Reasoning about normative update

Natasha Alechina

Mehdi Dastani

Brian Logan

EUMAS 2013

What is normative update?

- Normative update of a system with a set of norms is the result of applying the set of norms to the system
- The question we are interested in is: how do norms change agents' behaviours?
- How to check the properties of the normative update?
- Some related work:
 - Ågotnes, van der Hoek, Wooldridge 2008 (logic of norm compliance)
 - Dastani, Grossi, Meyer 2011 (normative update with counts-as rules)
 - Knobbout and Dastani 2012 (acting under norm compliance)

Key contributions

- Previous work on verifying properties of normative updates has considered only a relatively simple view of norms, where some actions or states are designated as violations
- We look at conditional norms and reason both about regimented norms (behaviours violating norms are impossible) and non-regimented norms (violations are possible, but incur a sanction)
- If an (undesirable) state is achievable by the agent(s), how many sanctions do they have to incur in order to achieve it?

Conditional norms

- Assume we have disjoint sets of brute facts propositional atoms Π_b and normative facts propositional atoms Π_s; Π_s contains a distinguished atom san_⊥
- Let *cond*, ϕ , *d* be boolean combinations of propositional variables from Π_b and $san \in \Pi_s$
- A conditional obligation is represented by the tuple

 $(cond, O(\phi), d, san)$

• A conditional prohibition is represented by the tuple

 $(cond, P(\phi), d, san)$

• A norm set *N* is a set of conditional obligations and conditional prohibitions

Meaning of conditional norms

- Conditional norms are evaluated on runs of a transition system
- A conditional norm n = (cond, Y(φ), s, san), where Y is O or P, is detached in a state satisfying its condition cond
- A detached obligation (cond, O(φ), d, san) is obeyed if no state satisfying d is encountered before execution reaches a state satisfying φ, and violated if a state satisfying d is encountered before execution reaches a state satisfying φ
- A detached prohibition (cond, P(φ), d, san) is obeyed if no state satisfying φ is encountered before execution reaches a state satisfying d, and violated if a state satisfying φ is encountered before execution reaches a state satisfying d
- If a detached norm is violated in a state *s*, the sanction corresponding to the norm is applied in *s*

State violating a norm

 A state ρ[i] violates a conditional obligation (cond, O(φ), d, san) on run ρ iff

 $\rho, i \models d \land \neg \phi \land (((\neg \phi \land \neg d) Since (cond \land \neg \phi \land \neg d)) \lor cond)$

i.e., obligations are violated if ϕ does not become true in or before the deadline state

• $\rho[i]$ violates a conditional prohibition (cond, $P(\phi)$, d, san) iff

$$\rho, i \models \phi \land \neg d \land (((\neg \phi \land \neg d) Since (cond \land \neg \phi \land \neg d)) \lor cond)$$

i.e., prohibitions are violated in the first state where ϕ becomes true

Regimentation sanctions and resource sanctions

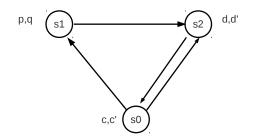
- Regimentation sanctions ensure that certain behaviours never occur
- If a norm labels a state with the distinguished sanction atom san_⊥, then the run containing this state is removed from the set of runs of the system by the normative update
- Resource sanctions treat sanctions essentially like fines or taxes
- Penalize rather than eliminate certain execution paths by reducing the resources of the agent

Normative update

- Let M = (S, R, V) be a finite transition system with initial state s_o and N a finite set of conditional obligations and prohibitions
- A normative update of M with N, $M^N = (S^N, R^N, V^N)$, is a tree unravelling T(M) of M where all norms from N are enforced on all runs:
 - in each tree node $s^\prime, \; V^N(s^\prime)$ contains sanction atoms for all norms violated in s^\prime
 - paths which contain a state satisfying the distinguished sanction atom san_{\perp} are removed from M^N

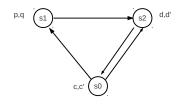
Example

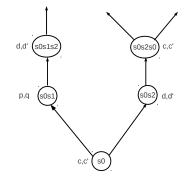
Consider an obligation (c, O(q), d, sanO) and a prohibition (c', P(p), d', sanP)



Example

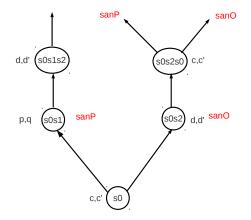
Consider an obligation (c, O(q), d, sanO) and a prohibition (c', P(p), d', sanP)





Example: normative update

Consider an obligation (c, O(q), d, sanO) and a prohibition (c', P(p), d', sanP)



Language of CTLS

- We propose a new logic, *CTLS*, for reasoning about normative updates of single-agent systems
- CTLS is CTL with Sanction bounds
- Path quantifiers have the form E^{≤Z}, where Z is a multiset of sanction bounds (where multiplicity of a sanction *san* is infinity, we represent this as ∞ * *san*)
- $E^{\leq Z}$ means 'there exists a path of sanction cost at most Z ' $p \in \Pi_b \cup \Pi_s \mid \neg \phi \mid \phi \land \phi \mid E^{\leq Z} X \phi \mid E^{\leq Z} \phi$ Until $\phi \mid E^{\leq Z} G \phi$

Semantics of CTLS

The truth of *CTLS* formulas is defined relative to a tree model *T* (intuitively, a normative update) and a state $s \in T$:

- $T, s \models E^{\leq Z} X \phi$ iff there exists a fullpath ρ' with $\rho'[0] = s$, such that $T, \rho'[1] \models \phi$ and $sanctions(\rho') \leq Z$
- $T, s \models E^{\leq Z} \phi$ Until ψ iff there exists a fullpath ρ' with $\rho'[0] = s$, such that for some $n \geq 0$, $T, \rho'[n] \models \psi$ and for every i, i < n, $T, \rho'[i] \models \phi$ and sanctions $(\rho') \leq Z$
- T, s ⊨ E^{≤Z}G φ iff there exists a fullpath ρ' with ρ'[0] = s, such that for every i, T, ρ'[i] ⊨ φ and sanctions(ρ') ≤ Z

Model-checking problem for normative update in CTLS

- The model-checking problem for a normative update in *CTLS* takes as inputs
 - a finite transition system M = (S, R, V),
 - a state $s_0 \in S$,
 - a finite set of conditional norms N, and
 - a formula ϕ of *CTLS*
- It returns true if $M^N, s_0 \models \phi$, and false otherwise

Complexity of CTLS normative update checking

- The model-checking problem for a normative update in *CTLS* is in **PSPACE** (proof uses guessing and checking a polynomially representable path)
- It is PSPACE-hard by reduction of QSAT problem (proof idea adapted from Bulling and Jamroga's (IJCAI 2011) proof of PSPACE-hardness of CTL⁺)

ATLS

- We also consider normative update of a multi-agent system (concurrent game structure)
- Properties of a normative update of a MAS can be expressed in *ATLS* (*ATL* with Sanction bounds)

 $p \in \Pi_b \cup \Pi_s \mid \neg \phi \mid \phi \land \psi \mid \langle \langle C \rangle \rangle^{\leq Z} \mathcal{X} \phi \mid \langle \langle C \rangle \rangle^{\leq Z} G \phi \mid \langle \langle C \rangle \rangle^{\leq Z} \phi \mathcal{U} \psi$

⟨⟨C⟩⟩^{≤Z}γ means 'the group of agents C has a strategy, all executions of which incur at most Z sanctions and satisfy the formula γ, whatever the other agents in A \ C do'

ATLS semantics

- Inspired by Resource-Bounded ATL (Alechina, Logan, Nguyen & Rakib, IJCAI 2009), with sanction costs of strategies defined in terms of sanction costs of paths
- Normative update defined as for single agent case (assume all norms apply to individual agents)
- M^N, s ⊨ ⟨⟨C⟩⟩^{≤Z}γ iff there exists a strategy F_C of sanction cost at most Z in s such that for all ρ ∈ out(s, F_C), M^N, ρ ⊨ γ

Complexity for ATLS normative update checking

- The model-checking problem for a normative update in *ATLS* is in **PSPACE**
- It is **PSPACE-hard** from PSPACE-hardness of CTLS

Summary

- The model-checking problems for normative updates of both single and multi-agent systems is PSPACE-complete
- Future work: define normative update for group norms