
Verification of the Redecoration Algorithm for
Triangular Matrices

Ralph Matthes? and Martin Strecker

C. N. R. S. et Université Paul Sabatier (Toulouse III)
Institut de Recherche en Informatique de Toulouse (IRIT)

118 route de Narbonne, F-31062 Toulouse Cedex 9
{matthes,strecker}@irit.fr

December 21, 2007

Abstract. Triangular matrices with a dedicated type for the diagonal
elements can be profitably represented by a nested datatype, i. e., a het-
erogeneous family of inductive datatypes. These families are fully sup-
ported since the version 8.1 of the Coq theorem proving environment,
released in 2007. Redecoration of triangular matrices has a succinct im-
plementation in this representation, thus giving the challenge of proving
it correct. This has been achieved within Coq, using also induction with
measures. An axiomatic approach allowed a verification in the Isabelle
theorem prover, giving insights about the differences of both systems.

1 Introduction

Nested datatypes [9] may keep certain invariants (see also the illuminating [11])
even without employing a dependently-typed system where types may also de-
pend on objects, thus e. g., maintaining size information in the types.

Redecoration for triangular matrices by means of a nested datatype has first
been studied in the case of infinite triangles [2]. Its finitary version has been pro-
grammed iteratively in the subsequent journal version [3] and through primitive
recursion in Mendler-style [1]. In all these cases, no attempt was made to verify
properties other than termination.

We put forward the example of redecoration of triangular matrices as a pro-
totypical situation, where nested datatypes yield concise and elegant programs
that are verifiable. The price to pay is a more complex framework that is needed
in order to formulate the programs and a more complex logical apparatus for
verifying them. Moreover, as in all formal verification tasks, a major challenge
is to develop an appropriate correctness criterion. We have chosen to give a very
precise intuition about the algorithm. Even though this might satisfy the ex-
perienced programmer, we felt the need for a subsequent verification against a
completely different model: a model that is just based on the ordinary type of
lists and thus does not impose the aforementioned complex machinery.
? with financial support by the European Union FP6-2002-IST-C Coordination Action

510996 “Types for Proofs and Programs”

Since we chose not to use dependent types, the list-based model speaks about
a too large datatype, namely “triangles” that may be quite degenerate. Never-
theless, we may fully profit from tool support for lists that is well-developed in
interactive theorem provers. In this case study, we deployed the Coq and the Is-
abelle proof assistants. Coq has a very strong type system that is fully adequate
for representing nested datatypes and reasoning about them. The latest release
8.1 of Coq explicitly supports nested datatypes: definition by pattern-matching,
induction principles, . . . Even though Isabelle, which is based on simply-typed
lambda-calculus with type variables, does not accept nested datatypes as such, it
permits to simulate essential aspects of the development in an axiomatic manner.

Two critical aspects can be ensured by the use of theorem provers such as the
two systems under study: termination of the algorithm (a non-functional specifi-
cation) and functional correctness with respect to a chosen correctness criterion,
in our case the relation with the list-based model. The axiomatic approach that
we had to use in Isabelle cannot ensure termination of the algorithms on nested
datatypes and cannot justify their induction schemes from first principles. How-
ever, the development of the list-based model is entirely derivable from a small
logical core.

The main challenge of the verification is to find the right lemmas that allow
to get the inductive proof of the simulation theorem through. The whole expla-
nations and the semi-formal development in standard mathematical style of the
proof in the next three sections have only been possible with the aid of a proof
engineering effort in the proof assistants. Simplification and rewriting are tasks
that are error-prone for humans and where the tool support is particularly well-
developed and helpful. In the light of two complete formalizations in two entirely
independent systems, it does not seem necessary to reproduce such proof steps
in the main part of this article. The curious reader is invited to consult the full
proof scripts that are available online [12].

The article is structured as follows: Section 2 introduces the problem and
gives the intuitive justification of redecoration for triangular matrices, viewed as
a nested datatype. In Section 3, the list-based model is developed, against which
the original model is verified in Section 4. Highlights of the formalizations in the
proof assistants are presented in Section 5 for Coq and Section 6 for Isabelle.
We conclude in Section 7.

2 Triangular Matrices

The “triangular matrices” of the present article are finite square matrices, where
the part below the diagonal has been cut off. Equivalently, one may see them
as symmetric matrices where the redundant information below the diagonal has
been omitted. The elements on the diagonal play a different role than the other
elements in many mathematical applications, e. g., one might require that the
diagonal elements are invertible (non-zero). This is modeled as follows: A type
E of elements outside the diagonal is fixed throughout, and there is a type of
diagonal elements that enters all definitions as a parameter. More technically, if

2

A is the type of diagonal elements, then TriA shall denote the type of triangular
matrices with A’s on the diagonal and E’s outside. Then, Tri becomes a family
of types, indexed over all types, hence a type transformation. Moreover, the
different TriA are inductive datatypes that are all defined simultaneously, hence
they are an “inductive family of types” or “nested datatype”.

We do not consider empty triangles here. So, the smallest element of TriA
contains a single element that thus is a diagonal element and hence taken from
the type A. This is materialized by the datatype constructor

sg : A→ TriA,

that constructs these “singletons”. Here, A is meant to be a type variable, i. e.,
a variable of type Set, the universe of computational types. The reader may just
conceive that sg were given the quantified type ∀A.A→ TriA.

The non-singleton case can be visualized like this:

A E E E E
A E E E
A E E
A E
A
. . .

The vertical line cuts the triangle into one element of A and a “trapezium”,
with an uppermost row solely consisting of E’s. One might now, for the pur-
pose of having an inductive generation process, decompose that trapezium into
the uppermost row and the triangle below, but it would be hard to keep the
information that both have the same number of columns (unless making use of
dependent types). The approach to be followed is the integration of the side di-
agonal (i. e., the elements just above the diagonal) into the diagonal. In this way,
the trapeziums above are in one-to-one correspondence to triangles as follows:

E E E E
A E E E
A E E
A E
A
. . .

triangle
−→
←−

trapezium

E ×A E E E
E ×A E E

E ×A E
E ×A

. . .

The trapezium to the left is then considered as the “trapezium view” of the
triangle to the right. Vice versa, the triangle to the right is the “triangle view”
of the trapezium to the left.

Since we are about to define what triangles are, it is now comfortable to refer
to the triangle view of the trapezium in the second datatype constructor

constr : A→ Tri(E ×A)→ TriA ,

again with A a type variable. Hence, the non-singleton triangles are conceived
to consist of the topmost leftmost element, taken from A, and a triangle with

3

diagonal elements taken from E×A. Abbreviate TrapA := Tri(E×A). Therefore,
constr : ∀A.A → TrapA → TriA, but this is just a point of view to refer to the
trapezium view of the argument that “is” a triangle.

From sg and constr, the inductive family Tri is now fully defined as everything
that is finitely generated from these two constructors. As is usual with nested
datatypes, one cannot understand one specific family member TriA for some type
A in isolation, but the recursive structure will include Tri(E×A), Tri(E×(E×A)),
. . . , hence infinitely many family members (with indices of increasing size).

Naturally, also the induction principle for Tri cannot speak about one instance
TriA in isolation. The following induction principle is intuitively justified.1 Given
a predicate P that speaks about all triangles with all types of diagonal elements,
i. e., P : ∀A.TriA → Prop, where Prop is the universe of propositions, the aim
is to assure that P holds universally, i. e., ∀A∀t : TriA.PA t holds true. (Here
and everywhere, we suppress the type information that A is a type variable, and
we write the type argument to P as a subscript.) An inductive proof of this
universal statement now only requires a proof of the two following statements:

– ∀A∀a : A.PA(sg a).
– ∀A∀a : A∀r : TrapA.PE×A r → PA(constr a r).

The inductive hypothesis PE×A r refers to the instantiation of the predicate P
with type argument E × A. Except from this, the principle is no more difficult
in nature than the induction principle for (homogeneous) lists.

The redecoration algorithm whose verification is the aim of this article can
be described as the binding operation of a comonad2. In other words, we will
organize the material in the form of a comonad for the type transformer Tri that
might then be called the redecoration comonad. The function top : ∀A.TriA→ A
that computes the top left element is programmed as follows:

top(sg a) := a , top(constr a r) := a .

This is a simple non-recursive instance of definition by pattern-matching. The
function top will be the counit of the comonad that we are defining. Redecoration
in general is dual to substitution, see [15]. Following this view, redecoration
for triangular matrices will be defined as Kleisli coextension operation: Given
types A,B and a function f : TriA → B – the “redecoration rule” – define the
function redec f : TriA → TriB. In the formulation of [15], TriA becomes the
type of A-decorated structures. So, the redecoration rule f assigns B-decorations
to A-decorated structures, and redec f “co-extends” this to an assignment of B-
decorated structures to A-decorated structures.

The intuitive idea of redecoration in the case of triangles is to go recursively
through the triangle and to replace each diagonal element by the result of ap-
plying f to the sub-triangle that extends to the right and below the diagonal
element.
1 A formal justification is provided by Coq, see section 5.
2 No category-theoretic knowledge is required to follow the article. The laws are given

in our concrete situation, but they are mentioned to be instances of the general
comonad notions.

4

redec : ∀A∀B. (TriA→ B)→ TriA→ TriB ,
redec f (sg a) := sg(f (sg a)) ,
redec f (constr a r︸ ︷︷ ︸

t:=

) := constr(f t) (rest(redec f t)) .

Here, rest(redec f t) is a meta-notation for the element of type Tri(E×B) yet to
be defined. However, already at this stage of definition, the first comonad law
becomes apparent:

top(redec f t) = f t .

It remains to define rest(redec f t) : Tri(E × B) for f : TriA → B and t =
constr a r with a : A and r : Tri(E ×A). The type of r “is” a triangle, but, from
the description of constr, r ought to be seen in trapezium view in order to follow
the above intuition of redecoration. Going back to the illustration on page 3, the
uppermost row is to be cut off, then the topmost A be replaced by f applied to
the remaining triangle, and then redecoration has to be carried on recursively.
Finally, the uppermost row has to be recovered.

First, define the operation cut that cuts off the top row from the trapezium
view of its argument:

cut : ∀A.TrapA→ TriA ,
cut(sg (e, a)) := sg a ,
cut(constr (e, a) r) := constr a (cut r) .

Here, (e, a) : E × A denotes pairing. Note that r is of type Trap(E × A) in the
second clause. The definition principle is thus “polymorphic recursion” where
the type parameter can change in the recursive calls. Since it is even a definition
that exploits that the argument is not an arbitrary TriA, it goes beyond the
iteration schemes proposed in [3].3

Note that, in the recursive equation for cut, no change of view is necessary
since the arguments are always seen as trapeziums.

We will define rest(redec f t) just from f and r : TrapA where the latter
might be called rest t. In “reality”, r is no trapezium so that a recursive call to
redec for r will need a dedicated redecoration rule for the trapezium view, to be
obtained from the “original” redecoration rule f in (ordinary) triangle view:

f ′ : TrapA→ E ×B ,
f ′ r := (fst(top r), f(cut r)) ,

with fst the left/first projection out of a pair. Note that the target type E × B
of f ′ is the type parameter of Tri(E × B) = TrapB. The left component of f ′ r
3 Basically, that article only allows to define iterative functions of type ∀A. Tri A →

X A for some type transformation X. Through the use of syntactic Kan extensions
for X, this can be relaxed somewhat, and an iterative function (called fcut′ on page
49 of that article) with the more general type ∀A∀B. (B → E×A)→ Tri B → Tri A
had to be defined before instantiating it to cut by using the identity on E × A as
the functional parameter (hence with B := E ×A).

5

instructs to keep the leftmost element of the uppermost row in the trapezium
view. Note that the original definition of the right component of f ′ r in [2] did not
use a cut function but just lifted the second projection via a mapping function
for Tri. Correct types do not suffice, and verification would have been welcome
to exclude such an error.

The operation that associates f ′ with f is named lift, so lift f := f ′ and

lift : ∀A∀B. (TriA→ B)→ TrapA→ E ×B.

The definition of redecoration is finished by setting

rest(redec f t) := redec (lift f) r,

whence (without using the abbreviations), the recursive equation for redec be-
comes

redec f (constr a r) = constr (f(constr a r)) (redec (lift f) r) ,

which is the equational form of the reduction behaviour established through
Mendler recursion in earlier work [1].

A very typical phenomenon of nested datatypes are recursive functions that
take an additional functional parameter – here the f – that is modified during
the recursion.

The major question is now: Did we come up with the right definition?

By fairly easy inductive reasoning, using some auxiliary lemmas about cut
and lift, the other two comonad laws can be established for the triple consisting
of Tri, top and redec:4

– redec top t = t,
– redec (g ◦ (redec f)) t = redec g (redec f t) for f, g, t of appropriate types,

namely f : TriA → B, g : TriB → C, t : TriA. In general, ◦ denotes
functional composition λgλfλx. g(f x), but is written in infix notation.

However, these laws and the textual description do not yet confirm a computa-
tional intuition that might have been formed through the experience with simpler
datatypes such as lists. Therefore, we will set out to relate the behaviour of redec
to a function redecL that does not involve nested datatypes but is based on just
the ubiquitous datatype of lists.

3 A List-Based Model

We assume the type transformation List, where for any type A, the type of all
finite lists with elements taken from A is ListA. Although it is also a family of
inductive types, List is not a nested datatype since there is no relation between
any ListA and ListB for A 6= B in the definition of List. Clearly, such relations
4 We also need that redec is extensional in its function argument, see the discussion

in the implementation-related sections.

6

occur with the usual mapping function map : ∀A∀B. (A→ B)→ ListA→ ListB
that maps its function argument over all the elements of the second argument,
but this is only after the definition of List.

The list-based representation of triangles is now a simply parameterized fam-
ily of inductive types, defined explicitly by reference to List:

TriLA := List(ListE ×A) .

Any element of some TriLA is a finite list of “columns”, and each column consists
of the finite list of E elements above the diagonal and the A element on the
diagonal. Note that the argument ListE × A of List has to be parenthesized to
the left, i. e., as (ListE)×A. We visualize an element of TriLA as a generalized
triangle, with the A’s still in the diagonal, but always the list of E’s above each
diagonal element, with the first element the farthest away from the diagonal. An
example with 4 columns would be:

E E
E E
A E
A E E
A E
A

Triangularity is not expressed since, again, we do not want to make use of de-
pendent types by which this could be controlled through the lengths of the E
lists.

In order to relate statements about Tri and TriL, we define the “list repre-
sentation” of triangles of type TriA as elements of type TriLA. Assume we want
the representation for some constr a r with r : TrapA, then a recursive call to
the representation function would yield an element of TriL(E×A). So, we would
have to push out those E’s within the diagonal elements to the E lists. The
columnwise operation is thus:

shiftToE : ∀A. ListE × (E ×A)→ ListE ×A ,
shiftToE(es, (e, a)) := (es + [e], a) ,

where + is used to denote list concatenation and [e] is the list that consists of
just the element e, while the empty list will be denoted by [], and the “cons”
operation will be denoted by infix “::”. The mapping with shiftToE changes from
“triangle view” to “trapezium view” in the list-based representation:

shiftToEs : ∀A.TriL (E ×A)→ TriLA ,
shiftToEs := map shiftToE .

The list representation of triangles is given iteratively as follows:

toListRep : ∀A.TriA→ TriLA ,
toListRep(sg a) := [([], a)] ,
toListRep(constr a r) := ([], a) :: shiftToEs (toListRep r) .

7

The intention is to define a notion of redecoration also for the list-based
representation, i. e., an operation

redecL : ∀A∀B. (TriLA→ B)→ TriLA→ TriLB .

However, there will be no proper comonad structure since no counit topL :
∀A.TriLA → A can exist: A could be instantiated by an empty type A0, and
TriLA0 would still not be empty since it contains [].

As a preparation for the definition of redecL, more operations on columns are
introduced that allow to cut off and restore the topmost E element:

removeTopE : ∀A. ListE ×A→ ListE ×A ,
removeTopE([], a) := ([], a) ,
removeTopE(e :: es, a) := (es, a) ,
singletonTopE : ∀A. ListE ×A→ ListE ,
singletonTopE([], a) := [] ,
singletonTopE(e :: es, a) := [e] ,
appendEs : ∀A. ListE → ListE ×A→ ListE ×A ,
appendEs es (es ′, a) := (es + es ′, a) .

For all pairs p : ListE×A, one has appendEs(singletonTopE p)(removeTopE p) = p.
The technical problem here is just that the E list can be empty, and so there is
the need for the list with at most one element.

These operations can be canonically extended to multiple columns. For one-
place functions, this is done via map, for the two-place function appendEs, the
generic zipWith function known from the Haskell programming language (see
www.haskell.org) comes into play:

zipWith : ∀A∀B∀C. (A→ B → C)→ ListA→ ListB → ListC ,
zipWith f (a :: `1) (b :: `2) := f a b :: zipWith f `1 `2 ,
zipWith f `1 [] := [] ,
zipWith f [] `2 := [] .

The last auxiliary definitions for redecL are:

removeTopEs : ∀A.TriLA→ TriLA ,
removeTopEs := map removeTopE ,
singletonTopEs : ∀A.TriLA→ List(ListE) ,
singletonTopEs := map singletonTopE ,
zipAppendEs : ∀A. List(ListE)→ TriLA→ TriLA ,
zipAppendEs := zipWith appendEs .

The following definition is by wellfounded recursion over the TriLA argument
of redecL. Note that removeTopEs does not change the list length of its argument
and that therefore, it is just the list length of the TriL argument of redecL that
is smaller in the recursive call.

redecL : ∀A∀B. (TriLA→ B)→ TriLA→ TriLB ,
redecL f [] := [] ,
redecL f ((es, a) :: r) := (es, f((es, a) :: r)) :: zipAppendEs (singletonTopEs r)

(redecL f (removeTopEs r)) .

8

In comparison with redec, this definition contains a new trivial case for the empty
list, and the redecoration rule f does not need to be adapted to a trapezium view
in the recursive call. Thus, f is just a fixed parameter throughout the recursion,
hence, also the type parameters stay fixed. Due to the less rigid constraints on
the form in TriL, there may be E’s above the leftmost A. This parameter es
is taken into account when evaluating the redecoration rule, but still, only the
diagonal elements are modified by the algorithm.

4 Verification Against the List-Based Model

Theorem 1 (Simulation). If E is non-empty, then for all types A,B, terms
t : TriA and f : TriLA→ B:

redecL f (toListRep t) = toListRep(redec (f ◦ toListRep) t) .

This is the most natural theorem that relates redec and redecL through toListRep:
If there were an operation topL to turn TriL and redecL into a comonad, this
theorem would establish for toListRep one of the two properties of a comonad
morphism from Tri to TriL. Unfortunately, it does not reduce redec to redecL
or vice versa. The former direction seems already to be hampered by the need
for a redecoration rule f : TriLA → B, hence with a much wider domain than
prescribed for redec. However, this is not so due to the existence of a left inverse
fromListRep of toListRep. As we will see in the main theorem at the end of this
section, redec f t can be expressed in terms of redecL, toListRep and fromListRep.

For the proof of the simulation theorem, one has to replay cut and lift on the
list representations: Define

remsh : ∀A. ListE × (E ×A)→ ListE ×A ,
remsh := removeTopE ◦ shiftToE .

Abbreviate TrapLA := TriL(E ×A). Define

cutL : ∀A.TrapLA→ TriLA ,
cutL := map remsh ,

where the operational intuition is just to put the argument in trapezium view
and then to cut off the top row. This intuition is met thanks to the functor law
for map stating preservation of composition, i. e., map (g ◦f) t = map g (map f t).

Lemma 1. toListRep(cut r) = cutL(toListRep r) for all A and terms r : TrapA.

Proof. This is by induction on Trap, hence a section of Tri. The induction prin-
ciple is as follows: Given P : ∀A.TrapA → Prop, one concludes its universality,
i. e., ∀A∀t : TrapA.PA t from the following two clauses:

– ∀A∀a : E ×A.PA(sg a).
– ∀A∀a : E ×A∀r : Trap (E ×A). PE×A r → PA(constr a r).

9

It should be as intuitive as the Tri induction principle. For formal justifications,
see the later sections.

The inductive step of the lemma will need (for r : TrapL(E ×A))

shiftToEs (cutL r) = cutL (shiftToEs r) ,

that in turn follows from (for r : ListE × (E × (E ×A)))

shiftToE(remsh r) = remsh(shiftToE r)

and the above-mentioned functor law for map. ut

The analogue liftL of lift can only be defined for non-empty E. We will assume
some fixed e0 of type E in the sequel. Define

liftL : ∀A∀B. (TriLA→ B)→ TrapLA→ E ×B ,
liftL f [] := (e0, f(cutL [])) ,
liftL f ((es, (e, a)) :: r′︸ ︷︷ ︸

r:=

) := (e, f(cutL r)) .

The following relation between lift and liftL is a consequence of the preceding
lemma.

Lemma 2. lift (f ◦ toListRep) r = liftL f (toListRep r) for types A,B and terms
f : TriLA→ B and r : TrapA. ut

The major obstacle on the way to proving the theorem is the following lemma.

Lemma 3 (Main Lemma). For any types A,B and terms f : TriLA→ B and
r : TrapLA, one has

shiftToEs (redecL (liftL f) r) = zipAppendEs `1 `2
with

`1 := singletonTopEs(shiftToEs r) : List(ListE) ,
`2 := redecL f (removeTopEs(shiftToEs r)) : TriLB .

Note that r : TrapLA, but that r is nevertheless just a (generalized) triangle.
Hence liftL f is the right redecoration rule that treats it in trapezium view.
Redecoration will nevertheless produce a (generalized) triangle, so the result is
finally transformed into trapezium view. On the right-hand side, r is first made
into a (generalized) trapezium, then redecoration is done to the result after
cutting off the top row, but then the cut off elements are restored, hence the
outcome is also a (generalized) trapezium. Note also that, as argued before, by
virtue of the functor law for map, the argument to redecL f in `2 is equal to
cutL r.

Proof. The function redecL can be understood as being defined by recursion over
the list length of its argument, and also the proof can be done by induction on
the list length of r. See more details in the following specific sections on Coq
and Isabelle how it is done more elegantly. ut

10

Theorem 1 follows from the main lemma by induction on Tri for t. ut
We want to define a left inverse to toListRep. The type ∀A.TriLA → TriA

cannot be inhabited since TriLA is never empty while TriA inherits emptiness
from A. Hence, we will only be able to define a function

fromListRep : ∀A.A→ TriLA→ TriA

such that fromListRep a0 (toListRep t) = t for all a0 : A, t : TriA.
Recall that we have fixed an element e0 of type E. The operation on columns

is defined as
shiftFromE : ∀A. ListE × A→ ListE × (E ×A) ,
shiftFromE([], a) := ([], (e0, a)) ,
shiftFromE(e :: es, a) := (removelast (e :: es), (last (e :: es), a)) ,

with functions removelast and last of the meaning suggested by their names. It
is easy to establish that, for all pairs p : ListE × (E ×A), one has

shiftFromE(shiftToE p) = p .

This is extended to an operation on (generalized) triangles:

shiftFromEs : ∀A.TriLA→ TrapLA ,
shiftFromEs := map shiftFromE ,

and shiftFromEs(shiftToEs r) = r for all r : TrapLA follows from the respective
result on columns, the two functor laws for map (hence, also map (λx.x) l = l) and
extensionality of map in its function argument.5 The definition of fromListRep
is by wellfounded recursion over the TriLA argument, and as for redecL, this is
justified by the decrease of the list length of this argument in the recursive calls.
However, unlike the situation of redecL, we need polymorphic recursion in that
the function at type A calls itself at type E ×A:

fromListRep a0 [] := sg a0 ,
fromListRep a0 [(es, a)] := sg a ,
fromListRep a0 ((es, a) :: p :: r) :=

constr a
(
fromListRep (e0, a0) (shiftFromEs(p :: r))

)
.

Lemma 4 (left inverse). For any type A, terms a0 : A and t : TriA, one has

fromListRep a0 (toListRep t) = t.

Proof. By a use of the induction principle for Tri, exploiting the fact that any
toListRep t is a non-empty list, hence of the form p :: r. ut
Theorem 2 (Main Theorem). If E is non-empty, then for all types A,B,
and terms a0 : A, b0 : B, f : TriA→ B and t : TriA:

redec f t = fromListRep b0
(
redecL (f ◦ (fromListRep a0)) (toListRep t)

)
.

Proof. An immediate consequence of the simulation theorem and the preceding
lemma, by using extensionality of redec in its functional argument once more.

ut
5 See the discussion on extensionality in Section 5.

11

5 Details on Formal Verification with Coq

In this section, a Coq development of the mathematical contents of the last three
sections is discussed. The Coq vernacular file can be found at the web site [12].

We mentioned above that the Coq system [10]6 has a genuine pattern-match-
ing support for nested datatypes like Tri since version 8.1, contributed by Chris-
tine Paulin. In version 8.0, there were subtle problems because such datatypes
could only be specified through datatype constructors with universally quanti-
fied types that had to live in the universe Set as well, hence Set had to be made
impredicative by an option to the Coq runtime system.

The following remarks concern Coq 8.1 at patch level 3, released in December
2007.

The nested datatype (a. k. a. inductive family) Tri is introduced as follows:

Inductive Tri (A:Set) : Set :=
sg : A -> Tri A | constr : A -> Tri (E * A) -> Tri A.

Then, the appropriate induction principle is automatically generated, and one
can check its type:

Check Tri_ind : forall P : forall A : Set, Tri A -> Prop,
(forall (A : Set) (a : A), P A (sg a)) ->
(forall (A : Set) (a : A) (r : Tri (E * A)),

P (E * A) r -> P A (constr a r)) ->
forall (A : Set) (t : Tri A), P A t.

This is exactly the induction principle of Section 2. However, the induction
principle for Trap in Section 4 seems to need a (straightforward) proof via the
fix construction for structurally recursive functions/proofs.

The definition of redecL by recursion over a measure and reasoning about
redecL by “measure induction” uses an experimental feature of Coq 8.1 (one
has to load separately the package Recdef), provided by Pierre Courtieu, Julien
Forest and Yves Bertot [4–6].

Function redecL (A B:Set)(f:TriL A -> B)(t: TriL A)
{measure length t} : TriL B :=

match t with nil => nil
| (es,a)::rest => (es,f((es,a)::rest))::

zipAppendEs (singletonTopEs rest)
(@redecL A B f (removeTopEs rest)) end.

The fact that the length is a measure that decreases in the recursive call has
to be proven in order to get Coq to accept this as a definition. Thanks to the
explicit form @redecL A B that reveals the Church-style syntax that underlies
Coq although it is hidden from the user by the mechanism of implicit arguments,

6 We will only presuppose concepts and features of Coq that are explained in the Coq
textbook [8].

12

measure induction even works with this polymorphic function. Coq automati-
cally generates an induction principle redecL ind, called functional induction,
that allows to argue about values of redecL directly along the recursive call
scheme of its definition. The induction hypothesis is prepared with the argument
removeTopEs rest, and there is no need to redo the justification by means of
the decreasing length again. The proof of the main lemma is then an instance of
redecL ind, and this is interactively initiated by

functional induction (redecL (liftL e0 f) r).

In a simpler form, functional induction is used for the analysis of zipWith
that, despite being structurally recursive in both list arguments, also profits from
being defined by the “Function” command that again prepares the induction
hypotheses, and this has already been available in Coq for years now.

However, even the current extensions to functional induction in Coq 8.1 patch
level 3 do not cover the definition of fromListRep because it combines recursion
with decreasing measure with polymorphic recursion. In the development version
of Coq, a proposal by Julien Forest works well where the type A and the elements
a0 : A and t : TriLA are encapsulated in a record, see [12]. Our solution consists
in defining an auxiliary function with an additional parameter n of type nat by
ordinary recursion on n and then fixing n to the length of t. This works very
well because the list length is just one less in the recursive call and because the
proof of Lemma 4 only needs the defining equations of fromListRep immediately
preceding that lemma.

In the middle of the proof of the second comonad law, redec top t = t, we have
to prove redec top t = redec (lift top) t. It was easy to prove ∀r. lift top r = top r
before that. It would be easy to conclude if this implied lift top = top, but this
typically cannot be done in intensional type theory to which the underlying
system of Coq belongs, namely the Calculus of Inductive Constructions. But we
do not even need that equality since, in general, redec f t only depends on the
values of f (the “extension” of f) and not its definition (or “intension”). More
precisely, one can show by Tri induction on t that redec is “extensional”:

∀f f ′. (∀t′. f t′ = f ′ t′)→ redec f t = redec f ′ t .

This property is also needed for the proofs of the third comonad law, the simula-
tion theorem and the main theorem, and the analogous property for map enters
the proof of the main lemma, its auxiliary lemmas and the proof that shiftFromEs
is a left-inverse of shiftToEs.

6 Details on Formal Verification with Isabelle

We are going to sketch an alternative to the Coq implementation, described in
the previous section. This is done within the system Isabelle (more precisely,
Isabelle 2007 of November 2007), and the script with the theory development is
also available from the web site [12].

13

The type system of Isabelle is less expressive than the type system of Coq:
it is a simply typed lambda-calculus with ML-style polymorphism [13]. Type
parameters of polymorphic functions need not be supplied explicitly, but can be
inferred by the system, and universal quantification over types on the top-level is
provided through schematic type variables. The datatype definition mechanism
currently implemented in Isabelle is described in more detail in [7].

To be consistent with the Coq formalization, we would like to fix a type
constant E by declaring “typedecl E” and define the polymorphic tri datatype
as follows:

datatype ’a tri = sg (’a) | constr (’a) ((E * ’a) tri)

As spelled out in Section 2, in the resulting induction principle

∀ P. (∀ a. P (sg a)) −→
(∀ a r. P r −→ P (constr a r)) −→ ∀ t. P t

the universally quantified induction predicate P would then be applied both
to a (E * ’a) tri and a ’a tri, thus overstraining Isabelle’s type system.
Therefore, such a datatype definition is not valid in Isabelle.

We circumvent this and related problems by not conceiving sg and constr
as constructors of an inductive type, but just as constants declared by

consts sg :: ’a ⇒ (’a,’e) tri
constr :: ’a ⇒ (’a, ’e) trap ⇒ (’a, ’e) tri

As above, (’a, ’e) trap abbreviates (’e * ’a,’e) tri. (And the fixed pa-
rameter E is replaced by a second type parameter ’e. For the whole theoretical
development, this difference does not play any role, but it facilitates concrete
programming examples that are also provided in the Isabelle script.)

For carrying out proofs, we have to provide appropriate instances of the
induction predicate. In order to obtain the desired computational behaviour, we
manually have to add reduction rules, as will be shown in the following.

As an example, take the cut function of Section 2. We declare the function
cut by:

consts cut :: (’a, ’e) trap ⇒ (’a, ’e) tri

The primitive-recursive function definition is accomplished by providing the
following characteristic equations:

axioms cut_sg [simp]: cut (sg (e,a)) = sg a
cut_constr [simp]: cut (constr (e,a) r) = constr a (cut r)

Note that in the second equation, cut is applied to expressions of different types:
on the left, to a term of type ’a tri, on the right, to a term (’a,’e) tri. Here,
we exploit an essential difference between a universally quantified variable (as
in the induction predicate above), which can only be applied to elements of the
same type, and a globally declared constant such as cut, which can be applied

14

to instances of different type. This distinction is reminiscent of the difference, in
an ML-style type system, between the term

λid : ′a ⇒ ′a. λf : nat ⇒ bool ⇒ nat. f (id 0) (id True)

(which is not well-typed) and

let id = (λx : ′a. x) in λf : nat ⇒ bool ⇒ nat. f (id 0) (id True)

(which is).
Of course, this axiomatization does not provide the guarantees of a genuine

primitive recursive definition, such as termination.
As mentioned above, for typing reasons, we cannot state a general induction

principle. We can, however, exploit the same mechanism as for function defi-
nitions and provide instances of the induction principle for proving individual
theorems.

We illustrate the procedure for the proof of the following (where # is the
“cons” operation and snd is the right/second projection out of a pair)

lemma toListRep_cons_inv:
toListRep t = a # list −→ top t = snd a

We notice that the proof can be carried out using the following instance of
the induction predicate:

(∀a. P1 (sg a)) −→ (∀a r. P1 r −→ P1 (constr a r)) −→ ∀t. P1 t

where P1 is defined as

λt. (∀ a list. toListRep t = a # list −→ top t = snd a)

The proof of the lemma is now very easy: unfold the definition of P1 and
carry out elementary term simplification.

Altogether, the proof of Theorem 1 requires four instances of the induction
schema. This approach is not difficult, but suffers from the well-known draw-
backs of code duplication: it is error-prone and the resulting theories are hard
to maintain.

This is even more true since, for the proof of Lemma 3, in order to get
the induction through, we have to quantify over the function f as well, and
this implicitly requires to quantify over its additional type variable B. Since the
latter quantification cannot be expressed, we cannot just use the above induction
axiom for P1 with the respective new predicate in place of P1 but have to copy
its definition to the four occurrences in the induction formula, giving rise to the
axiom Tri ind MAIN appl2 in the Isabelle script. Even though it is possible in
principle to generate the required induction schemas, the discussion shows that
the result tends to be artificial and, by excessive code duplication, contrary to
good practice. On the good side, the difference between the induction principles
for Tri and Trap becomes invisible in this approach while in Coq, the former is
provided and the latter has to be defined by structural recursion.

15

In the list-based model, we enjoy the full support from Isabelle for datatypes,
here for lists. The proof of the main lemma can just follow the structure of the re-
cursive calls in the definition, expressed in the generated theorem redecL.induct
that is a version of the respective “functional induction” scheme in Coq, with-
out dependent types and hence without the need to reference redecL in it. This
functionality has been developed by Konrad Slind [14].

Also note that proving extensionality of redec in its function argument be-
comes a triviality in Isabelle, thanks to its rule expand fun eq that assumes (?f
= ?g) = (∀ x. ?f x = ?g x), i. e., functions are equal if and only if they are
point-wise equal.

Finally, we remark that Isabelle’s type system only allows inhabited types,
hence the type parameters only range over nonempty types. Thus, all the ele-
ments denoted by a0, b0 and e0 in our informal description (and present in the
Coq development) could have been obtained by the ε operator and therefore do
not show up in the Isabelle scripts [12].

7 Conclusions

This article has presented a mathematical formalization of redecoration in trian-
gular matrices by means of a nested datatype. Redecoration provides a comonad
structure for this datatype. Moreover, we have established a precise relationship
with a model that is only based on lists. For its verification, we have contrasted
two formalizations in the proof assistants Coq and Isabelle and discussed their
different approaches, in particular recursion and induction that do not just fol-
low the datatype definition. An important difficulty has been the necessity of
polymorphic recursion, but this is intrinsic to nested datatypes.

We would hope for some Isabelle extension with a full support of nested
datatypes, i. e., where induction axioms and equational specifications of recursive
functions are generated and justified in the kernel of Isabelle, just as in the
existing datatype package.

Interesting future work would treat the original infinite triangular matrices
of [2, 3] or even specify and verify a datatype-generic definition of redec.

Acknowledgements: With the help of Stefan Berghofer, we overran the
more subtle problems with variables of different kinds in Isabelle. Mamoun Filali
has provided valuable suggestions for the elimination of functional induction in
the Coq development as an alternative to Julien Forest’s construction that is no
longer supported by the current Coq version. The referees’ suggestions helped
to substantially strengthen the main theorem.

References

1. Abel, A., Matthes, R.: Fixed points of type constructors and primitive recursion.
In: Marcinkowski, J., Tarlecki, A., eds., Computer Science Logic: 18th International
Workshop, CSL 2004, 13th Annual Conference of the EACSL. Proceedings, volume
3210 of Lecture Notes in Computer Science. Springer Verlag (2004), 190–204

16

2. Abel, A., Matthes, R., Uustalu, T.: Generalized iteration and coiteration for higher-
order nested datatypes. In: Gordon, A., ed., Foundations of Software Science and
Computational Structures, 6th International Conference, FoSSaCS 2003, volume
2620 of Lecture Notes in Computer Science. Springer Verlag (2003), 54–68

3. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theoretical Computer Science 333 (2005) 3–66

4. Balaa, A., Bertot, Y.: Fix-point equations for well-founded recursion in type the-
ory. In: Aagaard, M., Harrison, J., eds., Theorem Proving in Higher-Order Logics,
TPHOLs 2000, Proceedings, volume 1869 of Lecture Notes in Computer Science.
Springer Verlag (2000), 1–16

5. Barthe, G., Courtieu, P.: Efficient reasoning about executable specifications in Coq.
In: Carreño, V. A., Muñoz, C. A., Tahar, S., eds., Theorem Proving in Higher Order
Logics, TPHOLs 2002, Proceedings, volume 2410 of Lecture Notes in Computer
Science. Springer Verlag (2002), 31–46

6. Barthe, G., Forest, J., Pichardie, D., Rusu, V.: Defining and reasoning about recur-
sive functions: A practical tool for the Coq proof assistant. In: Hagiya, M., Wadler,
P., eds., Functional and Logic Programming, 8th International Symposium, FLOPS
2006, Proceedings, volume 3945 of Lecture Notes in Computer Science. Springer
Verlag (2006), 114–129

7. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL - lessons learned in formal-
logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry,
L., eds., Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, volume 1690 of Lecture Notes in Computer Science. Springer Verlag
(1999), 19–36

8. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science, Springer Verlag (2004)

9. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J., ed., Mathematics of
Program Construction, MPC’98, Proceedings, volume 1422 of Lecture Notes in
Computer Science. Springer Verlag (1998), 52–67

10. Coq Development Team: The Coq Proof Assistant Reference Manual Version 8.1.
Project LogiCal, INRIA (2006). System available at coq.inria.fr.

11. Hinze, R.: Manufacturing datatypes. Journal of Functional Programming 11 (2001)
493–524

12. Matthes, R., Strecker, M.: Coq and Isabelle development for “Verification of the
Redecoration Algorithm for Triangular Matrices”. http://www.irit.fr/~Ralph.

Matthes/CoqIsabelle/TYPES07/ (2007)
13. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-

Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer Verlag
(2002)

14. Slind, K.: Wellfounded schematic definitions. In: McAllester, D. A., ed., Automated
Deduction – CADE-17, 17th International Conference on Automated Deduction,
Proceedings, volume 1831 of Lecture Notes in Computer Science. Springer Verlag
(2000), 45–63

15. Uustalu, T., Vene, V.: The dual of substitution is redecoration. In: Hammond, K.,
Curtis, S., eds., Trends in Functional Programming 3. Intellect, Bristol / Portland,
OR (2002), 99–110

17

