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Background (1)

Multi-agent systems as promising candidate to construct distributed
software systems that:

I are open and consist of individual autonomous and
heterogenous agents

I Open: agents dynamically enter and exit the system
I Autonomy: each agent pursues its own objective.
I Heterogeneity: internal state and operations of an agent may

not be known to external entities.

I The overall objective of such systems can be achieved by
coordinating the behavior of the involved agents.



Background (2)

Norms (e.g., obligations & prohibitions) are a popular candidate for
coordination. Norms are standards of behaviour which prescribe
certain behavior.

I Norms can be about states, actions, or behaviors, e.g.,
I state norms: Maximum length of papers is 15 pages.
I action norms: PC members should not review own papers.
I behavior norms: Reviews should be delivered in time.

I Norm can be enforced by means of rewards/sanctions or
regimented.

I Enforcement: sanction page limit violation by additional fees.
I Regimentation: prevent reviewing conflicting papers.
I Enforcement: blacklist PC members with late reviews.



Background (3)

The development of normative systems requires implementation,
verification, and analysis of norms.

I Norm implementation: design and develop a programming
language that support the implementation of norms and
rewards/sanctions.

I Norm Enforcement/Regimentation: monitors to observe norm
violations.

I Norm analysis: use game theoretic tools to determine if a
norm program can ensure the designer’s objectives given some
information about the involved agents.



Programming Normative
Systems



Coordination Component (IAT 2009, JLC 2011)

Control

cycle

brute facts

I Brute facts model the domain
specific (environment) state,
including action specifications;

I Agents modify brute facts by
performing actions;

I Control cycle monitors agents
actions and realizes their effects.



Coordination Component with Norms

normsrewards/sanctions

Control

cycle

institutional factsbrute facts

I Brute facts model the domain
specific (environment) state,
including action specifications;

I Agents modify brute facts by
performing actions;

I Ideal brute state described by
norm;

I Active norms and norm
violations stored by institutional
facts;

I Norm obedience/violation might
lead to rewards/sanctions;

I Control cycle monitors agents
actions and realizes their effects
in the context of the norms and
rewards/sanctions.



Norms

I State-based norms (JLC 2011):
F (φ) Prohibited to achieve φ states
O(φ) Obliged to achieve φ states

I Action-based norms (IJCAI 2011):
F (φ, α) Prohibited to perform action α in φ states
O(φ, α) Obliged to perform action α in φ states

I Behaviour-based norms (IJCAI 2013):
(cond ,F (φ), d) if cond , then prohibited to achieve φ before d
(cond ,O(φ), d) if cond , then obliged to achieve φ before d



Examples of Behaviour-based Norms

Norms:

reviewdue(R): } label
< phase(review) and assigned(R,P) } condition
, O(review(R,P)) } obligation
, phase(collect)> } deadline

minreviews(P):
< phase(submission) and paper(P)
, O( nrReviews(P) >= 2 )
, phase(collect)>

pagelimit(P):
< phase(submission) and paper(P),
, F(pages(P) > 15)
, phase(review)>



Evolution of Obligations

Recall norm:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1

brute facts : { phase(review), paper(p5) }

inst. facts : { rea(john,chair) }



Evolution of Obligations

Recall norm:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2

assign(john,rose,p5)

brute facts : { phase(review), paper(p5), assigned(rose,p5) }

inst. facts : { rea(john,chair) ,

(reviewdue(rose) , O(review(rose,p5)) , phase(collect)) }



Evolution of Obligations

Recall norm:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2 sk

assign(john,n,5)

brute facts : { phase(review), paper(p5), assigned(rose,p5) }

inst. facts : { rea(john,chair) ) ,

(reviewdue(rose) , O(review(rose,p5)) , phase(collect)) }



Evolution of Obligations

Recall norm:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2 sk sk+1

assign(john,rose,p5) uploadReview(rose,p5)

brute facts : { phase(review), paper(p5), assigned(rose,p5),

review(rose,p5) }

inst. facts : { rea(john,chair), obey(reviewdue(rose)) }



Evolution of Obligations

Recall norm:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2 sk

assign(john,rose,p5)

brute facts : { phase(review), paper(p5), assigned(rose,p5) }

inst. facts : { rea(john,chair) ) ,

(reviewdue(rose) , O(review(rose,p5)) , phase(collect)) }



Evolution of Obligations

Recall norm:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

s1 s2 sk sk+1

assign(john,rose,p5) start(john,collect)

brute facts : { phase(collect), paper(p5), assigned(rose,p5) }

inst. facts : { rea(john,chair), viol(reviewdue(rose)) }



Behavior of an Obligation Summarized

¬ϕx ,¬ϕd

(φl ,Oϕx , ϕd )

¬ϕx ,¬ϕd

(φl ,Oϕx , ϕd )

ϕx ,¬ϕd

obey(φl )

¬ϕx , ϕd

viol(φl )

ϕx , ϕd

obey(φl )



Behavior of a Prohibition Summarized

¬ϕx ,¬ϕd

(φl ,Fϕx , ϕd )

¬ϕx ,¬ϕd

(φl ,Fϕx , ϕd )

ϕx ,¬ϕd

(φl ,Fϕx , ϕd )

viol(φl )

¬ϕx , ϕd

obey(φl )

ϕx , ϕd

viol(φl )



Normative System Configuration

Definition (Configuration)
The state of a coordination component is a tuple 〈σb, σi ,∆〉 with:
I σb a set of ground first-order atoms, the brute state;
I σi a set of ground first-order atoms, the institutional state;
I ∆ a set of norms (Static);

For simplicity we ignore static ∆ and present a configuration as:

〈σb, σi 〉



Triggering Norms

Recall norm:
reviewdue(R):

< phase(review) and assigned(R,P), O(review(R,P)), phase(collect) >

Definition (Norm Instantiation)
Given:
I ns = φl (v1) : 〈ϕc(v2),P(ϕx(v3)), ϕd (v4)〉
I P either O or F
I v1, . . . , v4 the sets of variables occurring in the formulae
I ground substitution θ

The function inst for instantiating ns with θ is defined as:

inst(ns, θ) = ( φl (v1)θ , P(ϕx(v3)θ) , ϕd (v4)θ )



Triggering Norms

Transition Rule
Given ground substitution θ, the rule for triggering of norms is
defined as:

ns = (φl : 〈ϕc ,P(ϕx), ϕd〉) ∈ ∆ σb |= ϕcθ ni = inst(ns, θ)

〈σb, σi 〉 −→ 〈σb, σi ∪ {ni}〉



Triggering Norms

Transition Rule
Given ground substitution θ, the rule for triggering of norms is
defined as:

ns = (φl : 〈ϕc ,P(ϕx), ϕd〉) ∈ ∆ σb |= ϕcθ ni = inst(ns, θ)

〈σb, σi 〉 −→ 〈σb, σi ∪ {ni}〉

I When the condition of a norm is satisfied



Triggering Norms

Transition Rule
Given ground substitution θ, the rule for triggering of norms is
defined as:

ns = (φl : 〈ϕc ,P(ϕx), ϕd〉) ∈ ∆ σb |= ϕcθ ni = inst(ns, θ)

〈σb, σi 〉 −→ 〈σb, σi ∪ {ni}〉

I We instantiate it and add it to the institutional facts



Monitoring Obligations

Transition Rule
The rule for violation of an obligation is defined as follows:

(φl ,O(ϕx), ϕd) ∈ σi σb 6|= ϕx σb |= ϕd

〈σb, σi 〉 −→ 〈σb, (σi \ {ni}) ∪ {viol(φl) }〉



Monitoring Obligations

Transition Rule
The rule for violation of an obligation is defined as follows:

(φl ,O(ϕx), ϕd) ∈ σi σb 6|= ϕx σb |= ϕd

〈σb, σi 〉 −→ 〈σb, (σi \ {ni}) ∪ {viol(φl) }〉

I When an obligation is violated



Monitoring Obligations

Transition Rule
The rule for violation of an obligation is defined as follows:

(φl ,O(ϕx), ϕd) ∈ σi σb 6|= ϕx σb |= ϕd

〈σb, σi 〉 −→ 〈σb, (σi \ {ni}) ∪ {viol(φl) }〉

I We remove it from the institutional facts



Monitoring Obligations

Transition Rule
The rule for violation of an obligation is defined as follows:

(φl ,O(ϕx), ϕd) ∈ σi σb 6|= ϕx σb |= ϕd

〈σb, σi 〉 −→ 〈σb, (σi \ {ni}) ∪ {viol(φl) }〉

I We record its violation to the institutional facts



Monitoring Obligations

Transition Rule
The rule for fulfillment of an obligation is defined as follows:

(φl ,O(ϕx), ϕd) ∈ σi σb |= ϕx

〈σb, σi 〉 −→ 〈σb, (σi \ {ni}) ∪ {obey(φl)}〉



Monitoring Obligations

Transition Rule
The rule for fulfillment of an obligation is defined as follows:

(φl ,O(ϕx), ϕd) ∈ σi σb |= ϕx

〈σb, σi 〉 −→ 〈σb, (σi \ {ni}) ∪ {obey(φl)}〉

I When an obligation is fulfilled



Monitoring Obligations

Transition Rule
The rule for fulfillment of an obligation is defined as follows:

(φl ,O(ϕx), ϕd) ∈ σi σb |= ϕx

〈σb, σi 〉 −→ 〈σb, (σi \ {ni}) ∪ {obey(φl)}〉

I We remove it from the institutional facts



Monitoring Obligations

Transition Rule
The rule for fulfillment of an obligation is defined as follows:

(φl ,O(ϕx), ϕd) ∈ σi σb |= ϕx

〈σb, σi 〉 −→ 〈σb, (σi \ {ni}) ∪ {obey(φl)}〉

I We record its fulfilment to the institutional facts



Properties

Proposition
Detached obligations remain in force until obeyed or violated.

I.e., for every trace 〈σ0b, σ0i 〉 →∗ 〈σn
b , σ

n
i 〉 with σ

j
b 6|= φx and

σj
b 6|= φd for 0 ≤ j ≤ n, if (φl ,O(φx), φd ) ∈ σ0i , then

(φl ,O(φx), φd ) ∈ σn
i .

Proposition
Violation of detached obligations are recorded in deadline states.

Proposition
Violation is inevitable in case of conflicting norms.



Properties

Proposition
Detached obligations remain in force until obeyed or violated.

Proposition
Violation of detached obligations are recorded in deadline states.

I.e., for every trace 〈σ0b, σ0i 〉 →∗ 〈σn
b , σ

n
i 〉 with σ

j
b 6|= φx and

σj
b 6|= φd for 0 ≤ j < n and σn

b 6|= φx and σn
b |= φd , if

(φl ,O(φx), φd ) ∈ σ0i , then σn
i |= viol(φl ) and (φl ,O(φx), φd ) 6∈ σn

i .

Proposition
Violation is inevitable in case of conflicting norms.



Properties

Proposition
Detached obligations remain in force until obeyed or violated.

Proposition
Violation of detached obligations are recorded in deadline states.

Proposition
Violation is inevitable in case of conflicting norms.

I.e., for every trace 〈σ0b, σ0i 〉 →∗ 〈σn
b , σ

n
i 〉 with (φl ,O(φx), φd ) ∈ σ0i

and (φl ′ ,F (φx), φd ′) ∈ σ0i , if σn
b |= φd and σj

b 6|= φd ′ for 0 ≤ j ≤ n
then ∃0 ≤ k ≤ n : σk

i |= viol(φl ) or σ,ki |= viol(φl ′).



Monitoring Norms



Motivation

Existing work on normative multi-agent systems typically assume
perfect monitoring.

We want to develop a very general framework in order to . . .
I . . . characterize monitors.
I . . . reason about monitors.
I . . . study the relation between monitors and norms.



Runs, Norms, Monitors

Given an (interpreted) transition system (Q,→, q0, v), we define:

Definition
R as the set of runs, where R = {q0q1 . . . ∈ Qω | ∀n, qn → qn+1}

Definition
N ⊆ R as a norm, which denotes a set of desired runs. Moreover,
we say that a run r is a N -violation iff r 6∈ N .

Definition
Given set R, a monitor m is a function from R to P(R).
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Given an (interpreted) transition system (Q,→, q0, v), we define:

Definition
R as the set of runs, where R = {q0q1 . . . ∈ Qω | ∀n, qn → qn+1}

Definition
N ⊆ R as a norm, which denotes a set of desired runs. Moreover,
we say that a run r is a N -violation iff r 6∈ N .

Definition
Given set R, a monitor m is a function from R to P(R).



Runs, Norms, Monitors

Given an (interpreted) transition system (Q,→, q0, v), we define:

Definition
R as the set of runs, where R = {q0q1 . . . ∈ Qω | ∀n, qn → qn+1}

Definition
N ⊆ R as a norm, which denotes a set of desired runs. Moreover,
we say that a run r is a N -violation iff r 6∈ N .

Definition
Given set R, a monitor m is a function from R to P(R).



Monitor Types

Some extreme cases:
I For all r ∈ R m(r) = {r} (perfect observation).
I For all r ∈ R m(r) = R (no observation).

Definition
Let m be a monitor over R. We say that m is
I broken iff there exists a r ∈ R such that m(r) = ∅.
I correct iff for all r ∈ R we have r ∈ m(r).
I ideal iff for all r ∈ R we have m(r) = {r}.



Monitor Types

Some extreme cases:
I For all r ∈ R m(r) = {r} (perfect observation).
I For all r ∈ R m(r) = R (no observation).

Definition
Let m be a monitor over R. We say that m is
I broken iff there exists a r ∈ R such that m(r) = ∅.
I correct iff for all r ∈ R we have r ∈ m(r).
I ideal iff for all r ∈ R we have m(r) = {r}.



Example

An example:

q0

start

q1 q2

I N = {(q0 q1)ω}
I m(r) = {r ′ ∈ R | r [1] = r ′[1]}

Note that this monitor is correct, but not ideal.



Example

An example:

q0

start

q1 q2

I N = {(q0 q1)ω}
I m(r) = {r ′ ∈ R | r [1] = r ′[1]}

Note that this monitor is correct, but not ideal.



Logical setting

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | ©ϕ

Semantics:
I I, r |= p iff p ∈ v(r [0])

I I, r |= ¬ϕ iff I, r 6|= ϕ

I I, r |= ϕ ∨ ψ iff I, r |= ϕ or I, r |= ψ

I I, r |=©ϕ iff I, r [1,∞] |= ϕ

I I, r |= ϕUψ iff i ≥ 0 such that I, r [i ,∞] |= ψ and for all
0 ≤ k < i , I, r [k ,∞] |= ϕ

Moreover, I,R |= ϕ iff ∀r ∈ R : I, r |= ϕ.



Monitoring LTL-Norms

Definition
Let χ be an LTL-formula and I be a transition system. The
χ-norm in I is the set {r ∈ R | I, r |= χ}. We simply write χ to
refer to this norm.

Definition
We say that monitor m on input r detects a
I χ-violation iff I,m(r) |= ¬χ;
I χ-compliance iff I,m(r) |= χ; and
I χ-indifference iff both I,m(r) 6|= χ and I,m(r) 6|= ¬χ.



Monitoring LTL-Norms

Definition
Let χ be an LTL-formula and I be a transition system. The
χ-norm in I is the set {r ∈ R | I, r |= χ}. We simply write χ to
refer to this norm.

Definition
We say that monitor m on input r detects a
I χ-violation iff I,m(r) |= ¬χ;
I χ-compliance iff I,m(r) |= χ; and
I χ-indifference iff both I,m(r) 6|= χ and I,m(r) 6|= ¬χ.



Characterizing Monitors based on LTL-Norms

Definition
Let I be a transition system, χ a norm, and m a monitor. We say
that m makes a χ-classification error on r iff
I m detects a χ-violation on r and r is not a χ-violation (false

negative); or
I m detects a χ-compliance on r and r is a χ-violation (false

positive).

Definition
Let I be a transition system, χ a norm and m a monitor. We say
that m is
I χ-sound in I iff for all r ∈ R: I,m(r) |= ¬χ ⇒ I, r |= ¬χ.
I χ-complete in I iff for all r ∈ R: I, r |= ¬χ ⇒ I,m(r) |= ¬χ.
I χ-sufficient in I iff m is χ-sound and χ-complete.



Characterizing Monitors based on LTL-Norms

Definition
Let I be a transition system, χ a norm, and m a monitor. We say
that m makes a χ-classification error on r iff
I m detects a χ-violation on r and r is not a χ-violation (false

negative); or
I m detects a χ-compliance on r and r is a χ-violation (false

positive).

Definition
Let I be a transition system, χ a norm and m a monitor. We say
that m is
I χ-sound in I iff for all r ∈ R: I,m(r) |= ¬χ ⇒ I, r |= ¬χ.
I χ-complete in I iff for all r ∈ R: I, r |= ¬χ ⇒ I,m(r) |= ¬χ.
I χ-sufficient in I iff m is χ-sound and χ-complete.



Example

Back to the example:

{p}

start

{p} ∅

I χ = �p
I m(r) = {r ′ ∈ R | r [1] = r ′[1]}

m is χ-sound: for all r : I,m(r) |= ¬�p ⇒ I, r |= ¬�p.
m is not χ-complete: exists r : I, r |= ¬�p and I,m(r) 6|= ¬�p



Example

Back to the example:

{p}

start

{p} ∅

I χ = �p
I m(r) = {r ′ ∈ R | r [1] = r ′[1]}

m is χ-sound: for all r : I,m(r) |= ¬�p ⇒ I, r |= ¬�p.
m is not χ-complete: exists r : I, r |= ¬�p and I,m(r) 6|= ¬�p



LTL-Monitors & Composed Monitors

Definition
Let ϕ be an LTL-formula and I be a transition system. The
ϕ-monitor over I is the function mϕ : R → P(R) defined as
follows: mϕ(r) := {r ′ ∈ R | I, r |= ϕ iff I, r ′ |= ϕ}.

Definition
Let m1,m2 : R → P(R) be two monitors. We define the monitor
m ⊕m′ : R → P(R) as follows: m ⊕m′(r) := m(r) ∩m′(r).



LTL-Monitors & Composed Monitors

Definition
Let ϕ be an LTL-formula and I be a transition system. The
ϕ-monitor over I is the function mϕ : R → P(R) defined as
follows: mϕ(r) := {r ′ ∈ R | I, r |= ϕ iff I, r ′ |= ϕ}.

Definition
Let m1,m2 : R → P(R) be two monitors. We define the monitor
m ⊕m′ : R → P(R) as follows: m ⊕m′(r) := m(r) ∩m′(r).



Example

∅

start

{r , s} {r} {s} ∅

r1 r2 r3 r4

Let χ =©((r ∧ ¬s) ∨ (¬r ∧ s)). Let m©r and m©s be two
LTL-monitors. We have the following:

I (m©r ⊕m©s)(r2) = {r2}
I m(©r∧©s)(r2) = {r2, r3, r4}

Only composed monitor (m©r ⊕m©s) is χ-sufficient.



Example

∅

start

{r , s} {r} {s} ∅

r1 r2 r3 r4

Let χ =©((r ∧ ¬s) ∨ (¬r ∧ s)). Let m©r and m©s be two
LTL-monitors. We have the following:

I (m©r ⊕m©s)(r2) = {r2}
I m(©r∧©s)(r2) = {r2, r3, r4}

Only composed monitor (m©r ⊕m©s) is χ-sufficient.



Results

Theorem
Let mϕ and mψ be two (or more) LTL-monitors, χ be an
LTL-norm, and I be a transition system. Let
Σ = {ϕ ∧ ψ,ϕ ∧ ¬ψ,¬ϕ ∧ ψ,¬ϕ ∧ ¬ψ}. Then, the following
statements are equivalent:
(a) mϕ ⊕mψ is χ-sufficient over I.
(b) for all ξ ∈ Σ, if ¬χ ∧ ξ is satisfiable on I then I |= ξ → ¬χ.
(c) exists Σ′ ⊆ Σ such that I |= (

∨
ξ∈Σ′

ξ)↔ ¬χ.



Analysing Normative Systems



Norms as Mechanism Design (AAMAS 2011, IJCAI 2011)

Can specific behaviours be enforced by a normative environment
program if agents follow their subjective preferences?

I.e.,

Does a set of norms and sanctions/rewards implements specific
social choice functions (designer’s objectives) in specific equilibria?



Example: A Road Scenario

p
1
e

p
1
s

p
1
m

p
2
s

p
2
e

p
2
m

C1 C2

I s0: the cars are at their starting positions, i.e., ps
1 ∧ ps

2

I s1: car C1 is at ending and car C2 at starting position,i.e., pe
1 ∧ ps

2

I s2: car C1 is at starting and car C2 at ending position,i.e., ps
1 ∧ pe

2

I s3: the cars are jammed in the middle of the road,i.e., pm
1 ∧ pm

2

I s4: the cars are at their ending positions, i.e., pe
1 ∧ pe

2



Action Specification

I Each car has two actions.
I Move (M)
I Wait (W ), and
I ∗ ∈ {M,W }.

I Joint actions are specified in terms of their pre- and
post-conditions.

{ps
1, p

s
2} (M,W ) {pe

1 , p
s
2}

{ps
1, p

s
2} (W ,M) {ps

1, p
e
2}

{ps
1, p

s
2} (M,M) {pm

1 , p
m
2 }

{ps
1, p

e
2} (M, ∗) {pe

1 , p
e
2}

{pe
1 , p

s
2} (∗,M) {pe

1 , p
e
2}

Other actions do not cause state change.



Transition System without Norms

Possible behaviours of the cars can be described by the following
transition system.

ps
1, p

s
2s0

pe
1 , p

s
2s1 pm

1 , p
m
2s3 ps

1, p
e
2s2

pe
1 , p

e
2s4

(W ,W )

(∗,W ) (W , ∗)

(∗, ∗)

(∗, ∗)

(M,W ) (M,M) (W ,M)

(∗,M) (M, ∗)



Preferences: Cars & System Designer

Preferences profiles, λ1 (egoistic) and λ2 (social), are represented
as lists of LTL formulae.

λ1 = { [(Xpe
1 ∧�¬s1, 3), (♦pe

1 ∧�¬s1, 2), (�¬s1, 1), (>, 0)] ,
[(Xpe

2 ∧�¬s2, 3), (♦pe
2 ∧�¬s2, 2), (�¬s2, 1), (>, 0)] }

λ2 = { [(X (pe
1 ∧ pe

2) ∧�¬s1, 3), (Xpe
1 ∧�¬s1, 2), (�¬s1, 1), (>, 0)] ,

[(X (pe
1 ∧ pe

2) ∧�¬s2, 3), (Xpe
2 ∧�¬s2, 2), (�¬s2, 1), (>, 0)] }

The preference of the system designer is represented by the
following social choice function:

SCF (λi ) = Xpe
1 ∨ (Xpe

1 ∧ ♦pe
2)

The designer prefers that first car reaches its end position directly.



Equilibrium Analysis

ps
1, p

s
2s0

pe
1 , p

s
2s1 pm

1 , p
m
2s3 ps

1, p
e
2s2

pe
1 , p

e
2s4

(W ,W )

(∗,W ) (W , ∗)

(∗, ∗)

(∗, ∗)

(M,W ) (M,M) (W ,M)

(∗,M) (M, ∗)

1\2 M ∗ ∗ WM∗ WW ∗
M ∗ ∗ 03∗ 014∗ 011∗

W ∗M 024∗ 00∗ 00∗

W ∗W 022∗ 00∗ 00∗



Equilibrium Analysis

ps
1, p

s
2s0

pe
1 , p

s
2s1 pm

1 , p
m
2s3 ps

1, p
e
2s2

pe
1 , p

e
2s4

(W ,W )

(∗,W ) (W , ∗)

(∗, ∗)

(∗, ∗)

(M,W ) (M,M) (W ,M)

(∗,M) (M, ∗)

1\2 M ∗ ∗ WM∗ WW ∗
M ∗ ∗ 03∗ 014∗ 011∗

W ∗M 024∗ 00∗ 00∗

W ∗W 022∗ 00∗ 00∗

1\2 M ∗ ∗ WM∗ WW ∗
M ∗ ∗ 1\1 3\2 3\1
W ∗M 2\3 1\1 1\1
W ∗W 1\3 1\1 1\1

λ1 = { [(Xpe
1 ∧�¬s1, 3), (♦pe

1 ∧�¬s1, 2), (�¬s1, 1), (>, 0)] ,
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Example: Introducing Norms in the Road Scenario
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sanction s2 will be imposed, i.e.,
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I It is prohibited that cars wait on each other in the start position,
otherwise sanction s1 will be imposed, i.e.,
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Norms and Norm Updates
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Equilibrium Analysis
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Verification Problems

LetM be a transition system, N be a set of norms,M � N be the
transition systemM updated with N.

I (Nash,N)-implementation problem (IPNash
N )

Given a norm set N do the outcome paths ofM � N satisfy
SCF if agents follow Nash-equilibria strategy profiles?

I (Nash)-synthesis problem (SPNash)
Is there a norm set M such that . . . ?



Verification Results

The following results are about state based norms and Nash
equilibria!

Theorem ((Nash,N)-implementation problem)
The problem IPNash

N is ΠP
2 -complete.

Theorem ((Nash)-Synthesis problem)
The problem SPNash is ΣP

3 -complete.



Verification Results

The following results are about state based norms and Nash
equilibria!

Theorem ((Nash,N)-implementation problem)
The problem IPNash

N is ΠP
2 -complete.

Theorem ((Nash)-Synthesis problem)
The problem SPNash is ΣP

3 -complete.



Conclusions and Future Research

I Development of normative systems.

I Monitors and Norms.

I Game theoretic analysis of normative systems.

I Norms in standard software technology.

I Monitoring, imperfect monitors, and approximated norms.

I Distributed normative systems.
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