Recursion on Nested Datatypes in Dependent
Type Theory

Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT)
C.N.R.S. et Université Paul Sabatier (Toulouse III)
118 route de Narbonne, F-31062 Toulouse Cedex 9

Abstract. Nested datatypes are families of datatypes that are indexed
over all types and where the datatype constructors relate different mem-
bers of the family. This may be used to represent variable binding or to
maintain certain invariants through typing.

In dependent type theory, a major concern is the termination of all ex-
pressible programs, so that types that depend on object terms can still
be type-checked mechanically. Therefore, we study iteration and recur-
sion schemes that have this termination guarantee throughout. This is
not based on syntactic criteria (recursive calls with “smaller” arguments)
but just on types (“type-based termination”). An important concern are
reasoning principles that are compatible with the ambient type theory,
in our case induction principles.

In previous work, the author has proposed an abstract description of
nested datatypes together with a mapping operation (like map for lists)
and an iterator on the term side and an induction principle on the logical
side that could all be implemented within the Coq system (with impred-
icative Set that is just needed for the justification, not for the definition
and the examples). For verification purposes, it is important to have
naturality theorems for the obtained iterative functions. Although in-
tensional type theory does not provide naturality in general, criteria for
naturality could be established that are met in case studies on “bushes”
and representations of lambda terms (also with explicit flattening).
The new contribution is an extension of this abstract description to full
primitive recursion and its illustration by way of examples that have
been carried out in Coq. Unlike the iterative system, we do not yet have
a justification within Coq.

1 Introduction

Nested datatypes [1] are families of datatypes that are indexed over all types and
where the datatype constructors relate different members of the family (i.e., at
least one datatype constructor constructs a family member from data of a type
that refers to a different member of the family). Let ko stand for the universe of
(mono-)types that will be interpreted as sets of computationally relevant objects.
Then, let k1 be the kind of type transformations, hence k1 := kg — Kg. A
typical example would be List of kind k1, where List A is the type of finite

lists with elements from type A. But List is not a nested datatype since the
recursive equation for List, i.e., List A = 1+ A x List A, does not relate lists with
different indices. A simple example of a nested datatype where an invariant is
guaranteed through its definition are the powerlists [2], with recursive equation
PList A = A+ PList(A x A), where the type PList A represents trees of 2"
elements of A with some n > 0 (that is not fixed) since, throughout this article,
we will only consider the least solutions to these equations. The basic example
where variable binding is represented through a nested datatype is a higher-
order de Bruijn representation of untyped lambda calculus, following ideas of
[3-5]. The lambda terms with free variables taken from A are given by Lam A,
with recursive equation

Lam A = A+ Lam A x Lam A + Lam(option A) .

The first summand gives the variables, the second represents application of
lambda terms and the interesting third summand stands for lambda abstrac-
tion: An element of Lam(option A) (where option A is the type that has exactly
one more element than A) is seen as an element of Lam A through lambda ab-
straction of that designated extra variable that need not occur freely in the body
of the abstraction.

In dependent type theory, a major concern is the termination of all express-
ible programs. This may be seen as a heritage of polymorphic lambda calculus
(system F*) that, by the way, is able to express nested datatypes and many algo-
rithms on them [6]. But termination is also of practical concern with dependent
types, namely that type-checking should be decidable: If types depend on object
terms, object terms have to be evaluated in order to verify types, as expressed in
the convertibility rule. Note, however, that this only concerns evaluation within
the definitional equality (i.e., convertibility), henceforth denoted by ~. Except
from the above intuitive recursive equations, = will denote propositional equality
throughout: this is the equality type that requires proof and that satisfies the
Leibniz principle, i.e., that validity of propositions is not affected by replacing
terms by equal (w.r.t. =) terms.

Here, we study iteration and recursion schemes that have this termination
guarantee throughout. Termination is not based on syntactic criteria such as
strict positivity and that all recursive calls are done with “smaller” arguments,
but just on types (called “type-based termination” in [7]). The article with Abel
and Uustalu [6] presents a variety of iteration principles on nested datatypes in
this spirit, all within the framework of system F“. However, no reasoning prin-
ciples, in particular no induction principles, were studied there. Newer work by
the author [8] integrates rank-2 Mendler iteration into the Calculus of Inductive
Constructions [9-11] that underlies the Coq theorem prover [12] and also justi-
fies an induction principle for them. This is embodied in the system LNMIt, the
“logic for natural Mendler-style iteration”, defined in Section 3.1.

The articles [6, 8] only concern plain iteration. While an extension of primitive
Mendler-style recursion [13] to nested datatypes has been described earlier [14],
we will present here an extension LNMRec of system LNMIt by an enriched

Mendler-style recursor where the step term additionally has access to a map
term for the unknown type transformation X that occurs there. By way of
examples, its merits will be studied. An overview of extensions to LNMRec of
results established for LNMIt in [8] is given. However, the main theorem of [8]
is not carried over to the present setting, i.e., we do not yet have a justification
within the Calculus of Inductive Constructions. Nevertheless, all the concepts
and results have been formalised in the Coq system, using module functors with
parameters of a module type that specifies our extension of LNMRec. The Coq
code is available [15] and is based on [16].

The next section describes two examples of truly nested datatypes. The first
with “bushes”, treated in Section 2.1, motivates primitive recursion instead of
plain iteration and the second about lambda calculus with explicit flattening,
treated in Section 2.2, motivates the access to a map term in the defining clauses
of an iterative function. Section 3.1 completes the precise definition of LNMIt
from [8], while Section 3.2 defines the new system LNMRec and shows theorems
about it. Section 4 describes when and how to define iterative functions with
access to a map term in LNMIt and establishes a precise relation with the
alternative within LNMRec.

Acknowledgement: 1 am grateful to the referees whose valuable feedback
helped to improve the presentation and will influence future work even more.

2 DMotivating Examples

A nested datatype will be called “truly nested” (non-linear [17]) if the intuitive
recursive equation for the inductive family has at least one summand with a
nested call to the family name, i.e., the family name appears somewhere inside
the type argument of a family name occurrence of that summand. Our two
examples will be the bushes [1] and the lambda terms with explicit flattening
[18], described as follows:

Bush A =1+ A x Bush(Bush A) ,
LamE A = A+ LamE A x LamE A + LamE (option A) + LamE(LamE A) .

The last summand in both examples qualifies them as truly nested datatypes; it
is even the same nested call pattern. Truly nested datatypes cannot be directly
represented in the current version of the Calculus of Inductive Constructions
(CIC), as it is implemented in Coq, while the examples of PList and Lam, men-
tioned in the first paragraph of the introduction, are now (since version 8.1) fully
supported with recursion and induction principles. In these cases, our proposal is
more generic but offers less comfort since it has neither advanced pattern match-
ing nor guardedness checking. PList and Lam are strictly positive, but Bush and
LamE are not even considered to be positive [19] (see [14] for a notion based on
polarity that covers these examples). Since there was no system that combined
the termination guarantee for recursion schemes on truly nested datatypes with
a logic to reason about the defined functions, it seems only natural that exam-
ples like Bush and LamFE did not receive more attention. They are studied in

detail in [8]. Here, they are recapitulated and developed so as to motivate our
new extension LNMRec of LNMIt that will be defined in Section 3.2.

2.1 Bushes

In order to fit the above intuitive definition of Bush into the setting of Mendler-
style recursion, the notion of rank-2 functor is needed. Let ko := k1 — k1. Any
constructor F of kind ko qualifies as rank-2 functor for the moment, and uF' : Kk,
denotes the generated nested datatype.! For bushes, set

BushF := AX"AA™. 14+ Ax X(X A)

and Bush := pu BushF. In general, there is just one datatype constructor for pF,
namely in : F(uF) C pF, with the abbreviation X C Y := VA" . XA — YA
for any X,Y : k1. For bushes, more clarity comes from two derived datatype

constructors
bnil : VA®°. Bush A

beons : VA% . A — Bush(Bush A) — Bush A |

defined by bnil := XA . in A (inl tt) (with t¢ the inhabitant of 1 and left injection
inl) and beons := NAR\aANPUsh(Bush A) in A (inr(a,b)) (with right injection
inr and pairing notation (-, -)).

Our first example of an iterative function on bushes is the function BtL :
Bush C List (BtL is a shorthand for BushToList) that gives the list of all
elements in the bush and that obeys to the following specification:

BtL A (bnil A) ~,
BtL A (bcons Aab) =~ a :: flat_map g,ep a4 (BtL A)(BtL (Bush A)b) .

Here, we denoted by [] the empty list and by a :: ¢ the cons operation on lists,
and flat_mapp 4 f{ is the concatenation of all the A-lists f b’ for the elements
b’ of the B-list £. See below why BtL is to be called an iterative function.

With the length function for lists, we get a function that calculates the size
of bushes: size; := NANBU" A length(BtLat). Note that we write the type pa-
rameter to BtL just as an index, which we will do frequently in the sequel for
type-indexed functions—if we do not omit it altogether, e. g., for size;. The def-
inition of size; is not iterative?, but an easy induction on BtL gy 4 b reveals

size;(becons 4 ab) = S(fold_right .1 push 4 (ATAs. size; x + 5) 0 (BtLpush A D))
with S the successor function on the type nat of natural numbers and
fold_right : VA™VYB™ . (B—-A—A) - A— ListB— A
with fold right 5 5 fa[] ~ a and
fold_right s g fa(b:: L)~ fb(fold_right, g fal) .

1 Strictly speaking, this includes List since nesting is not required.
2 The index in the name size; stands for indirect, not for iterative.

Since we used induction on bushes above, the recursive equation only holds for
propositional equality and not for the definitional equality ~. But we might
desire just that, i.e., we might want a recursive version size, of size; such that

sizer(beons 4 ab) ~ S(fold_right ., pue, A (ATAs. size, x4 5) 0 (BtLpush a b))

but this is no longer within the realm of iteration in Mendler’s style, as we will
argue right now. Mendler iteration of rank 2 [6] can be described as follows:
There is a constant

MIt . VG™. (VXM . XCG—-FXCG)—-uFCG
and the iteration rule
MItGsA(inAt) ~s(uF) (MIt Gs) At .
In a properly typed left-hand side, ¢ is of type F(uF)A and s of type
VXM XCGE—-FXCG .

The term s is called the step term of the iteration since it provides the inductive
step that extends the function from the type transformation X that is to be
viewed as approximation to pF (although this is not expressed here!), to a
function from FX to G.

Given a step term s, one gets s G (AA®\2%4.z) : FG C G — an F-algebra.
Conversely, given an F-algebra s : F'G C G, one can construct a step term s if
there is a term M : VX*VG". X C G — FX C FG:

5= AXMINEXEONARNTXA 50 A (M X G it At).

However, a typical feature of truly nested datatypes is that there is no such
(closed) term M [6, Lemma 5.3] (but see the notion of relativized basic mono-
tonicity in Section 4). Moreover, the traditional approach with F-algebras does
not display the operational behaviour as much as Mendler’s style does.

The function BtL is an instance of this iteration scheme with

BtL := MIt List (AX "1 Xit X SList) Aro \gBushF X A magch ¢ with inl - —]
Linr(a®, bX X)) s a: flat_mapx 4 4 (it A)(it (XA)D)) .

Note that when the term ¢ of type BushF X A is matched with inr(a,b), the
variable b is of type X (X A).? This is the essence of Mendler’s style: the recursive
calls come in the form of uses of it that does not have type Bush C List but just
X C List, and the type arguments of the datatype constructors are replaced
by variants that only mention X instead of Bush. So, the definitions have to
be uniform in that type transformation variable X, but this is already sufficient
to guarantee termination (for the rank-1 case of inductive types, this has been

3 The pattern matching could easily be replaced by case analysis on sums and projec-
tions for products.

discovered in [20] by syntactic means and, independently, by the author with a
semantic construction [21]).

We conclude that BtL is an iterative function in the sense of Mendler but also
in a more general sense since Mendler iteration can be simulated by impredicative
encodings in system F'“. In a less technical sense, BtL is iterative as opposed
to primitive recursive since the recursive argument b of bcons is only used as an
argument of BtL itself. The recursive equation for size,, however, uses b as an
argument not of size,, but the previously defined BtL, whose result is then fed
element-wise into size,. It seems very unlikely that there is a direct definition
of size,. by help of MIt: If, through pattern matching, b is only available with
type X (X A), the function BtLpysp 4 just cannot be applied to it. Neither could
BtLx 4. The way out is provided already by Mendler for inductive types [13]
and has been generalized to nested datatypes in [14]: Express in the step term
in addition that X is an approximation of pF', in the sense of an “injection”
j + X C pF that is available in the body of the definition. So, we assume a
constant (the minus sign indicates that it is a preliminary version)

MRec™ : VG . (YX"'.X CpF - X CG - FXCG) — puF CG
and the recursion rule
MRec™ G5 A(in At) ~ s uF (AA™ Xz T4) (MRec™ G s) At .

(In a more traditional formulation instead of Mendler’s style, one would require
a recursive F-algebra of type F(AA". uFA x GA) C G instead of a step term s,
see [22] for the case of inductive types. Again, Mendler’s style does not necessitate
any consideration of monotonocity of F.) MRec™ allows to program size, with
G := \A.nat as

MRec— G (/\X"“)\ngBus’LArecXQG)\A”O)\tB“ShF XA match ¢ with inl _ — 0
|inr(a®, bX X)) s S(fold_right,, ., x4 (AxAs.recax+)0 (BtLxa (jxa b))))

The injection j is an artifact of Mendler’s method to enforce termination. In the
recursion rule, the term jx 4 b is instantiated by (A% AzB%" A x) (Bush A)b ~
b. Therefore, only b appears in the displayed right-hand side of the recursive
equation.* Viewed from a different angle that already accepts to use Mendler’s
style, the variable j is there only for type-checking purposes: It allows to get a
well-typed step term although it will not be visible afterwards. The advantage
of this artifact is that no modification of the ambient type system is needed.
Certainly, we would now like to prove that VA®oVtBh A size, t = size, t, but
this will require our new system LNMRec, to be defined in Section 3.2.
Looking back at this little example, we may say that the original function
size; is not itself an instance of Mendler iteration. But there is a recursive equa-
tion that can even be made to hold definitionally (with respect to ~), in form of

4 In an example that is only mentioned at the end of Section 3.2, the author encoun-
tered a natural situation where j is not directly applied to a recursive argument of
a datatype constructor, showing again the flexibility of type-based termination.

the instance size, of the primitive recursor MRec™. But the essential question is
how to prove that both functions agree.

2.2 Untyped Lambda Calculus with Explicit Flattening

The untyped lambda terms with explicit flattening are obtained as LamF :=
w LamEF with

LamEF := AX™A A A+ XA x XA+ X(option A) + X (X A) .

Since the Calculus of Inductive Constructions allows a direct representation of
Lam (described in the first paragraph of the introduction), we go without LNMIt
for Lam and just assume that we already have an implementation of renaming
lam : VA®VYB% (A — B) — Lam A — Lam B and parallel substitution

subst : VA®VYB"® (A — Lam B) — Lam A — Lam B |

where for a substitution rule f : A — Lam B, the term subst4 p ft: Lam B is the
result of substituting every variable a : A in the term representation ¢ : Lam A
by the term fa : Lam B. From now on we will no longer decorate variables A, B
with their kind kg.

The interesting new datatype constructor for LamF,

flat : VA. LamE(LamE A) — LamE A |

is obtained by composing in with the right injection inr (we assume that + in
the definition of LamFEF associates to the left). Its interpretation is an explicit
(not executed) form of an integration of the lambda terms that constitute its free
variable occurrences into the term itself. This is the monad multiplication form of
explicit substitution, as opposed to parallel explicit substitution that would have
the type of subst, with Lam replaced by LamFE. That other approach would need
a quantifier in the rank-2 functor, but also an embedded function space which
is not covered by LNMIt/LNMRec in their current form due to extensionality
problems. Moreover, the arising LamF would not be a truly nested datatype.
We will review the definition of the iterative function eval : LamE C Lam
that evaluates all the explicit flattenings and thus yields the representation of a
usual lambda term. As for bushes, we might want to enforce recursive equations
with respect to ~ that are originally only provable. We do this first with an
important property of subst and then with naturality (having been proven for
Mendler iteration). This will again lead out of the realm of Mendler iteration and
motivate a second and conceptually new extension in an orthogonal direction.
Define eval by Mendler iteration as

eval := MIt (AX“lAithLam)\A/\tFXA. matchtwith ...

X(

| inre XA) substxa,aita (itxa e)) ,

where the routine part has been omitted. This function, introduced in [8], evi-
dently satisfies

eval a(flat 4 €) =~ subst pam 4,4 evala (evalpome a€) -

In view of the equation (see [8])
VAVBY fA=Lam BypLam A qubstom 5.5 (AxE™ B) (lam ft) = subst s p f t,
the right-hand side is propositionally equal to
SubSt Lam A, A ()\mLamA. x) (lam eval o (evalpamp A €)) -

We can easily enforce the latter term to be definitionally equal to the outcome
on flat 4 e for a variant evall of eval, fitting better with what will come later:

evall := MIt(AX " Xit XSEm NAXNFXA match ¢ with . ..
|inr eX(XA) — subst (A\x. z) (lam ita (itxae)) .

It is an easy exercise to prove in LNMIt that evall and eval agree propositionally
on all arguments.

A natural question for polymorphic functions j of type X C Y is whether
they behave—propositionally—as a natural transformation from (X,mX) to
(Y,mY), given map functions® mX : mon X and mY : monY, where, for any
type transformation X : k1, we define

mon X :=VAVB.(A— B) - XA — XB .

Here, the pair (X, mX) is seen as a functor although no functor laws are required.
The proposition that defines j to be such a natural transformation is

jeN(mX, mY) :=VAYBYfA7BwXA jp (mX ABft)=mY ABf (jat) ,

and LNMIt allows to prove eval € N(lamE, lam), with lamE the canonical
renaming operation for LamE, to be provided by LNMIt (see Section 3.1). Since
[23], naturality is seen as free in pure functional programming because naturality
with respect to parametric equality is an instance of the parametricity theorem
for types of the form X C Y, but in intensional type theory such as our LNMIt,
naturality with respect to propositional equality has to be proven on a case by
case basis. Since naturality of j only depends propositionally on the values of
jat, we also have evall € N'(lamE, lam).

It is time to address the second extension of MIt that we consider desir-
able from the point of view of computational behaviour of algorithms on nested
datatypes. It does not seem to have been considered previously but is somehow
implicit in the author’s [8, section 2.3]. It does not even make sense for inductive
types but is confined to inductive families.

An instance of naturality of evall is (for e : LamFE(LamE A))

evall pam a(lamFE evall 4 e) = lam evall 4 (evallpome a€) -

In the same spirit as for size,., we might now desire to have the left-hand
side as subterm of the definitional outcome of evaluation of flat, e instead of

5 The name map function comes from the function map on lists that is of type mon List
and that we prefer to call list.

the right-hand side, but subst (A\x.) (it om a(lamE it 4 €)) does not type-check
in place of the right branch of the definition of evalf. As noted in [8], we would
need to replace lamE by some term m : mon X, hence a map term for X, but
this did not seem available. In fact, it is not available in general (see Section 4
for a discussion under which circumstances it can be constructed). Our proposal
is now simply to add such an m to the bound variables that are accessible in the
body of the step term. We thus require a constant

MItT YG* . (VX" . monX - X CG—FXCG)— uF CG
and the extended iteration rule
MItT GsA(in At) ~ spF map,, p (MItt Gs) At

with a canonical map term map,,p : mon pF that is anyhow provided by LNMI¢
and which is lamF in our example. Now, define evall’ := MIt" s¢pq; with

Sevarr’ = AX I Ammon X \jpXCLam y ANtFXA matcht with . ..

| inr eX (XA subst (M. x) (itram a(mitae))

which enjoys the desired operational behaviour
evall’y(flat 4 €) =~ subst (\x.) (evall},,, o(lamE evall)y e)) .

The termination of such a function can be proven by sized nested datatypes
[24], but there do not yet exist induction principles for reasoning on programs
with sized nested datatypes. A logic for Mendler-style recursion that covers our
examples will now be described.

Before that, let us note that this second example showed us a situation where
a recursive equation with the map term of the nested datatype on the right-hand
side may require to abstract over an arbitrary term of type mon X in the step
term of an appropriately extended notion of Mendler iteration.

3 Logic for Natural Mendler-style Recursion of Rank 2

First, we recall LNMI¢ from [8], then we describe its modifications in order to
obtain its extension LNMRec.

3.1 LNMIt

In LNMTIt, for a nested datatype pF', we require that F' : ko preserves extensional
functors. In the Calculus of Inductive Constructions, we may form for X : k;
the dependently-typed record £X that contains a map term m : mon X, a proof
e of extensionality of m, defined by

extm = VAYBY fA7BygA=E (Vat. fa = ga) = Vr*A mABfr=mABgr ,

and proofs f1, fo of the first and second functor laws for (X, m), defined by the
propositions

fetym i =VAV2XA mAADyy)z =,

fetom :=VAVBYC Y fA=BYgB=CvaXAm AC (gof) e =mBCg(mAB fx).
Given a record ef of type £X, Coq’s notation for its field m is m ef , and likewise
for the other fields. We adopt this notation instead of the more common ef.m.
Preservation of extensional® functors for F' is required in the form of a term
of type VX" .£ X — E(FX), and the full definition of LNMIt is given as the
extension of the predicative Calculus of Inductive Constructions (= pCIC) [12]
by the constants and rules in Figure 1, adopted from [8].7 In LNMIt, one can

Parameters:
F DKo
FpE VXM . EX — E(FX)
Constants:
uE LK1
map,, g : mon(uF)
In LVXSVefEXVNERE G e N(meef, map,,p) — FX C uF

Mt :VG" . (VX" .X CG — FX CG) — pF CG
uFInd : VP :VA.uFA — Prop. (VX’“VefSXVng“FanEN(m efsmapur)

(VAVZXA. Pa(jam)) — VAVEEX A Pa(Inef j nt))
Rules: — VAYrHEA Py

map,,p f (Inef jnt) ~ Inef jn(m(Fp€ ef) ft)
Mits(Inef jnt) ~ s (AA. (MIts)aoja)t
MAXHEA (MIt s)ax ~ MIt s

Fig. 1. Specification of LNMIt.

show the following theorem [8, Theorem 3] about canonical elements: There are
terms ef ,p : EpF and InCan : F(uF) C pF' (the canonical datatype constructor
that constructs canonical elements) such that the following convertibilities hold:

m equ map,p
map,p f (InCant) ~ InCan(m (Fp€ ef ,p) f1) ,
MIt s (InCant) ~ s (Mt s)t .

~
~

Some explanations are in order: The datatype constructor In is way more
complicated than our previous in, but we get back in in the form of InCan that

5 While the functor laws are certainly an important ingredient of program verification,
the extensionality requirement is more an artifact of our intensional type theory that
does not have extensionality of functions in general.

7 If the rules were formulated with = instead of ~, LNMIt would just be a signature
within the pCIC and only a logic without any termination guarantees for the rules.

10

only constructs the “canonical elements” of the nested datatype pF. The map
term map,, for pF', which does renaming in the example of LamF, is an integral
part of the system definition since it occurs in the type of In. The Mendler
iterator MIt has not been touched at all; there is just a more general iteration
rule that also covers non-canonical elements, but for the canonical elements,
we get the same behaviour, i.e., the same equation with respect to ~. The
crucial part is the induction principle uFInd, where Prop denotes the universe of
propositions (all our propositional equalities and their universal quantifications
belong to it). Without access to the argument n that assumes naturality of j as
a transformation from (X, m ef)) to (uF, map,,p), one would not be able to prove
naturality of MIt s, i.e., of iteratively defined functions on the nested datatype
1F'. The author is not aware of ways how to avoid non-canonical elements and
nevertheless have an induction principle that allows to establish naturality of
MTIt s [8, Theorem 1].

BushF and LamEF are easily seen to fulfill the requirement of LNMIt to
preserve extensional functors (using [8, Lemma 1 and Lemma 2]).

3.2 LNMRec

Let LNMRec be the modification of LNMIt, where MIt and its two rules are
replaced by MRec and its proper two rules: the recursor, the rule of primitive
recursion and the extensionality rule

MRec : VG™ . (VX" . mon X - X CuF - XCG—-FXCG)—-uF CG,
MRecs (Inef jnt) ~s(mef)j (AA. (MRecs)aoja)t ,
MAXzHE A (MRec s) x ~ MRecs .
The first general consequence of the definition of LNMRec is the analogue of

[8, Theorem 3] with the primitive recursion rule (generalizing both the rules of
MRec™ and MIt™; recall in := InCan)

MRecG s (in At) ~ s uF map,,p (NARONPEA 1) (MRec G s) At

where we are more explicit about all the type parameters.

Evidently, the examples of Section 2 can be formulated in LNMRec by not
using the argument of type mon X in the case of bushes and by not using the
injection of type X C uF in the case of evaluation. By using neither monotonicity
nor injection, we get back MIt and hence may view LNMRec as an extension of
LNMIt.

We continue with two new results that are analogues of results in [8].

Theorem 1 (Naturality of MRecs). Assume G : k1, mG : monG, s :
VX" . monX — X CuF — X CG— FX CG and that the following holds:

VXY ef EXVXCuEYreeXSC G e N(m ef, map,p) —
rec € N(mef, mG) — s (mef)jrec € N(m(Fp€ ef), mG) .

Then MRecs € N(map,,r, mG), hence MRec s is a natural transformation for
the respective map terms.

11

Proof. By the induction principle uFInd, as for [8, Theorem 1].

We abbreviate bush := map,, g, p- By using that BtL € N (bush, list) (8], one
can immediately use Theorem 1 to show that size,(bush ft) = size,t because
this is a naturality statement.

Trivially, the condition on s is simpler for MIt" s, namely

() VX" 1 VefEXVitXCG it € N(mef, mG) — s (mef) it € N(m(Fp& ef), mG) .

This condition is fulfilled for sgyq;+ in place of s, hence evall’ € N'(lamE, lam)
follows.

Theorem 2 (Uniqueness of MRecs). Assume G : k1, s of the type as in the
preceding theorem and h : uF C G (the candidate for being MRecs). Assume
further the following extensionality property of s:

VXY ef SNV XCHEY f g X C G (VAVZXA. fax = gax) —
VAVEEXA s(mef)jft=s(mef)jgt .

Assume finally that h satisfies the equation for MRec s:

VXmlvefﬁ'XVngqunjE/\/(m ef, mapﬂ'F)VAVtFXA.
ha(Inef jnt)=s(mef)j(AA.haoja)t .
Then, YVAVr*F A hyr = MRecsr.

Proof. By the induction principle pFInd, as for [8, Theorem 2].

The final question of Section 2.1 is precisely of the form of the conclusion of
Theorem 2 (taking into account that MRec™ is just an instance of MRec), and
its conditions can be shown to be fulfilled, hence YAVtBuh A size, t = size, t
follows.® By using that evall € N'(lamE, lam), one can also apply Theorem 2 in
order to show VAVtFemEA cyaliygt = evall i t. Alternatively, one can combine
[8, Theorem 2] and evall’ € N'(lamE, lam) for that result. For details, see [15],
as before.

The author has carried out other case studies with LNMRec. For example, in
order to show injectivity of the datatype constructors of LamFE for application
and lambda abstraction, one seems to need to go beyond LNMIt, but with
MRec s in the particular form where the body of s neither uses m nor rec, just
the injection j. This might be termed Mendler-style inversion. There is also a
natural example (more natural than the examples in Section 2) — namely a nicer
representation of substitution than in [25] — that uses all the ingredients: the map
term m, the injection j and the recursive call rec. However, this last example
needs the ideas of [25] as well and is only an instance of LNMRec when Set is
made impredicative.

8 Note that, as a function that is only defined by help of MIt but not as an instance
of MIt, the function size; does not have a characterization that could prove this
equation.

12

4 Access to Map Terms within MIt?

Since there is not yet a justification of LNMRec, one might want to have the
extra liberty of MIt" even within LNMIt. That is, can one have access to the
map term m : mon X in the body of s, despite doing a definition with MIt?
There is no answer in the general situation of LNMIt, but under the following
conditions that are met in the example of evaluation in Section 2.2.

Assume that F' does not only preserve extensional functors, but is also mono-
tone in the following sense (introduced as such in [8] and called relativized basic
monotonicity of rank 2): There is a closed term

Fmon2br : VX"'VY" . monY - X CY - FX CFY .

Assume an extensional functor ef o : £G and set mG := m ef 5. Assume a step
term for MIt™ G, hence s : VX"*.mon X - X C G — FX CG.
Define MMTIt s := MItG s’ : uF C G with

s = AXFNGXEONANT XA s GmG (ANANzCA .) (Fmon2brx o mG it At) .
In continuation of the example in Section 2.2, we can define
evall” .= MMIt syq1;0 - LamE C Lam

since lam is extensional and satisfies the functor laws and LamFEF' is monotone
in the above sense. With this data, one could see that

evally(flat 4 €) ~ subst (Az.z) (lam (Az. z)(lam evall}] (evall” €))) .

This is not too convincing, as far as ~ is concerned. By the first functor law
for lam, one immediately gets a propositionally equal right-hand side that cor-
responds to the recursive equation for evall. Recall that evall’ has been derived
from evall with the idea of taking profit from naturality, which then justified
that they always produce propositionally equal values. If we want to have a
general insight about the relation between MMIts and MIt" s, we need to en-
sure naturality. So, assume further condition (%) on s, given after Theorem 1.
Moreover, we impose that Fmon2br preserves naturality in the following sense:
it fulfills

VXY efEXVitXSC it € N(mef, mG) —
Fmon2br mG it € N(m(Fp€ ef), m(Fp€efa)) .

Then, the naturality theorem for MTIt [8, Theorem 1] proves naturality of MMT¢ s,
i.e., MMIts € N(map, p, mG).

We are heading towards a proof of YAVt* 4. MMIt st = MIt" st by Theo-
rem 2. This imposes on us to require the respective extensionality assumption
(for an s that does not use the injection facility):

VX5 Yef XV g: X CG. (VAVZXA. fax =gax) —
VAVEEXA s (mef) ft =s(mef) gt .
The final condition is that

13

VXY efEXVitXSC it € N(mef, mG) —
VAVHEXA s (mef) itt = smG (NANzG4.) (Fmon2br mG itt) |

where the right-hand side is just the body of the definition of s’.

Theorem 3. Under all the assumptions of the present section, we have that
VAVEHEA MMt st = MIt* st.

Proof. By Theorem 2.

With this long list of conditions, it is reassuring to verify that Theorem 3 is
sufficient to prove that evall” and evall’ yield propositionally equal values, and
this is the case. It can be shown that, in presence of the other conditions, (x)
already follows from its special case s mg (AANzE4.2) € N (m(Fp€ ef o), ma).

While the extensions of MIt towards MRec were dictated by algorithmic con-
cerns, more precisely, by behaviour with respect to definitional equality ~, this
last section contributes more to “type-directed programming”: If an argument
m of type mon X is additionally available in the body of the step term, one may
try to use it, just being guided by the wish to produce a term of the right type.
We already know that MIt can only define terminating functions. So, MMIt s
will be some terminating function of the right type. If all the requirements of
Theorem 3 are met, we even know that MMIts calculates values that we can
understand better through their description by MIt" s. Of course, if there were
already a justification of LNMRec, we would prefer to use MIt" s, but this is
not yet achieved.

As a final remark, the idea to try to define MMIt s arose when studying the
article [26] by Johann and Ghani since their type of interpreter transformers
InterpT only quantifies over all Functor y, where the type class mechanism of
Haskell is used to express the existence of a map term for the type transforma-
tion y. However, in that article, this map term is never used. Moreover, instead
of monotonicity in the sense of Fmon2br, an unrelativized version is used that
cannot treat truly nested datatypes such as Bush and LamFE. Finally, the target
constructor G was restricted to be a right Kan extension (in order to have the
expressive power of generalized refined iteration [6]), and only an algebra—a
term of type FG C G—was constructed and not the step term for Mendler-style
iteration.

5 Conclusion

Already for the sake of perspicuous behaviour of iterative functions on nested
datatypes, one is led to consider extensions of Mendler-style iteration towards
Mendler-style primitive recursion with access to a map term for the nested
datatype. The logical system LNMIt of earlier work by the author is extended to
system LNMRec, without changing the induction principle that is the crucial el-
ement for verification. LNMIt could be defined within the Calculus of Inductive
Constructions (CIC) with impredicative universe kg := Set and propositional

14

proof irrelevance, i. e., with VP : PropVpf'VpL'.p; = po,? and this definition does
respect definitional equality ~. For LNMRec, there does not yet exist a justifica-
tion like that, not even any justification, despite several attempts by the author
to extend the construction of [8]. It is the built-in naturality that can not yet
be treated. We may call LMRec the version of LNMRec where the references to
naturality are deleted. The ideas of the first half of [8, Section 2.3] are sufficient
to define LMRec in the CIC with impredicative Set. But naturality is important
for verification purposes, and thus LMRec is not satisfying as a logical system. To
conclude, a justification of the logic of natural Mendler-style recursion of rank 2
is strongly needed. It would be an instance of the more general problem of adding
an impredicative version of simultaneous inductive-recursive definitions [27] to
the CIC.

References

1. Bird, R., Meertens, L.: Nested datatypes. In Jeuring, J., ed.: Mathematics of
Program Construction, MPC’98, Proceedings. Volume 1422 of Lecture Notes in
Computer Science, Springer Verlag (1998) 52-67

2. Bird, R., Gibbons, J., Jones, G.: Program optimisation, naturally. In Davies,
J., Roscoe, B., Woodcock, J., eds.: Millenial Perspectives in Computer Science,
Proceedings (2000)

3. Bellegarde, F., Hook, J.: Substitution: A formal methods case study using monads
and transformations. Science of Computer Programming 23 (1994) 287-311

4. Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. Journal of
Functional Programming 9(1) (1999) 77-91

5. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In Flum, J., Rodriguez-Artalejo, M., eds.: Computer Science Logic,
13th International Workshop, CSL 99, Proceedings. Volume 1683 of Lecture Notes
in Computer Science, Springer Verlag (1999) 453-468

6. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theoretical Computer Science 333(1-2) (2005) 3-66

7. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termi-
nation of recursive definitions. Mathematical Structures in Computer Science 14
(2004) 97-141

8. Matthes, R.: An induction principle for nested datatypes in intensional type theory.
Journal of Functional Programming (2008) To appear.

9. Coquand, T., Paulin, C.: Inductively defined types. In Martin-Lo6f, P., Mints,
G., eds.: COLOG-88, International Conference on Computer Logic. Volume 417 of
Lecture Notes in Computer Science, Springer Verlag (1990) 5066

10. Paulin-Mohring, C.: Inductive definitions in the system Coq — rules and proper-
ties. In Bezem, M., Groote, J.F., eds.: Typed Lambda Calculi and Applications,
Proceedings. Volume 664 of Lecture Notes in Computer Science, Springer Verlag
(1993) 328-345

11. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre
Supérieur. Habilitation thesis, Université Claude Bernard Lyon I (1996)

9 Proof irrelevance is needed for proofs of naturality statements and in order to have
injectivity of the first projection out of a strong sum.

15

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Coq Development Team: The Coq Proof Assistant Reference Manual Version 8.1.
Project LogiCal, INRIA. (2006) System available at coq.inria.fr.

Mendler, N.P.: Recursive types and type constraints in second-order lambda calcu-
lus. In: Proceedings of the Second Annual IEEE Symposium on Logic in Computer
Science, Ithaca, N.Y., IEEE Computer Society Press (1987) 30-36

Abel, A., Matthes, R.: Fixed points of type constructors and primitive recursion. In
Marcinkowski, J., Tarlecki, A., eds.: Computer Science Logic: 18th International
Workshop, CSL 2004. Proceedings. Volume 3210 of Lecture Notes in Computer
Science, Springer Verlag (2004) 190-204

Matthes, R.: Coq development for “Recursion on nested datatypes in dependent
type theory”. http://www.irit.fr/~Ralph.Matthes/Coq/MendlerRecursion/
(January 2008)

Matthes, R.: Coq development for “An induction principle for nested
datatypes in intensional type theory”. http://www.irit.fr/~Ralph.Matthes/
Coq/InductionNested/ (January 2008)

Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11(2) (1999) 200222

Abel, A., Matthes, R.: (Co-)iteration for higher-order nested datatypes. In Geu-
vers, H., Wiedijk, F., eds.:. TYPES 2002 Post-Conference Proceedings. Volume
2646 of Lecture Notes in Computer Science, Springer Verlag (2003) 1-20
Pfenning, F., Paulin-Mohring, C.: Inductively defined types in the calculus of
constructions. In Main, M.G., Melton, A., Mislove, M.W., Schmidt, D.A., eds.:
Mathematical Foundations of Programming Semantics, Proceedings. Volume 442
of Lecture Notes in Computer Science, Springer Verlag (1989) 209-228

Uustalu, T., Vene, V.: A cube of proof systems for the intuitionistic predicate
-, v-logic. In Haveraaen, M., Owe, O., eds.: Selected Papers of the 8th Nordic
Workshop on Programming Theory (NWPT ’96). Volume 248 of Research Reports,
Department of Informatics, University of Oslo. (May 1997) 237-246

Matthes, R.: Naive reduktionsfreie Normalisierung (translated to English: naive
reduction-free normalization). Slides of talk on December 19, 1996, given at the
Bern Munich meeting on proof theory and computer science in Munich, available
at the author’s homepage (December 1996)

Geuvers, H.: Inductive and coinductive types with iteration and recursion. In
Nordstrom, B., Pettersson, K., Plotkin, G., eds.: Proceedings of the Workshop on
Types for Proofs and Programs, Bastad, Sweden. (1992) 193-217 Only published
via ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/proc.dvi.Z.
Wadler, P.: Theorems for free! In: Proceedings of the fourth international con-
ference on functional programming languages and computer architecture, Imperial
College, London, England, September 1989, ACM Press (1989) 347-359

Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Dok-
torarbeit (PhD thesis), LMU Miinchen (2006)

Matthes, R.: Nested datatypes with generalized mendler iteration: map fusion
and the example of the representation of untyped lambda calculus with explicit
flattening. In Paulin-Mohring, C., ed.: Mathematics of Program Construction,
Proceedings. Lecture Notes in Computer Science, Springer Verlag (2008) Accepted
for publication.

Johann, P.; Ghani, N.: Initial algebra semantics is enough! In Ronchi Della Rocca,
S., ed.: Typed Lambda Calculi and Applications (TLCA) 2007, Proceedings. Vol-
ume 4583 of Lecture Notes in Computer Science, Springer Verlag (2007) 207-222
Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions
in type theory. The Journal of Symbolic Logic 65(2) (2000) 525-549

16

