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About resource allocation

Fair division of indivisible goods

Fair division of indivisible goods. . .

We have:
a finite set of objects O = {1, . . . ,m}

a finite set of agents A = {1, . . . , n} having some preferences on the set of objects
they may receive

We want:
an allocation −→π : A → 2O

such that πi ∩ πj = ∅ if i 6= j (preemption),⋃
i∈A πi = O (no free-disposal),

and which takes into account the agents’ preferences

Plenty of real-world applications: course allocation, operation of Earth
observing satellites, . . .
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About resource allocation

Centralized allocation

A classical way to solve the problem:
Ask each agent i to give a score (weight, utility. . . ) wi (o) to each object o

Consider all the agents have additive preferences
→ ui (π) =

∑
o∈π wi (o)

Find an allocation −→π that maximizes the social welfare,

∑
i∈A

ui (π) – classical utilitarian solution
mini∈A ui (π) – egalitarian solution [?]
the lexicographic minimum over (u1(π), . . . , un(π)) – refinement of the egalitarian
solution
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A classical way to solve the problem:
Ask each agent i to give a score (weight, utility. . . ) wi (o) to each object o

Consider all the agents have additive preferences
→ ui (π) =

∑
o∈π wi (o)

Find an allocation −→π that maximizes the social welfare,∑
i∈A

ui (π) – classical utilitarian solution
mini∈A ui (π) – egalitarian solution [Bansal and Sviridenko, 2006]

the lexicographic minimum over (u1(π), . . . , un(π)) – refinement of the egalitarian
solution

Bansal, N. and Sviridenko, M. (2006).
The Santa Claus problem.
In Proceedings of STOC’06, pages 31–40. ACM Press.
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About resource allocation

Example

Example: 3 objects {o1, o2, o3}, 2 agents {1, 2}.

Preferences:

o1 o2 o3

agent 1 5 1 5
agent 2 1 4 6
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About resource allocation

Example

Example: 3 objects {o1, o2, o3}, 2 agents {1, 2}.
Preferences:

o1 o2 o3

agent 1 5 1 5
agent 2 1 4 6

Classical utilitarian evaluation:
−→π = 〈{o1}, {o2, o3}〉 → uc(−→π ) = 5 + (4 + 6) = 15
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agent 1 5 1 5
agent 2 1 4 6

Classical utilitarian evaluation:
−→π = 〈{o1}, {o2, o3}〉 → uc(−→π ) = 5 + (4 + 6) = 15
−→π ′ = 〈{o1, o2}, {o3}〉 → uc(−→π ′) = (5 + 1) + 6 = 11

4 / 17
Positional Scoring Rules for the Allocation of Indivisible Goods

N



About resource allocation

Example

Example: 3 objects {o1, o2, o3}, 2 agents {1, 2}.
Preferences:

o1 o2 o3

agent 1 5 1 5
agent 2 1 4 6

Classical utilitarian evaluation:
−→π = 〈{o1}, {o2, o3}〉 → uc(−→π ) = 5 + (4 + 6) = 15
−→π ′ = 〈{o1, o2}, {o3}〉 → uc(−→π ′) = (5 + 1) + 6 = 11

Egalitarian evaluation:
−→π = 〈{o1}, {o2, o3}〉 → uc(−→π ) = min(5, 6 + 4) = 5
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About resource allocation

About ordinal preferences

Problem: This approach requires numerical preferences.

; Meaningless if no clear numerical scale (e.g money) is involved...

Our starting point: What can we do with ordinal preferences?
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Positional scoring allocation rules

About scoring vectors

Here we take inspiration from voting theory.

We assume that:

1 Ranking: Each agent i has a ranking �i over O (ex: o6 � o1 � o4 � o5 � o2 � o3)
2 Scoring: We have a common scoring vector s = (s1, . . . , sm) (with s1 ≥ · · · ≥ sm)

mapping each rank to a utility.
3 Additivity: These utilities are additive.
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Positional scoring allocation rules

About scoring vectors

Here we take inspiration from voting theory.

We assume that:
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mapping each rank to a utility.
3 Additivity: These utilities are additive.

4 natural scoring functions:
�i o6 o1 o4 o5 o2 o3

Borda 6 5 4 3 2 1
Lexicographic 32 16 8 4 2 1
Quasi-Indifference 1 + 5ε 1 + 4ε 1 + 3ε 1 + 2ε 1 + ε 1
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Positional scoring allocation rules

About scoring vectors

Here we take inspiration from voting theory.

We assume that:
1 Ranking: Each agent i has a ranking �i over O (ex: o6 � o1 � o4 � o5 � o2 � o3)
2 Scoring: We have a common scoring vector s = (s1, . . . , sm) (with s1 ≥ · · · ≥ sm)

mapping each rank to a utility.
3 Additivity: These utilities are additive.

4 natural scoring functions:
�i o6 o1 o4 o5 o2 o3

Borda 6 5 4 3 2 1
Lexicographic 32 16 8 4 2 1
Quasi-Indifference 1 + 5ε 1 + 4ε 1 + 3ε 1 + 2ε 1 + ε 1
k-Approval 1 1 0 0 0 0
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Positional scoring allocation rules

Example

Example
5 objects, 3 agents. . .

1 : o1 � o2 � o3 � o4 � o5

2 : o4 � o2 � o5 � o1 � o3

3 : o1 � o3 � o5 � o4 � o2

Let’s consider allocation π = 〈{o1}, {o4, o2}, {o3, o5}〉.

Borda: u1(π) = 5; u2(π)=5 + 4=9; u3(π)=4 + 3=7.
Lexicographic: u1(π) = 16; u2(π) = 24; u3(π) = 12.
QI: u1(π) = 1 + 4ε; u2(π) = 2 + 7ε; u3(π) = 2 + 5ε.
2-approval: u1(π) = 1; u2(π) = 2; u3(π) = 1.
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Back to our resource allocation problem...
Assume that the agents have ordinal preferences (rankings).
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Positional scoring allocation rules

Positional scoring allocation rules

Back to our resource allocation problem...
Assume that the agents have ordinal preferences (rankings).

Maximize:
Interpretation:

∑
i ui (π) mini ui (π) leximin(u1(π), . . . , un(π))

Borda SF
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Positional scoring allocation rules

Positional scoring allocation rules

Back to our resource allocation problem...
Assume that the agents have ordinal preferences (rankings).

Maximize:
Interpretation:

∑
i ui (π) mini ui (π) leximin(u1(π), . . . , un(π))

Borda SF
Lexicographic SF
Quasi-Indifference SF
k-Approval SF

; 12 positional scoring allocation rules
(transposition to resource allocation of positional scoring rules in voting)
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Complexity results

The problems studied

We have 12 allocation rules, having nice properties (e.g monotonicity), but what
is their precise complexity?

For each pair (scoring vector, social criterion), what is the complexity of...
1 Optimal Allocation Value (OAV): is it possible to find an allocation of utility ≥ K?
2 Optimal Allocation (OA): does π belong to the set of optimal allocations?
3 Find Optimal Allocation (FOA): find an optimal allocation.
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Complexity results

Main results

For
∑

i ui (π) (classical utilitarianism), everything is polynomial!
Idea: give each item to the agent that ranks it the best.

For mini ui (π) (egalitarianism):

Bad news: hard (NP-complete, coNP-complete, NP-hard for OAV, OA, FOA resp.)
for Borda, lexicographic and QI scoring functions.

(all by reduction from [X3C])
Good news: easy (polynomial)

if the number of objects is fixed (obvious);
if the number of agents is fixed (dynamic programming);
for k-approval ("known" problem).
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for Borda, lexicographic and QI scoring functions.

(all by reduction from [X3C])
Good news: easy (polynomial)

if the number of objects is fixed (obvious);
if the number of agents is fixed (dynamic programming);
for k-approval ("known" problem).

Most results for min carry over to leximin.
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Complexity results

Results: summary

OA OAV FOA
Fs,+ in P in P pol. time
Fs,min coNP-comp∗ NP-comp∗ NP-hard∗

k-app or m ∈ O(1) in P in P pol. time
lex or ε-qi coNP-comp NP-comp NP-hard

borda coNP-comp NP-comp
lex or borda or ε-qi, if n ∈ O(1) in P in P pol. time
Fs,leximin coNP-comp∗ NP-comp∗ NP-hard∗

lex or ε-qi in coNP NP-comp NP-hard
borda in coNP NP-comp

lex or borda or ε-qi, if n ∈ O(1) in P in P pol. time
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Approximation

About approximation

Most cases are hard...
Question: Is it possible to efficiently compute good (but potentially suboptimal)
allocations?

Our approach: Instead of giving general approximation results1 , we:
focus on a simple allocation protocol;
and try to analyze how good the allocations it gives are.

1 Actually there is one in the paper, for (lexico, min).
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Approximation

An elicitation-free protocol...

Ask the agents to pick in turn their most preferred object among the remaining
ones, according to some predefined sequence σ.

Example
3 agents 1, 2, 3 / 6 objects / sequence 123321 → 1 chooses first (and takes
her preferred object), then 2, then 3, then 3 again. . .

Arguably a very simple (and natural) protocol! No elicitation required!

Here we focus on regular sequences σ of the kind (1 . . . n)∗, but our results are
similar for alternating sequences like (1 . . . nn . . . 1)∗.
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Approximation

Price of elicitation-freeness

Arguably a very simple (and natural) protocol. . .

. . . but obviously suboptimal!

Question: What is the loss in social welfare we incur by using such a simple
protocol instead of computing the optimal allocation?

More formally:
Multiplicative Price of Elicitation-Freeness: worst case ratio uopt

c /uc(σ), for a
sequence σ.

Additive Price of Elicitation-Freeness: worst case difference uopt
c − uc(σ), for a

sequence σ.
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Approximation

Some theoretical bounds for Borda

For classical utilitarianism (
∑

i ui (π)):

1 +
n − 1

m + Θ(
1

m2 ) ≤ MPEF ≤ 2− 1
n + Θ(

1
m2 ), when m→ +∞.

For egalitarianism (mini ui (π)):

MPEF ≤ 2− 1
n + Θ(

1
m2 ), when m→ +∞.

See the paper for more!
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Approximation

Some experimental results for Borda

For classical utilitarianism (
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Conclusion

Take-away message

This work is about allocating indivisible objects to agents.

Our starting point: most allocation procedures rely on a numerical elicitation of
preferences which is uneasy for the agents. → What can we do with ordinal
preferences?

Positional scoring allocation rules

Characterization of the computational complexity (mostly hard)
Approximation with a very simple sequential protocol.

Possible future work: manipulation, link with envy-freeness...
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