
Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Martin Hofmann’s case for non-strictly positive
data types

Ralph Matthes

CNRS, Institut de Recherche en Informatique de Toulouse (IRIT),
University of Toulouse

Types Conference 2018, University of Minho,
Braga, Portugal
June 20, 2018

with a postscript added on June 26

Ralph Matthes Martin Hofmann’s breadth-first traversal 1/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Abstract

This talk is part of the special session of TYPES 2018 to honour Martin
Hofmann whose untimely death in January is a great loss to the TYPES
community.

In a nutshell, I’ll describe the breadth-first traversal algorithm by Martin
Hofmann, how it can be verified, what is needed to do a verification in
an intensional setting (system F without parametric equality) and what
else could be programmed in this spirit.
Time permitting, I’ll allow myself some remarks on Martin Hofmann, as I
have perceived him (as assistant in his research group).

Ralph Matthes Martin Hofmann’s breadth-first traversal 2/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Outline

1 Obtaining fancy breadth-first traversal

2 Analyzing fancy breadth-first traversal

3 Other non-strictly positive datatypes in use

Ralph Matthes Martin Hofmann’s breadth-first traversal 3/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Outline

1 Obtaining fancy breadth-first traversal

2 Analyzing fancy breadth-first traversal

3 Other non-strictly positive datatypes in use

Ralph Matthes Martin Hofmann’s breadth-first traversal 4/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Breadth-first traversal

Binary trees with leaf labels and node labels in N. Call this data type
Tree, with constructors Leaf : N → Tree and
Node : Tree → N → Tree → Tree.
The type of homogeneous lists with elements from type A is called
List A.

Go through t : Tree in breadth-first order and collect the labels in
breadthfirst t : List N.

Ralph Matthes Martin Hofmann’s breadth-first traversal 5/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Illustration: result [1, 2, . . . , 11]

1

2

4

6 7

5

8

10 11

9

3

The function is not compositional!

Ralph Matthes Martin Hofmann’s breadth-first traversal 6/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Less intuitive specification

Create the list of labels for every line. This function is called
niveaux : Tree → List2N.
Result for our example: [[1], [2, 3], [4, 5], [6, 7, 8, 9], [10, 11]]
niveaux can be obtained by iteration over Tree: in the Node case, zip
the results for the sub-trees with list concatenation, vulgo append .
Define flatten : List2N → List N as concatenation of all those lists (the
monad multiplication of the list monad).
breadthfirst t has to evaluate to the result of flatten(niveaux t). The
latter is not the algorithm but an executable specification.
This is for functional programmers. Imperative programming would
suggest to use a queue of binary trees. We type theoreticians want
language-based termination guarantees.

Ralph Matthes Martin Hofmann’s breadth-first traversal 7/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Martin Hofmann’s 1993 proposal

A post to the TYPES mailing list, which is still in the TYPES archives.
Assumes a data type Cor with constructors

Over : Cor
Next : ((Cor → List N) → List N) → Cor

Martin viewed the elements as continuations, but I learned from Olivier
Danvy in 2002 that they are rather coroutines, hence the name Cor
chosen here (Over and Next suggested by Danvy). Over : nothing more
to be done; Next : its argument f takes a “continuation” argument
k : Cor → List N and computes a list.

Ralph Matthes Martin Hofmann’s breadth-first traversal 8/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Working with coroutines

Specify apply : Cor → (Cor → List N) → List N by distinguishing the
two cases:

apply Over k ' kOver
apply (Next f) k ' fk

Relation ' is used for definitional equality, i. e., convertibility. It does not
by itself constitute a definition.
Martin Hofmann recasts the breadth-first traversal as a transformation
on coroutines controlled by the input tree:
breadth : Tree → Cor → Cor , with

breadth(Leaf n) ' λcCor .Next(λk.n :: apply c k)

breadth(Node l n r) ' λcCor .Next
(
λk.n :: apply c

(λcCor
1 . k(breadth l (breadth r c1)))

)
Ralph Matthes Martin Hofmann’s breadth-first traversal 9/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Extraction of the final result

breadth tOver is a coroutine, and we want breadthfirst t to be the list
extracted from it by the function ex : Cor → List N, specified as

ex Over ' []
ex (Next f) ' fex

No problem with subject reduction—recall f : (Cor → List N) → List N.
In our view, ex is a “continuation”, and so the argument f to Next can
be naturally applied to it.

Why is this recursion scheme safe, i. e., why does it not present the risk
of non-termination?

Ralph Matthes Martin Hofmann’s breadth-first traversal 10/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Outline

1 Obtaining fancy breadth-first traversal

2 Analyzing fancy breadth-first traversal

3 Other non-strictly positive datatypes in use

Ralph Matthes Martin Hofmann’s breadth-first traversal 11/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Termination of ex

For Martin Hofmann, this was the main motivation. One can see Cor as
least fixed point of the “functor” CorF that a Haskell programmer could
define as
data CorF cor = Over | Next ((cor -> List nat) -> List nat)

The variable cor for the datatype to be defined is twice to the left of ->,
hence at a positive position, even if not at a strictly positive position.
Martin argues that the specification of ex can be ensured by the usual
Church encoding of data types in system F; in categorical terms, ex can
be obtained as catamorphism for a certain CorF -algebra. However, only
weak initiality is obtained, unless one uses parametric equality. In more
computational terms, this means that ex is defined by pure iteration.

Ralph Matthes Martin Hofmann’s breadth-first traversal 12/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Pitfall concerning termination

The argument on ex is valid, even if Mendler-style iteration would more
directly allow to program ex precisely according to the specification, and
likewise with termination guarantee (as instance of Mendler-style
iteration).
However, the function apply : Cor → (Cor → List N) → List N has to
be defined with the same ontology for Cor . To recall:

apply Over k ' kOver
apply (Next f) k ' fk

No recursion but the patterns are distinguished. This is not compatible
with weakly initial algebras, as obtained with the Church encoding.
Martin was satisfied with parametric equality theory, but apply should
have constant execution time, if the proposed algorithm should have
advantages over the executable specification.

Ralph Matthes Martin Hofmann’s breadth-first traversal 13/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Solution

Use primitive recursion in Mendler’s style. In fact, the only addition to
system F that is really needed to preserve termination is positive
fixed-points µF with a retraction between µF and F (µF )—the sequence
from F (µF ) via µF back to F (µF ) has to be pointwise definitionally
equal to the identity. Termination of more complex schemes can be
obtained by simulation of reductions.

Ralph Matthes Martin Hofmann’s breadth-first traversal 14/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

functional correctness

Given that the termination question is already solved, how can one see
that the algorithm breadthfirst t := ex (breadth tOver) meets the
specification, i. e., computes the right list?
In 1995, Ulrich Berger (then in Munich) gave an exciting proof that uses
a non-strictly positive inductive predicate when coroutines “represent”
lists of lists.
Martin Hofmann provided in 1995 a proof by simple induction on Tree,
by help of a function γ : List2N → Cor → Cor for which (A)
ex (γ lOver) = flatten l, (B) composition of γ for two lists of lists is γ
for the zipping with append , which allows to prove that (C) breadth t
does the same as γ(niveaux t). (A) and (C) then give correctness.
Also in 1995, Anton Setzer (then in Munich) showed in two steps that
only specific forms of the coroutines ever appear in the algorithm.

Ralph Matthes Martin Hofmann’s breadth-first traversal 15/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Setzer-style verification by successive refinements
First step: breadth : Tree → Cor → Cor can be shrunk down to a
structurally recursive definition of a function
breadthp : Tree → Cor ′ → Cor ′ with Cor ′ := List(List N → List N).
The crucial definition is a function φ : Cor ′ → Cor , for which one tries
to obtain

breadth t (φ l) = φ(breadthp t l)

This guides the definition process for breadthp.
Second step: breadthp : Tree → Cor ′ → Cor ′ can be shrunk down to a
structurally recursive definition of a function
breadth ′

p : Tree → List2N → List2N. The crucial definition is a function
ψ : List N → (List N → List N), so that for its mapping over lists,
ψ̃ : List2N → Cor ′, one can obtain

breadthp t (ψ̃ l) = ψ̃(breadth ′
p t l)

Ralph Matthes Martin Hofmann’s breadth-first traversal 16/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Setzer-style verification—the end

The function breadth ′
p : Tree → List2N → List2N thus obtained is easy

to grasp in terms of list operations:

breadth ′
p t l = append (niveaux t) l

And ex (φ(ψ̃ l)) = flatten l.

Modulo the exciting presentation in terms of the non-strictly positive
data type of coroutines, the outcome of the analysis was that breadth
adopted an “accumulation trick” for computing the levels, and that the
extraction process took care of flattening.

Ralph Matthes Martin Hofmann’s breadth-first traversal 17/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Outline

1 Obtaining fancy breadth-first traversal

2 Analyzing fancy breadth-first traversal

3 Other non-strictly positive datatypes in use

Ralph Matthes Martin Hofmann’s breadth-first traversal 18/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

non-strictly positive to understand classical logic

For a given type A, the type ]A := µX.A+ ¬¬X is “a bit bigger” than
¬¬A: the second constructor ensures

¬¬]A→ ]A

but also ¬¬A has double negation elimination, however, ]A is freely
constructed with this property—called the “stabilization” of A. Being
“bigger” (as target of an embedding) is better since several proofs of
strong normalization of variants of λµ-calculus suffered from erasure
problems. Second-order λµ-calculus can be simulated inside system F
with these types ]A and their iteration principle, see my TLCA’01 paper
and subsequent work.

Ralph Matthes Martin Hofmann’s breadth-first traversal 19/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Another case for Setzer-style verification?

In 2002, Danvy communicated to me a coroutine solution to the same
fringe problem.

Example

*
*

1 2
3

*
1 *

2 3

They have the same fringe. For this problem, inner nodes are unlabeled.

Ralph Matthes Martin Hofmann’s breadth-first traversal 20/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Same fringe with coroutines

Let Cor now have the constructors Over : Cor and
Next : N → ((Cor → B) → B) → Cor . Variable convention:
k : Cor → B “continuations”, and f : (Cor → B) → B.

The critical function that needs elimination principles for Cor is
skim : Cor → Cor → B with skim Over Over ' t, result f for two
arguments with different constructor and

skim(Next n1 f1)(Next n2 f2) ' if n1 6= n2thenfelsef1(λc
Cor .f2(skim c))

This is an instance of Mendler-style iteration, but needs the same
addition we needed before for apply . It also nicely type-checks with sized
types, as developed in the PhD thesis of Andreas Abel.

Ralph Matthes Martin Hofmann’s breadth-first traversal 21/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

the same fringe program

Define walk : Tree → (Cor → B) → ((Cor → B) → B) → B by

walk (Leaf n) k f ' k(Next n f)
walk (Node l r) k f ' walk l k (λk1.walk r k1 f)

Define canf := λk.kOver and init : Tree → (Cor → B) → B by
init t k := walk t k canf . Finally, smf : Tree → Tree → B is defined by

smf t1 t2 := init t1 (λc1. init t2(skim c1))

Is there a Setzer-style verification to demystify these operations?

Ralph Matthes Martin Hofmann’s breadth-first traversal 22/24



Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Postscript June 26, 2018 – Conclusions come afterwards!

In a message to the Coq club—https://sympa.inria.fr/sympa/arc/

coq-club/2018-06/msg00096.html—on the day following this talk,
Simon Boulier, who attended the conference, announced the availability
of a Coq plugin to deactivate the checks for strict positivity. He had
already tested it with Martin Hofmann’s program on the day of this talk.

Using his plugin, I formalized the functional correctness in the three
styles described or mentioned in this talk. This is available as case study
for the plugin at https://github.com/SimonBoulier/TypingFlags/
blob/master/theories/BreadthFirst.v, as part of Boulier’s GitHub
repository.

Ralph Matthes Martin Hofmann’s breadth-first traversal 23/24

https://sympa.inria.fr/sympa/arc/coq-club/2018-06/msg00096.html
https://sympa.inria.fr/sympa/arc/coq-club/2018-06/msg00096.html
https://github.com/SimonBoulier/TypingFlags/blob/master/theories/BreadthFirst.v
https://github.com/SimonBoulier/TypingFlags/blob/master/theories/BreadthFirst.v


Obtaining fancy breadth-first traversal
Analyzing fancy breadth-first traversal

Other non-strictly positive datatypes in use

Conclusion

From the published abstract:
And this talk should remind the audience how much Martin’s scientific
insights were able to fascinate other researchers, even if they were not
considered as ready to be published by Martin. Sadly, we have to live
with these memories without further opportunities to get new notes from
Martin or to work with him. May he rest in peace.

Ralph Matthes Martin Hofmann’s breadth-first traversal 24/24


	Obtaining fancy breadth-first traversal
	Analyzing fancy breadth-first traversal
	Other non-strictly positive datatypes in use

