

Positional Scoring Rules for the Allocation of Indivisible Goods

Dorothea Baumeister, Trung Thanh Nguyen, Jörg Rothe Heinrich-Heine Universität Düsseldorg

Sylvain Bouveret LIG – Grenoble INP Jérôme Lang, Abdallah Saffidine LAMSADE Université Paris Dauphine

Eleventh European Workshop on Multi-agent Systems Toulouse, December 12–13, 2013

Fair division of indivisible goods

Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O} = \{1, \ldots, m\}$
- a finite set of agents $\mathcal{A} = \{1, \dots, n\}$ having some preferences on the set of objects they may receive

Fair division of indivisible goods

Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O} = \{1, \ldots, m\}$
- a finite set of agents $\mathcal{A} = \{1, \dots, n\}$ having some preferences on the set of objects they may receive

We want:

- an allocation $\overrightarrow{\pi}:\mathcal{A}\rightarrow 2^{\mathcal{O}}$
- such that $\pi_i \cap \pi_j = \emptyset$ if $i \neq j$ (preemption),
- $\bigcup_{i \in \mathcal{A}} \pi_i = \mathcal{O}$ (no free-disposal),
- and which takes into account the agents' preferences

Fair division of indivisible goods

Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O} = \{1, \ldots, m\}$
- a finite set of agents $\mathcal{A} = \{1, \dots, n\}$ having some preferences on the set of objects they may receive

We want:

- an allocation $\overrightarrow{\pi}:\mathcal{A}\rightarrow 2^{\mathcal{O}}$
- such that $\pi_i \cap \pi_j = \emptyset$ if $i \neq j$ (preemption),
- $\bigcup_{i \in \mathcal{A}} \pi_i = \mathcal{O}$ (no free-disposal),
- and which takes into account the agents' preferences

Plenty of real-world applications: course allocation, operation of Earth observing satellites, ...

Centralized allocation

A classical way to solve the problem:

- Ask each agent *i* to give a score (weight, utility...) $w_i(o)$ to each object o
- Consider all the agents have additive preferences

$$\rightarrow u_i(\pi) = \sum_{o \in \pi} w_i(o)$$

• Find an allocation $\overrightarrow{\pi}$ that maximizes the social welfare,

Centralized allocation

A classical way to solve the problem:

- Ask each agent *i* to give a score (weight, utility...) $w_i(o)$ to each object o
- Consider all the agents have additive preferences

$$ightarrow u_i(\pi) = \sum_{o \in \pi} w_i(o)$$

• Find an allocation $\overrightarrow{\pi}$ that maximizes the social welfare,

•
$$\sum_{i\in\mathcal{A}}u_i(\pi)$$
 – classical utilitarian solution

Centralized allocation

A classical way to solve the problem:

- Ask each agent i to give a score (weight, utility...) $w_i(o)$ to each object o
- Consider all the agents have additive preferences

 $ightarrow u_i(\pi) = \sum_{o \in \pi} w_i(o)$

- Find an allocation $\overrightarrow{\pi}$ that maximizes the social welfare,
 - $\sum_{i \in A} u_i(\pi)$ classical utilitarian solution
 - $\min_{i \in A} u_i(\pi)$ egalitarian solution [Bansal and Sviridenko, 2006]

Bansal, N. and Sviridenko, M. (2006). The Santa Claus problem. In *Proceedings of STOC'06*, pages 31–40. ACM Press

▲

Centralized allocation

A classical way to solve the problem:

- Ask each agent *i* to give a score (weight, utility...) $w_i(o)$ to each object o
- Consider all the agents have additive preferences

$$ightarrow u_i(\pi) = \sum_{o \in \pi} w_i(o)$$

- Find an allocation $\overrightarrow{\pi}$ that maximizes the social welfare,
 - $\sum_{i\in\mathcal{A}}u_i(\pi)$ classical utilitarian solution
 - min_{i∈A} u_i(π) egalitarian solution [Bansal and Sviridenko, 2006]
 - the lexicographic minimum over $(u_1(\pi), \ldots, u_n(\pi))$ refinement of the egalitarian solution

Bansal, N. and Sviridenko, M. (2006). The Santa Claus problem. In Proceedings of STOC'06, pages 31–40, ACM Press

Example

Example: 3 objects $\{o_1, o_2, o_3\}$, 2 agents $\{1, 2\}$.

Example: 3 objects $\{o_1, o_2, o_3\}$, 2 agents $\{1, 2\}$. **Preferences:**

	<i>o</i> 1	0 2	O 3
agent 1	5	1	5
agent 2	1	4	6

Example: 3 objects $\{o_1, o_2, o_3\}$, 2 agents $\{1, 2\}$. **Preferences:**

	01	0 2	O 3
agent 1	5	1	5
agent 2	1	4	6

Classical utilitarian evaluation:

 $\overrightarrow{\pi} = \langle \{o_1\}, \{o_2, o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = 5 + (4+6) = 15$

Example

Example: 3 objects $\{o_1, o_2, o_3\}$, 2 agents $\{1, 2\}$. **Preferences:**

	01	0 2	O 3
agent 1	5	1	5
agent 2	1	4	6

Classical utilitarian evaluation:

$$\overrightarrow{\pi} = \langle \{o_1\}, \{o_2, o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = 5 + (4+6) = 15$$

$$\overrightarrow{\pi}' = \langle \{o_1, o_2\}, \{o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}') = (5+1) + 6 = 11$$

Example: 3 objects $\{o_1, o_2, o_3\}$, 2 agents $\{1, 2\}$. **Preferences:**

	01	0 2	O 3
agent 1	5	1	5
agent 2	1	4	6

Classical utilitarian evaluation:

$$\overrightarrow{\pi} = \langle \{o_1\}, \{o_2, o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = 5 + (4+6) = 15$$

$$\overrightarrow{\pi}' = \langle \{o_1, o_2\}, \{o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}') = (5+1) + 6 = 11$$

Egalitarian evaluation:

$$\overrightarrow{\pi} = \langle \{o_1\}, \{o_2, o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = \min(5, 6+4) = 5$$

Example: 3 objects $\{o_1, o_2, o_3\}$, 2 agents $\{1, 2\}$. **Preferences:**

	01	0 2	O 3
agent 1	5	1	5
agent 2	1	4	6

Classical utilitarian evaluation:

$$\overrightarrow{\pi} = \langle \{o_1\}, \{o_2, o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = 5 + (4+6) = 15$$

$$\overrightarrow{\pi}' = \langle \{o_1, o_2\}, \{o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}') = (5+1) + 6 = 11$$

Egalitarian evaluation:

$$\overrightarrow{\pi} = \langle \{o_1\}, \{o_2, o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = \min(5, 6+4) = 5$$

$$\overrightarrow{\pi}' = \langle \{o_1, o_2\}, \{o_3\} \rangle \rightarrow uc(\overrightarrow{\pi}') = \min(5+1, 6) = 6$$

About ordinal preferences

Problem: This approach requires numerical preferences.

About ordinal preferences

Problem: This approach requires **numerical** preferences.

 \sim Meaningless if no clear numerical scale (e.g money) is involved...

About ordinal preferences

Problem: This approach requires **numerical** preferences. → Meaningless if no clear numerical scale (*e.g* money) is involved...

Our starting point: What can we do with ordinal preferences?

About scoring vectors

Here we take inspiration from voting theory.

About scoring vectors

Here we take inspiration from voting theory.

We assume that:

About scoring vectors

Here we take inspiration from voting theory.

We assume that:

Q Ranking: Each agent *i* has a ranking \succ_i over \mathcal{O} (ex: $o_6 \succ o_1 \succ o_4 \succ o_5 \succ o_2 \succ o_3$)

Here we take inspiration from voting theory.

We assume that:

- **Q** Ranking: Each agent *i* has a ranking \succ_i over \mathcal{O} (ex: $o_6 \succ o_1 \succ o_4 \succ o_5 \succ o_2 \succ o_3$)
- **3** Scoring: We have a common scoring vector $s = (s_1, \ldots, s_m)$ (with $s_1 \ge \cdots \ge s_m$) mapping each rank to a utility.

Here we take inspiration from voting theory.

We assume that:

- **Q** Ranking: Each agent *i* has a ranking \succ_i over \mathcal{O} (ex: $o_6 \succ o_1 \succ o_4 \succ o_5 \succ o_2 \succ o_3$)
- **3** Scoring: We have a common scoring vector $s = (s_1, \ldots, s_m)$ (with $s_1 \ge \cdots \ge s_m$) mapping each rank to a utility.
- 3 Additivity: These utilities are additive.

▲

Here we take inspiration from voting theory.

We assume that:

- **Q** Ranking: Each agent *i* has a ranking \succ_i over \mathcal{O} (ex: $o_6 \succ o_1 \succ o_4 \succ o_5 \succ o_2 \succ o_3$)
- **3** Scoring: We have a common scoring vector $s = (s_1, \ldots, s_m)$ (with $s_1 \ge \cdots \ge s_m$) mapping each rank to a utility.
- 3 Additivity: These utilities are additive.

\succ_i	<i>O</i> 6	01	<i>O</i> 4	<i>O</i> 5	O 2	O 3
Borda	6	5	4	3	2	1

Here we take inspiration from voting theory.

We assume that:

- **Q** Ranking: Each agent *i* has a ranking \succ_i over \mathcal{O} (ex: $o_6 \succ o_1 \succ o_4 \succ o_5 \succ o_2 \succ o_3$)
- **3** Scoring: We have a common scoring vector $s = (s_1, \ldots, s_m)$ (with $s_1 \ge \cdots \ge s_m$) mapping each rank to a utility.
- 3 Additivity: These utilities are additive.

\succ_i	<i>O</i> 6	01	<i>O</i> 4	<i>O</i> 5	O 2	O 3
Borda	6	5	4	3	2	1
Lexicographic	32	16	8	4	2	1

Here we take inspiration from voting theory.

We assume that:

- **Q** Ranking: Each agent *i* has a ranking \succ_i over \mathcal{O} (ex: $o_6 \succ o_1 \succ o_4 \succ o_5 \succ o_2 \succ o_3$)
- **3** Scoring: We have a common scoring vector $s = (s_1, \ldots, s_m)$ (with $s_1 \ge \cdots \ge s_m$) mapping each rank to a utility.
- 3 Additivity: These utilities are additive.

\succ_i	<i>O</i> 6	<i>O</i> 1	<i>O</i> 4	<i>O</i> 5	O 2	O 3
Borda	6	5	4	3	2	1
Lexicographic	32	16	8	4	2	1
Quasi-Indifference	$1+5\varepsilon$	$1+4\varepsilon$	$1+3\varepsilon$	$1+2\varepsilon$	$1 + \varepsilon$	1

Here we take inspiration from voting theory.

We assume that:

- **Q** Ranking: Each agent *i* has a ranking \succ_i over \mathcal{O} (ex: $o_6 \succ o_1 \succ o_4 \succ o_5 \succ o_2 \succ o_3$)
- **3** Scoring: We have a common scoring vector $s = (s_1, \ldots, s_m)$ (with $s_1 \ge \cdots \ge s_m$) mapping each rank to a utility.
- 3 Additivity: These utilities are additive.

\succ_i	<i>O</i> 6	01	<i>O</i> 4	<i>O</i> 5	<i>O</i> ₂	O 3
Borda	6	5	4	3	2	1
Lexicographic	32	16	8	4	2	1
Quasi-Indifference	$1+5\varepsilon$	$1+4\varepsilon$	$1+3\varepsilon$	$1+2\varepsilon$	$1 + \varepsilon$	1
<i>k</i> -Approval	1	1	0	0	0	0

Example

5 objects, 3 agents...

- $1: o_1 \succ o_2 \succ o_3 \succ o_4 \succ o_5$
- $2: o_4 \succ o_2 \succ o_5 \succ o_1 \succ o_3$
- $3: o_1 \succ o_3 \succ o_5 \succ o_4 \succ o_2$

Example

5 objects, 3 agents...

- $1: o_1 \succ o_2 \succ o_3 \succ o_4 \succ o_5$
- 2: $o_4 \succ o_2 \succ o_5 \succ o_1 \succ o_3$
- $3: o_1 \succ o_3 \succ o_5 \succ o_4 \succ o_2$

Let's consider allocation $\pi = \langle \{o_1\}, \{o_4, o_2\}, \{o_3, o_5\} \rangle$.

Example

5 objects, 3 agents...

- $1: o_1 \succ o_2 \succ o_3 \succ o_4 \succ o_5$
- 2: $o_4 \succ o_2 \succ o_5 \succ o_1 \succ o_3$
- 3: $o_1 \succ o_3 \succ o_5 \succ o_4 \succ o_2$

Let's consider allocation $\pi = \langle \{o_1\}, \{o_4, o_2\}, \{o_3, o_5\} \rangle$.

- Borda: $u_1(\pi) = 5$; $u_2(\pi) = 5 + 4 = 9$; $u_3(\pi) = 4 + 3 = 7$.
- Lexicographic: $u_1(\pi) = 16$; $u_2(\pi) = 24$; $u_3(\pi) = 12$.
- QI: $u_1(\pi) = 1 + 4\varepsilon$; $u_2(\pi) = 2 + 7\varepsilon$; $u_3(\pi) = 2 + 5\varepsilon$.
- 2-approval: $u_1(\pi) = 1$; $u_2(\pi) = 2$; $u_3(\pi) = 1$.

Positional scoring allocation rules

Back to our resource allocation problem...

Positional scoring allocation rules

Back to our resource allocation problem...

Assume that the agents have ordinal preferences (rankings).

Interpretation: Borda SF Lexicographic SF Quasi-Indifference SF *k*-Approval SF

Positional scoring allocation rules

Back to our resource allocation problem...

Maximize:	$\sum_{i} u_i(\pi)$
Interpretation:	
Borda SF	
Lexicographic SF	
Quasi-Indifference SF	
<i>k</i> -Approval SF	

Positional scoring allocation rules

Back to our resource allocation problem...

Maximize:	$\sum_{i} u_i(\pi)$	$\min_i u_i(\pi)$
Interpretation:		
Borda SF		
Lexicographic SF		
Quasi-Indifference SF		
<i>k</i> -Approval SF		

Positional scoring allocation rules

Back to our resource allocation problem...

Maximize:	$\sum_{i} u_i(\pi)$	$\min_i u_i(\pi)$	leximin $(u_1(\pi),\ldots,u_n(\pi))$
Interpretation:			
Borda SF			
Lexicographic SF			
Quasi-Indifference SF			
<i>k</i> -Approval SF			

Positional scoring allocation rules

Back to our resource allocation problem...

Assume that the agents have ordinal preferences (rankings).

Maximize:	$\sum_{i} u_i(\pi)$	$\min_i u_i(\pi)$	leximin $(u_1(\pi),\ldots,u_n(\pi))$
Interpretation:			
Borda SF			
Lexicographic SF			
Quasi-Indifference SF			
<i>k</i> -Approval SF			

→ 12 positional scoring allocation rules

(transposition to resource allocation of positional scoring rules in voting)

We have 12 allocation rules, having nice properties (*e.g* monotonicity), but what is their precise complexity?

The problems studied

We have 12 allocation rules, having nice properties (*e.g* monotonicity), but what is their precise complexity?

For each pair (scoring vector, social criterion), what is the complexity of...

- **Optimal Allocation Value (OAV):** is it possible to find an allocation of utility $\geq K$?
- **2 Optimal Allocation (OA):** does π belong to the set of optimal allocations?
- **§** Find Optimal Allocation (FOA): find an optimal allocation.

Main results

For $\sum_{i} u_i(\pi)$ (classical utilitarianism), everything is polynomial! **Idea:** give each item to the agent that ranks it the best.

Main results

For $\sum_{i} u_i(\pi)$ (classical utilitarianism), everything is polynomial! **Idea:** give each item to the agent that ranks it the best.

For min_i $u_i(\pi)$ (egalitarianism):

• Bad news: hard (NP-complete, coNP-complete, NP-hard for OAV, OA, FOA resp.) for Borda, lexicographic and QI scoring functions.

(all by reduction from [X3C])

Main results

For $\sum_{i} u_i(\pi)$ (classical utilitarianism), everything is polynomial! **Idea:** give each item to the agent that ranks it the best.

For min_i $u_i(\pi)$ (egalitarianism):

 Bad news: hard (NP-complete, coNP-complete, NP-hard for OAV, OA, FOA resp.) for Borda, lexicographic and QI scoring functions.

(all by reduction from [X3C])

• Good news: easy (polynomial)

- if the number of objects is fixed (obvious);
- if the number of agents is fixed (dynamic programming);
- for k-approval ("known" problem).

Main results

For $\sum_{i} u_i(\pi)$ (classical utilitarianism), everything is polynomial! **Idea:** give each item to the agent that ranks it the best.

For min_i $u_i(\pi)$ (egalitarianism):

 Bad news: hard (NP-complete, coNP-complete, NP-hard for OAV, OA, FOA resp.) for Borda, lexicographic and QI scoring functions.

(all by reduction from [X3C])

• Good news: easy (polynomial)

- if the number of objects is fixed (obvious);
- if the number of agents is fixed (dynamic programming);
- for k-approval ("known" problem).

Most results for min carry over to leximin.

Results: summary

	OA	OAV	FOA
$F_{s,+}$	in P	in P	pol. time
F _{s,min}	coNP-comp*	NP-comp*	NP-hard*
$k ext{-app}$ or $m\in O(1)$	in P	in P	pol. time
lex or ε -qi	coNP-comp	NP-comp	NP-hard
borda	coNP-comp	NP-comp	
lex or borda or $arepsilon$ -qi, if $n\in O(1)$	in P	in P	pol. time
F _{s,leximin}	coNP-comp*	NP-comp*	NP-hard*
lex or ε -qi	in coNP	NP-comp	NP-hard
borda	in coNP	NP-comp	
lex or borda or $arepsilon$ -qi, if $n\in O(1)$	in P	in P	pol. time

About approximation

Most cases are hard...

Question: *Is it possible to efficiently compute* **good** (but potentially suboptimal) *allocations?*

About approximation

Most cases are hard...

Question: *Is it possible to efficiently compute* **good** (but potentially suboptimal) *allocations?*

Our approach: Instead of giving general approximation results¹, we:

- focus on a simple allocation protocol;
- and try to analyze how good the allocations it gives are.

۸

¹Actually there is one in the paper, for (lexico, min).

An elicitation-free protocol...

Ask the agents to pick in turn their most preferred object among the remaining ones, according to some **predefined sequence** σ .

Example

3 agents 1, 2, 3 / 6 objects / sequence 123321 \rightarrow 1 chooses first (and takes her preferred object), then 2, then 3, then 3 again...

An elicitation-free protocol...

Ask the agents to pick in turn their most preferred object among the remaining ones, according to some **predefined sequence** σ .

Example

3 agents 1, 2, 3 / 6 objects / sequence 123321 \to 1 chooses first (and takes her preferred object), then 2, then 3, then 3 again...

Arguably a very simple (and natural) protocol! No elicitation required!

An elicitation-free protocol...

Ask the agents to pick in turn their most preferred object among the remaining ones, according to some **predefined sequence** σ .

Example

3 agents 1, 2, 3 / 6 objects / sequence 123321 \to 1 chooses first (and takes her preferred object), then 2, then 3, then 3 again...

Arguably a very simple (and natural) protocol! No elicitation required!

Here we focus on **regular sequences** σ of the kind $(1...n)^*$, but our results are similar for alternating sequences like $(1...nn...1)^*$.

▲

Price of elicitation-freeness

Arguably a very simple (and natural) protocol...

Price of elicitation-freeness

Arguably a very simple (and natural) protocol...

... but obviously suboptimal!

Price of elicitation-freeness

Arguably a very simple (and natural) protocol...

... but obviously suboptimal!

Question: What is the loss in social welfare we incur by using such a simple protocol instead of computing the optimal allocation?

Price of elicitation-freeness

Arguably a very simple (and natural) protocol...

... but obviously suboptimal!

Question: What is the loss in social welfare we incur by using such a simple protocol instead of computing the optimal allocation?

More formally:

- **Multiplicative** Price of Elicitation-Freeness: worst case ratio $u_c^{\text{opt}}/u_c(\sigma)$, for a sequence σ .
- Additive Price of Elicitation-Freeness: worst case difference $u_c^{\text{opt}} u_c(\sigma)$, for a sequence σ .

Some theoretical bounds for Borda

For classical utilitarianism $(\sum_{i} u_i(\pi))$:

$$1+\frac{n-1}{m}+\Theta(\frac{1}{m^2})\leq \textit{MPEF}\leq 2-\frac{1}{n}+\Theta(\frac{1}{m^2}), \text{ when } m\rightarrow+\infty.$$

▲

Some theoretical bounds for Borda

For classical utilitarianism $(\sum_{i} u_i(\pi))$:

$$1+\frac{n-1}{m}+\Theta(\frac{1}{m^2})\leq \textit{MPEF}\leq 2-\frac{1}{n}+\Theta(\frac{1}{m^2}), \text{ when } m\rightarrow+\infty.$$

For egalitarianism (min_i $u_i(\pi)$):

$$MPEF \leq 2 - \frac{1}{n} + \Theta(\frac{1}{m^2}), \text{ when } m \to +\infty.$$

See the paper for more!

Some experimental results for Borda

For classical utilitarianism $(\sum_i u_i(\pi))$:

For egalitarianism (min_i $u_i(\pi)$):

^{16 / 13}

Take-away message

This work is about allocating indivisible objects to agents.

Take-away message

This work is about allocating indivisible objects to agents.

Our starting point: most allocation procedures rely on a **numerical elicitation** of preferences which is uneasy for the agents. \rightarrow *What can we do with ordinal preferences*?

Take-away message

This work is about allocating indivisible objects to agents.

Our starting point: most allocation procedures rely on a **numerical elicitation** of preferences which is uneasy for the agents. \rightarrow *What can we do with ordinal preferences*?

Positional scoring allocation rules

Take-away message

This work is about allocating indivisible objects to agents.

Our starting point: most allocation procedures rely on a **numerical elicitation** of preferences which is uneasy for the agents. \rightarrow *What can we do with ordinal preferences*?

Positional scoring allocation rules

- Characterization of the computational complexity (mostly hard)
- Approximation with a very simple sequential protocol.

Take-away message

This work is about allocating indivisible objects to agents.

Our starting point: most allocation procedures rely on a **numerical elicitation** of preferences which is uneasy for the agents. \rightarrow *What can we do with ordinal preferences*?

Positional scoring allocation rules

- Characterization of the computational complexity (mostly hard)
- Approximation with a very simple sequential protocol.

Possible future work: manipulation, link with envy-freeness...