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Abstract

Inspired from the recent developments in theories of non-wellfounded syntax (coin-
ductively defined languages) and of syntax with binding operators, the structure
of algebras of wellfounded and non-wellfounded terms is studied for a very general
notion of signature permitting both simple variable binding operators as well as op-
erators of explicit substitution. This is done in an extensional mathematical setting
of initial algebras and final coalgebras of endofunctors on a functor category. The
main technical tool is a novel concept of heterogeneous substitution systems.
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1 Introduction

Moss [30], Aczel, Addmek et al. [5,4], and Ghani et al. [18,17] have recently
given a rather complete categorical analysis of non-wellfounded syntax, i.e.,
languages coinductively determined by universal-algebraic signatures. Fiore,
Plotkin and Turi [15], at the same time, have provided a categorical account
of syntax with variable binding a la de Bruijn [14] building on a suitable gen-
eralization of universal algebra—the theory of binding algebras [3,33,36]. In
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both lines of work, the first thing done is checking that all is well with substi-
tution. The language induced by a signature has to carry a unique operation
exhibiting what are, in the setting studied, considered to be the characteristic
properties of substitution. These properties have to guarantee that the oper-
ation, whenever uniquely existing, verifies what are known as the syntactic
substitution lemmata or, in categorical terms, the laws of a monad.

In the present article, we take a step towards combining these two directions
of categorical analysis of syntax. In the setting of initial algebras and final
coalgebras of endofunctors on a functor category, we look at substitution in
both wellfounded and non-wellfounded syntax for a very general notion of sig-
nature allowing, in addition to simple variable binding operators, also explicit
substitution operators (as an example, we consider what we call the explicit
flattening operator). The technical contribution of the work consists in the
definitions of a heterogeneous signature and a substitution system for a het-
erogeneous signature and proofs that a substitution system for a heterogeneous
signature always gives a monad and both the wellfounded and non-wellfounded
syntax given by a heterogeneous signature form a substitution system. The lat-
ter proofs are made short by appealing to “generalized iteration” (a version of
the generalized folds scheme of [11]) and primitive corecursion as pre-justified
principles for constructing unique morphisms from and to carriers of initial
algebras and final coalgebras. We emphasize that our focus is different from
that of Fiore, Plotkin, Turi [15] in at least two aspects. First, Fiore, Plotkin
and Turi were not interested in non-wellfounded syntax. Second, and more
important, neither was it their specific goal to identify sufficient conditions
under which a construction (other than a wellfounded term algebra), pretend-
ing to deserve to be called a language, is a monad: their binding algebras, i.e.,
their notion of models of languages with variable binding are, by definition,
monads with extra structure, differently from the heterogeneous substitution
systems of this work. On the other hand, we are not looking here into models
of languages with variable binding.

The article is largely motivated by our interest in the design of useful typed
lambda calculi supporting inductive and coinductive constructors of higher
kinds. Any reasonable such calculus should certainly be adequate for rep-
resenting and manipulating syntax with variable binding; this is one of the
obvious applications to try. We are therefore specifically interested in con-
structions working well also in type-theoretical systems where one of the key
concerns is reduction properties of intensional rewrite systems (as opposed
to metatheory about extensional equational theories). In a type-theoretical
system, a program employing an advanced recursion or corecursion scheme
often exhibits a reduction behavior very different from a version relying on
an extensionally valid reduction to iteration or coiteration (a well-known ex-
ample is programming the number-theoretic predecessor function: one has to
use primitive recursion to achieve the desirable reduction behavior, iteration



is not enough). These issues will be discussed in detail elsewhere.

As related work, we mention the following. The rank 2 inductive constructor
representation of the untyped lambda calculus syntax in the de Bruijn version
in either a functional language or a typed lambda calculus is implicit in Belle-
garde and Hook [9] and appears explicated in Altenkirch and Reus [7] and Bird
and Paterson [12](remarkably, Altenkirch and Reus [7] discussed also the typed
lambda calculus syntax). In the functional programming community, also the
general theory of heterogeneous, non-uniform or nested datatypes (recursive
constructors of rank 2) is currently on the research agenda, see [10,11,22,31].
Typed lambda calculi featuring heterogeneous and higher kind inductive and
coinductive constructors are the topic of [25,1,2]. Fiore, Plotkin and Turi’s
original categorical analysis of de Bruijn-style abstract syntax [15], of which
a tutorial-style presentation appears in [13], has been adapted to the setting
of linear binders by Tanaka [37], and generalized further by Power [34]. Fiore
[16] and Miculan and Scagnetto [27] have developed this approach further to
cover multi-sorted and typed languages with variable binding. Hofmann [23]
has given a category-theoretic explanation of the higher-order abstract syntax
approach to variable binding [21,32].

To defend our engagement with non-wellfounded syntax (which arguably, in
at least one sense, indeed is not syntax: by not admitting an initial alge-
bra semantics), we also refer to some uses of this flavor of syntax. In proof
theory, Mints’ work [28] from the 1970s on the normalization of infinite deriva-
tions (continuous normalization) has recently been revived by him and others
[29,6]. In rewriting, ongoing work on infinitary or coinductive lambda calculus
[24,35] explains aspects of the model theory of the ordinary lambda calcu-
lus, and non-wellfounded syntax is relevant for lazy functional programming.
Finally, also the syntax of Girard’s Ludics [20], the language of designs, is non-
wellfounded. We also stress that both wellfounded and non-wellfounded syntax
are fundamentally about manipulating leaf-labelled trees whereas cosyntax is
about node-labelled trees. Also: non-wellfounded syntax is not dual to well-
founded syntax; instead, it is dual to wellfounded cosyntax, see the discussions
in [40,18].

The article is structured as follows. We begin in Section 2 by reviewing the
necessary preliminaries: generalized iteration, primitive corecursion, and some
specifics about initial algebras and final coalgebras of endofunctors on functor
categories. In Section 3, we recapitulate the known facts that a substitution
system for a universal-algebraic signature gives a monad and that both the
wellfounded and non-wellfounded syntax given by a universal-algebraic signa-
ture form a substitution system. In Section 4 (the central section), we define
heterogeneous signatures and substitution systems for heterogeneous signa-
tures and reprove the statements of Section 3 for these concepts. In Section 5,
we list some conclusions and goals for future work.



2 Preliminaries

We begin by reviewing generalized iteration, primitive corecursion, and some
facts about initial algebras and final coalgebras of endofunctors on functor
categories.

2.1 Generalized iteration, primitive corecursion

For an endofunctor F on a category C, we let (uF,ing) denote its initial algebra
(if it exists) and (vF,outp) denote its final coalgebra (if it exists). Iteration
and coiteration, the basic principles for constructing unique morphisms from
uF and to vF, are immediate consequences from the initiality resp. finality of
(uF,ing) and (vF,outp). Iteration says that, for any C-morphism ¢ : F X —
X, there exists a unique C-morphism h : uF' — X, denoted Itg( ¢ ), such that

F(uF) " >puF
Fhl lh
FX—5>X

Coiteration, dually, asserts that, for any C-morphism ¢ : X — F X there is a
unique C-morphism h : X — vF'| denoted Coitg(¢ ), such that

FX<~2—X
Fhi lh
F(vF) <oz VF

Often, however, it is practical to make use of more advanced recursion and
corecursion schemes whose validity is not entirely immediate. We shall need
“generalized iteration”, which states the following. Given an endofunctor G
on a category C', a functor L : C — C’' with a right adjoint R and a natural
transformation 0 : L - F — G - L between functors from C to C’. Then, for any
C’-morphism ¢ : GX — X, there exists a unique C'-morphism h : L(uF) — X,
denoted ItIL;:g( ¢ ), such that

L(Fqu»ﬂL(uF)
G(L(uF)) 2
Gw

GX————X



The h characterized by the property above is

|t§:g( ¢)=cexoL ltp(R(poGex obrx) o nNprx))
where 7 is the unit and € the counit of the adjunction.

In [11], section 6.2, a slightly more general result is shown where G, 6 and ¢
are replaced by a natural transformation

V:C(L—, X) = C'(L(F-), X)

between functors C°® — Set (the particular ¥ corresponding to our G, 0,
¢ is defined by U (f) = ¢ o Gf 04 for f : LA — X). On the other hand,
our decomposition hints at how to find examples and resembles more the
traditional-style iteration in that it refers to a G-algebra structure ¢ for some
functor G’ (where in most examples, G # F).

We shall also make use of primitive corecursion, see, e.g., [39]. If C has binary
sums, then for any C-morphism ¢ : X — F(X + vF), there exists a unique
C-morphism h : X — vF, denoted Corecp( ¢ ), such that

F(X+vF)<=%—X
F(VF) outy vEF

The one and only h with the requested property is

Corecp () = Coitp( [, Finrx,pooutp])oinlx,p

We will not need primitive recursion and generalized coiteration and will there-
fore not introduce them either. These would be needed if we discussed well-
founded and non-wellfounded node-labelled trees (cosyntax). We reemphasize
that wellfounded and non-wellfounded syntax are not dual to each other.

2.2 Initial algebras, final coalgebras of partial applications of bifunctors vs.
of functors on functor categories

Given a functor F': C x D — D, every C-object A determines an endofunctor
F|A on D given by (F|A)X = F(A, X). It is easy to observe that, if initial
algebras exist for all of them, then, setting (4F)A = p(F|A), (Mp)a = inp|a,
we get an algebra ({1F, ing) of an endofunctor [F] on the functor category [C, D]
given by ([F]X)A = F(A, X A). But this is not all: (4F,ihg) is, in fact, an
initial algebra of [F], with the A-component of the iterative extension of any



given [F-algebra (X, ¢) given as the iterative extension of the (F'|A)-algebra
(XA7 QOA)

Under a reasonable additional condition, this existence result also holds in the
opposite direction. Provided that C is locally small and D has powers indexed
by homsets of C, if an initial [F]-algebra exists, then ((u[F])A, (ing)a) are
initial (F|A)-algebras; the iterative extension of an (F|A)-algebra (X, ) is
constructed as mx(ida) o (ltjp)(¢))a where ¢ is an [F]-algebra structure on
[Irec(—,a) X defined by

(@)ar = (@ o F(f,mx(f)))seciar,a)-

Dual statements may be made about final coalgebras for F|A vs. [F]. The
existence of final (F|A)-coalgebras follows from the existence of a final [F]-
coalgebra in case C is locally small and D has copowers indexed by homsets

of C.

2.3 A special case of generalized iteration

For an endofunctor F on a functor category [C, D] with an initial algebra, the
following recursion scheme is a special case of generalized iteration. Given an
endofunctor G on a functor category [C’, D], a functor Z : C’ — C such that
the reduction functor —- 7 : [C, D] — [C’, D] has a right adjoint (the right Kan
extension Rany Y along Z exists for any functor Y : ¢’ — D), and a natural
transformation 0 : (F—) - Z — G(— - Z) between functors [C,D] — [C', D].
Then, for any [C’, D]-morphism ¢ : GX — X, there exists a unique [C’, D]-
morphism A : pF' - Z — X such that

F(uF)-Z2 % uF. 7
Our)

G(uF - 7) h
Gh|,
GX———X

The same kind of specialization of generalized iteration is carried out in [11],
yielding “generalized folds”.

3 Wellfounded and non-wellfounded term algebras

We now proceed to discussing the properties of substitution in wellfounded and
non-wellfounded term algebras. Categorically, these are the initial (A + H—)-



algebras resp. inverses of the final (A + H—)-coalgebras for different objects A
for an endofunctor H on a category C (where, in universal algebra, C = Set and
H is polynomial). For the purposes of modular presentation, however, we first
introduce the concept of substitution system, cf. [4]. This concept is usable as
a basis for a uniform treatment of not only wellfounded and non-wellfounded
terms, but also term equivalence classes (w.r.t. a system of equations), term
graphs, rational terms etc.

Definition 1 Given an endofunctor H on a category C with finite coproducts.
For any assignment A — (T A, ) of some (A + H—)-algebra to every C-
object A, the |C|-indexed family o of morphisms ay : A+ H(TA) — TA
decomposes into two |C|-indezed families n, T of morphisms ng : A — TA,
Ta: H(TA) — TA defined by

N = ag 0 inlyg m(Ta) and TA = QA O INF 4 p(TA)

We say that (T, «) is a substitution system for H, if, for every morphism
f A — TB, there exists a unique morphism h : TA — TB, denoted f*,
satisfying

A+ H(TA)—2—>TA e, A—2>TA<~—2H(TA)

(=[na,al)
idA-l-Hhi lh \ ih th
[fvTB]

A+ H(TB) TB TB<—"—H(TB)

Intuitively, if an assignment (T, «) of an (A + H—)-algebra to every object
A is a substitution system, then T'A is, in some (possibly quite metaphori-
cal) sense of the word ‘term’, the set of H-terms over variables from A, 14 is
insertion of variables, 74 is insertion of operator applications and —* is substi-
tution. For any morphism f : A — T'B (a substitution rule), the morphism f*
(the corresponding substitution function) is by our definition required to be a
unique morphism agreeing with f on variables and commuting with operator
applications.

Having a substitution system implies having a monad: the monad laws are
valid properties of substitution.

Theorem 2 If an assignment (T, «) of an (A+ H—)-algebra to every C-object
A forms a substitution system, then (T,n,—*) is a monad (in Kleisli form).

PROOF. The monad law (i) f*ons = f (f : A — TB) is immediate; the
laws (ii) na* = id7a, (iil) (¢*o f)* =g o f* (f: A—TB,g: B — TC) are
verified straightforwardly. O



Note that the second and third law are actually the well-known syntactic
lemmata of substitution.

We are interested in two examples: the initial (A + H—)-algebras for different
objects A, i.e., the algebras of wellfounded H-terms over different variable
supplies, and the inverses of the final (A + H—)-algebras, i.e., the algebras of
non-wellfounded H-terms. In the case of wellfounded H-terms, the presence
of a substitution system and a monad is immediate.

Theorem 3 If C has an initial (A + H—)-algebra for every object A, then
(T, @) defined by
(TA,a0) = (u(A+ H-),ing )

is a substitution system and hence (T,n,—*) is a monad (as is known since
[8], it is even the free monad generated by H ).

PROOF. (Trivial, but useful to record for comparison with Thms. 4, 15.)
(T, @) is a substitution system with

ff=lkarg_([f,78]) for f:A—TB

since the right-hand side is, for a given f, by the characterization of iteration
(initiality) the unique solution in h of the square

A+ H(TA)—2—~TA
idAJthl h

A+ H(TB) Y™ g

but that is also the square that f* is supposed to be the unique solution in h
of. O

The example of non-wellfounded H-terms, investigated in Moss [30] and Aczel
et al. [5], is considerably more interesting. Substitution is definable also for
non-wellfounded H-terms, but the definition is not as simple any more as for
wellfounded H-terms.

Theorem 4 (The substitution theorem of [30,5]) If C has a final (A +
H—)-coalgebra for every object A, then (T, «) defined by

(TA,ay) = (v(A+ H-), out;_lFH_)

1s a substitution system.



PROOF. The substitution operation is conveniently definable with the help
of primitive corecursion by

f* = Corecp,p_([(idp + Hinrparp) o ag' o f inro Hinlparg]oay'))

for f:A—TB

The right-hand side is, for any given f, by the characterization of primitive
corecursion, the unique solution in A of the outer square in the diagram

[(idg+Hinrra rp)oag of,inr] ida+Hinlp 4 75 ayt

B+ H(TA+TB) A+ H(TA+TB) A+ H(TA)<==TA
oy
idA-%H[h,idTBLL /idA+H}l/

() idp+H|[ hidrs] A+ H(TB) *% h
\

/
[ag,lof,inr] [fmB]

- a \
B+ H(TB) B TB

1
p

The left-hand side, i.e., f*, must, at the same time, be the unique solution of
the inner square marked (**). But (**) commutes for an & if and only if the
outer square of (*) does. O

Substitution is, of course, also definable from the first principles (finality)
without making use of primitive corecursion. Notably, however, the correctness
proof is then more involved and the complications amount to nothing else
than an implicit justification of an instance of primitive corecursion. This
means that it adds to the clarity and modularity of the proof, if primitive
corecursion is justified first in its generality and only then used. In a type-
theoretic system, moreover, only the definition using primitive corecursion
gives the right reduction behavior.

4 A generalization for variable binding

While the terms of a universal-algebra signature are definable for all possible
supplies of variables independently, this is no longer so in the presence of vari-
able binding operators. If a lambda term over a given supply of variables A is
a lambda abstraction, then the body is a lambda term over 1+ A, not over A:
it has (potentially) one free variable more. Hence the lambda terms have to
be defined as an inductive family for all possible supplies of variables simul-
taneously; they are an example of what is called a heterogeneous datatype.
In category-theoretic terms, this means a shift from a |C|-indexed (functorial)
family of initial algebras of endofunctors on some base category C (normally



Set) to an initial algebra of an endofunctor on [C, C]. For lambda calculus, this
has been worked out in [7,12] and of course also in [15]. The lambda calculus
syntax is the initial algebra of the endofunctor F' on [C,C] given by

(FX)A=A+ XAx XA+ X(1+ A)

or, equivalently, FX =Id+ X x X + X - A where AA =1+ A: set (T, «a) =
(uF,ing), then TA represents the lambda terms with free variables drawn
from A and
ap: A+TAXTA+T(1+A) —-TA

gives the constructions for variables, application and lambda abstraction. The
non-wellfounded version is given by the inverse of the final coalgebra of the
same functor F'. In Section 2.2, we saw that the initial F'(A, —)-algebras for
different A’s for F': C x C — C given by F(A, X) = A+ KX with K an endo-
functor on C are essentially the same as the initial algebra of F’ : [C,C] — [C, (]
given by (F'X)A=A+ K(XA), ie., F'X =Id+ K - X. Hence, wellfounded
syntax without variable binding admits both the view discussed in the previ-
ous section and an alternative view extensible to treat also the lambda calculus
syntax; a similar statement applies to non-wellfounded syntax.

Given these considerations, it is a natural goal to look for a notion of signa-
ture based on endofunctors on functor categories which accounts for variable
binding and is as general as possible so that the project of the previous section
can still be carried out. While a signature in Section 3 was any endofunctor
K on C and a substitution system was (essentially) an (Id + K - —)-algebra,
here we would rather like to see that a substitution system is an (Id + H—)-
algebra where H is some endofunctor on [C,C] (most likely not every H would
be acceptable, but, e.g., H given by HX = K - X should be, in order for
the first-order signatures to be covered). One possible “heterogeneous” no-
tion of signature—the proposal of this article—is that of an endofunctor on
[C,C] together with a strength-like additional datum. We give first the defi-
nition and then some justification. Recall that a pointed endofunctor on C is
an endofunctor Z on C together with a natural transformation e : Id — Z;
a pointed functor morphism from (Z,e) to (Z’,¢’) is a natural transforma-
tion f : Z — Z' between endofunctors on C such that foe = €. We write
Ptd(C) for the category of pointed endofunctors on C and U for the forgetful
functor Ptd(C) — [C,C]. (Intuitively, a pointed functor is a “monad without
multiplication”, or a notion of syntax with variables but no substitution.)

Definition 5 Given a category C with finite coproducts and an endofunctor
H on [C,C] together with a natural transformation @ : (H—)-U~ — H(—-U~)
between functors [C,C] x Ptd(C) — [C,C] such that

Ox,(1d,id) = idrx

0X,(Z’~Z,e’-e) = eX-Z’,(Z,e) © (QX,(Z’,e’) : Z)

10



For any (Id + H—)-algebra (T, «), the [C,C|-morphism a decomposes into two
[C,C]-morphisms n:ld — T, 7: HT — T defined by

n = caoinlg g and T=oinngpgr

We call (T, «) a heterogeneous substitution system for (H,0), if, for every
Ptd(C)-morphism [ : (Z,e) — (T,n), there exists a unique [C,C|-morphism
h:T-Z —T, denoted {f}, satisfying

Z+(HT) - Z2—2>%2 ~7.7 ie, 7— "2 7.7« "2 _(HT) - Z

idz+01,(2,0)| \07.(2.e)
Z+H(T-Z) h 7 h H(T-Z)
idZ+Hh¢ . B \LHh

Z+ HT : T T HT

The operation {—} is the substitution operation of the generalized substitution
system.

Remark 6 The conditions on 0 are exactly those of a strength of H, except
that we require Ox 7 to be defined only when Z is pointed. This can be taken
further: Notice that |d + H— delivers functors that are obviously pointed. We
might therefore liberalize |d+ H— to be an endofunctor on Ptd(C) and require
id. + 6_ . only to be a natural transformation between functors Ptd(C) x
Ptd(C) — Ptd(C). We do not however have meaningful examples of H, 0
where the definition of 6 would use that its first argument is pointed. Having
the second argument pointed will be crucial in the examples to follow.

Definition 5 appears satisfactory in several ways. First of all, it covers our
examples.

Example 7 (Homogeneous Signature) For an endofunctor K on C, we
show that a substitution system (T, «) for K in the sense of Definition 1 with
K seen as a homogeneous signature, gives rise to a heterogeneous substitution
system.

From Theorem 2 it follows that T is even a functor (recall Tf = (np o f)* for
f:+A— B) andn a natural transformation. Also, 7: K -T — T is natural:
For f: A — B, one gets that T fory = Tgo K (T f) by appealing to the diagram
characterizing (ng o f)*. Define an endofunctor H on [C,C] by HX = K - X,
Hg:=K-g forg: X — Y. Define the natural transformation 6 by

HX,(Z,e) = idK~X-Z HX -7 — H(X : Z)

FEvidently, the two coherence conditions from Definition 5 are satisfied by 0.
(T, «) is a heterogeneous substitution system for (H,0): Assume f:(Z,e) —

11



(T,n). We want to find h : T - Z — T satisfying the diagram above, i.e.,
having ho (n-Z) = f and 1o (K - h) = ho (r-Z). At object B of C, this
is precisely the condition for hg being (fg)*. (In the diagram in Definition 1,
take A := ZB.) Thus, uniqueness of h is proved. The morphisms (fg)* for all
B form a natural transformation from T - Z to T, to be proved by naturality
of [ and extensive use of the monad laws (again using the representation of
Tf through Kleisli extension —*).

Example 8 (Lambda Calculus) The lambda calculus signature is captured
in H with (HX)A = XA x XA+ X(1+ A), hence H = Hy; + Hy with
HX = X x X and H X = X - A (again with AA = 1+ A). For any
(Id + H—)-algebra (T, ), the [C,C]-morphism « decomposes into the [C,C]-
morphisms n:ld =T and 7: T xT + T - A — T, where T jointly represents
application and lambda abstraction, and n turns variables into terms.

The requirements for @ concerning naturality and the two coherence conditions
are modular in the sense that such natural transformations can be provided
separately for every summand of H, which we do here: Define

(0% (z.0))a = idx(zayxx(za) : HFiX(ZA) — Hi(X - Z)A
(93(7(Z,6)>A = X[eyyaoinl 4, Zinrp 4] : X(1+ZA) - X(Z(1+ A))

Then 0' satisfies the required properties for H;, i € {1,2}. (Certainly, nat-
urality of 62 depends on the fact that pointed functor morphisms satisfy the
additional requirement foe=¢'.)

Instantiating Definition 5, we get that (T, «) is a heterogeneous substitution
system for (H,0Y + 02) iff, for every f: (Z,e) — (T.,n), there exists a unique
h:T-Z —T, satisfying ho (n-Z) = f and, for all objects B of C,

hB OTzp = TR O (hB X hB + h1+B o T[61+B o inILB, ZianB]).

Below in Example 13, we will demonstrate that this implies the usual structural
substitution.

Example 9 (Explicit Flattening) We can also capture the signature with
one “normal” binary operator and an operator of “explicit flattening” (formal
flattening) which takes terms whose variables are terms over A to terms over
A. For this, one sets H := Hy + H3 with Hy taken from the previous example
and H3 X = X-X, hence (HX)A = XAx XA+ X(XA). Given an (ld+H—)-
algebra (T, o), a decomposes inton : 1d — T, as usual, and 7: TXT +T-T —
T, which codes together application and formal flattening.

We take 6 from the previous example and define

9%,(2,6) :XGXZXXZ_>XZX27

12



hence (9;’(7(276))A = Xex(za). As in the previous example for 02, it is crucial
for the definition of 03 that, in general, 0 is parameterized in a pointed functor
(Z,€), not just a functor Z. It is easy to show that Hs and 6 satisfy the
requirements, e. g., for the second equation, one has to show

X eX -2 -Z=(X-Z-eX-Z Z)o(X-¢ X -2 2),

! /

which immediately follows from e’ -e = (Z'-e)oe.
(T, ) is a heterogeneous substitution system for (H,0' + 63) iff, for every
f:(Z,e) — (T,n), there exists a unique h : T-Z — T, satisfying ho(n-Z) = f
and, for all objects B of C,

hB OTzp = Tp O (hB X hB + ThB o hT(ZB) o TeT(ZB))~

In Example 14 below, a perspicuous application of this identity will be pre-
sented.

Lambda abstraction and “explicit flattening” can be combined by taking H :=
(Hy + Hy) + Hs and 6 := (6* + 0%) + 03.

By replacing (H3X)A = X(XA) by [* Hfees,xa) X B, the “explicit flatten-
ing” operator can be changed into an “explicit substitution” operator taking a
term over some supply of variables B and an assignment of a term over A
to every element of B (a substitution rule) to a term over A. The two for-
mulations are obviously equivalent as [ Hfees,xa) X B = (Lanig X )(XA) =
X(XA) (this is in categories; in a functional language, we would have to use
an existential type instead of the coend, and then parametricity would be re-
quired to obtain the isomorphism). Why they really capture what is usually
intended with explicit substitutions is discussed at length in [19].

There is also an instructive non-example adequately filtered out by Defini-
tion 5: the example of powerlists (also discussed in [2]). Powerlists, or perfectly
balanced binary leaf trees, that is, all lists whose length is 2" for some n, are
represented by the initial (ld+H —)-algebra of H given by (HX)A = X(AxA).
There are two candidates for 6 defined by

(Ox(ze))a = X (Z(ida,ids) o) : X(ZA x ZA) — X(Z(A x A))

with x either fstz4 z4 or sndz4 z4, but both fail to meet the first condition
on #. This is, however, how things should be, since what is substitution for
lists does not qualify as substitution for powerlists: it does not maintain the
constraint that the length of a list may only be a power of 2.

Definition 5 is also good in that every substitution system implies a monad
and both the wellfounded and the non-wellfounded syntax generated by a
signature are substitution systems.
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The proof that a substitution system implies a monad reveals why it makes
sense to require fx (z.) to be defined for any pointed functor (Z,e) instead
of just for (T,n) and why it then has to be natural in (7, e) and satisfy the
two conditions. It also clarifies that parameterizing 6 in a monad instead of a
pointed functor would not work: in the proof, we need to instantiate Z := T,
but for T" we are just aiming at showing that it carries a monad structure.
With a pointed functor parameter, we avoid this potential circularity.

Theorem 10 If an (Id + H—)-algebra (T, ) forms a heterogeneous substitu-
tion system for (H,0) for some 6, then (T, n,{idwr,}) is a monad (in triple

form).

PROOF. The main structure of the proof is as follows: We define
p@:=n:ld—T
n is a Ptd(C)-morphism from (Id,idy4) to (7',n). Define
WO =} T =T

By uniqueness of {n}, we get that (ii-a) u") = idz, using the first coherence
condition on 6. idr is in turn a Ptd(C)-morphism from (7, 7) to (T, 7). Define

p® =p={dp}:T-T —T.

We derive the monad law (i) g o (n-T) = idr from existence of {idr} (the
triangle part) and (ii-b) ) = p o (T - 1) from uniqueness of {n}, naturality
of 0 in the second argument and the existence of {idr} (the rectangle part).
Together with (ii-a), this yields the monad law (ii) po (7"-n) = idy. Moreover,
from (i) we get that u: (T -T,n-n) — (T,n) in Ptd(C). Define

p® ={u}:T-T-T—T.

In order to show the monad law (iii) g o (pu-T) = po (T - ), we show (iii-a)
p® = po(p-T) and (iii-b) u® = o (T - ). In each case, we need the
uniqueness of {u} (in conjunction with (i) and the existence of {idr}). For
(ili-a), also naturality of 6 in the first argument and the second coherence
condition on @ is needed. For (iii-b), naturality of 6 in the second argument is
used.

Note, finally, that p® = {u(=1} for i € {1,2,3}.
We now fill the gaps.
e 1M =idy is proved from the substitution system diagram not having more

than one solution in h for f :=n, (Z,e) := (Id,id;4). Hence, we show idr o
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(n-1d) = n and idpo(7-1d) = 7o Hidr 007 (14 iq),)- The first equation is trivial,
the second holds by the first coherence condition on 6, applied for X :=T.
(i) is trivial from p = {id7} being a solution in h of the diagram above for
f=idp, (Z,e) :=(T,n).

M = po (T -n) is also proved from the diagram not having more than

one solution in h for f := n, (Z,e) := (Id,idyg), i.e., we have to show
po(T-n)o(n-ld)=nand
To H(po (T'-n)) 0 Oradiae) = ko (T -n)o(r-1d) (1)

By naturality of n : Id — T, (T -n)o (n-1d) = (n-T) o (ld - n), hence the
first equation follows from (i). With first argument of 6 fixed to T', it is a
natural transformation from HT - U~ to H(T - U~). If this is applied to
the Ptd(C)-morphism 7 : (Id,id) — (7, 7), one gets

H(T -n) o 07 (djdg) = Or,rm) o (HT - ).
Thus, the left-hand side of (1) is equal to
To Hpobr iy o (HT -n).

Since p is the solution in h of the diagram for f :=idr, (Z,e) := (T, n), one
has
ToHpobry =po(r-T) (2)

Therefore, it remains to show
po(r-TYo(HT -n)=po(T-n)o(r-Id).

This is true because (7-T)o(HT-n) = (T"-n)o(7-1d) follows from naturality
of 7: HI' — T, applied ton : Ild — T

p is a Ptd(C)-morphism: One has to check that p o (n-n) = n. This is
immediate from (i) since n-n = (n-T)on.

13 = o (pu-T) comes from uniqueness of {i} if we can prove that the
right-hand side is a solution in h of the diagram for f := p and (Z,¢) :=
(T"-T,n-n). We have to show po (pu-T)o(n-T-T) = p and

ToH(po (u-T))oOrrym =po(p-T)o(r-T-T) (3)

For the first equation, observe (u-T)o (n-T-T) = (po(n-T))-T and use
(i). For (3), use the second coherence condition on # which yields

QT:(T'TW'W) = QT'Tv(Tvn) o (QT:(T:W) ’ T)

H(p-T) o 0p.rry, can be calculated by using naturality of 6 in the first
argument: For the fixed object (T',n) of Ptd(C) as second argument, 6 gives
a natural transformation from H—-T to H(—-T). For the [C,C]-morphism
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p: T T — T, this means

H(M . T) o HT-T,(T,T]) = eT,(T,n) O (H/L . T)

Also using (2) again, the left-hand side of (3) becomes
po(r-T)yo(Hu-T)oOrwy -T)=po((troHpobrmy) T).

We are done by another use of (2)!
o ¥ = p o (T - p) is proved in the same manner. By uniqueness of {yu}, it
suffices to show po (T -p)o(n-T-T) = p and

ro H(po (T ) o by =po(T-po(r-T-T)  (4)

Naturality of  : Id — T, applied to p : T - T — T, yields

(T-p)o(n-T-T)=(n-T)o(ld-p).

Therefore, the first equation follows from (i). Equation (4) is dealt with by
naturality of € in the second argument. As for the proof of (1), we fix the first
argument to X := T'. This time, we use naturality for the Ptd(C)-morphism
w: (T-T,n-n)— (T,n), which means

H(T - p)o Or,(r.1mm) = O1,(T,0) © (HT - ).

Using also (2), the left-hand side of (4) is equal to g o (7-T) o (HT - p).
Finally, naturality of 7: HT' — T, applied to p : T"- T — T gives

(1-T)o(HT -pu)=(T-pu)o(r-T-T). O

Remark 11 The proof above uses the fact that pu is a Ptd(C)-morphism. This
works for every { f} instead of p: If f : (Z,e) — (T, n) then {f} : (T-Z,n-e) —
(T,n) in Ptd(C).

PROOF. We have to show that {f}o(n-e) = n. Since f is a pointed functor
morphism, foe = 1. By existence of {f} (the triangle part), {f}o(n-Z) = f.
We are done since n-e=(n-Z)oe. 0O

Example 12 (Example 7, continued) We found for the heterogeneous rep-
resentation of homogeneous signature that, for f : (Z,e) — (T,n), {f}a =
(fa). Consequently, {id,}a = (idra)* which is the definition of monad
multiplication s for the monad of Theorem 2. Hence, Theorem 10 yields the
same monad and therefore extends Theorem 2 properly.

Example 13 (Example 8, continued) Assume a heterogeneous substitution
system (T, ) for (H,0' + 0%). By the previous theorem, (T,n, i) is a monad
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where p = {idr,)}. For a substitution rule f : A — TB, the associated
substitution function f*: TA — TB is given as f* = ugoTf, as usual. Then

ffota=T1po(f* %< f*+ [mypoinl g, Tinrygo fl*).

It means that substitution f* acts on an application homomorphically, and for
lambda abstraction, it yields a lambda abstraction, with its kernel being the
substitution function for [mypoinly g, Tinrygo f|: 1+ A — T(1+ B), which
is the appropriate lifting of f by the new variable represented by 1. (Tinry g
should be seen as a weakening operation in the sense of logic.)

The proof is as follows: We have f* o7y = ug o T f o1y. By naturality of T,
the r.h.s. is upotrg o HT' f. We saw previously that

ppoTrg =T o (g X fig + s © T[mypoinly g, Tinry g ]).
Since HTf =Tf x Tf + T(idy + f) and
T[mipoinly g, TinrygloT(idy + f) =T[mipoinly g, Tinrygo f1,
we are done.

Example 14 (Example 9, continued) Now, we assume a heterogeneous sub-
stitution system (T, «) for (H,0' + 63) from Ezxample 9. Again, we get monad
maultiplication p = {id(p,)} from the previous theorem. For a substitution rule
f:+A—TB, the associated substitution function f*:TA — TB satisfies

[ffora=tpo(f*x f*+ Tf).

For a proof, calculate f* o1y = ppoTfoTs = pugorrgo HT'f, as in the
previous example. By FExample 9,

ppoTrg =Tpo (up X pp + Tupo Hr(TB) © Tnrrs))-

By the second monad law, prrp) o Tnrrpy = drrsy). We are done since
HTf=TfxTf + T(Tf).

Once generalized iteration in the sense of Section 2.3 is accepted, the proof that
the wellfounded syntax defined by a heterogeneous signature is a substitution
system is as trivial as that of Theorem 3. This also motivates the introduction
of 8 in the first place: in the wellfounded case, we want the the desideratum
for substitution expressed in the notion of heterogeneous substitution system
to be fulfilled “automatically”.

Theorem 15 If [C,C]| has an initial (1d+ H—)-algebra and a right adjoint for
the functor — - Z : [C,C] — [C,C] exists for every Ptd(C)-object (Z,e), then
(T, @) defined by

(T,0) = (u(1d + H=), ingy )
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is a heterogeneous substitution system for (H,0) for every 0.

PROOF. (T,«) is a heterogeneous substitution system with {—} definable
by
—Z,idz+0_ (7. '
{f}zltld—s—H—Z,Z—i-H(i )([f77—]) fOI‘f.(Z7€)—>(T,’I'])
since the right-hand side is, for any given f, by the characterization of gener-
alized iteration the unique solution in A of the square

Z+(HT)-Z @ T -Z

idz+9T,(Z,e)\L
Z+H(T-2) h
idz+Hh\L .
Z + HT : T

and this is the same square that {f} is supposed to be the unique solution of
inh. O

Example 16 (Resolving Explicit Substitutions) Assume that C, H and
0 meet the requirements of the previous theorem, e. g., in case of the lambda cal-
culus signature of Example 8, this would give the finite (well-founded) lambda
terms. Set H := H + Hs (the signature extended by explicit flattening, as in
Ezample 9). We assume that C meets the requirements of the previous theo-
rem also for H and hence get the heterogeneous substitution systems (T, «) for
(H,0) and (T,&) for (H,0 + 6®). By Theorem 10, this gives rise to monads
(T,n, 1) and (T, 9, i), respectively.

Our aim 1s to show the existence of a natural transformation eval : T T
that resolves explicit substitution, expressed by explicit flattening. In order to
state the result, it is necessary to consider the trivial embedding emb : T" — T
that “puts hats on every constructor”, in view of the following definitions: «

can be decomposed as o = [n,7]. Likewise, & = [, [7,flat]]. (Note that u is
not a constructor for T, but a defined operation, hence we do not call it flat.)
More precisely, set emb = ltiq g ([7,7]).

As before, given a substitution rule f : A — TB, define the substitution
function f* == pygpoTf : TA — TB. For T, we do the same, but with
explicit flattening instead of the operational flattening i which we will not
need at all. Gien f : A — TB, define the explicit substitution function
fti=flatgoTf:TA— TB.

The property of eval we are interested in can now be formulated: Substitution

for T-terms should be computable by embedding these terms into the syntax
with explicit flattening, by the formal application of explicit substitution, and
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finally by evaluation, i.e., for f: A — TB, we want
* = evalg o (embg o f)ﬂ oemby.
This is, not surprisingly, achieved by defining
eval := Ity ([n,[7.10]]).

For a proof, one must first show eval oemb = idr, which comes from idr being
the unique solution for Iy, g (« ). By definition of iteration, eval o flat =
o (eval - eval). Hence,
evalg o (embp o f)f o emby = evalg o flatg o Temby o T'f o emb4
= pupoevalpgo TevaIB o TembB o Tf oemby
= upoevalpg o Tf oemby

= pupoTl foevalgoemby = pupoTf = f* O

The proof of being a heterogeneous substitution system in the case of non-
wellfounded syntax follows that of the corresponding Theorem 4 in the previ-
ous section very closely.

Theorem 17 If [C,C]| has a final (Id + H—)-coalgebra, then (T, a) defined by
(T,0) = (v(ld + H—), outig )

is a heterogeneous substitution system for (H,0) for every 0 that satisfies nat-
urality and the two coherence conditions of Definition 5.

PROOF. For f:(Z,e) — (T,n), define

{f} := Corecigr ([ (idig + Hinrp.zr) oo o finro Hinlp.zr 0 01,z |

ola™- 7))

The right-hand side is, by the characteristic property of primitive corecursion,
the unique solution in h of the outer square in the diagram

[(idg+Hinrr.z 7)oa™ o f inr] idz+Hinlp.z 1 (idZJrGT,(Z’e))o(a_l-Z)
ld+ H(T-Z+T) Z4H(T-Z+T) Z+H(T-Z)~—T.7
idz-‘rH[hﬂdT}\L idz+H
(%) ich+H] hidr | Z+HT o h
[a=tof inr]/ \[fﬂ

d+ HT— a \\\\\\\*T

a1
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The left-hand side, i.e., {f}, must, at the same time, be the unique solution
of the inner square marked (**). But (**) commutes for any h if and only if
the outer square of (*) does. O

5 Conclusions and future work

We have shown that a suitable generalization of substitution systems, in-
spired from [15], makes wellfounded and non-wellfounded term algebras given
by signatures with variable binding analyzable as easily as are those given
by first-order signatures. The key ingredient of a generalized signature is a
kind of distributivity, or strength, parameterized in a pointed functor. With
a more permissive functor parameter, neither lambda calculus nor languages
with explicit substitution could be treated. We can prove that a heterogeneous
substitution system always yields a monad and that both the wellfounded and
non-wellfounded term algebras are substitution systems, thus obtaining a gen-
eralization of the substitution theorem of [30,5] which handles heterogeneous
signatures. In a related piece of work [41], we show that the solution theorem
of [30,5] generalizes as well. To this end, we use an alternative, equivalent def-
inition of complete iterativeness of an ideal monad, which is more convenient
for “point-free” arguments in functor categories than the original definition of

5].

One main direction for future work will be to obtain a deeper understanding
of syntax with variable binding, in particular, of models of such syntax—a
topic we have not touched here at all. Another goal will be to check how well
the various versions of typed lambda calculus with monotone inductive and
coinductive constructors of rank 2 introduced in [25,1,2] are suited for coding
our constructions for non-wellfounded syntax with variable binding (from the
point of view of achieving the intuitively desirable reduction behaviours). Some
other possible directions for continuing this research are: to identify more
examples of heterogeneous signatures and substitution systems, to see if a
further generalization of the results of [38] along the lines of the present paper
is possible.
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