\mathbf{M},\vec{s}} = e(\varphi,\vec{s}),$ 

< □ > < @ > < E > < E > E のQ@

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

The truth value of  $\Phi$  in **M** at  $\vec{s}$  is defined as follows:

1. If  $\Phi$  is a non-modal formula  $\varphi \in \mathsf{NModF}$ , then

$$\|\varphi\|_{\mathbf{M},\vec{s}} = e(\varphi,\vec{s}),$$

2. If  $\Phi$  is an atomic modal formula  $\mathsf{E}\varphi$ , then

$$\|\mathsf{E}\varphi\|_{\mathbf{M},\vec{s}} = exp_{\varphi}(\pi_1,\ldots,\pi_n) = \sum_{\vec{s}=(s_1,\ldots,s_n)\in\mathsf{S}} \left( \left(\prod_{j=1}^n \pi_j(s_j)\right) \cdot e(\varphi,\vec{s}) \right).$$

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

The truth value of  $\Phi$  in **M** at  $\vec{s}$  is defined as follows:

1. If  $\Phi$  is a non-modal formula  $\varphi \in \mathsf{NModF}$ , then

$$\|\varphi\|_{\mathbf{M},\vec{s}} = e(\varphi,\vec{s}),$$

2. If  $\Phi$  is an atomic modal formula  $\mathsf{E}\varphi$ , then

$$\|\mathsf{E}\varphi\|_{\mathbf{M},\vec{s}} = exp_{\varphi}(\pi_1,\ldots,\pi_n) = \sum_{\vec{s}=(s_1,\ldots,s_n)\in\mathsf{S}} \left( \left(\prod_{j=1}^n \pi_j(s_j)\right) \cdot e(\varphi,\vec{s}) \right).$$

3. If  $\Phi$  is a non-atomic modal formula, its truth value is computed by evaluating its atomic modal subformulas and then by using the truth functions associated to the  $L\Pi^{1}_{2}$ -connectives occurring in  $\Phi$ .

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

The truth value of  $\Phi$  in **M** at  $\vec{s}$  is defined as follows:

1. If  $\Phi$  is a non-modal formula  $\varphi \in \mathsf{NModF}$ , then

$$\|\varphi\|_{\mathbf{M},\vec{s}} = e(\varphi,\vec{s}),$$

2. If  $\Phi$  is an atomic modal formula  $\mathsf{E}\varphi$ , then

$$\|\mathsf{E}\varphi\|_{\mathbf{M},\vec{s}} = exp_{\varphi}(\pi_1,\ldots,\pi_n) = \sum_{\vec{s}=(s_1,\ldots,s_n)\in\mathsf{S}} \left( \left(\prod_{j=1}^n \pi_j(s_j)\right) \cdot e(\varphi,\vec{s}) \right).$$

3. If  $\Phi$  is a non-atomic modal formula, its truth value is computed by evaluating its atomic modal subformulas and then by using the truth functions associated to the  $L\Pi_{2}^{1}$ -connectives occurring in  $\Phi$ .

A modal formula  $\Phi$  is satisfiable if there exists a model **M** such that  $\|\Phi\|_{\mathbf{M},\vec{s}} = 1.$ 

| Łukasiewicz Games | The Logics E(𝔅) | Games with Expectations | Complexity |
|-------------------|-----------------|-------------------------|------------|
| 0000000000        | 00000●00        | 00000                   | 0000       |
|                   |                 |                         |            |

1. All the  $L_k^c$ -tautologies in the variables  $p_1, \ldots, p_m$ , for non-modal formulas.

| Łukasiewicz Games | The Logics E(𝔅) | Games with Expectations | Complexity |
|-------------------|-----------------|-------------------------|------------|
| 0000000000        | 00000●00        | 00000                   | 0000       |
|                   |                 |                         |            |

- 1. All the  $L_k^c$ -tautologies in the variables  $p_1, \ldots, p_m$ , for non-modal formulas.
- 2. All the  $L\Pi^{1}_{2}$ -axioms and rules for modal formulas.

| Łukasiewicz Games<br>0000000000 | The Logics E(𝔅)<br>00000●00 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-----------------------------|----------------------------------|--------------------|
|                                 |                             |                                  |                    |
|                                 |                             |                                  |                    |

- 1. All the  $\mathcal{L}_k^c$ -tautologies in the variables  $p_1, \ldots, p_m$ , for non-modal formulas.
- 2. All the  $L\Pi^{1}_{2}$ -axioms and rules for modal formulas.
- 3. Probabilistic axioms for E, with  $\varphi, \psi, \overline{r} \in NModF$ :

$$\begin{array}{l} 3.1 \ \mathsf{E}(\neg \varphi) \leftrightarrow \neg \mathsf{E}\varphi \\ 3.2 \ \mathsf{E}(\varphi \oplus \psi) \leftrightarrow [(\mathsf{E}\varphi \to \mathsf{E}(\varphi \& \psi)) \to \mathsf{E}\psi] \\ 3.3 \ \mathsf{E}\bar{r} \leftrightarrow \bar{r} \end{array}$$

| Łukasiewicz Games<br>0000000000 | The Logics E(𝔅)<br>00000●00 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-----------------------------|----------------------------------|--------------------|
|                                 |                             |                                  |                    |
|                                 |                             |                                  |                    |

- 1. All the  $\mathcal{L}_k^c$ -tautologies in the variables  $p_1, \ldots, p_m$ , for non-modal formulas.
- 2. All the  $L\Pi^{\frac{1}{2}}$ -axioms and rules for modal formulas.
- 3. Probabilistic axioms for E, with  $\varphi, \psi, \bar{r} \in NModF$ :

$$\begin{array}{l} 3.1 \ \mathsf{E}(\neg \varphi) \leftrightarrow \neg \mathsf{E}\varphi \\ 3.2 \ \mathsf{E}(\varphi \oplus \psi) \leftrightarrow [(\mathsf{E}\varphi \to \mathsf{E}(\varphi \& \psi)) \to \mathsf{E}\psi] \\ 3.3 \ \mathsf{E}\bar{r} \leftrightarrow \bar{r} \end{array}$$

4. Independence axioms for E, where  $p_{1_i}, \ldots, p_{m_i}$  is the tuple of variables assigned to  $P_i$ , for all tuples  $r_{1_1}, \ldots, r_{m_1}, \ldots, r_{1_n}, \ldots, r_{m_n} \in (L_k)^m$ :

4.1 
$$\mathsf{E}\left(\bigwedge_{i=1}^{m}\left(\bigwedge_{j_{i}=1_{i}}^{m_{i}}\left(\Delta\left(p_{j_{i}}\leftrightarrow\bar{r}_{j_{i}}\right)\right)\right)\right)\leftrightarrow\bigcirc_{i=1}^{n}\left(\mathsf{E}\left(\bigwedge_{j_{i}=1_{i}}^{m_{i}}\Delta\left(p_{j_{i}}\leftrightarrow\bar{r}_{j_{i}}\right)\right)\right)$$

- ロ ト 4 同 ト 4 三 ト 4 三 ト 9 への

| Łukasiewicz Games<br>0000000000 | The Logics E(𝔅)<br>00000●00 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-----------------------------|----------------------------------|--------------------|
|                                 |                             |                                  |                    |
|                                 |                             |                                  |                    |

- 1. All the  $\mathcal{L}_k^c$ -tautologies in the variables  $p_1, \ldots, p_m$ , for non-modal formulas.
- 2. All the  $L\Pi^{\frac{1}{2}}$ -axioms and rules for modal formulas.
- 3. Probabilistic axioms for E, with  $\varphi, \psi, \overline{r} \in NModF$ :
  - $\begin{array}{l} 3.1 \ \mathsf{E}(\neg \varphi) \leftrightarrow \neg \mathsf{E}\varphi \\ 3.2 \ \mathsf{E}(\varphi \oplus \psi) \leftrightarrow [(\mathsf{E}\varphi \to \mathsf{E}(\varphi \& \psi)) \to \mathsf{E}\psi] \\ 3.3 \ \mathsf{E}\bar{r} \leftrightarrow \bar{r} \end{array}$
- 4. Independence axioms for E, where  $p_{1_i}, \ldots, p_{m_i}$  is the tuple of variables assigned to  $P_i$ , for all tuples  $r_{1_1}, \ldots, r_{m_1}, \ldots, r_{1_n}, \ldots, r_{m_n} \in (L_k)^m$ :

4.1 
$$\mathsf{E}\left(\bigwedge_{i=1}^{m}\left(\bigwedge_{j_{i}=1_{i}}^{m_{i}}\left(\Delta\left(p_{j_{i}}\leftrightarrow\bar{r}_{j_{i}}\right)\right)\right)\right)\leftrightarrow\bigcirc_{i=1}^{n}\left(\mathsf{E}\left(\bigwedge_{j_{i}=1_{i}}^{m_{i}}\Delta\left(p_{j_{i}}\leftrightarrow\bar{r}_{j_{i}}\right)\right)\right)$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- 5. The following inference rules for E, with  $\varphi, \psi \in \text{NModF}$ :
  - 5.1 Necessitation: from  $\varphi$  derive  $\mathsf{E}\varphi$
  - 5.2 Monotonicity: from  $\varphi \rightarrow \psi$  derive  $\mathsf{E} \varphi \rightarrow \mathsf{E} \psi$

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |
|                   |                   |                         |            |

## FUNCTIONAL REPRESENTATION

Let  $\mathfrak{G}$  be a class of Łukasiewicz games on  $\mathbb{L}_k^c$  and let  $m\mathbb{L}_k^c$  be the *m*-variable fragment of  $\mathbb{L}_k^c$ . The following statements are equivalent:

| Łukasiewicz Games | The Logics $E(\mathfrak{G})$ | Games with Expectations | Complexity<br>0000 |
|-------------------|------------------------------|-------------------------|--------------------|
|                   |                              |                         | 0000               |
|                   |                              |                         |                    |

#### FUNCTIONAL REPRESENTATION

Let  $\mathfrak{G}$  be a class of Łukasiewicz games on  $\mathbb{L}_k^c$  and let  $m\mathbb{L}_k^c$  be the *m*-variable fragment of  $\mathbb{L}_k^c$ . The following statements are equivalent:

1. There exists a state  $\sigma : m \mathbb{E}_k^c \to [0, 1]$  such that for all tuples  $r_{1_1}, \ldots, r_{m_1}, \ldots, r_{1_n}, \ldots, r_{m_n} \in (L_k)^m$ 

$$\sigma\left(\bigwedge_{i=1}^{n}\left(\bigwedge_{j_{i}=1_{i}}^{m_{i}}\left(\Delta\left(p_{j_{i}}\leftrightarrow\bar{r}_{j_{i}}\right)\right)\right)\right)=\prod_{i=1}^{n}\left(\sigma\left(\bigwedge_{j_{i}=1_{i}}^{m_{i}}\Delta\left(p_{j_{i}}\leftrightarrow\bar{r}_{j_{i}}\right)\right)\right),$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

where  $p_{1_i}, \ldots, p_{m_i}$  is the tuple of variables assigned to  $P_i$ .

| Łukasiewicz Games<br>0000000000 | The Logics E( 𝔅 )<br>000000●0 | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-------------------------------|----------------------------------|--------------------|
|                                 |                               |                                  |                    |
|                                 |                               |                                  |                    |

#### FUNCTIONAL REPRESENTATION

Let  $\mathfrak{G}$  be a class of Łukasiewicz games on  $\mathbb{L}_k^c$  and let  $m\mathbb{L}_k^c$  be the *m*-variable fragment of  $\mathbb{L}_k^c$ . The following statements are equivalent:

1. There exists a state  $\sigma : m \mathbb{L}_k^c \to [0, 1]$  such that for all tuples  $r_{1_1}, \ldots, r_{m_1}, \ldots, r_{1_n}, \ldots, r_{m_n} \in (L_k)^m$ 

$$\sigma\left(\bigwedge_{i=1}^{n}\left(\bigwedge_{j_{i}=1_{i}}^{m_{i}}\left(\Delta\left(p_{j_{i}}\leftrightarrow\bar{r}_{j_{i}}\right)\right)\right)\right)=\prod_{i=1}^{n}\left(\sigma\left(\bigwedge_{j_{i}=1_{i}}^{m_{i}}\Delta\left(p_{j_{i}}\leftrightarrow\bar{r}_{j_{i}}\right)\right)\right),$$

where  $p_{1_i}, \ldots, p_{m_i}$  is the tuple of variables assigned to  $P_i$ .

2. There exists a probability distribution  $\pi_i : \mathbf{S}_i \to [0, 1]$  for each  $P_i$ , such that, for all  $\varphi \in m\mathbf{L}_k^c$ ,

$$\sigma(\varphi) = exp_{\varphi}(\pi_1,\ldots,\pi_n).$$

| Łukasiewicz Games | The Logics E( 𝔅 ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000●          | 00000                   | 0000       |
|                   |                   |                         |            |

## Completeness

#### Let $\Gamma$ and $\Phi$ be a finite modal theory and a modal formula in $\mathsf{E}(\mathfrak{G})$ .

| Łukasiewicz Games | The Logics E(𝔅) | Games with Expectations | Complexity |
|-------------------|-----------------|-------------------------|------------|
| 0000000000        | 0000000●        | 00000                   | 0000       |
|                   |                 |                         |            |

#### COMPLETENESS

Let  $\Gamma$  and  $\Phi$  be a finite modal theory and a modal formula in  $\mathsf{E}(\mathfrak{G})$ . The following statements are equivalent:

| Łukasiewicz Games | The Logics E(𝔅) | Games with Expectations | Complexity |
|-------------------|-----------------|-------------------------|------------|
| 0000000000        | 0000000●        | 00000                   | 0000       |
|                   |                 |                         |            |

(ロ)

## Completeness

Let  $\Gamma$  and  $\Phi$  be a finite modal theory and a modal formula in  $\mathsf{E}(\mathfrak{G})$ . The following statements are equivalent:

1.  $\Gamma \vdash_{\mathsf{E}(\mathfrak{G})} \Phi$ .

| Łukasiewicz Games<br>0000000000 | The Logics E(𝔅)<br>0000000● | Games with Expectations<br>00000 | Complexity<br>0000 |
|---------------------------------|-----------------------------|----------------------------------|--------------------|
|                                 |                             |                                  |                    |
|                                 |                             |                                  |                    |

#### COMPLETENESS

Let  $\Gamma$  and  $\Phi$  be a finite modal theory and a modal formula in  $\mathsf{E}(\mathfrak{G})$ . The following statements are equivalent:

1.  $\Gamma \vdash_{\mathsf{E}(\mathfrak{G})} \Phi$ .

2. For every model **M** such that, for each  $\Psi \in \Gamma$ ,

 $\|\Psi\|_{\mathbf{M}}=1,$ 

also

 $\|\Phi\|_{\mathbf{M}}=1.$ 

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

### OUTLINE

Lukasiewicz Games Basic Definitions

The Logics E(&) The Logics E(&)

Games with Expectations Games with Expectations

Complexity Complexity

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 0000                    | 0000       |
|                   |                   |                         |            |

#### A game with expectations $\mathcal{E}_{\mathcal{G}}$ on $\mathsf{E}(\mathfrak{G})$ is a tuple

 $\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$ 

< □ > < @ > < E > < E > E のQ@

where:

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 0000                    | 0000       |
|                   |                   |                         |            |

A game with expectations  $\mathcal{E}_{\mathcal{G}}$  on  $\mathsf{E}(\mathfrak{G})$  is a tuple

 $\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$ 

where:

1.  $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\} \rangle$  is a Łukasiewicz game on  $\mathsf{L}^c_{k'}$  with  $\mathcal{G} \in \mathfrak{G}$ ,

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 0000                    | 0000       |
|                   |                   |                         |            |

A game with expectations  $\mathcal{E}_{\mathcal{G}}$  on  $\mathsf{E}(\mathfrak{G})$  is a tuple

 $\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$ 

where:

1.  $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\} \rangle$  is a Łukasiewicz game on  $\mathsf{L}^c_{k'}$  with  $\mathcal{G} \in \mathfrak{G}$ ,

2.  $M_i$  is the set of all mixed strategies on  $S_i$  of player  $P_i$ ,

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 0000                    | 0000       |
|                   |                   |                         |            |

A game with expectations  $\mathcal{E}_{\mathcal{G}}$  on  $\mathsf{E}(\mathfrak{G})$  is a tuple

 $\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$ 

where:

1.  $\mathcal{G} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}\rangle$  is a Łukasiewicz game on  $\mathsf{L}_k^c$ , with  $\mathcal{G} \in \mathfrak{G}$ ,

- 2.  $M_i$  is the set of all mixed strategies on  $S_i$  of player  $P_i$ ,
- 3.  $\Phi_i$  is an E( $\mathfrak{G}$ )-formula such that every atomic modal formula occurring in  $\Phi_i$  has the form E $\psi$ , with  $\psi \in \{\varphi_1, \ldots, \varphi_n\}$ .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

# Equilibria

• Let  $\mathcal{E}_{\mathcal{G}}$  be a game with expectations on  $\mathsf{E}(\mathfrak{G})$ .

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations | Complexity<br>0000 |
|---------------------------------|-------------------------------|-------------------------|--------------------|
|                                 |                               |                         |                    |
|                                 |                               |                         |                    |

#### Equilibria

- ► Let *E*<sup>*G*</sup> be a game with expectations on E(𝔅).
- A model M = (S, e, {π<sub>i</sub>}) for E(𝔅) is called a *best response model* for a player P<sub>i</sub> whenever, for all models M' = (S, e, {π<sub>i</sub>'}) with π'<sub>-i</sub> = π<sub>-i</sub>,

 $\|\Phi_i\|_{\mathbf{M}'} \le \|\Phi_i\|_{\mathbf{M}}.$ 

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations | Complexity<br>0000 |
|---------------------------------|-------------------------------|-------------------------|--------------------|
|                                 |                               |                         |                    |
|                                 |                               |                         |                    |

## Equilibria

- ► Let *E*<sup>*G*</sup> be a game with expectations on E(𝔅).
- A model M = (S, e, {π<sub>i</sub>}) for E(𝔅) is called a *best response model* for a player P<sub>i</sub> whenever, for all models M' = (S, e, {π<sub>i</sub>'}) with π'<sub>-i</sub> = π<sub>-i</sub>,

 $\|\Phi_i\|_{\mathbf{M}'} \le \|\Phi_i\|_{\mathbf{M}}.$ 

► A game with expectations *E*<sub>G</sub> on E(𝔅) is said to have a *Nash Equilibrium*, whenever there exists a model M\* that is a best response model for each player *P<sub>i</sub>*.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations | Complexity<br>0000 |
|---------------------------------|-------------------------------|-------------------------|--------------------|
|                                 |                               |                         |                    |
|                                 |                               |                         |                    |

• Let  $\mathcal{E}_{\mathcal{G}}$  be any game with expectations where each  $P_i$  is simply assigned the formula  $\mathsf{E}_{\varphi_i}$ .

・ロト・西ト・ヨー シック・ロト

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations | Complexity<br>0000 |
|---------------------------------|-------------------------------|-------------------------|--------------------|
|                                 |                               |                         |                    |
|                                 |                               |                         |                    |

- Let  $\mathcal{E}_{\mathcal{G}}$  be any game with expectations where each  $P_i$  is simply assigned the formula  $\mathbf{E}_{\varphi_i}$ .
- This game corresponds to the the situation where each player cares only about her own expectation and whose goal is its maximisation.

< □ > < @ > < E > < E > E のQ@

| Łukasiewicz Games<br>00000000000 | The Logics E( & )<br>0000000 | Games with Expectations | Complexity<br>0000 |
|----------------------------------|------------------------------|-------------------------|--------------------|
|                                  |                              |                         |                    |
|                                  |                              |                         |                    |

- Let  $\mathcal{E}_{\mathcal{G}}$  be any game with expectations where each  $P_i$  is simply assigned the formula  $\mathbf{E}_{\varphi_i}$ .
- This game corresponds to the the situation where each player cares only about her own expectation and whose goal is its maximisation.

• By Nash's Theorem, every  $\mathcal{E}_{\mathcal{G}}$  of this form admits an Equilibrium

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

► Consider the game

$$\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

with  $i \in \{1, 2\}$ , where:

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

Consider the game

$$\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$$

with  $i \in \{1, 2\}$ , where:

1. 
$$\varphi_1 := p_1$$
 and  $\varphi_2 := p_2$ , and

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

Consider the game

$$\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

with  $i \in \{1, 2\}$ , where:

1. 
$$\varphi_1 := p_1$$
 and  $\varphi_2 := p_2$ , and  
2.  $\Phi_1 := \neg d(\mathsf{E}(p_1), \mathsf{E}(p_2))$  and  $\Phi_2 := d(\mathsf{E}(p_1), \mathsf{E}(p_2))$ .

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 0000000           | 00000                   | 0000       |
|                   |                   |                         |            |

Consider the game

$$\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$$

< □ > < @ > < E > < E > E のQ@

with  $i \in \{1, 2\}$ , where:

1. 
$$\varphi_1 := p_1$$
 and  $\varphi_2 := p_2$ , and

2.  $\Phi_1 := \neg d(\mathsf{E}(p_1), \mathsf{E}(p_2))$  and  $\Phi_2 := d(\mathsf{E}(p_1), \mathsf{E}(p_2))$ .

• The above game can be regarded as a particular version of Matching Pennies with expectations.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 0000●                   | 0000       |
|                   |                   |                         |            |

Consider the game

$$\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$$

with  $i \in \{1, 2\}$ , where:

1. 
$$\varphi_1 := p_1$$
 and  $\varphi_2 := p_2$ , and  
2.  $\Phi_1 := -d(\mathsf{E}(n_1), \mathsf{E}(n_2))$  and  $\Phi_2 := -d(\mathsf{E}(n_2), \mathsf{E}(n_2))$ 

- 2.  $\Phi_1 := \neg d(\mathsf{E}(p_1), \mathsf{E}(p_2))$  and  $\Phi_2 := d(\mathsf{E}(p_1), \mathsf{E}(p_2))$ .
- The above game can be regarded as a particular version of Matching Pennies with expectations.
- ► While P<sub>1</sub> aims at matching P<sub>2</sub>'s expectation, P<sub>2</sub>'s goal is quite the opposite, since she wants their expectations to be as far as possible.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          |                         | 0000       |
|                   |                   |                         | 1          |

Consider the game

$$\mathcal{E}_{\mathcal{G}} = \langle \mathsf{P}, \mathsf{V}, \{\mathsf{V}_i\}, \{\mathsf{S}_i\}, \{\varphi_i\}, \{\mathsf{M}_i\}, \{\Phi_i\}\rangle,$$

with  $i \in \{1, 2\}$ , where:

1. 
$$\varphi_1 := p_1$$
 and  $\varphi_2 := p_2$ , and  
2.  $\Phi_1 := -d(\mathsf{E}(n_1), \mathsf{E}(n_2))$  and  $\Phi_2 := -d(\mathsf{E}(n_2))$ 

- 2.  $\Phi_1 := \neg d(\mathsf{E}(p_1), \mathsf{E}(p_2))$  and  $\Phi_2 := d(\mathsf{E}(p_1), \mathsf{E}(p_2))$ . The above same can be regarded as a particular version of
- The above game can be regarded as a particular version of Matching Pennies with expectations.
- ► While P<sub>1</sub> aims at matching P<sub>2</sub>'s expectation, P<sub>2</sub>'s goal is quite the opposite, since she wants their expectations to be as far as possible.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

► There is no model **M** that gives an equilibrium for *E*<sub>*G*</sub>.

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations<br>00000 | Complexity<br>000 |
|---------------------------------|-------------------------------|----------------------------------|-------------------|
|                                 |                               |                                  |                   |
|                                 |                               |                                  |                   |

#### OUTLINE

Łukasiewicz Games Basic Definitions

The Logics E(&) The Logics E(&)

Games with Expectations Games with Expectations

Complexity Complexity

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

• We make use of the first-order theory of real closed fields  $\mathsf{Th}(\mathbb{R})$ .

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0●00       |
|                   |                   |                         |            |

- We make use of the first-order theory of real closed fields  $\mathsf{Th}(\mathbb{R})$ .
- ► A (quantified) formula in the language of ordered fields (+, -, ·, 0, 1, <) is a Boolean combination of polynomial equalities and inequalities with rational coefficients.</p>

< □ > < @ > < E > < E > E のQ@

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0●00       |
|                   |                   |                         |            |

- We make use of the first-order theory of real closed fields  $\mathsf{Th}(\mathbb{R})$ .
- ► A (quantified) formula in the language of ordered fields (+, -, ·, 0, 1, <) is a Boolean combination of polynomial equalities and inequalities with rational coefficients.</p>
- ► Deciding if a sentence in the language of ordered fields holds in Th(ℝ) requires time singly exponential in the number of variables and doubly exponential in the number of quantifier alternations.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0●00       |
|                   |                   |                         |            |

- We make use of the first-order theory of real closed fields  $\mathsf{Th}(\mathbb{R})$ .
- ► A (quantified) formula in the language of ordered fields (+, -, ·, 0, 1, <) is a Boolean combination of polynomial equalities and inequalities with rational coefficients.</p>
- ► Deciding if a sentence in the language of ordered fields holds in Th(ℝ) requires time singly exponential in the number of variables and doubly exponential in the number of quantifier alternations.
- ► Deciding if an existential sentence in the langue of ordered fields holds in Th(ℝ) is in PSPACE.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
| <b>O</b>          |                   |                         |            |

 ► E(𝔅)-formulas can be translated into formulas of the first-order theory of real closed fields Th(ℝ).

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

- ►  $\mathsf{E}(\mathfrak{G})$ -formulas can be translated into formulas of the first-order theory of real closed fields  $\mathsf{Th}(\mathbb{R})$ .
- This translation requires an exponential number of variables.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 0000000000        | 00000000          | 00000                   | 00●0       |
|                   |                   |                         |            |

- ► E(𝔅)-formulas can be translated into formulas of the first-order theory of real closed fields Th(ℝ).
- This translation requires an exponential number of variables.
- ► The satisfiability of an E(𝔅)-formula is equivalent to the validity of an existential sentence in Th(ℝ).

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 00000000000       | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

- ► E(𝔅)-formulas can be translated into formulas of the first-order theory of real closed fields Th(ℝ).
- This translation requires an exponential number of variables.
- ► The satisfiability of an E(𝔅)-formula is equivalent to the validity of an existential sentence in Th(ℝ).

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

► Checking satisfiability for an E(𝔅)-formula is in EXPSPACE.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 00000000000       | 00000000          | 00000                   | ○○●○       |
| -                 |                   |                         |            |

- ►  $\mathsf{E}(\mathfrak{G})$ -formulas can be translated into formulas of the first-order theory of real closed fields  $\mathsf{Th}(\mathbb{R})$ .
- ► This translation requires an exponential number of variables.
- ► The satisfiability of an E(𝔅)-formula is equivalent to the validity of an existential sentence in Th(ℝ).
- ► Checking satisfiability for an E(𝔅)-formula is in EXPSPACE.
- ► Given a game with expectations, the existence of an equilibrium can be expressed through a sentence of Th(ℝ) with a fixed alternation of quantifiers.

| Łukasiewicz Games | The Logics E( & ) | Games with Expectations | Complexity |
|-------------------|-------------------|-------------------------|------------|
| 00000000000       | 00000000          | 00000                   | 0000       |
|                   |                   |                         |            |

- ►  $\mathsf{E}(\mathfrak{G})$ -formulas can be translated into formulas of the first-order theory of real closed fields  $\mathsf{Th}(\mathbb{R})$ .
- This translation requires an exponential number of variables.
- ► The satisfiability of an E(𝔅)-formula is equivalent to the validity of an existential sentence in Th(ℝ).
- ► Checking satisfiability for an E(𝔅)-formula is in EXPSPACE.
- ► Given a game with expectations, the existence of an equilibrium can be expressed through a sentence of Th(ℝ) with a fixed alternation of quantifiers.
- Checking the existence of an equilibrium for a game with expectation is in 2-EXPTIME.

| Łukasiewicz Games<br>0000000000 | The Logics E( & )<br>00000000 | Games with Expectations | Complexity<br>000 |
|---------------------------------|-------------------------------|-------------------------|-------------------|
|                                 |                               |                         |                   |
|                                 |                               |                         |                   |

# THANKS!