# Extending Fictitious Play with Pattern Recognition

Ronald Chu Gerard Vreeswijk

Department of Information and Computing Sciences Faculty of Science, Utrecht University, The Netherlands

11th European Workshop on Multi-Agent Systems Toulouse, 12th December 2013

## Ficticious Play (1/3): The Basic Algorithm

Forecaster

create probability distribution using observed frequencies
Responder

- Expected utility
- Best-reply correspondence

### Ficticious Play (2/3): Weighted FP

Forecaster

▶ Muliplies observed frequencies with  $0 \le \gamma_i \le 1$  every round

### Ficticious Play (3/3): Smoothed FP

Responder

- Adds random trembles/shocks/perturbations
- Actual Utility = expected utility + benifit of exploring
  - Uses Shannon Entropy to calculate exploring utility
  - Uses Quantal Response Equilibrium to reduce chance of costly mistakes

Algorithm components we've seen so far

#### Forecasters

Simple uses observed distribution of play.

Weighted Adds decay to the probability distribution Responders

Best-reply maximizes expected utility

Smoothed maximizes actual utility; adds random perturbations to the expected utility

#### Pattern Recognition

#### N-Period Ficticious Play

Forecaster

- Extends Weighted FP, uses only part of the observed history
- $\blacktriangleright$  Create conditional probability distribution based on the last N-1 observations

Example: Given the history BAAABA and  $\gamma = 1$ 

• FP1: 
$$P(x_j = A) = \frac{4}{6}$$

- FP2:  $P(x_j = A|A) = \frac{2}{6}$
- FP3:  $P(x_j = A | BA) = \frac{1}{6}$

#### Cyclic pattern detection

Forecaster

- ▶ Detect simple cyclic patterns p of length l<sub>p</sub> ≤ L at the end of the observed history
- Predicts p(next action of detected cycle) = 1 when cycle is detected

#### Cyclic pattern detection

Minimal conditions (weak cycle detection)

- Pattern is detected when it occures almost  $T_p$  times
- $\blacktriangleright$  To make sure multiple patterns can not be detected at the same time  $T_p \geq \frac{3L}{l_p}$

Necessary Conditions (strong cycle detection)

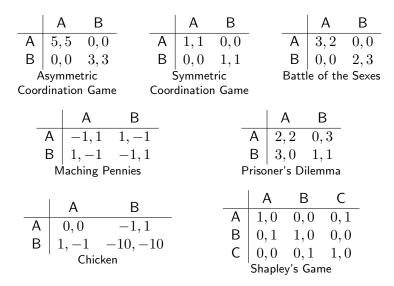
- $l_p = 1$  must appear 2 times in the last 2 rounds
- $l_p = 2$  must appear 2 times in the last 4 rounds
- ▶  $l_p > 2$  must appear almost 2 times in the last  $2l_p 1$  rounds

### Algorithm components

#### Forecasters

- Simple uses observed distribution of play.
- Weighted Adds decay to the probability distribution
- $N\mbox{-}{\rm period}$  WFP which uses only part of the observed history that matches the last N-1 rounds
- $\label{eq:strong} \begin{array}{l} \mbox{Strong/Weak} \mbox{ Detects cycles of simple patterns with length} \leq L \mbox{ at the end of observed history} \end{array}$

#### Responders


- Best-reply maximizes expected utility
- Smoothed maximizes actual utility; adds random perturbations to the expected utility

# Experiment (1/2): Algorithms

| Name   | Forecast          |              | Response   |
|--------|-------------------|--------------|------------|
| FP     | Simple            |              | Best reply |
| SFP    | Simple            |              | Smoothed   |
| WFP    | Weighted          |              | Best reply |
| SWFP   | Weighted          |              | Smoothed   |
| FPN    | $N	ext{-}Pattern$ | N = 2, 3     | Best reply |
| SFPN   | $N	ext{-}Pattern$ | N = 2, 3     | Smoothed   |
| FPwCL  | Weak cycle        | L = 2, 3, 20 | Best reply |
| SFPwCL | Weak cycle        | L = 2, 3, 20 | Smoothed   |
| FPsCL  | Strong cycle      | L = 2, 3, 20 | Best reply |
| SFPsCL | Strong cycle      | L = 2, 3, 20 | Smoothed   |

Weight factor  $\gamma = 0, 9$  and smoothing parameter  $\delta = 1$ 

# Experiment (2/2): Games



#### Results

| 2)Tiso1                | Psymmers<br>ners | Symme | atric C | aos<br>Chic | Penn | nies Shar | Pane | 6m   |
|------------------------|------------------|-------|---------|-------------|------|-----------|------|------|
| FPsC – FP              | Ш                | =     | =       |             |      |           | FPsC |      |
| FPwC 2,3 – FP          | =                | =     | =       | FP          | FPwC | FPwC      | FPwC | FPwC |
| FPwC 20 – FP           | Ш                | =     | =       | ×           | 2    | *         | *    | *    |
| FPwC – FPsC            | =                | =     | =       | FPwC        | FPsC | FPsC      | FPsC | FPsC |
| FP2 – WFP              | =                | =     | FP2     | FP2         | FP2  | FP2       | FP2  | FP2  |
| FP3 – WFP              | Ш                | =     |         |             |      |           |      | FP3  |
| FPN – <mark>FPC</mark> | Ш                | =     | FPC     | FPC         | FPN  | FPN       | FPN  | FPN  |

#### Conclusion

#### N-Pattern FP

- Very effective improvement of FP
- Does not teach, only follows

Cyclic Pattern Detection

- Very effective
- Does not teach, only follows
- Higher pattern length L decreases performance of FPwC

#### Future Work

- Test performance against other, non-FP based, algoritms
  - Higher pattern length N for FPN
- Less static Cyclic pattern detection between the minimal and necessary conditions
- Non-FP based pattern recognition
  - Other Responders
  - No distiction between forecaster and responder