Normative Systems

Mehdi Dastani
Utrecht University
The Netherlands

Joint works with Nils Bulling and Max Knobbout

Outline

Programming Normative Systems

Monitoring Norms

Analysing Normative Systems

Background (1)

Multi-agent systems as promising candidate to construct distributed software systems that:

- are open and consist of individual autonomous and heterogenous agents
- Open: agents dynamically enter and exit the system
- Autonomy: each agent pursues its own objective.
- Heterogeneity: internal state and operations of an agent may not be known to external entities.
- The overall objective of such systems can be achieved by coordinating the behavior of the involved agents.

Background (2)

Norms (e.g., obligations \& prohibitions) are a popular candidate for coordination. Norms are standards of behaviour which prescribe certain behavior.

- Norms can be about states, actions, or behaviors, e.g.,
- state norms: Maximum length of papers is 15 pages.
- action norms: PC members should not review own papers.
- behavior norms: Reviews should be delivered in time.
- Norm can be enforced by means of rewards/sanctions or regimented.
- Enforcement: sanction page limit violation by additional fees.
- Regimentation: prevent reviewing conflicting papers.
- Enforcement: blacklist PC members with late reviews.

Background (3)

The development of normative systems requires implementation, verification, and analysis of norms.

- Norm implementation: design and develop a programming language that support the implementation of norms and rewards/sanctions.
- Norm Enforcement/Regimentation: monitors to observe norm violations.
- Norm analysis: use game theoretic tools to determine if a norm program can ensure the designer's objectives given some information about the involved agents.

Programming Normative Systems

Coordination Component (IAT 2009, JLC 2011)

Brute facts model the domain specific (environment) state, including action specifications;

Agents modify brute facts by performing actions;

Control cycle monitors agents actions and realizes their effects.

Coordination Component with Norms

Brute facts model the domain specific (environment) state, including action specifications;

Agents modify brute facts by performing actions;

Ideal brute state described by norm;

Active norms and norm violations stored by institutional facts;

- Norm obedience/violation might lead to rewards/sanctions;

Control cycle monitors agents actions and realizes their effects in the context of the norms and rewards/sanctions.

Norms

- State-based norms (JLC 2011):
$F(\phi) \quad$ Prohibited to achieve ϕ states
$O(\phi) \quad$ Obliged to achieve ϕ states
- Action-based norms (IJCAI 2011):
$F(\phi, \alpha) \quad$ Prohibited to perform action α in ϕ states
$O(\phi, \alpha) \quad$ Obliged to perform action α in ϕ states
- Behaviour-based norms (IJCAI 2013):
(cond, $F(\phi), d$) if cond, then prohibited to achieve ϕ before d (cond, $O(\phi), d$) if cond, then obliged to achieve ϕ before d

Examples of Behaviour-based Norms

Norms:

```
reviewdue(R):
    < phase(review) and assigned(R,P)
        , O(review(R,P))
        , phase(collect)>
```

\} label
\} condition
\} obligation
\} deadline

```
minreviews(P):
    < phase(submission) and paper(P)
        , O( nrReviews(P) >= 2 )
        , phase(collect)>
pagelimit(P):
    < phase(submission) and paper(P),
        , F(pages(P) > 15)
    , phase(review)>
```


Evolution of Obligations

Recall norm:

reviewdue(R):
< phase(review) and assigned (R,P), O(review (R,P)), phase(collect) >
brute facts: \{ phase(review), paper(p5) \} inst. facts : \{ rea(john, chair) \}

Evolution of Obligations

Recall norm:

```
reviewdue(R):
< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >
```

assign(john,rose,p5)

brute facts : \{ phase(review), paper(p5), assigned(rose,p5) \} inst. facts : \{ rea(john, chair) ,
(reviewdue(rose) , O(review(rose,p5)) , phase(collect)) \}

Evolution of Obligations

Recall norm:

```
reviewdue(R):
< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >
```

$\operatorname{assign}(j o h n, n, 5)$

brute facts : \{ phase(review), paper (p5), assigned(rose,p5) \} inst. facts : \{rea(john, chair)) , (reviewdue(rose), O(review(rose,p5)), phase(collect)) \}

Evolution of Obligations

Recall norm:

```
reviewdue(R):
< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >
```

assign(john,rose,p5)

brute facts : \{phase(review), paper(p5), assigned(rose,p5), review(rose,p5) \}
inst. facts : \{rea(john, chair), obey(reviewdue(rose)) \}

Evolution of Obligations

Recall norm:

```
reviewdue(R):
< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >
```

assign(john,rose,p5)

brute facts : \{ phase(review), paper(p5), assigned(rose,p5) \} inst. facts : \{rea(john, chair)) , (reviewdue(rose), $\mathbf{O}($ review(rose,p5)), phase(collect)) \}

Evolution of Obligations

Recall norm:

```
reviewdue(R):
```

< phase(review) and assigned(R,P), $\mathrm{O}($ review $(R, P))$, phase(collect) >
assign(john,rose,p5)

start(john,collect)

brute facts : \{ phase(collect), paper(p5), assigned(rose,p5) \} inst. facts : \{rea(john, chair), viol(reviewdue(rose)) \}

Behavior of an Obligation Summarized

Behavior of a Prohibition Summarized

Normative System Configuration

Definition (Configuration)
The state of a coordination component is a tuple $\left\langle\sigma_{b}, \sigma_{i}, \Delta\right\rangle$ with:

- σ_{b} a set of ground first-order atoms, the brute state;
- σ_{i} a set of ground first-order atoms, the institutional state;
- Δ a set of norms (Static);

For simplicity we ignore static Δ and present a configuration as:

$$
\left\langle\sigma_{b}, \sigma_{i}\right\rangle
$$

Triggering Norms

Recall norm:
reviewdue(R):
< phase(review) and assigned(R,P), $O($ review (R,P)), phase(collect) >

Definition (Norm Instantiation)

Given:

- ns $=\phi_{l}\left(\overline{v_{1}}\right):\left\langle\varphi_{c}\left(\overline{v_{2}}\right), \mathbb{P}\left(\varphi_{x}\left(\overline{v_{3}}\right)\right), \varphi_{d}\left(\overline{v_{4}}\right)\right\rangle$
- \mathbb{P} either O or F
- $\overline{v_{1}}, \ldots, \overline{v_{4}}$ the sets of variables occurring in the formulae
- ground substitution θ

The function inst for instantiating $n s$ with θ is defined as:

$$
\operatorname{inst}(n s, \theta)=\left(\phi_{l}\left(\overline{v_{1}}\right) \theta, \mathbb{P}\left(\varphi_{x}\left(\overline{v_{3}}\right) \theta\right), \varphi_{d}\left(\overline{v_{4}}\right) \theta\right)
$$

Triggering Norms

Transition Rule
Given ground substitution θ, the rule for triggering of norms is defined as:

$$
\frac{n s=\left(\phi_{l}:\left\langle\varphi_{c}, \mathbb{P}\left(\varphi_{x}\right), \varphi_{d}\right\rangle\right) \in \Delta \quad \sigma_{b} \models \varphi_{c} \theta \quad n i=\operatorname{inst}(n s, \theta)}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b}, \sigma_{i} \cup\{n i\}\right\rangle}
$$

Triggering Norms

Transition Rule Given ground substitution θ, the rule for triggering of norms is defined as:

$$
\frac{n s=\left(\phi_{l}:\left\langle\varphi_{c}, \mathbb{P}\left(\varphi_{x}\right), \varphi_{d}\right\rangle\right) \in \Delta \quad \sigma_{b} \models \varphi_{c} \theta \quad n i=\operatorname{inst}(n s, \theta)}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b}, \sigma_{i} \cup\{n i\}\right\rangle}
$$

- When the condition of a norm is satisfied

Triggering Norms

Transition Rule Given ground substitution θ, the rule for triggering of norms is defined as:

$$
\frac{n s=\left(\phi_{l}:\left\langle\varphi_{c}, \mathbb{P}\left(\varphi_{x}\right), \varphi_{d}\right\rangle\right) \in \Delta \quad \sigma_{b} \models \varphi_{c} \theta \quad n i=\operatorname{inst}(n s, \theta)}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b}, \sigma_{i} \cup\{n i\}\right\rangle}
$$

- We instantiate it and add it to the institutional facts

Monitoring Obligations

Transition Rule
The rule for violation of an obligation is defined as follows:

$$
\frac{\left(\phi_{l}, O\left(\varphi_{x}\right), \varphi_{d}\right) \in \sigma_{i} \quad \sigma_{b} \not \models \varphi_{x} \quad \sigma_{b} \models \varphi_{d}}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b},\left(\sigma_{i} \backslash\{n i\}\right) \cup\left\{\operatorname{viol}\left(\phi_{l}\right)\right\}\right\rangle}
$$

Monitoring Obligations

Transition Rule
The rule for violation of an obligation is defined as follows:

$$
\frac{\left(\phi_{l}, O\left(\varphi_{x}\right), \varphi_{d}\right) \in \sigma_{i} \quad \sigma_{b} \not \models \varphi_{x} \quad \sigma_{b} \models \varphi_{d}}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b},\left(\sigma_{i} \backslash\{n i\}\right) \cup\left\{\operatorname{viol}\left(\phi_{l}\right)\right\}\right\rangle}
$$

- When an obligation is violated

Monitoring Obligations

Transition Rule
The rule for violation of an obligation is defined as follows:

$$
\frac{\left(\phi_{l}, O\left(\varphi_{x}\right), \varphi_{d}\right) \in \sigma_{i} \quad \sigma_{b} \not \models \varphi_{x} \quad \sigma_{b} \models \varphi_{d}}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b},\left(\sigma_{i} \backslash\{n i\}\right) \cup\left\{\operatorname{viol}\left(\phi_{l}\right)\right\}\right\rangle}
$$

- We remove it from the institutional facts

Monitoring Obligations

Transition Rule
The rule for violation of an obligation is defined as follows:

$$
\frac{\left(\phi_{l}, O\left(\varphi_{x}\right), \varphi_{d}\right) \in \sigma_{i} \quad \sigma_{b} \not \vDash \varphi_{x} \quad \sigma_{b} \models \varphi_{d}}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b},\left(\sigma_{i} \backslash\{n i\}\right) \cup\left\{\operatorname{viol}\left(\phi_{l}\right)\right\}\right\rangle}
$$

- We record its violation to the institutional facts

Monitoring Obligations

Transition Rule
The rule for fulfillment of an obligation is defined as follows:

$$
\frac{\left(\phi_{l}, O\left(\varphi_{x}\right), \varphi_{d}\right) \in \sigma_{i} \quad \sigma_{b} \models \varphi_{x}}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b},\left(\sigma_{i} \backslash\{n i\}\right) \cup\left\{\text { obey }\left(\phi_{l}\right)\right\}\right\rangle}
$$

Monitoring Obligations

Transition Rule
The rule for fulfillment of an obligation is defined as follows:

$$
\frac{\left(\phi_{I}, O\left(\varphi_{x}\right), \varphi_{d}\right) \in \sigma_{i} \quad \sigma_{b} \models \varphi_{x}}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b},\left(\sigma_{i} \backslash\{n i\}\right) \cup\left\{\text { obey }\left(\phi_{l}\right)\right\}\right\rangle}
$$

- When an obligation is fulfilled

Monitoring Obligations

Transition Rule
The rule for fulfillment of an obligation is defined as follows:

$$
\frac{\left(\phi_{l}, O\left(\varphi_{x}\right), \varphi_{d}\right) \in \sigma_{i} \quad \sigma_{b} \models \varphi_{x}}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b},\left(\sigma_{i} \backslash\{n i\}\right) \cup\left\{\text { obey }\left(\phi_{l}\right)\right\}\right\rangle}
$$

- We remove it from the institutional facts

Monitoring Obligations

Transition Rule
The rule for fulfillment of an obligation is defined as follows:

$$
\frac{\left(\phi_{l}, O\left(\varphi_{x}\right), \varphi_{d}\right) \in \sigma_{i} \quad \sigma_{b} \models \varphi_{x}}{\left\langle\sigma_{b}, \sigma_{i}\right\rangle \longrightarrow\left\langle\sigma_{b},\left(\sigma_{i} \backslash\{n i\}\right) \cup\left\{\operatorname{obey}\left(\phi_{l}\right)\right\}\right\rangle}
$$

- We record its fulfilment to the institutional facts

Properties

Proposition
Detached obligations remain in force until obeyed or violated.
I.e., for every trace $\left\langle\sigma_{b}^{0}, \sigma_{i}^{0}\right\rangle \rightarrow^{*}\left\langle\sigma_{b}^{n}, \sigma_{i}^{n}\right\rangle$ with $\sigma_{b}^{j} \notin \phi_{x}$ and
$\sigma_{b}^{j} \not \models \phi_{d}$ for $0 \leq j \leq n$, if $\left(\phi_{l}, O\left(\phi_{x}\right), \phi_{d}\right) \in \sigma_{i}^{0}$, then $\left(\phi_{l}, O\left(\phi_{x}\right), \phi_{d}\right) \in \sigma_{i}^{n}$.

Proposition
Violation of detached obligations are recorded in deadline states.
Proposition
Violation is inevitable in case of conflicting norms.

Properties

Proposition
Detached obligations remain in force until obeyed or violated.
Proposition
Violation of detached obligations are recorded in deadline states.
I.e., for every trace $\left\langle\sigma_{b}^{0}, \sigma_{i}^{0}\right\rangle \rightarrow^{*}\left\langle\sigma_{b}^{n}, \sigma_{i}^{n}\right\rangle$ with $\sigma_{b}^{j} \not \vDash \phi_{x}$ and
$\sigma_{b}^{i} \not \models \phi_{d}$ for $0 \leq j<n$ and $\sigma_{b}^{n} \not \models \phi_{x}$ and $\sigma_{b}^{n} \models \phi_{d}$, if
$\left(\phi_{l}, O\left(\phi_{x}\right), \phi_{d}\right) \in \sigma_{i}^{0}$, then $\sigma_{i}^{n} \models \operatorname{viol}\left(\phi_{l}\right)$ and $\left(\phi_{l}, O\left(\phi_{x}\right), \phi_{d}\right) \notin \sigma_{i}^{n}$.

Proposition
Violation is inevitable in case of conflicting norms.

Properties

Proposition

Detached obligations remain in force until obeyed or violated.
Proposition
Violation of detached obligations are recorded in deadline states.
Proposition
Violation is inevitable in case of conflicting norms.
I.e., for every trace $\left\langle\sigma_{b}^{0}, \sigma_{i}^{0}\right\rangle \rightarrow^{*}\left\langle\sigma_{b}^{n}, \sigma_{i}^{n}\right\rangle$ with $\left(\phi_{I}, O\left(\phi_{x}\right), \phi_{d}\right) \in \sigma_{i}^{0}$ and $\left(\phi_{\prime^{\prime}}, F\left(\phi_{x}\right), \phi_{d^{\prime}}\right) \in \sigma_{i}^{0}$, if $\sigma_{b}^{n} \models \phi_{d}$ and $\sigma_{b}^{j} \notin \phi_{d^{\prime}}$ for $0 \leq j \leq n$ then $\exists 0 \leq k \leq n: \sigma_{i}^{k} \models \operatorname{viol}\left(\phi_{l}\right)$ or $\sigma_{i}^{, k} \models \operatorname{viol}\left(\phi_{l^{\prime}}\right)$.

Monitoring Norms

Motivation

Existing work on normative multi-agent systems typically assume perfect monitoring.

We want to develop a very general framework in order to ...

- ...characterize monitors.
- . . . reason about monitors.
- ...study the relation between monitors and norms.

Runs, Norms, Monitors

Given an (interpreted) transition system $\left(Q, \rightarrow, q_{0}, v\right)$, we define:
Definition
\mathcal{R} as the set of runs, where $\mathcal{R}=\left\{q_{0} q_{1} \ldots \in Q^{\omega} \mid \forall n, q_{n} \rightarrow q_{n+1}\right\}$

Runs, Norms, Monitors

Given an (interpreted) transition system $\left(Q, \rightarrow, q_{0}, v\right)$, we define:
Definition
\mathcal{R} as the set of runs, where $\mathcal{R}=\left\{q_{0} q_{1} \ldots \in Q^{\omega} \mid \forall n, q_{n} \rightarrow q_{n+1}\right\}$
Definition
$\mathcal{N} \subseteq \mathcal{R}$ as a norm, which denotes a set of desired runs. Moreover, we say that a run r is a \mathcal{N}-violation iff $r \notin \mathcal{N}$.

Runs, Norms, Monitors

Given an (interpreted) transition system $\left(Q, \rightarrow, q_{0}, v\right)$, we define:
Definition
\mathcal{R} as the set of runs, where $\mathcal{R}=\left\{q_{0} q_{1} \ldots \in Q^{\omega} \mid \forall n, q_{n} \rightarrow q_{n+1}\right\}$
Definition
$\mathcal{N} \subseteq \mathcal{R}$ as a norm, which denotes a set of desired runs. Moreover, we say that a run r is a \mathcal{N}-violation iff $r \notin \mathcal{N}$.

Definition
Given set \mathcal{R}, a monitor m is a function from \mathcal{R} to $\mathcal{P}(\mathcal{R})$.

Monitor Types

Some extreme cases:

- For all $r \in \mathcal{R} m(r)=\{r\}$ (perfect observation).
- For all $r \in \mathcal{R} m(r)=\mathcal{R}$ (no observation).

Monitor Types

Some extreme cases:

- For all $r \in \mathcal{R} m(r)=\{r\}$ (perfect observation).
- For all $r \in \mathcal{R} m(r)=\mathcal{R}$ (no observation).

Definition

Let m be a monitor over \mathcal{R}. We say that m is

- broken iff there exists a $r \in \mathcal{R}$ such that $m(r)=\emptyset$.
- correct iff for all $r \in \mathcal{R}$ we have $r \in m(r)$.
- ideal iff for all $r \in \mathcal{R}$ we have $m(r)=\{r\}$.

Example

An example:

- $\mathcal{N}=\left\{\left(q_{0} q_{1}\right)^{\omega}\right\}$
- $m(r)=\left\{r^{\prime} \in \mathcal{R} \mid r[1]=r^{\prime}[1]\right\}$

Example

An example:

- $\mathcal{N}=\left\{\left(q_{0} q_{1}\right)^{\omega}\right\}$
- $m(r)=\left\{r^{\prime} \in \mathcal{R} \mid r[1]=r^{\prime}[1]\right\}$

Note that this monitor is correct, but not ideal.

Logical setting

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\varphi \mathcal{U} \varphi| \bigcirc \varphi
$$

Semantics:

- $\mathfrak{I}, r \vDash p$ iff $p \in v(r[0])$
- $\mathfrak{I}, r \vDash \neg \varphi$ iff $\mathfrak{I}, r \not \vDash \varphi$
- $\mathfrak{I}, r \vDash \varphi \vee \psi$ iff $\mathfrak{I}, r \vDash \varphi$ or $\mathfrak{I}, r=\psi$
- $\mathfrak{I}, r \vDash \bigcirc \varphi$ iff $\mathfrak{I}, r[1, \infty] \vDash \varphi$
- $\mathfrak{I}, r \models \varphi \mathcal{U} \psi$ iff $i \geq 0$ such that $\mathfrak{I}, r[i, \infty] \models \psi$ and for all $0 \leq k<i, \mathfrak{I}, r[k, \infty] \models \varphi$

Moreover, $\mathfrak{I}, R \models \varphi$ iff $\forall r \in R: \mathfrak{I}, r \vDash \varphi$.

Monitoring LTL-Norms

Definition

Let χ be an $L T L$-formula and \mathfrak{I} be a transition system. The χ-norm in \mathfrak{I} is the set $\{r \in \mathcal{R}|\mathfrak{I}, r|=\chi\}$. We simply write χ to refer to this norm.

Monitoring LTL-Norms

Definition

Let χ be an $L T L$-formula and \mathfrak{I} be a transition system. The χ-norm in \mathfrak{I} is the set $\{r \in \mathcal{R}|\mathfrak{I}, r|=\chi\}$. We simply write χ to refer to this norm.

Definition
We say that monitor m on input r detects a

- χ-violation iff $\mathfrak{I}, m(r) \models \neg \chi$;
- χ-compliance iff $\mathfrak{I}, m(r) \vDash \chi$; and
- χ-indifference iff both $\mathfrak{I}, m(r) \not \vDash \chi$ and $\mathfrak{I}, m(r) \not \vDash \neg \chi$.

Characterizing Monitors based on LTL-Norms

Definition

Let \mathfrak{I} be a transition system, χ a norm, and m a monitor. We say that m makes a χ-classification error on r iff

- m detects a χ-violation on r and r is not a χ-violation (false negative); or
- m detects a χ-compliance on r and r is a χ-violation (false positive).

Characterizing Monitors based on LTL-Norms

Definition

Let \mathfrak{I} be a transition system, χ a norm, and m a monitor. We say that m makes a χ-classification error on r iff

- m detects a χ-violation on r and r is not a χ-violation (false negative); or
- m detects a χ-compliance on r and r is a χ-violation (false positive).

Definition

Let \mathfrak{I} be a transition system, χ a norm and m a monitor. We say that m is

- χ-sound in \mathfrak{I} iff for all $r \in \mathcal{R}: ~ \mathfrak{I}, m(r) \models \neg \chi \Rightarrow \mathfrak{I}, r \models \neg \chi$.
- χ-complete in \mathfrak{I} iff for all $r \in \mathcal{R}: \mathfrak{I}, r \models \neg \chi \Rightarrow \mathfrak{I}, m(r) \models \neg \chi$.
- χ-sufficient in \mathfrak{I} iff m is χ-sound and χ-complete.

Example

Back to the example:

- $\chi=\square p$
- $m(r)=\left\{r^{\prime} \in \mathcal{R} \mid r[1]=r^{\prime}[1]\right\}$

Example

Back to the example:

- $\chi=\square p$
- $m(r)=\left\{r^{\prime} \in \mathcal{R} \mid r[1]=r^{\prime}[1]\right\}$
m is χ-sound: for all $r: ~ \mathfrak{I}, m(r) \models \neg \square p \Rightarrow \mathfrak{I}, r \models \neg \square p$. m is not χ-complete: exists r : $\mathfrak{I}, r \vDash \neg \square p$ and $\mathfrak{I}, m(r) \not \vDash \neg \square p$

LTL-Monitors \& Composed Monitors

Definition
Let φ be an LTL-formula and \mathfrak{I} be a transition system. The φ-monitor over \mathfrak{I} is the function $m_{\varphi}: \mathcal{R} \rightarrow \mathcal{P}(\mathcal{R})$ defined as follows: $m_{\varphi}(r):=\left\{r^{\prime} \in \mathcal{R} \mid \mathfrak{I}, r \models \varphi\right.$ iff $\left.\mathfrak{I}, r^{\prime} \models \varphi\right\}$.

LTL-Monitors \& Composed Monitors

Definition

Let φ be an LTL-formula and \mathfrak{I} be a transition system. The φ-monitor over \mathfrak{I} is the function $m_{\varphi}: \mathcal{R} \rightarrow \mathcal{P}(\mathcal{R})$ defined as follows: $m_{\varphi}(r):=\left\{r^{\prime} \in \mathcal{R} \mid \mathfrak{I}, r=\varphi\right.$ iff $\left.\mathfrak{I}, r^{\prime} \models \varphi\right\}$.

Definition

Let $m_{1}, m_{2}: \mathcal{R} \rightarrow \mathcal{P}(\mathcal{R})$ be two monitors. We define the monitor $m \oplus m^{\prime}: \mathcal{R} \rightarrow \mathcal{P}(\mathcal{R})$ as follows: $m \oplus m^{\prime}(r):=m(r) \cap m^{\prime}(r)$.

Example

Let $\chi=\bigcirc((r \wedge \neg s) \vee(\neg r \wedge s))$. Let $m_{\bigcirc r}$ and $m_{\bigcirc s}$ be two LTL-monitors. We have the following:

- $\left(m_{\bigcirc r} \oplus m_{\bigcirc s}\right)\left(r_{2}\right)=\left\{r_{2}\right\}$
- $m_{(O r \wedge \cap s)}\left(r_{2}\right)=\left\{r_{2}, r_{3}, r_{4}\right\}$

Example

Let $\chi=\bigcirc((r \wedge \neg s) \vee(\neg r \wedge s))$. Let $m_{\bigcirc r}$ and $m_{\bigcirc s}$ be two LTL-monitors. We have the following:

- $\left(m_{\bigcirc r} \oplus m_{\bigcirc s}\right)\left(r_{2}\right)=\left\{r_{2}\right\}$
- $m_{(\bigcirc r \wedge \bigcirc s)}\left(r_{2}\right)=\left\{r_{2}, r_{3}, r_{4}\right\}$

Only composed monitor $\left(m_{\bigcirc r} \oplus m_{\bigcirc s}\right)$ is χ-sufficient.

Results

Theorem
Let m_{φ} and m_{ψ} be two (or more) LTL-monitors, χ be an LTL-norm, and \mathfrak{I} be a transition system. Let $\Sigma=\{\varphi \wedge \psi, \varphi \wedge \neg \psi, \neg \varphi \wedge \psi, \neg \varphi \wedge \neg \psi\}$. Then, the following statements are equivalent:
(a) $m_{\varphi} \oplus m_{\psi}$ is χ-sufficient over \mathfrak{I}.
(b) for all $\xi \in \Sigma$, if $\neg \chi \wedge \xi$ is satisfiable on \mathfrak{I} then $\mathfrak{I} \models \xi \rightarrow \neg \chi$.
(c) exists $\Sigma^{\prime} \subseteq \Sigma$ such that $\mathfrak{I} \models\left(\bigvee_{\xi \in \Sigma^{\prime}} \xi\right) \leftrightarrow \neg \chi$.

Analysing Normative Systems

Norms as Mechanism Design (AAMAS 2011, IJCAI 2011)

Can specific behaviours be enforced by a normative environment program if agents follow their subjective preferences?
I.e.,

Does a set of norms and sanctions/rewards implements specific social choice functions (designer's objectives) in specific equilibria?

Example: A Road Scenario

- $s 0$: the cars are at their starting positions, i.e., $p_{1}^{s} \wedge p_{2}^{s}$
- s1: car $C 1$ is at ending and car $C 2$ at starting position,i.e., $p_{1}^{e} \wedge p_{2}^{s}$
- s2: car $C 1$ is at starting and car $C 2$ at ending position,i.e., $p_{1}^{s} \wedge p_{2}^{e}$
- $s 3$: the cars are jammed in the middle of the road,i.e., $p_{1}^{m} \wedge p_{2}^{m}$
- s4: the cars are at their ending positions, i.e., $p_{1}^{e} \wedge p_{2}^{e}$

Action Specification

- Each car has two actions.
- Move (M)
- Wait (W), and
- * $\in\{M, W\}$.
- Joint actions are specified in terms of their pre- and post-conditions.

$$
\begin{array}{lll}
\left\{p_{1}^{s}, p_{2}^{s}\right\} & (M, W) & \left\{p_{1}^{e}, p_{2}^{s}\right\} \\
\left\{p_{1}^{s}, p_{2}^{s}\right\} & (W, M) & \left\{p_{1}^{s}, p_{2}^{e}\right\} \\
\left\{p_{1}^{s}, p_{2}^{s}\right\} & (M, M) & \left\{p_{1}^{m}, p_{2}^{m}\right\} \\
\left\{p_{1}^{s}, p_{2}^{e}\right\} & (M, *) & \left\{p_{1}^{e}, p_{2}^{e}\right\} \\
\left\{p_{1}^{e}, p_{2}^{s}\right\} & (*, M) & \left\{p_{1}^{e}, p_{2}^{e}\right\}
\end{array}
$$

Other actions do not cause state change.

Transition System without Norms

Possible behaviours of the cars can be described by the following transition system.

Preferences: Cars \& System Designer

Preferences profiles, λ_{1} (egoistic) and λ_{2} (social), are represented as lists of LTL formulae.

$$
\begin{aligned}
& \lambda_{1}=\left\{\quad\left[\left(X p_{1}^{e} \wedge \square \neg s_{1}, 3\right),\left(\diamond p_{1}^{e} \wedge \square \neg s_{1}, 2\right),\left(\square \neg s_{1}, 1\right),(T, 0)\right],\right. \\
& \left.\left[\left(X p_{2}^{e} \wedge \square \neg s_{2}, 3\right),\left(\diamond p_{2}^{e} \wedge \square \neg s_{2}, 2\right),\left(\square \neg s_{2}, 1\right),(T, 0)\right]\right\} \\
& \lambda_{2}=\left\{\quad\left[\left(X\left(p_{1}^{e} \wedge p_{2}^{e}\right) \wedge \square \neg s_{1}, 3\right),\left(X p_{1}^{e} \wedge \square \neg s_{1}, 2\right),\left(\square \neg s_{1}, 1\right),(T, 0)\right],\right. \\
& \left.\left[\left(X\left(p_{1}^{e} \wedge p_{2}^{e}\right) \wedge \square \neg s_{2}, 3\right),\left(X p_{2}^{e} \wedge \square \neg s_{2}, 2\right),\left(\square \neg s_{2}, 1\right),(\top, 0)\right]\right\}
\end{aligned}
$$

The preference of the system designer is represented by the following social choice function:

$$
\operatorname{SCF}\left(\lambda_{i}\right)=X p_{1}^{e} \vee\left(X p_{1}^{e} \wedge \diamond p_{2}^{e}\right)
$$

The designer prefers that first car reaches its end position directly.

Equilibrium Analysis

$1 \backslash 2$	$M * *$	$W M *$	$W W *$
$M * *$	03^{*}	014^{*}	011^{*}
$W * M$	024^{*}	00^{*}	00^{*}
$W * W$	022^{*}	00^{*}	00^{*}

Equilibrium Analysis

$1 \backslash 2$	$M * *$	$W M *$	$W W *$
$M * *$	03^{*}	014^{*}	011^{*}
$W * M$	024^{*}	00^{*}	00^{*}
$W * W$	022^{*}	00^{*}	00^{*}

$1 \backslash 2$	$M * *$	$W M *$	$W W *$
$M * *$	$1 \backslash 1$	$3 \backslash 2$	$3 \backslash 1$
$W * M$	$2 \backslash 3$	$1 \backslash 1$	$1 \backslash 1$
$W * W$	$1 \backslash 3$	$1 \backslash 1$	$1 \backslash 1$

$$
\begin{aligned}
\lambda_{1}=\{ & {\left[\left(X p_{1}^{e} \wedge \square \neg s_{1}, 3\right),\left(\diamond p_{1}^{e} \wedge \square \neg s_{1}, 2\right),\left(\square \neg s_{1}, 1\right),(\top, 0)\right], } \\
& {\left.\left[\left(X p_{2}^{e} \wedge \square \neg s_{2}, 3\right),\left(\diamond p_{2}^{e} \wedge \square \neg s_{2}, 2\right),\left(\square \neg s_{2}, 1\right),(\top, 0)\right]\right\} }
\end{aligned}
$$

Equilibrium Analysis

$1 \backslash 2$	$M * *$	$W M *$	$W W *$
$M * *$	03^{*}	014^{*}	011^{*}
$W * M$	024^{*}	00^{*}	00^{*}
$W * W$	022^{*}	00^{*}	00^{*}
$1 \backslash 2$	$M * *$	$W M *$	$W W *$
$M * *$	$1 \backslash 1$	$3 \backslash 2$	$3 \backslash 1$
$W * M$	$2 \backslash 3$	$1 \backslash 1$	$1 \backslash 1$
$W * W$	$1 \backslash 3$	$1 \backslash 1$	$1 \backslash 1$

$\operatorname{SCF}\left(\lambda_{i}\right)=X p_{1}^{e} \vee\left(X p_{1}^{e} \wedge \diamond p_{2}^{e}\right)$

Equilibrium Analysis

$1 \backslash 2$	M * *	WM*	WW*
M * *	03*	014*	011*
$W * M$	024*	00*	00*
$W * W$	022*	00*	00*
$1 \backslash 2$	M * *	WM*	WW*
M**	1\1	$2 \backslash 1$	$2 \backslash 1$
$W * M$	1\2	$1 \backslash 1$	$1 \backslash 1$
$W * W$	$1 \backslash 2$	$1 \backslash 1$	$1 \backslash 1$

$$
\begin{aligned}
\lambda_{2}=\{ & {\left[\left(X\left(p_{1}^{e} \wedge p_{2}^{e}\right) \wedge \square \neg s_{1}, 3\right),\left(X p_{1}^{e} \wedge \square \neg s_{1}, 2\right),\left(\square \neg s_{1}, 1\right),(\top, 0)\right], } \\
& {\left.\left[\left(X\left(p_{1}^{e} \wedge p_{2}^{e}\right) \wedge \square \neg s_{2}, 3\right),\left(X p_{2}^{e} \wedge \square \neg s_{2}, 2\right),\left(\square \neg s_{2}, 1\right),(\top, 0)\right]\right\} }
\end{aligned}
$$

Equilibrium Analysis

$1 \backslash 2$	$M * *$	$W M *$	$W W *$
$M * *$	03^{*}	014^{*}	011^{*}
$W * M$	024^{*}	00^{*}	00^{*}
$W * W$	022^{*}	00^{*}	00^{*}

$1 \backslash 2$	$M * *$	$W M *$	$W W *$
$M * *$	$1 \backslash 1$	$2 \backslash 1$	$2 \backslash 1$
$W * M$	$1 \backslash 2$	$1 \backslash 1$	$1 \backslash 1$
$W * W$	$1 \backslash 2$	$1 \backslash 1$	$1 \backslash 1$

$$
\operatorname{SCF}\left(\lambda_{i}\right)=X p_{1}^{e} \vee\left(X p_{1}^{e} \wedge \Delta p_{2}^{e}\right)
$$

Example: Introducing Norms in the Road Scenario

- The second car is prohibited to move in the start position, otherwise sanction s_{2} will be imposed, i.e.,

$$
F\left(p_{1}^{s} \wedge p_{2}^{s},(*, W), s_{2}\right)
$$

- It is prohibited that cars wait on each other in the start position, otherwise sanction s_{1} will be imposed, i.e.,

$$
F\left(p_{1}^{s} \wedge p_{2}^{s},(W, W), s_{1}\right)
$$

Norms and Norm Updates

- The second car is prohibited to move in the start position, otherwise sanction s_{2} will be imposed, i.e.,

$$
F\left(p_{1}^{s} \wedge p_{2}^{s},(*, W), s_{2}\right)
$$

- It is prohibited that cars wait on each other in the start position, otherwise sanction s_{1} will be imposed, i.e.,

$$
F\left(p_{1}^{s} \wedge p_{2}^{s},(W, W), s_{1}\right)
$$

Norms and Norm Updates

- The second car is prohibited to move in the start position, otherwise sanction s_{2} will be imposed, i.e.,

$$
F\left(p_{1}^{s} \wedge p_{2}^{s},(*, W), s_{2}\right)
$$

- It is prohibited that cars wait on each other in the start position, otherwise sanction s_{1} will be imposed, i.e.,

$$
F\left(p_{1}^{s} \wedge p_{2}^{s},(W, W), s_{1}\right)
$$

Equilibrium Analysis

Equilibrium Analysis

(*,*)

$1 \backslash 2$	$M * * *$	$W W W *$	$W M M *$	$W M W *$
$M * * *$	$1 \backslash 0$	$3 \backslash 1$	$3 \backslash 2$	$3 \backslash 1$
$W W * M$	$2 \backslash 0$	$0 \backslash 1$	$0 \backslash 0$	$0 \backslash 0$
$W W * W$	$1 \backslash 0$	$0 \backslash 1$	$0 \backslash 0$	$0 \backslash 0$
$W M * M$	$2 \backslash 0$	$0 \backslash 1$	$0 \backslash 0$	$0 \backslash 0$
$W M * W$	$1 \backslash 0$	$0 \backslash 1$	$0 \backslash 0$	$0 \backslash 0$

$$
\begin{aligned}
\lambda_{1}=\{ & {\left[\left(X p_{1}^{e} \wedge \square \neg s_{1}, 3\right),\left(\diamond p_{1}^{e} \wedge \square \neg s_{1}, 2\right),\left(\square \neg s_{1}, 1\right),(\top, 0)\right], } \\
& {\left.\left[\left(X p_{2}^{e} \wedge \square \neg s_{2}, 3\right),\left(\diamond p_{2}^{e} \wedge \square \neg s_{2}, 2\right),\left(\square \neg s_{2}, 1\right),(\top, 0)\right]\right\} }
\end{aligned}
$$

Equilibrium Analysis

$1 \backslash 2$	$M * * *$	$W W W *$	$W M M *$	$W M W *$
$M * * *$	$1 \backslash 0$	$2 \backslash 1$	$2 \backslash 1$	$2 \backslash 1$
$W W * M$	$1 \backslash 0$	$0 \backslash 1$	$0 \backslash 0$	$0 \backslash 0$
$W W * W$	$1 \backslash 0$	$0 \backslash 1$	$0 \backslash 0$	$0 \backslash 0$
$W M * M$	$1 \backslash 0$	$0 \backslash 1$	$0 \backslash 0$	$0 \backslash 0$
$W M * W$	$1 \backslash 0$	$0 \backslash 1$	$0 \backslash 0$	$0 \backslash 0$

$$
\lambda_{2}= \begin{cases} & {\left[\left(X\left(p_{1}^{e} \wedge p_{2}^{e}\right) \wedge \square \neg s_{1}, 3\right),\left(X p_{1}^{e} \wedge \square \neg s_{1}, 2\right),\left(\square \neg s_{1}, 1\right),(\top, 0)\right],} \\ & \left.\left[\left(X\left(p_{1}^{e} \wedge p_{2}^{e}\right) \wedge \square \neg s_{2}, 3\right),\left(X p_{2}^{e} \wedge \square \neg s_{2}, 2\right),\left(\square \neg s_{2}, 1\right),(\top, 0)\right]\right\}\end{cases}
$$

Verification Problems

Let \mathcal{M} be a transition system, N be a set of norms, $\mathcal{M} \upharpoonright N$ be the transition system \mathcal{M} updated with N.

- (Nash, N)-implementation problem (IP $\mathrm{N}_{\mathrm{Nash}}$) Given a norm set N do the outcome paths of $\mathcal{M} \upharpoonright N$ satisfy SCF if agents follow Nash-equilibria strategy profiles?
- (Nash)-synthesis problem (SPNash) Is there a norm set M such that ... ?

Verification Results

The following results are about state based norms and Nash equilibria!

Theorem ((Nash, N)-implementation problem)
The problem $I P_{N}^{N a s h}$ is Π_{2}^{P}-complete.

Verification Results

The following results are about state based norms and Nash equilibria!

Theorem ((Nash, N)-implementation problem)
The problem $I P_{N}^{N a s h}$ is Π_{2}^{P}-complete.

Theorem ((Nash)-Synthesis problem)
The problem SP Nash is \sum_{3}^{P}-complete.

Conclusions and Future Research

- Development of normative systems.
- Monitors and Norms.
- Game theoretic analysis of normative systems.
- Norms in standard software technology.
- Monitoring, imperfect monitors, and approximated norms.
- Distributed normative systems.

