
Extensions of System F by Iteration and Primitive Recursion on

Monotone Inductive Types

Dissertation

an der Fakultät für Mathematik und Informatik

der Ludwig-Maximilians-Universität München

vorgelegt von

Ralph Matthes

eingereicht am 20. Mai 1998

1. Berichterstatter: Prof. Dr. H. Schwichtenberg

2. Berichterstatter: Prof. Dr. W. Buchholz

Tag der mündlichen Prüfung: 2. Februar 1999

In memoriam
Gerhard Schieferstein

1923–1992

Der mich ernstgenommen hat als Kind von elf Jahren.
Der mich die Querflöte spielen lehrte.
Der so meine Begeisterung für die klassische Musik entfachte.
Der mich aufschloß für die Welt der Technik, der Wissenschaft und ganz allgemein für alles
das, wofür das Ringen um Einsicht und Erkenntnis sich lohnt.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of results . 5

2 The basic framework 9
2.1 System F . 9

2.1.1 Types . 9
2.1.2 Terms . 11
2.1.3 Head form and normal forms . 17
2.1.4 Reduction . 19

2.2 The term rewrite system eF . 24
2.2.1 Types . 24
2.2.2 Terms . 25
2.2.3 Head form and normal forms . 27
2.2.4 Reduction . 28
2.2.5 Embeddings . 30
2.2.6 Embedding eF in F . 32

2.3 Extension by infimum types . 33
2.3.1 Extension of the type system by infimum types 34
2.3.2 The term rewrite system IT of infimum types 35
2.3.3 Embedding IT in eF . 37

2.4 Extension by the existential quantifier . 38
2.4.1 Extension of the type system by existential types 38
2.4.2 The term rewrite system eF+ex . 39
2.4.3 Embedding eF+ex in eF . 41

3 Extension of the type system by inductive types 43
3.1 Inductive types . 44
3.2 Strictly positive and positive types . 45
3.3 Height and depth for inductive types . 47
3.4 Extension by the existential quantifier . 49
3.5 Non-interleaving positive inductive types . 49

4 Systems with monotone inductive types 51
4.1 The term rewrite system EMIT . 52

4.1.1 Definition . 53
4.1.2 Monotonicity without positivity . 55

4.2 The term rewrite systems ESMIT . 56
4.2.1 Definition . 56

vii

viii CONTENTS

4.2.2 Embedding the systems ESMIT in EMIT 59
4.2.3 The term rewrite systems ESMITit and ESMITrec 61
4.2.4 The term rewrite systems ESMIT+ex . 61

4.3 The term rewrite system varEMIT . 62
4.3.1 Definition . 62
4.3.2 Embedding EMIT in varEMIT . 62
4.3.3 Embedding varEMIT–rec in IT . 63

4.4 The term rewrite system IMIT . 65
4.5 Relating iteration and primitive recursion . 65

4.5.1 Coding IMIT in IMIT–rec . 65
4.5.2 Coding IMIT in IMIT–it . 67

4.6 The term rewrite systems ISMIT . 69
4.6.1 Definition . 69
4.6.2 Embedding ISMIT in IMIT . 69

4.7 The term rewrite system varIMIT . 71
4.7.1 Definition . 71
4.7.2 Embedding IMIT in varIMIT . 72

5 Systems with positive inductive types 73
5.1 The term rewrite systems PITit and PITrec . 73

5.1.1 Definition of PITit (also called PIT) . 73
5.1.2 Examples of term rewriting in PIT . 76
5.1.3 Definition of PITrec . 78

5.2 The term rewrite systems SPIT, PIT+ex and SPIT+ex 79
5.3 The term rewrite systems NIPIT, NISPIT and NISPIT+ex 80
5.4 The term rewrite systems MePIT and coMePIT 81

6 Systems with inductive types à la Mendler 83
6.1 The term rewrite system MeIT . 85

6.1.1 Definition . 86
6.1.2 Embedding varIMIT in MeIT . 88
6.1.3 Embedding MeIT in MeIT–it . 89
6.1.4 Embedding MeIT–rec in eF . 89

6.2 The term rewrite system UVIT . 90
6.2.1 Definition . 90
6.2.2 Embedding MeIT in UVIT . 91
6.2.3 Embedding UVIT in MePIT . 91

6.3 The term rewrite system coMeIT . 92
6.3.1 Definition . 92
6.3.2 Embedding varEMIT in coMeIT . 94
6.3.3 Embedding coMeIT in coMePIT . 95
6.3.4 Embedding coMeIT in coMeIT–it . 96
6.3.5 Embedding coMeIT–rec in eF . 96

7 Composing the embeddings 99

8 Confluence 103
8.1 Confluence of system F . 103
8.2 Confluence of the other systems . 107

CONTENTS ix

9 Strong normalization 111
9.1 Strong normalization of system F . 111

9.1.1 Terms in SN are strongly normalizing . 111
9.1.2 Saturated sets . 114

9.2 Strong normalization of system eF+ex . 121
9.2.1 Terms in SN are strongly normalizing . 121
9.2.2 Saturated sets . 122

9.3 Extracting embeddings from normalization proofs 126
9.4 Strong normalization of MeIT–it and coMeIT–it 127

9.4.1 Strong normalization of MeIT–it . 127
9.4.2 Strong normalization of coMeIT–it . 133

9.5 Strong normalization of EMIT, varEMIT, IMIT and varIMIT 138
9.5.1 Strong normalization of EMIT . 138
9.5.2 Strong normalization of varEMIT . 145
9.5.3 Strong normalization of IMIT . 146
9.5.4 Strong normalization of varIMIT . 147

9.6 Strong normalization of the other systems . 148

A Other proofs of strong normalization 151
A.1 Proof of strong normalization for varEMIT . 151

A.1.1 Saturated sets . 152
A.1.2 Calculating with saturated sets . 152
A.1.3 Computability predicates . 157

A.2 Proof of strong normalization for IMIT . 158
A.2.1 Saturated sets . 159
A.2.2 Calculating with saturated sets . 159
A.2.3 Computability predicates . 164

A.3 Proof of strong normalization for varIMIT . 165
A.3.1 Saturated sets . 166
A.3.2 Calculating with saturated sets . 166
A.3.3 Computability predicates . 172

A.4 Concluding remarks . 173

B Directions for future research 175

Please refer to the index only in case the above table does not show the concept sought after.

x CONTENTS

Acknowledgements

Prof. Dr. Helmut Schwichtenberg was the man to introduce me to mathematical logic in 1990
and to direct my interest to natural deduction and to proofs of strong normalization for typed
lambda calculi.
He made me share his1 fascination for the idea of program extraction from constructive proofs.
It seems that he never became tired of the ever-evolving proofs of strong normalization of systems
with inductive types I presented to him over the last years.
I am grateful to him for the group of researchers he has formed in Munich, the guests he has
attracted and generally the inspiring environment he has provided for me.
I thank all those who were part of this environment.
There are three colleagues who have been most important for me: Ulrich Berger, Thorsten
Altenkirch and Felix Joachimski. I am very much indebted to the first two for all their invaluable
suggestions, their comments and their unpublished manuscripts whereas I gratefully acknowledge
the wonderful symbiosis which I enjoyed several times with Felix.
Although Prof. Dr. Wilfried Buchholz did not succeed in making me write my thesis in the
field of classical proof theory (= ordinal analysis) I had the chance to learn from him that
unconditional commitment to mathematical precision eventually pays off.
Nearly all of the thesis was written at my new “scientific home” at the chair for theoretical
computer science of Prof. Dr. Peter Clote. It is my feeling that without his decision for me
and the continual gentle pressure which followed I would have further delayed writing down my
thesis. I like the new environment very much and therefore thank him and all the people at the
chair (including Thorsten Altenkirch whom I mentioned above).
I would like to thank my parents, my sister and my friends for their strong support and constant
encouragement. It was amazing how they reacted to my periods of mathematical joy and inspi-
ration and to the times of stagnancy and mathematical infertility. I challenged their emotional
capabilities—all the more as my mathematical activity kept being a secret to most of them—and
I was rewarded a lot, sometimes unpleasant, sometimes surprising, but always interesting.

This research was partially supported by the Graduiertenkolleg “Sprache, Information, Logik”
at the Ludwig-Maximilians-Universität München (financed by the Deutsche Forschungsgemein-
schaft). I am also very thankful for support by the Volkswagenstiftung.

1See e. g. [BBS+98].

xi

xii CONTENTS

Chapter 1

Introduction

We study systems of typed terms extending system F [Gir72, Rey74] with notions of β-reduction
for every type construction. We focus on types of the form µαρ whose intended interpretation is
least pre-fixed-points of monotone operators. There are always two associated β-rules: The rule
modelling iteration and the rule which models primitive recursion on the data structure. It is
well known that data types such as the natural numbers may be represented in system F. This
works very well for the definition of functions by iteration. But even the defined predecessor on
natural numbers inside system F does not behave very well: The predecessor of the successor
of n can be reduced to n only for numerals n and this process needs O(n) steps. I do not
know whether there is a proof that no reduction preserving embedding of primitive recursion on
positive inductive types into system F is possible. But nobody seems to know such an embedding.
Therefore, I decided to compare extensions of F allowing for primitive recursion on inductive
types.

1.1 Motivation

This work is in some sense a chapter of the theory of complete lattices. But without the
magnifying glasses of proof theory it would be quite short a chapter and moreover it would not
contain any new result—new relative to Tarski’s fixed-point theorem [Tar55]1.
First we use the magnifier of intuitionism to explore whether the classical results may also be
proved constructively or whether they may be turned into statements (“constructivizations”)
permitting a constructive proof. Along this line we may define the term systems which are typed
lambda calculi and also the encodings between them.
But this thesis is dominated by the question of the behaviour of term rewrite rules2 of the systems
and of their relation between systems. And this question may be turned into a problem of proof
theory by using the Curry-Howard isomorphism [How80] in its most trivial reading3: The types
of the extensions of system F are the formulas of an intuitionistic second-order propositional
logic and the typed terms are simply proof terms in a natural deduction formulation of this
intuitionistic logic. A term proves its type and its free typed term variables are the assumptions
used in the proof. The term rewrite rules become proof transformations and they are justified
if they do not change the type (formula) of the term (proof) and have as free term variables
(assumptions) at most those which were present in the original term (proof).
We continue by adopting the proof-theoretic language. The analysis of proofs is greatly simplified

1We read: “Most of the results contained in this paper were obtained in 1939.”
2We only consider β-rules for all the type constructs.
3Many subtleties concerning Curry-Howard isomorphisms may be found in [Geu93].

1

2 CHAPTER 1. INTRODUCTION

if the proof transformation system is normalizing and confluent because then one may only
consider proofs in normal form. The comparison of the head forms of proofs (e. g. Lemma 2.24)
and the set of normal forms (e. g. the inductively defined set NF on p. 18) shows what is gained
by normalization. Consistency is a typical problem which is solved by studying the normal
forms.
Since [Tai75] it has been common to establish strong normalization if possible. Although already
normalization furnishes consistency and hence needs means of proof going beyond the logical
system (which is an extension of pure second-order propositional logic) it is a challenge also to
prove strong normalization. There are numerous published variations on that proof. Neverthe-
less I present another proof of strong normalization for system F which in my view separates the
difficulties even more—most prominently the absence of reduct analysis in any reasoning with
saturated sets which are a variant of the reducibility candidates (see e. g. [GLT89]).
Up to now I only spoke about system F. Although I present it in great detail it is only the basis
on which to build the extensions by inductive types. Proof theorists might lose their interest
in this work because system F is already fully impredicative and an extension by inductive
types seems to give only “sugar” to the system. This would in fact be true if we only studied
iteration on these inductive types. But we also study (full) primitive recursion. This time it is
an algorithmic motivation: Functions defined by primitive recursion may be more efficient than
functions defined by iteration. I alluded to it at the very beginning of this chapter by giving the
example of the predecessor on the naturals (which in that encoding works iteratively).
This algorithmic motivation is intimately connected to a proof-theoretic question: What is
the appropriate logical system allowing to extract efficient programs out of existence proofs4?
Extraction of typed lambda terms5 (viewed as programs) from intuitionistic proofs may be done
via the modified realizability interpretation (due to G. Kreisel; see the citations in [Ber95]). I
mention two examples where modified realizability is used for the extraction of programs out of
normalization proofs: In [Ber93] a normalization algorithm is extracted from a proof of strong
normalization of simply typed lambda calculus following Tait’s computability predicate method
[Tai67]. [vdP96b] builds on [Ber93] and extracts bounds on reduction lengths for Gödel’s T from
a variant of the normalization proof by the Tait method.
In [Ber95] a modified realizability interpretation is given for a system of interleaving positive
inductive types with iteration only. The main insight I got from it was the motivation of the
reduction rules for positive inductive types from it: The soundness of modified realizability only
holds up to some equational theory on the terms and the attempt to prove soundness shows
which equational axioms have to be postulated. All these efforts are in vain if the resulting
equality theory is not effective but fortunately the axioms may be turned into term rewrite rules
which form a strongly normalizing and confluent term rewrite system having hence decidable
intensional equality. Hence, we may indeed interpret the extracted terms as programs.
Although I believe that a modified realizability interpretation could be given for the systems
presented in this thesis I decided to be very informal about program extraction. But one should
see the study of the term systems as the first part of a project aiming at the constructive
interpretation of monotone inductive definitions. And it is a big part because the proof of
soundness of the realizability interpretation is not so much different from the proof of strong
normalization. Most of the difference is the extension from propositional logic (the term system)
to full predicate logic. And this extension is quite easy: As long as there are no dependent types
in the framework one can only use the objects in a uniform way in the proofs.

4More precisely: Proofs of Π0
2-formulas.

5In [Par92] (system TTR) untyped lambda terms are extracted and only the reduction of untyped lambda
calculus exhibits the algorithmic content. Correctness is expressed by typing rules which also include positive
recursive types. In contrast to that I add reduction rules for every new type construct.

1.1. MOTIVATION 3

Perhaps the second part would become big if not only soundness (which guarantees that the
extracted program meets the specification expressed in the existential statement) were the goal.
A project going beyond the soundness theorem for modified realizability would be to formalize
the normalization proofs and not only extract embeddings between systems out of them but also
have a meta-theorem assuring that these encodings are always respecting β-reduction, hence that
the extracted encodings are indeed embeddings (cf. section 9.3).
What are monotone inductive types? They are motivated by Tarski’s theorem from which I only
use the following: Let (U,≤) be a complete lattice and Φ : U → U be monotone. Then Φ has a
least fixed point6 lfp(Φ) which is given by

lfp(Φ) =
∧
{M ∈ U |Φ(M) ≤ M}.

The minimality of lfp(Φ) gives a principle of induction:

(lfp-E) Φ(M) ≤ M ⇒ lfp(Φ) ≤ M .

This will motivate iteration. As a derived rule we get

(lfp-E+) Φ(lfp(Φ) ∧M) ≤ M ⇒ lfp(Φ) ≤ M .

I call this rule the principle of extended induction7. It motivates primitive recursion.
The idea is as follows: We depart from the explicit representation of lfp(Φ) as an infimum (which
for pedagogic reasons is studied in a system of infimum types) because its reduction behaviour
is not satisfactory. Instead we directly represent lfp(Φ) by a type µαρ in a system with iteration
and primitive recursion.
We may now give an answer to the question on an appropriate logical system allowing to extract
“efficient” programs out of existence proofs: It has extended induction as a primitive notion.
Monotone inductive definitions also draw attention in classical proof theory. The content of
[Fef82, Rat96, GRS97, Rat98, Rat99] is orthogonal to the topics of this thesis, though. Their
results are mainly based on classical logic, and they are very much concerned about measuring
the strength of the theories at hand which clearly forbids the use of full impredicativity as
expressed by system F. In this thesis, we exclusively study intuitionistic systems extending
system F. The problems solved all have to do with reduction behaviour which does not play a
role in the cited papers. Due to the different positions concerning impredicativity they focus
on the possibility of getting least fixed points via transfinite iteration of a monotone operator
starting with the empty set (hence being an approach from below) whereas we build on Tarski’s
theorem guaranteeing that the impredicatively justified infimum of the pre-fixed-points (hence
being an approach from above) is also a pre-fixed-point and hence that a least pre-fixed-point
exists.
Even the focus on primitive recursion instead of iteration (especially in the case of non-strictly
positive inductive types) itself seems to be a quest for more impredicativity because the step term
in the recursive definition may refer to the inductively defined set (modelled by the inductive
type) in its entirety.
How do we model monotone inductive types? We allow µαρ to be a type for any type ρ
and any type variable α but we only may form terms of this type if we know monotonic-
ity. How do we know that λαρ is monotone? By having already constructed a term of type

6In fact we only use that we have a least pre-fixed-point. The fact that this least pre-fixed-point is also a fixed
point is never used in the systems of this thesis because it does not fit with β-reduction.

7In mathematical practice it is quite common to make unconcious use of “extended induction” instead of the
original induction principle. Take e. g. the squaring function on the reals and try to prove that it has only natural
numbers as values for natural number arguments. (One may already assume that addition does not leave N.)

4 CHAPTER 1. INTRODUCTION

∀α∀β.(α → β) → ρ → ρ[α := β]. This term is called monotonicity witness and may arbitrarily
use term formation rules for inductive types, hence permitting any interleaving of inductive
types.
Interleaving inductive types are those where a free parameter of a subexpression of the type of
the form µαρ is bound by µ. Nesting would only mean that a type of the form µαρ may be
a subexpression of a type µα′ρ′ with α′ not free in µαρ. One could also call the interleaving
inductive types inductive types with essential use of parameters.
Most presentations (for me important are [Lei90, Geu92]) restrict to positive inductive types,
hence to a restriction already enforcing monotonicity on the level of types8. Mendler’s type-
theoretic system (with dependent types and subset types) in [Men87b] has the notion of mono-
tone inductive types, i. e., µ-types are introduced under the assumption that the monotonicity
statement (expressed via subset types) has already been derived. Surprisingly, the monotonicity
proof is not used in the reduction rule. But this becomes clear when recognizing that the elimi-
nation rule does not express definition by primitive recursion. It corresponds to a definition by
primitive recursion on a set inductively defined via a “positivization” of the monotone operator
expressed by the monotone inductive type. And this positivization even works for non-monotone
operators explaining why the monotonicity proof could be left out.
Why monotone inductive types?

• We try to prove as general results as possible.

• Monotone inductive types have a meta-theory where proofs may be done by structural
recursion. In the case of positive inductive types we have the phenomenon that syntactic
material pertaining to the canonical monotonicity witnesses necessary for formulating the
rules of iteration and primitive recursion “pops up” during reduction. Therefore e. g. in
the final soundness theorem in the proof of strong normalization one has to use quite
complicated measures of induction. Compare [JO97] in the case of “abstract data type
systems” where on p. 380 we find a tremendously complicated induction measure which is
needed because the syntactic material is not carried around9.

• It is nice to have an apparatus with expressive means which allow to formulate theorems
which are only true after imposing some restrictions. In section 4.7.1 I present a slight
variation of a very reasonable system for which normalization fails.

• And there is a nice inductive type which is monotone but not positive (due to U. Berger).

However, a large part of this thesis is concerned with showing how to embed systems of mono-
tone inductive types into systems of non-interleaving positive inductive types while preserving
reduction.10 The main idea is to define “positivizations” of an arbitrary operator. Let us give
an example: In calculus the limit inferior lim inf of a sequence (ak)k∈N of real numbers is formed
by setting

lim inf
k→∞

ak := lim
n→∞

inf{ak|k ≥ n}.

The limit to the right always exists (it may be infinite) because the sequence (inf{ak|k ≥ n})n∈N
is monotonically increasing. And for this work it is most important that the monotonicity may
be read off syntactically: The argument n occurs positively in the expression inf{ak|k ≥ n}.

8Those systems nicely embed into the proposed systems of monotone inductive types.
9No doubt, this is more user-friendly but the user interface may be built up after having shown normalization

and confluence.
10Let henceforth an embedding be an encoding which preserves reduction, i. e., for any reduction step in the

source system one can do at least one reduction step in the target system to get from the encoding of a term to
the encoding of its reduct.

1.2. OUTLINE OF RESULTS 5

In a similar fashion we get the lower and the upper monotonization of any operator. The upper
monotonization gives rise to an embedding of monotone inductive types into non-interleaving
strictly positive inductive types including the existential quantifier. The lower monotoniza-
tion motivates embeddings into non-interleaving positive inductive types without the existential
quantifier.
The embeddings work because the monotonization of a monotone operator is the operator it-
self, but the reflection of this fact joins the monotonicity via a monotonicity witness to the
monotonicity via positivity.
Two other notions of monotonicity enter the proofs of strong normalization. They are the
semantic requirement that a monotonicity witness is element of the saturated set

∀P∀Q.(P → Q) → Φ(P) → Φ(Q)

for Φ a family of operators on saturated sets which is a strong monotonicity requirement for Φ
and finally the standard notion of monotonicity for such a family of operators. Unfortunately,
I have no intuition how to reason by mere monotonicity of such operators in order to establish
strong normalization. The good news is: I never had to reason in this way because always
monotonizations could be found which were syntactically monotone (i. e., positive) and had
properties good enough to let the proofs of strong normalization go through.

1.2 Outline of results

Most of the work is done in order to establish the following

Theorem Define four classes of systems as follows.

I Systems without primitive recursion.

• F: the basic impredicative system with → and ∀.
• eF: F extended by 0, 1, × and +.

• IT: eF extended by infimum types iαρ.

• eF+ex: eF extended by ∃.
• varEMIT–rec: the variant of the system of elimination-based (elimination rules with-

out monotonicity witness) monotone inductive types with no primitive recursion but
iteration.

• IMIT–rec: the system of introduction-based (introduction rule without monotonicity
witness) monotone inductive types with no primitive recursion but iteration.

• MeIT–rec: the system in the spirit of Mendler with no primitive recursion but itera-
tion.

• coMeIT–rec: the dual to MeIT–rec.

• Any other system of inductive types with iteration but no primitive recursion.

II The systems in IIa and in IIb to be defined next.

IIa Strictly positive systems without ∃.

• SPIT: the system of (interleaving) strictly positive inductive types (with iteration and
primitive recursion and map terms built without primitive recursion but iteration).

6 CHAPTER 1. INTRODUCTION

• NISPIT: the system of non-interleaving strictly positive inductive types (with iteration
and primitive recursion and map terms built with neither iteration nor recursion).

IIb Classes of systems with selected monotone inductive types.

• ESMIT: systems of elimination-based (unrestricted use of µ(+)-elimination in map
terms) selected monotone inductive types.

• ESMITit: those of ESMIT without primitive recursion in the definitions of map terms.

• ESMITrec: those of ESMIT without iteration in the definitions of map terms.

• ESMIT+ex: systems like ESMIT but including ∃.
• ISMIT: systems of introduction-based (unrestricted use of µ-introduction in map

terms) selected monotone inductive types.

• ISMIT+ex: systems like ISMIT but including ∃.

III 20 other systems of inductive types.

• PIT=PITit: the system of positive inductive types with iteration and primitive recur-
sion where interleaving and non-strict positivity are allowed and the map terms do
not use primitive recursion but only iteration.

• PITrec: like PITit but the map terms use primitive recursion and no iteration.

• PIT+ex: PIT extended by ∃.
• SPIT+ex: SPIT extended by ∃.
• NIPIT: the system of non-interleaving (but including non-strictly) positive inductive

types with iteration and primitive recursion and map terms built with neither iteration
nor recursion.

• NISPIT+ex: NISPIT extended by ∃.
• EMIT: the system of elimination-based (elimination rules without monotonicity wit-

ness) monotone inductive types with primitive recursion and iteration.

• EMIT–it: EMIT without iteration.

• varEMIT: a variant of EMIT with a slightly weaker requirement of monotonicity for
the monotonicity witnesses.

• IMIT: the system of introduction-based (introduction rule without monotonicity wit-
ness) monotone inductive types with primitive recursion and iteration.

• IMIT–it: IMIT without iteration.

• varIMIT: a variant of IMIT with a slightly weaker requirement of monotonicity for the
monotonicity witnesses.

• IMIT+ex: IMIT extended by ∃.
• MeIT: the system in the spirit of Mendler (“Mendler’s Inductive Types”) with itera-

tion and primitive recursion.

• MeIT–it: MeIT without iteration (nearer to Mendler’s [Men87a] system).

• coMeIT: the dual (the explanation via “monotonizations” of operators is dual) to
MeIT.

• coMeIT–it: coMeIT without iteration.

1.2. OUTLINE OF RESULTS 7

• UVIT: “Uustalu’s and Vene’s Inductive Types”, a slight generalization of MeIT (which
serves for clarifying the embedding of MeIT into NISPIT+ex) also with iteration and
primitive recursion.

• MePIT: the subsystem of NISPIT+ex which is actually needed for embedding MeIT
into NISPIT+ex. It also has iteration and primitive recursion.

• coMePIT: the subsystem of NIPIT which is actually needed for embedding coMeIT
into NIPIT; with iteration and primitive recursion.

Let an embedding be an encoding which preserves reduction, i. e., for any reduction step in
the source system one can do at least one reduction step in the target system to get from the
encoding of a term to the encoding of its reduct.
Then the following holds: There are embeddings of each system in I into any other. There are
embeddings of each system in II into any of III and each system of III embeds into any other
system of III. Hence, the systems in I are embedding equivalent to each other, and the same
holds for the systems in III.
Every system in I, II and III is strongly normalizing and confluent.

All of the above systems are motivated and defined carefully. Examples are given and a lot of
additional information is taken out of the proofs, among them näıve reduction-free normalization,
consistency, the impossibility of proving the Peirce formula, an insight how much easier weak
normalization is than strong normalization and even embeddings into systems of fixed-point
types.

In chapter 2 the systems without inductive types are formulated and analyzed very carefully.
Starting from system F with arrow types and universal types only, we subsequently add 0, 1,
product types, sum types, existential types and infimum types.
Chapter 3 shows the different notions of inductive types (including strictly positive and positive
and non-interleaving positive inductive types) and measures for them. Examples are considered.
Term systems for monotone inductive types are studied in chapter 4. The two possibilities of
fixing a monotonicity witness to the term rules are presented. There is a non-trivial example
of monotonicity which does not come from positivity. Also the systems with selected monotone
inductive types having a specified monotonicity witness for every inductive type are defined and
embedded into the systems with monotone inductive types by using a notion of stratified term.
An elaborate discussion on the relation of iteration and recursion is included. The iterative
fragment of varEMIT is embedded into the system of infimum types by simply reflecting the
proof of Tarski’s theorem.
In chapter 5 systems with positive inductive types are defined which means to define the canon-
ical monotonicity witnesses whose stratification and uniformity alone guarantee strong normal-
ization. It is presented how much easier the definitions are for subsystems like that of strictly
positive inductive types or of non-interleaving positive inductive types. Very special instances
are MePIT and coMePIT which may be seen as examples for the calculation of canonical mono-
tonicity witnesses.
Chapter 6 is the heart of this thesis: The junction between monotone inductive types and non-
interleaving positive inductive is introduced in form of MeIT and coMeIT the first of which is a
variant of Mendler’s [Men87a] system and the second a dual to it. The introductory sections to
that chapter are essential for understanding why the embeddings work.
In chapter 7 we collect the embeddings established so far and prove the statements on embeddings
in the theorem above.
Confluence is proved by a variant to Takahashi’s [Tak95] method in chapter 8.

8 CHAPTER 1. INTRODUCTION

Chapter 9 and appendix A contain the most technical part: The proofs of strong normalization
for several systems. Again much effort has been invested to make the proofs as clear and as
modular as possible. The variations on the proof for EMIT are put in the appendix although
they show a wealth of subtleties. A final discussion explains how the embeddings of monotone
inductive types into MePIT and coMePIT could have been found.
Appendix B discusses possible extensions which came to my mind during the writing of this thesis
mostly concerning fixed-point types, η-reduction, functoriality of the monotonicity witnesses and
permutative conversions for inductive types. A list of open problems is given.

As central points of this thesis I consider:

• Monotone inductive types formulated11 and proved to be strongly normalizing and con-
fluent.

• Selected monotone inductive types formulated (as abstraction from the canonical mono-
tonicity witnesses for positive inductive types) and embedded into monotone inductive
types via an inductively defined set of stratified terms.

• Mendler’s system proved to be strongly normalizing without any restriction to forming
inductive types.

• Formulation of a dual (coMeIT) to Mendler’s system.

• Embedding of monotone inductive types into non-interleaving positive inductive types.
The main step: varEMIT embeds into coMeIT and varIMIT embeds into MeIT. Explanation
why such easy embeddings exist.

• Reduction of iteration to primitive recursion even for introduction-based monotone induc-
tive types.

• A measure of height (h) for abstracted types which allows to define the canonical mono-
tonicity witnesses for interleaving positive inductive types.

• A technical device: The vector notation for multiple eliminations.

• The separation of reduct analysis from any reasoning on saturated sets.

• The definition of infimum types to clarify the encoding of iteration on elimination-based
monotone inductive types inside system F.

• The organization of the proof of strong normalization such that always an introduction-
based and an elimination-based definition of computability predicates is possible and that
embeddings may be read off the proof.

• The equivalence with respect to embeddings of the 20 systems of class III in the above
theorem.

11The very idea of considering primitive recursion in the presence of some arbitrary term of “functorial strength”
already occurs in [Alt93c] together with a sketch of an elimination-based normalization proof.

Chapter 2

The basic framework

System F and its extension by 0, 1, product and sum types are defined in all details. An extension
by types expressing infima is proposed. Finally, the extension by existentially quantified types
is studied.

2.1 System F

The following definitions define a variant of the historical system F (invented independently by
Girard [Gir72] and Reynolds [Rey74]), which will be my starting point to investigate impredica-
tive systems. A presentation which focuses more on the main ideas is to be found in [GLT89].
[Mit96] also contains an extensive discussion of polymorphism. Good references (among numer-
ous other good presentations) are also [Bar93] and [Gal90].

2.1.1 Types

Assume a countably infinite set Typevars of symbols which are considered as type variables. By
induction define the set Types of types as follows:

(V) If α ∈ Typevars, then α ∈ Types.

(→) If ρ ∈ Types and σ ∈ Types, then ρ → σ ∈ Types.

(∀) If α ∈ Typevars and ρ ∈ Types, then ∀αρ ∈ Types.

The variable α in ∀αρ is considered to be bound by ∀—more precisely, every occurrence of
α in ρ which is not bound deeper inside ρ is bound by ∀α. We adopt the convention not to
distinguish between types which only differ in the names of their bound variables, e. g. we simply
identify the types ∀α.γ → (∀β.α → β) and ∀δ.γ → (∀α.δ → α), assuming α, β, γ, δ ∈ Typevars.
As in this example parentheses are used to indicate the inductive build-up of the types which
was suppressed in the inductive definition because it will be understood in all the inductive
definitions of concepts that the defining rules freely generate the structure1. The dot notation
hides a pair of parentheses, which opens at the dot and closes as far to the right as is syntactically
possible. Moreover, ∀ is assumed to bind stronger than →, and iterated → is associated to the
right (i. e., ρ → σ → τ means ρ → (σ → τ)).
For every type ρ we define the finite set FV(ρ) of type variables occurring free in ρ by recursion
on the inductive definition of the types ρ as follows:

1Not only on the meta-level every inductive definition is considered to be deterministic but also the inductive
types studied in this thesis exclusively model deterministic inductive definitions which therefore allow (transfinite)
recursion (see e. g. [Acz77, p. 744]).

9

10 CHAPTER 2. THE BASIC FRAMEWORK

(V) FV(α) := {α}.

(→) FV(ρ → σ) := FV(ρ) ∪ FV(σ).

(∀) FV(∀αρ) := FV(ρ) \ {α}.

This definition is compatible with the renaming convention.
Define the resulting2 type ρ[~α := ~σ] of simultaneously substituting the finite list of types ~σ for
the (equally long) list of type variables ~α in a type ρ by recursion on ρ as follows:

(V) α[~α := ~σ] := α, if α does not occur in the list ~α.
α[~α := ~σ] := σi, if i is the smallest index such that αi = α. (Subscripts indicate the
respective elements in the list.)

(→) (ρ → σ)[~α := ~σ] := ρ[~α := ~σ] → σ[~α := ~σ].

(∀) (∀αρ)[~α := ~σ] := ∀α.ρ[~α := ~σ], where according to the renaming convention we
assume that α is different from the ~α and does not occur free in any of the ~σ
(thanks to the infinite supply of type variables).

This definition is again compatible with the renaming convention.
Due to the assumption in the rule (∀) which will be written as α /∈ ~α∪FV(~σ) we have for α 6= β

• (∀αα)[α := β] 6= ∀αβ

• (∀αβ)[β := α] 6= ∀αα

We adopt the naming convention that α, β, γ and δ (even if decorated e. g. with subscripts)
always denote type variables, and ρ, σ and τ (also with decoration) denote types.

Lemma 2.1 If α /∈ FV(ρ), then ρ[~α, α := ~σ, σ] = ρ[~α := ~σ].

Proof Induction on ρ. �

Corollary 2.2 If ~α ∩ FV(ρ) = ∅ then ρ[~α := ~σ] = ρ. �

Lemma 2.3 FV(ρ[~α := ~σ]) = (FV(ρ) \ ~α) ∪
⋃
{FV(σi)|αi ∈ FV(ρ) ∧ αi 6= αj for j < i}, which

trivially implies FV(ρ[~α := ~σ]) ⊆ (FV(ρ) \ ~α) ∪ FV(~σ).

Proof Induction on ρ. �

Corollary 2.4 If α /∈ ~α ∪ FV(~σ) then α ∈ FV(ρ) ⇐⇒ α ∈ FV(ρ[~α := ~σ]). �

Lemma 2.5 If α /∈ ~α ∪ FV(~σ) then (ρ[α := σ])[~α := ~σ] = (ρ[~α := ~σ])[α := σ[~α := ~σ]].

Proof Induction on ρ using Corollary 2.2. �

Lemma 2.6 If α /∈ ~α ∪ FV(~σ) then ρ[~α, α := ~σ, σ] = (ρ[~α := ~σ])[α := σ].

Proof Induction on ρ using Corollary 2.2. �

2Note that only the effect of substituting types for type variables in types is studied and not the type substi-
tution itself as a finitely presented function (giving rise to a substitution calculus).

2.1. SYSTEM F 11

More on the renaming convention can be found in Barendregt’s [Bar84, pp. 25–27, 577–581].
The convention there is to “identify α-congruent terms on a syntactic level” (p. 26) as is done
here with types. The “variable convention” says that for finitely many objects which have bound
variables and occur together in some mathematical context, it is always assumed that the bound
variables are different from all of the free variables.
In this thesis, I do not follow Barendregt’s variable convention but always make the comment
about what we have to assume on the bound variables in order to have a concept correctly
defined. The reason for this cautious approach is that in many cases it is not clear (to me)
whether the mathematical context at hand contains finitely or infinitely many such objects.
Moreover, sometimes it is useful to have the same variable free and bound in a clause of a
definition (see e. g. the clause (β+

µ) in section 4.1.1). Finally, I do not completely understand
what the variable convention really says about a definition clause such as

(∀) FV(∀αρ) := FV(ρ) \ {α}.

Therefore my convention merely means that I consider types only up to α-equivalence.
In loc. cit. also the approach by de Bruijn [dB72] (and some approach by Curry) is presented.
Another truly accurate treatment of the renaming convention would be to define α-equivalence
and type substitution simultaneously by recursion on the complexity of the types as was e. g.
carried out in [Rei96].
Note that the Curry-Howard isomorphism means on the type level that we see the type variables
as propositional variables and the types as propositions. The types of system F “are” hence the
formulas of second-order propositional logic with only universal quantification over propositions
and implication.

2.1.2 Terms

A slightly erroneous term system is defined and then—by changing the variables to be more
polymorphic—the system forming the core of all the extensions considered in this thesis.

A first attempt to define the terms and a variable convention

Assume for every type ρ pairwise disjoint countably infinite sets Vars(ρ) of symbols which are
considered as term variables of type ρ. By simultaneous induction define the sets Λρ of typed
terms of system F of type ρ and simultaneously define for every term r in any Λρ the finite set
FV(r) of term variables occurring free in r (overloading the previously defined FV for types) as
follows:

(V) If x ∈ Vars(ρ), then x ∈ Λρ. FV(x) := {x}.

(→-I) If x ∈ Vars(ρ) and r ∈ Λσ, then λxr ∈ Λρ→σ. FV(λxr) := FV(r) \ {x}.

(→-E) If r ∈ Λρ→σ and s ∈ Λρ, then rs ∈ Λσ. FV(rs) := FV(r) ∪ FV(s).

(∀-I) If r ∈ Λρ and α ∈ Typevars, then Λαr ∈ Λ∀αρ, provided that α /∈ FV(σ) for any σ
with FV(r) ∩ Vars(σ) 6= ∅. FV(Λαr) := FV(r).

(∀-E) If r ∈ Λ∀αρ and σ ∈ Types, then rσ ∈ Λρ[α:=σ]. FV(rσ) := FV(r).

It should be noted that the proviso in the rule (∀-I) is usually called the eigenvariable condition
which becomes clear in the discussion of the Curry-Howard isomorphism at the end of this
section.

12 CHAPTER 2. THE BASIC FRAMEWORK

This definition is again compatible with the renaming convention for bound type variables (the
only critical case being (∀-E)).
The term variable x in λxr is considered to be bound by λ, and the type variable α in Λαr
is considered to be bound by Λ. We again do not want to distinguish between terms which
only differ in the names of bound variables (term and type variables). E. g. if α and β are
different type variables and x ∈ Vars(α) and y ∈ Vars(β), then λxx ∈ Λα→α and λyy ∈ Λβ→β.
Therefore Λαλxx ∈ Λ∀α.α→α and Λβλyy ∈ Λ∀β.β→β . Because of the convention on identifying
bound type variables in types, we have ∀α.α → α = ∀β.β → β which by compatibility implies
Λ∀α.α→α = Λ∀β.β→β. How can one rename the bound type variable α in Λαλxx to β? This
would be possible if one were allowed to also rename x ∈ Vars(α) to y ∈ Vars(β). I think this
would be quite hard to justify. But we do want to identify Λαλxx and Λβλyy. Therefore we
abandon this definition.

The correct definition of terms which allows for a variable convention

Assume a countably infinite set Vars of symbols which are considered as term variables without
a type. By simultaneous induction define the sets Λρ of typed terms of system F of type ρ and
simultaneously define for every term r in any Λρ the finite set FV(r) of typed term variables
occurring free in r (overloading the previously defined FV for types) as follows:

(V) If x ∈ Vars, then (x, ρ) ∈ Λρ. FV((x, ρ)) := {(x, ρ)}.

(→-I) If x ∈ Vars and r ∈ Λσ, then λ(x, ρ)r ∈ Λρ→σ. FV(λ(x, ρ)r) := FV(r) \ {(x, ρ)}.

(→-E) If r ∈ Λρ→σ and s ∈ Λρ, then rs ∈ Λσ. FV(rs) := FV(r) ∪ FV(s).

(∀-I) If r ∈ Λρ and α ∈ Typevars, then Λαr ∈ Λ∀αρ, provided that α /∈ FV(σ) for any σ
for which there is an x ∈ Vars such that (x, σ) ∈ FV(r). FV(Λαr) := FV(r).

(∀-E) If r ∈ Λ∀αρ and σ ∈ Types, then rσ ∈ Λρ[α:=σ]. FV(rσ) := FV(r).

This definition is again compatible with the renaming convention for bound type variables (the
only critical case again being (∀-E)).
The untyped term variable x in λ(x, ρ)r is considered to be bound by λ, and the type variable
α in Λαr is considered to be bound by Λ. (Again we mean every occurrence inside r which is
not bound deeper inside r.) We again do not distinguish between terms which only differ in
the names of bound variables (term and type variables). This will be referred to as the variable
convention (which of course relies on the renaming convention for bound type variables in types).
E. g. if α and β are different type variables and x ∈ Vars and y ∈ Vars, then λ(x, α)(x, α) ∈ Λα→α

and λ(y, β)(y, β) ∈ Λβ→β. Therefore Λαλ(x, α)(x, α) ∈ Λ∀α.α→α and Λβλ(y, β)(y, β) ∈ Λ∀β.β→β.
Because of the convention on identifying bound type variables in types, we have ∀α.α → α =
∀β.β → β which by compatibility implies Λ∀α.α→α = Λ∀β.β→β. The variable convention for
term variables without types allows us to identify λ(x, α)(x, α) and λ(y, α)(y, α) and then the
type variable convention identifies Λαλ(x, α)(x, α) and Λβλ(y, β)(y, β). Therefore we keep this
definition.
The simultaneous definition of FV on terms is compatible with the variable convention thanks
to the proviso in the rule (∀-I), which is called the eigenvariable condition (as mentioned before).

Lemma 2.7 For every term r there is a unique type ρ with r ∈ Λρ.

Proof Induction on r. �

2.1. SYSTEM F 13

As is usual we will use type superscripts for variables instead of the pair notation (x, ρ) and we
also use them for terms instead of type subscripts as in Λρ: From now on xρ is written instead
of (x, ρ), and rρ ∈ Λ is written instead of r ∈ Λρ. If r happens to be a variable we further
abbreviate to r ∈ Λ thus avoiding twice the same superscript. Using these conventions we can
restate the definition of terms (this time leaving out the definition of FV) as follows:

(V) If x ∈ Vars, then xρ ∈ Λ.

(→-I) If x ∈ Vars and rσ ∈ Λ, then (λxρr)ρ→σ ∈ Λ.

(→-E) If rρ→σ ∈ Λ and sρ ∈ Λ, then (rs)σ ∈ Λ.

(∀-I) If rρ ∈ Λ, then (Λαr)∀αρ ∈ Λ, provided that α /∈ FV(σ) for any σ such that there is
an xσ in FV(r).

(∀-E) If r∀αρ ∈ Λ, then (rσ)ρ[α:=σ] ∈ Λ.

Unfortunately “Λ” is used as the name of the set of terms and also as the symbol for type
abstraction. Nevertheless ambiguities cannot arise.
If r is a term then r : ρ is defined to be the statement r ∈ Λρ. rρ may either be used as
synonymous to r : ρ or in place of r but implicitly introducing the unique ρ with r : ρ or
imposing a restriction on r if ρ has previously been introduced.
As for types we freely use parentheses to indicate the build-up of a term which again was not
made explicit in the definition (as was promised in the section on types). The dot notation is
also employed. Λ and λ are assumed to bind stronger than application, iterated term application
(that is nested use of (→-E)) is associated to the left (i. e., rst means (rs)t) which fits perfectly
with the right-associative → for types.
If r : ρ → σ, we say that r is of arrow type. If r : ∀αρ, we speak of r as of universal type.
We adopt the naming convention that x, y and z (also with decoration) always denote untyped
term variables, and r, s and t denote terms.
For every term r we define the finite set FTV(r) of type variables occurring free in r by recursion
on r as follows:

(V) FTV(xρ) := FV(ρ).

(→-I) FTV(λxρr) := FV(ρ) ∪ FTV(r).

(→-E) FTV(rs) := FTV(r) ∪ FTV(s).

(∀-I) FTV(Λαr) := FTV(r) \ {α}.

(∀-E) FTV(rσ) := FTV(r) ∪ FV(σ).

This definition is compatible with the variable convention.

Lemma 2.8 FV(ρ) ⊆ FTV(rρ).

Proof Induction on r. For the rule (∀-E) we need Lemma 2.3. �

Lemma 2.9 xρ ∈ FV(r) ⇒ FV(ρ) ⊆ FTV(r).

Proof Induction on r. For the rule (∀-I) we use the proviso. �

14 CHAPTER 2. THE BASIC FRAMEWORK

Define the resulting term r[~x~ρ := ~s] of simultaneously substituting the finite list of terms ~s~ρ

(i. e., si : ρi) for the (equally long) list of typed variables ~x~ρ (i. e., xi : ρi) in r by recursion on r
and simultaneously prove that rρ[~x~ρ := ~s] : ρ and that (compare Lemma 2.3) FV(r[~x~ρ := ~s]) =
(FV(r) \ ~x~ρ) ∪

⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i} as follows:

(V) xρ[~x~ρ := ~s] := xρ, if xρ does not occur in the list ~x~ρ.
xρ[~x~ρ := ~s] := si, if i is the smallest index such that xρi

i = xρ. Proof trivial.

(→-I) (λxρr)[~x~ρ := ~s] := λxρ.r[~x~ρ := ~s] where according to the variable convention and
the infinite supply of untyped term variables we assume that xρ is different from
the ~x~ρ and does not occur free in any of the ~s. The proof of the second claim uses
the assumption.

(→-E) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]s[~x~ρ := ~s]. Proof obvious.

(∀-I) (Λαr)[~x~ρ := ~s] := Λα.r[~x~ρ := ~s], where we assume that α does not occur free in any
of the terms ~s. Λα.r[~x~ρ := ~s] is a term because of the assumption, Lemma 2.9, the
second claim for r and the well-formedness of Λαr.

(∀-E) (rσ)[~x~ρ := ~s] := r[~x~ρ := ~s]σ. Proof obvious.

This definition is compatible with the variable convention.
The assumption in the rule (→-I) will be written as xρ /∈ ~x~ρ ∪ FV(~s) and gives us for x 6= y

• (λxαxα)[xα := yα] 6= λxαyα

• (λxαyα)[yα := xα] 6= λxαxα

The assumption in the rule (∀-I) will be written as α /∈ FTV(~s) and gives us for α 6= β

• (Λαxβ)[xβ := y∀αβα] 6= Λα.y∀αβα

• (Λαxβ)[xβ := yα→βzα] 6= Λα.yα→βzα, where the object on the right is not even a term.

For ease of reference we state

Lemma 2.10 FV(r[~x~ρ := ~s]) = (FV(r) \ ~x~ρ) ∪
⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i},
which trivially implies FV(r[~x~ρ := ~s]) ⊆ (FV(r) \ ~x~ρ) ∪ FV(~s).

Proof Inside the definition. �

Lemma 2.11 If ~x~ρ ∩ FV(r) = ∅ then r[~x~ρ := ~s] = r.

Proof Induction on r. �

Lemma 2.12 FTV(r[~x~ρ := ~s]) = FTV(r) ∪
⋃
{FTV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i}

Proof Induction on r. The proof is easy but tedious. The case (V) makes use of Lemma 2.8.�

Lemma 2.13 If xρ /∈ ~x~ρ ∪ FV(~s), then (r[xρ := s])[~x~ρ := ~s] = (r[~x~ρ := ~s])[xρ := s[~x~ρ := ~s]].

Proof Induction on r. Note the similarity to Lemma 2.5. �

Lemma 2.14 If xρ /∈ ~x~ρ ∪ FV(~s), then r[~x~ρ, xρ := ~s, s] = (r[~x~ρ := ~s])[xρ := s].

2.1. SYSTEM F 15

Proof Induction on r. Note the similarity to Lemma 2.6. �

Define the resulting term r[~α := ~σ] of simultaneously substituting the finite list of types ~σ for
the (equally long) list of type variables ~α in r by recursion on r and simultaneously prove that
rρ[~α := ~σ] : ρ[~α := ~σ] and FV(r[~α := ~σ]) = {yτ [~α:=~σ]|yτ ∈ FV(r)} as follows:

(V) xρ[~α := ~σ] := xρ[~α:=~σ]. Proof trivial.

(→-I) (λxρr)[~α := ~σ] := λxρ[~α:=~σ].r[~α := ~σ], where we assume that for every xσ ∈ FV(r)
we have σ = ρ. Proof obvious for the first claim, the assumption is needed for the
second claim when proving “⊇”.

(→-E) (rs)[~α := ~σ] := r[~α := ~σ]s[~α := ~σ]. Proof obvious.

(∀-I) (Λαr)[~α := ~σ] := Λα.r[~α := ~σ], where we assume that α is different from the ~α
and does not occur free in any of the ~σ (as in the definition of (∀αρ)[~α := ~σ]). The
proof of the first claim rests on this assumption, the other is obvious. Λα.r[~α := ~σ]
is a term because of this assumption, the second claim for r, Lemma 2.3 and the
well-formedness of Λαr.

(∀-E) (rσ)[~α := ~σ] := r[~α := ~σ]σ[~α := ~σ]. The proof of the first claim is easy by using
Lemma 2.5, the other is obvious.

This definition is again compatible with the variable convention.
Due to the assumption in the rule (→-I) we have for α 6= β that (λxαxβ)[β := α] 6= λxαxα. The
assumption in (∀-I) gives for α 6= β

• (Λαλxαxα)[α := β] 6= Λαλxβxβ

• (Λαxβ)[β := α] 6= Λαxα, where the object to the right is not even a term.

For ease of reference we state

Lemma 2.15 FV(r[~α := ~σ]) = {yτ [~α:=~σ]|yτ ∈ FV(r)}.

Proof Inside the definition. �

Let “x /∈ FV(r)” be an abbreviation for “there is no xρ in FV(r)”. Hence, the lemma implies:
x /∈ FV(r) ⇒ x /∈ FV(r[~α := ~σ]).

Lemma 2.16 If ~α ∩ FTV(r) = ∅ then r[~α := ~σ] = r.

Proof Induction on r. �

Lemma 2.17 FTV(r[~α := ~σ]) = (FTV(r) \ ~α) ∪
⋃
{FV(σi)|αi ∈ FTV(r) ∧ αi 6= αj for j < i}.

Proof Induction on r. The proof is tedious but routine. The case (V) makes use of Lemma
2.3. �

Lemma 2.18 If α /∈ ~α ∪ FV(~σ), then (r[α := σ])[~α := ~σ] = (r[~α := ~σ])[α := σ[~α := ~σ]].

Proof Induction on r. The proof makes use of Lemma 2.5 several times. �

Lemma 2.19 If α /∈ ~α ∪ FV(~σ), then r[~α, α := ~σ, σ] = (r[~α := ~σ])[α := σ].

16 CHAPTER 2. THE BASIC FRAMEWORK

Proof Induction on r. The proof makes use of Lemma 2.6 several times. �

The following lemma allows to interchange type substitution and term substitution. The formu-
lation is as general as possible. The only cases which are needed in the sequel are encapsulated
in the two corollaries to the lemma. Readers who are not so much interested in substitution
should simply check whether they can accept the statements made in the corollaries.

Lemma 2.20 (Interchange law for substitution) If for every xρ ∈ FV(r) and every i such
that i is the minimal index with xρ[~α:=~σ] = x

ρi[~α:=~σ]
i , ρ = ρi holds, then

r[~x~ρ := ~s][~α := ~σ] = r[~α := ~σ][~x~ρ[~α:=~σ] := ~s[~α := ~σ]].

Proof Induction on r. (V) Case xρ. If xρ ∈ ~x~ρ, let i be the minimal index with xρ = xρi
i . Then

xρ[~x~ρ := ~s][~α := ~σ] = si[~α := ~σ]. Due to the assumption on free variables, i is also the minimal
index such that xρ[~α:=~σ] = x

ρi[~α:=~σ]
i . Therefore xρ[~α := ~σ][~x~ρ[~α:=~σ] := ~s[~α := ~σ]] = si[~α := ~σ]. If

xρ /∈ ~x~ρ, then due to the assumption, xρ[~α:=~σ] /∈ ~x~ρ[~α:=~σ]. The claim then follows from Lemma
2.11.
(→-I) Case λxρr. We may assume xρ[~α:=~σ] /∈ ~x~ρ[~α:=~σ] ∪ FV(~s[~α := ~σ]) and that the following
implication holds: xσ ∈ FV(r) ∪ FV(~s) ⇒ σ = ρ. By using Lemma 2.15 and Lemma 2.10 we get

(λxρr)[~x~ρ := ~s][~α := ~σ] = λxρ[~α:=~σ].r[~x~ρ := ~s][~α := ~σ] and

(λxρr)[~α := ~σ][~x~ρ[~α:=~σ] := ~s[~α := ~σ]] = λxρ[~α:=~σ].r[~α := ~σ][~x~ρ[~α:=~σ] := ~s[~α := ~σ]].

Due to xρ[~α:=~σ] /∈ ~x~ρ[~α:=~σ], the induction hypothesis applies to r.
(→-E) Case rs. Use the induction hypothesis.
(∀-I) Case Λαr. We may assume that α /∈ ~α ∪ FV(~σ) ∪ FTV(~s). Using Lemma 2.17 we get

(Λαr)[~x~ρ := ~s][~α := ~σ] = Λα.r[~x~ρ := ~s][~α := ~σ] and

(Λαr)[~α := ~σ][~x~ρ[~α:=~σ] := ~s[~α := ~σ]] = Λα.r[~α := ~σ][~x~ρ[~α:=~σ] := ~s[~α := ~σ]].

The claim follows by the induction hypothesis.
(∀-E) Case rσ. Use the induction hypothesis. �

The condition in the lemma would be trivially satisfied if ~x~ρ ∪ FV(r) were compatible in the
sense that if xρ, xσ ∈ ~x~ρ∪FV(r) then ρ = σ. Call such a term r regular. Obviously, regularity is
not closed under application of terms. If one wanted to enforce regularity everwhere application
would have to be guarded by some compatibility requirement which would be nothing else
than assuming the existence of a common variable context of ~x and the terms put together via
application. Instead of having implicit contexts, one could then go one step further and have
a type assignment system which in my view would give a one-sided sequent calculus instead of
natural deduction3.

Corollary 2.21 If ~α ∩ FV(~ρ) = ∅ and for every xρ ∈ FV(r), ~α ∩ FV(ρ) = ∅, then

r[~x~ρ := ~s][~α := ~σ] = r[~α := ~σ][~x~ρ := ~s[~α := ~σ]].

Proof Immediate from Corollary 2.2. �

3The reader may decide whether is it worth having unrestricted application in the later chapters on inductive
types at the price of unintuitive conditions in lemmas on substitution.

2.1. SYSTEM F 17

Corollary 2.22 If for every σ, xσ ∈ FV(r) implies σ = ρ, then

r[xρ := s][~α := ~σ] = r[~α := ~σ][xρ[~α:=~σ] := s[~α := ~σ]].

Proof Immediate from Lemma 2.20. �

Terms r with FV(r) = ∅ are called closed terms. They may contain free type variables, i. e.,
FTV(r) 6= ∅ is allowed for closed terms. Terms without free type variables have no special name.
From now on we will use the names “variable convention” and “renaming convention” as syn-
onyms.
An immediate subterm of a term r is any term r′ which is explicitly mentioned as a term (by
requiring r′ ∈ Λ) in the definition clause by which the term r is introduced in Λ, i. e., xρ has
no immediate subterm, λxρr has only the immediate subterm r, rs has exactly the immediate
subterms r and s, Λαr has only the immediate subterm r and rσ also has only the immediate
subterm r. The relation “is a subterm of” is defined as the transitive reflexive closure of “is an
immediate subterm of”. As expected, the relation “is a proper subterm of” is defined as the
transitive closure of “is an immediate subterm of”.
The Curry-Howard isomorphism means on the term level that we see the term variables as
symbols for proof assumptions, the typed term variables as assumptions of formulas and the
typed terms as intuitionistic natural deduction proofs of their types seen as formulas. Hence, the
term system of F “is” a proof system for intuitionistic (even minimal) second-order propositional
logic (based on universal quantification over propositions and implication). The eigenvariable
condition of (∀-I) is hence the standard condition of second-order propositional logic: In order
to deduce ∀αρ from ρ we have to know that no assumption in the proof of ρ is dependent on α
in the sense that α occurs free in the assumed formula.

2.1.3 Head form and normal forms

For terms r and finite lists ~s of typed terms and types we define when r~s is defined and in that
case a term it denotes by recursion on the length of the list as follows: If the list ~s is empty,
r~s:=r. Otherwise ~s decomposes into the list ~s− and the last element of ~s. r~s is only defined if
r~s− is a term with type ρ → σ or ∀αρ. In the first case r~s is defined iff the last element of ~s
is a term s of type ρ, and set to (r~s−)s of type σ. In the second case r~s is defined iff the last
element of ~s is a type σ, and set to (r~s−)σ of type ρ[α := σ].
In case r~s is defined, it is nothing but (· · · (rs1) · · · sn), assuming ~s has n elements.
It is trivial to see that this definition is compatible with the renaming convention.
Whenever r~s will be used as a term it is understood that r is a term and ~s is a finite list of
typed terms and types such that r~s is defined.

Lemma 2.23 If r~s is a term and r′ is a term of the same type as r, r′~s is a term of the same
type as r~s.

Proof By induction on the definition. �

Lemma 2.24 (Head form) Every term has exactly one of the following forms:

(V) xρ~s (Terms of this form are called neutral.)

(→-I) λxρr

(→-R) (λxρr)s~s

18 CHAPTER 2. THE BASIC FRAMEWORK

(∀-I) Λαr

(∀-R) (Λαr)σ~s

Proof Induction on terms (unicity is obvious). Consider e. g. the case (→-E): If rρ→σ has one
of the forms (V), (→-R) or (∀-R), rs has the same form. Otherwise, by induction hypothesis
and because r is of arrow type, r is of form (→-I), hence rs of form (→-R). �

Define the set of terms in normal form NF as a subset of Λ by induction as follows:

(V) If xρ~s is a term and the terms in ~s are in NF, then xρ~s ∈ NF.

(→-I) If r ∈ NF, then λxρr ∈ NF.

(∀-I) If Λαr is a term and r ∈ NF, then Λαr ∈ NF.

Most of the work in this thesis is concerned with proving strong normalization of β-reduction.
The β-reduction relation of the next section is specifically aimed at allowing to transform any
term of system F to a term in NF. The preceding lemma shows exactly what is gained by this
transformation.

Lemma 2.25 If r ∈ NF and ~s~ρ ⊂ NF and ~s are neutral, then r[~x~ρ := ~s] ∈ NF.

Proof Induction on r ∈ NF. �

Lemma 2.26 If r ∈ NF, then r[~α := ~σ] ∈ NF.

Proof Induction on r ∈ NF. �

Lemma 2.27 If r ∈ NF and r′ is a subterm of r, then r′ ∈ NF.

Proof By induction on r ∈ NF (never using the induction hypothesis) show the statement for
immediate subterms. �

In order to facilitate extensions to the system we give an equivalent definition of r~s as an
inductive definition as follows:

(∅) r∅ := r.

(→-E) If r~s : ρ → σ and s : ρ, then r(~s, s) := (r~s)s.

(∀-E) If r~s : ∀αρ, then r(~s, σ) := (r~s)σ.

Of course, ∅ means the empty list and (~s, object) means the “consed” list.
The inductive definition seems to be more natural than the recursive one, and it is obviously
equivalent. (The well-definedness rests on the fact that the rules are mutually exclusive.)
If ~s : ~ρ and r~s : ρ it is convenient to write the type of r as ~ρ → ρ. More formally, we (inductively)
define ∅ → ρ := ρ and (~ρ, ρ) → σ := ~ρ → (ρ → σ).

2.1. SYSTEM F 19

2.1.4 Reduction

Define a binary relation 7→ on terms by giving the only cases where it holds as follows:

(β→) (λxρr)s 7→ r[xρ := s]
(β∀) (Λαr)σ 7→ r[α := σ]

Of course, we assume that the objects in the rules are terms. It is an important property of
the rules that if the object to the left is a term then the object to the right is also a term, and
moreover that it has the same type.
If r 7→ r′ we say that r reduces to r′ by one outer application of one of the β reduction rules.
The terms on the left are called β-redices, the terms on the right their contracta.
Define a binary relation →whd on terms by the following rule: If r 7→ r′ and r~s is a term, then
r~s →whd r′~s. The relation →whd is called weak head reduction. Due to Lemma 2.23 r′~s is also
a term and of the same type as r~s. Notice that exactly those terms allow weak head reduction
which are listed in rules with an “R” in the name in the lemma on the head form.
Inductively define a binary relation → on terms4 (and prove that if r → r′, then r and r′ have
the same type and FV(r′) ⊆ FV(r)) by the following rules:

(β) If r 7→ r′, then r → r′.

(→-I) If r → r′, then λxρr → λxρr′.

(→-E) If r → r′, then rs → r′s. If s → s′, then rs → rs′.

(∀-I) If r → r′, then Λαr → Λαr′.

(∀-E) If r → r′, then rσ → r′σ.

(The proof for the clause (β) uses Lemma 2.10, Lemma 2.15 and the eigenvariable condition.
The other proofs are obvious.) If r → r′ we say that r reduces to r′ by one application of one of
the β reduction rules. We also describe this situation by saying that r reduces to r′ in one step.
The fact that r′ has type ρ if r has type ρ is often (especially in type assignment systems) called
the subject reduction property. From the proof-theoretic perspective (via the Curry-Howard
isomorphism) the reduction relation is completely justified by type-preservation and the fact
that the set of free variables is (weakly) decreasing: The reduction transforms proofs of a fixed
formula without introducing new assumptions and without changing the assumed formulas (more
precisely, without changing the assumption formulas of the assumptions remaining in the proof).
In the formulation above one should have been more careful in order to express that if r → r′ the
well-formedness of r′ follows from the well-formedness of r. In the case (∀-I) the additional claim
FV(r′) ⊆ FV(r) is used to guarantee this implication. This gives a better operational reading to
the reduction relation: We may actually calculate with terms by applying β-reduction and do
not have to check well-formedness over and over again.
Routinely we observe that the relations 7→, →whd and → are compatible with the renaming
convention.

Lemma 2.28 If r → r′, then FTV(r′) ⊆ FTV(r).

Proof Induction on the definition of →. The proof for clause (β) needs Lemma 2.12 and Lemma
2.17. �

4This shall mean that every clause has the implicit condition that every expression is in fact a term. Therefore,
in (→-E) we do not explicitly require that the types of r and s fit together, in (∀-I) we do not explicitly impose
the proviso and in (∀-E) we do not state that r is of universal type.

20 CHAPTER 2. THE BASIC FRAMEWORK

Define the reducing eliminations Ê→ and Ê∀ by setting

rρ→σÊ→sρ :=
{

t[xρ := s] , if r = λxρtσ

rs , else

r∀αρÊ∀σ :=
{

t[α := σ] , if r = Λαtρ

rσ , else

Hence, rs(= ∪ 7→)rÊ→s and rσ(= ∪ 7→)rÊ∀σ.

Lemma 2.29 If r ∈ NF and s neutral and s ∈ NF and rÊ→s is defined, then rÊ→s ∈ NF. If
r ∈ NF and rÊ∀σ is defined, then rÊ∀σ ∈ NF.

Proof Use case distinction on r ∈ NF and Lemma 2.25 and Lemma 2.26. �

Define the relation →∗ as the reflexive transitive closure of → and the relation →+ as the
transitive closure of →. If r →∗ r′ holds we say that r reduces in finitely many steps to r′, and
if r →+ r′ holds we say that r reduces in at least one step to r′.

Lemma 2.30 If r →∗ r′, then FV(r′) ⊆ FV(r), FTV(r′) ⊆ FTV(r) and r and r′ have the same
type.

Proof Trivial consequence of the respective statements for →. �

Lemma 2.31 If r → r′, then r[~x~ρ := ~s] → r′[~x~ρ := ~s] and r[~α := ~σ] → r′[~α := ~σ]. If s → s′,
then r[xρ := s] →∗ r[xρ := s′] (the number of steps is the number of free occurrences of xρ in r).

Proof Induction on the definition of → for the first two statements using Corollary 2.21, Corol-
lary 2.22, Lemma 2.13 and Lemma 2.18 (nearly everything we know on interchange of substitu-
tions) for the initial cases of the definition of →. The last statement is easily proved by induction
on r. �

Define nf := {r ∈ Λ|∀r′.r 6→ r′} as the set of normal terms with respect to →. Define the set of
weakly normalizing terms wn := {r ∈ Λ|∃r′ ∈ nf.r →∗ r′}.
Inductively define the set sn of strongly normalizing terms (with respect to →) by the following
clause:

If for every term r′ with r → r′ we have r′ ∈ sn, then r ∈ sn.

This is a strictly positive inductive definition because in the premise of the clause a reference
to sn is only made on the right side of a nonnested implication. The definition of sn even is an
accessibility inductive definition [BFPS81, p. 22] and hence sn the accessible part of →.

Lemma 2.32 sn is the set of terms r for which there is no infinite reduction sequence

r → r1 → r2 → . . .

Proof ⊆: By induction on r ∈ sn show that r has no infinite reduction sequence. Assume an
infinite reduction sequence r → r1 → r2 → r3 → . . . This gives an infinite reduction sequence
r1 → r2 → r3 → . . . which is impossible by induction hypothesis.
⊇: This is an instance of the principle of bar induction [Fef77, p. 942] which says that well-
foundedness of a relation implies the principle of (transfinite) induction over this relation: Simply
show that {r′|r →∗ r′} ⊆ sn by induction over → which is wellfounded on {r′|r →∗ r′} by
assumption. (The principle itself is very easily proved in classical set theory.) �

2.1. SYSTEM F 21

It will turn out that the use of the inductively defined set sn via induction makes proofs more
elegant than those which directly refer to the non-existence of infinite reduction sequences5.
These definitions will be used for any reduction relation → on terms. If every term of a system
is strongly normalizing w.r.t. →, then the system is called strongly normalizing w.r.t. →. If
→ is the canonical reduction relation for that system then we say that the system is strongly
normalizing. In this thesis → is always reserved for the reduction relation generated from β-
reduction and every system which gets a name is strongly normalizing (cf. chapter 9).

Lemma 2.33 If r ∈ nf and r′ is a subterm of r, then r′ ∈ nf.

Proof By induction on r show the statement for immediate subterms. �

Lemma 2.34 nf = NF, i. e., the normal terms are the terms in normal form.

Proof ⊆: Induction on r using Lemma 2.33 and making case analysis according to the head
form. ⊇: Induction on r ∈ NF. �

Define the set WN ⊆ Λ inductively as follows:

(V) If xρ~s is a term and the terms in ~s are in WN, then xρ~s ∈ WN.

(→-I) If r ∈ WN, then λxρr ∈ WN.

(β→) If (λxρr)s~s is a term and r[xρ := s]~s ∈ WN, then (λxρr)s~s ∈ WN.

(∀-I) If Λαr is a term and r ∈ WN, then Λαr ∈ WN.

(β∀) If (Λαr)σ~s is a term and r[α := σ]~s ∈ WN, then (Λαr)σ~s ∈ WN.

Lemma 2.35 WN ⊆ wn.

Proof Induction on WN using Lemma 2.34. �

Note that due to the unicity statement in the lemma on the head form, the definition of WN
is well-parsed in the sense, that any term can only enter WN by using a uniquely determined
clause with uniquely determined ingredients earlier entered into WN. Therefore, we may define
functions on WN by recursion on the definition.
Define the normalizing function Ω as a function from WN to Λ by recursion on WN and si-
multaneously prove that r →∗ Ω(r) ∈ NF for r ∈ WN (thus ensuring type coincidence and
compatibility with the variable convention) as follows:

(V) Ω(xρ~s) := xρΩ(~s), where Ω(~s) is the list of elements Ω(si) (setting Ω(σ) := σ).

(→-I) Ω(λxρr) := λxρΩ(r).

(β→) Ω((λxρr)s~s) := Ω(r[xρ := s]~s).

(∀-I) Ω(Λαr) := ΛαΩ(r).

(β∀) Ω((Λαr)σ~s) := Ω(r[α := σ]~s).
5In [Alt93b] the use of sn is seen as “one of the main technical contributions which simplify the formalization

of the proof” (p. 18) of strong normalization of system F. Note that it would be quite cumbersome to formalize
the notion of infinite reduction sequences and the height of a reduction tree in a system of computer-assisted
proof development such as LEGO (see the citations in [Alt93b]).

22 CHAPTER 2. THE BASIC FRAMEWORK

The proofs are always obvious. For reference purposes we formulate

Lemma 2.36 For every r ∈ WN, r →∗ Ω(r) ∈ NF.

Proof Inside the definition. �

The function Ω may be seen as providing a “big step semantics” for the terms.

Lemma 2.37 There is no closed term of type ∀αα in WN.

Proof Assume a closed term r∀αα ∈ WN. Then Ω(r) ∈ NF, and Ω(r) is also a closed term
of type ∀αα (due to Lemma 2.30). It is immediate from the definition of NF that therefore
Ω(r) = Λαs for a closed term sα ∈ NF. Such a term s does not exist (again due to the definition
of NF). �

Define the set SN ⊆ Λ inductively as follows:

(V) If xρ~s is a term and the terms in ~s are in SN, then xρ~s ∈ SN.

(→-I) If r ∈ SN, then λxρr ∈ SN.

(β→) If (λxρr)s~s is a term, s ∈ SN and r[xρ := s]~s ∈ SN, then (λxρr)s~s ∈ SN.

(∀-I) If Λαr is a term and r ∈ SN, then Λαr ∈ SN.

(β∀) If (Λαr)σ~s is a term and r[α := σ]~s ∈ SN, then (Λαr)σ~s ∈ SN.

Lemma 2.38 SN ⊆ WN.

Proof Trivial induction on SN. �

Lemma 2.39 sn ⊆ wn.

Proof Induction on sn: Let r ∈ sn. Assume the induction hypothesis that for all r′ with r → r′

we already have r′ ∈ wn. Either r ∈ nf ⊆ wn or there is an r′ with r → r′. By assumption we
have an r′′ ∈ nf with r′ →∗ r′′, hence r →∗ r′′ ∈ nf and therefore r ∈ wn. (Note that this proof
does not at all inspect the relation →.) �

In chapter 9 we show that SN ⊆ sn and that SN = Λ, implying that sn = WN = wn =
Λ and making the function Ω to a normalizing function for every term. (I like to call this
näıve reduction-free normalization because the definition of Ω does not depend on the notion of
reduction, but clearly models head reduction. Compare also [CV97].) Without this knowledge
a standardization theorem (see e. g. [Bar84]) would be needed in order to prove WN = wn. We
show that also without this knowledge we get sn ⊆ SN. We need a further definition. For every
term r ∈ sn define the height ν(r) ∈ N by induction on r ∈ sn as follows:

ν(r) := max{1 + ν(r′)|r → r′},

where max ∅ := 0. This is well-defined because there are always only finitely many terms to
which r reduces in one step.

Lemma 2.40 If r ∈ sn and r′ is a subterm of r, we have r′ ∈ sn and ν(r′) ≤ ν(r).

2.1. SYSTEM F 23

Proof By induction on r ∈ sn show the statement for immediate subterms (doing case analysis
according to the definition of immediate subterms). �

Lemma 2.41 r ∈ sn implies r ∈ SN.

Proof Main induction on ν(r) and side induction on r employing case analysis according to the
head form of r using Lemma 2.40 everywhere:
(V) Case xρ~s. For every term si, we have ν(si) ≤ ν(xρ~s). By the side induction hypothesis,
si ∈ SN, hence xρ~s ∈ SN.
(→-I) Case λxρr. ν(r) ≤ ν(λxρr). By the side induction hypothesis, r ∈ SN, hence λxρr ∈ SN.
(→-R) Case (λxρr)s~s. ν(r[xρ := s]~s) < ν((λxρr)s~s). By the main induction hypothesis, we get
r[xρ := s]~s ∈ SN. ν(s) ≤ ν((λxρr)s~s). By the side induction hypothesis, s ∈ SN. Altogether
(λxρr)s~s ∈ SN. (∀-I) and (∀-R) are somewhat easier to prove. �

It should be remarked that sn ⊆ SN is true irrespective of types and hence could also be proved
in a type-free version of the system. It will later (cf. chapter 9) turn out that the same is
true for SN ⊆ sn. (Of course, one has to distinguish the ∀-elimination by some device as e. g. a
constant symbol expressing any type.) It should also be remarked that ν is only used for ease of
presentation. If → were infinitely branching a more careful analysis would also allow to prove
the preceding lemma.
We conclude this section by giving a typical application of normalization, i. e., of the fact that
WN = Λ to be proved in chapter 9. The proof of the following lemma does not use it, but its
corollary does.

Lemma 2.42 If there is a closed term of type peirce(ρ)6 := ((α → ρ) → α) → α in NF, then
there is a closed term of type α → ρ.

Proof Let rpeirce(ρ) ∈ NF be closed. r is not of the form xσ~s because it is closed. Hence,
r = λx(α→ρ)→αsα with s ∈ NF and FV(s) ⊆ {x(α→ρ)→α}. Because α is not composed, s = yσ~s.
Because FV(s) ⊆ {x(α→ρ)→α}, yσ = x(α→ρ)→α and hence s = x(α→ρ)→αtα→ρ for t ∈ NF with
FV(t) ⊆ {x(α→ρ)→α}. If t = zτ~t, then zτ = x(α→ρ)→α and hence t = x(α→ρ)→αt1 which is
not type-correct. Therefore t = λzαuρ with u ∈ NF and FV(u) ⊆ {x(α→ρ)→α, zα}. Consider
u′ := u[x(α→ρ)→α := λhα→ρ.zα]. u′ : ρ and FV(u′) ⊆ {zα}. Hence, λzαu′ is a closed term of type
α → ρ. �

Corollary 2.43 If Λ = WN, then there is no closed term of type peirce(β) for β 6= α.

Proof If there were a closed rpeirce(ρ) ∈ Λ = WN, then Ω(r) ∈ NF closed and of the same type.
By the preceding lemma, there would be a closed term sα→β . Then by Λ = WN, (Ω(s))α→β ∈ NF
and closed. Therefore, Ω(s) cannot have the form xρ~s and hence Ω(s) = λxαt with tβ ∈ NF and
FV(t) ⊆ {xα}. Because the type of t is not composed, t has to be of the form yρ~t and due to
FV(t) ⊆ {xα}, yρ = xα. But this is incompatible with t : β 6= α. Contradiction. �

Acknowledgement: The idea of using such a characterization of the set of strongly normalizing
terms (at least for the untyped λ-calculus) was brought to my attention by [vRS95] and [Loa95].
The idea of using WN and Ω came from an attempt to “re-engineer” the typed operational
semantics in [Gog94] for the case of simply-typed lambda calculus7.

6The name stems from the Peirce formula ((p → q) → p) → p in first-order propositional logic where p and q
are atoms. Although classically true it is not provable in intuitionistic logic.

7In dependent type theory as studied in [Gog94] one cannot separate the definitions of WN and Ω which makes
typed operational semantics much more interesting. The essence of typed operational semantics is also shown in
[Gog95] for the case of simply-typed lambda calculus.

24 CHAPTER 2. THE BASIC FRAMEWORK

2.2 The system eF which extends F by the types 0, 1, pairs and
sums

We introduce some standard type constructs although they may be encoded in F even preserving
reduction (section 2.2.6). In later extensions this is not always possible (even not in PIT).
Moreover, the encoding is essentially impredicative (not only does it use the universal quantifier
but it also destroys strict positivity as defined in section 3.2). Finally, η-reduction would not be
preserved by the embedding, and + gives rise to additional rewrite rules such as permutative
conversions8 (called commuting conversions in [GLT89] and studied at length in [Pra71]; an
alternative normalization proof is given in [Lei75] and yet another in [Joa97]).

2.2.1 Types

The type system of eF is defined by adding the following clauses to the inductive definition of
Types for F:

(0) 0 ∈ Types.

(1) 1 ∈ Types.

(×) If ρ ∈ Types and σ ∈ Types, then ρ× σ ∈ Types.

(+) If ρ ∈ Types and σ ∈ Types, then ρ + σ ∈ Types.

The renaming convention will be followed as for system F as well as the dot notation. We assume
that ∀ binds stronger than all the binary connectives and that + and × bind stronger than →.
The definition of free variables of a type is extended in the expected way by the following clauses:

(0) FV(0) := ∅.

(1) FV(1) := ∅.

(×) FV(ρ× σ) := FV(ρ) ∪ FV(σ).

(+) FV(ρ + σ) := FV(ρ) ∪ FV(σ).

The definition remains compatible with the renaming convention.
The definition of ρ[~α := ~σ] is extended by the following clauses (as expected):

(0) 0[~α := ~σ] := 0.

(1) 1[~α := ~σ] := 1.

(×) (ρ× σ)[~α := ~σ] := ρ[~α := ~σ]× σ[~α := ~σ].

(+) (ρ + σ)[~α := ~σ] := ρ[~α := ~σ] + σ[~α := ~σ].

It is again compatible with the renaming convention.
We adopt the same naming convention.
It is very easy to see that the statements on types given for system F are also true for eF.

8It is possible to extend the normalization proofs as presented in this thesis to also cover permutative conver-
sions in a modular fashion.

2.2. THE TERM REWRITE SYSTEM EF 25

2.2.2 Terms

The definition of typed terms and their free variables for system F is extended by the following
clauses:

(0-E) If r ∈ Λ0, then rρ ∈ Λρ. FV(rρ) := FV(r).

(1-I) IN1 ∈ Λ1. FV(IN1) := ∅.

(×-I) If r ∈ Λρ and s ∈ Λσ, then 〈r, s〉 ∈ Λρ×σ. FV(〈r, s〉) := FV(r) ∪ FV(s).

(×-E) If r ∈ Λρ×σ, then rL ∈ Λρ and rR ∈ Λσ. FV(rL) := FV(r) and FV(rR) := FV(r).

(+-I) If r ∈ Λρ, then INLσr ∈ Λρ+σ. FV(INLσr) := FV(r). If r ∈ Λσ, then INRρr ∈ Λρ+σ.
FV(INRρr) := FV(r).

(+-E) If r ∈ Λρ+σ, s ∈ Λρ→τ and t ∈ Λσ→τ , then rst ∈ Λτ . FV(rst) := FV(r) ∪ FV(s) ∪
FV(t).

We will adopt all the conventions which were introduced for system F.
If r : ρ× σ, we say that r is of product type. If r : ρ + σ, we say that r is of sum type.
Notice that without typing information on the subterms we cannot see which elimination rule
(a rule which has an “E” in the name) is used. Ambiguities would e. g. arise with x∀ααα and
x0α (both in Λα) or with x(α→γ)→(β→γ)→γyα→γzβ→γ and xα+βyα→γzβ→γ (both in Λγ) if the
type of x is not shown. This phenomenon becomes a problem when one wants to speak about a
term of the form rρ or of the form rst. In definitions by recursion on the definition of terms the
problem is avoided by stating the name of the rule. As there are other ways of using terms we
introduce a notation for eliminations. The definition of terms may as for system F be rewritten
as follows (again leaving out the simultaneous definition of FV for terms):

(V) If x ∈ Vars, then xρ ∈ Λ.

(→-I) If x ∈ Vars and rσ ∈ Λ, then (λxρr)ρ→σ ∈ Λ.

(→-E) If rρ→σ ∈ Λ and sρ ∈ Λ, then (rs)σ ∈ Λ; also written as rE→s.

(∀-I) If rρ ∈ Λ, then (Λαr)∀αρ ∈ Λ, provided that α /∈ FV(σ) for any σ such that there is
an xσ in FV(r).

(∀-E) If r∀αρ ∈ Λ, then (rσ)ρ[α:=σ] ∈ Λ; also written as rE∀σ.

(0-E) If r0 ∈ Λ, then (rρ)ρ ∈ Λ; also written as rE0ρ.

(1-I) IN11 ∈ Λ.

(×-I) If rρ ∈ Λ and sσ ∈ Λ, then 〈r, s〉ρ×σ ∈ Λ.

(×-E) If rρ×σ ∈ Λ, then (rL)ρ ∈ Λ and (rR)σ ∈ Λ; also written as rE×L and E×R.

(+-I) If rρ ∈ Λ, then (INLσr)ρ+σ ∈ Λ. If rσ ∈ Λ, then (INRρr)ρ+σ ∈ Λ.

(+-E) If rρ+σ ∈ Λ, sρ→τ ∈ Λ and tσ→τ ∈ Λ, then (rst)τ ∈ Λ; also written as rE+τst or
shorter rE+st.

Extend the recursive definition of FTV(r) by the following clauses (as expected):

(0-E) FTV(rρ) := FTV(r) ∪ FV(ρ).

26 CHAPTER 2. THE BASIC FRAMEWORK

(1-I) FTV(IN1) := ∅.

(×-I) FTV(〈r, s〉) := FTV(r) ∪ FTV(s).

(×-E) FTV(rL) := FTV(r). FTV(rR) := FTV(r).

(+-I) FTV(INLσr) := FV(σ) ∪ FTV(r). FTV(INRρr) := FV(ρ) ∪ FTV(r).

(+-E) FTV(rst) := FTV(r) ∪ FTV(s) ∪ FTV(t).

The definition of r[~x~ρ := ~s] together with the proof of rρ[~x~ρ := ~s] : ρ and FV(r[~x~ρ := ~s]) =
(FV(r) \ ~x~ρ) ∪

⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i} (i. e., the statement of Lemma 2.10)
is extended by the following clauses:

(0-E) (rρ)[~x~ρ := ~s] := r[~x~ρ := ~s]E0ρ. Proof obvious.

(1-I) IN1[~x~ρ := ~s] := IN1. Proof trivial.

(×-I) 〈r, s〉[~x~ρ := ~s] := 〈r[~x~ρ := ~s], s[~x~ρ := ~s]〉. Proof obvious.

(×-E) (rL)[~x~ρ := ~s] := r[~x~ρ := ~s]L, (rR)[~x~ρ := ~s] := r[~x~ρ := ~s]R. Proof obvious.

(+-I) (INLσr)[~x~ρ := ~s] := INLσr[~x~ρ := ~s], (INRρr)[~x~ρ := ~s] := INRρr[~x~ρ := ~s]. Proof
obvious.

(+-E) (rst)[~x~ρ := ~s] := r[~x~ρ := ~s]E+s[~x~ρ := ~s]t[~x~ρ := ~s]. Proof obvious.

Note that the new rules are in itself unproblematic but that the above statements have to be
proved simultaneously in order to deal with the rules of system F not shown again.
The definition of r[~α := ~σ] together with the proof of rρ[~α := ~σ] : ρ[~α := ~σ] and FV(r[~α := ~σ]) =
{yτ [~α:=~σ]|yτ ∈ FV(r)} is extended by the following clauses:

(0-E) (rρ)[~α := ~σ] := r[~α := ~σ]E0ρ[~α := ~σ]. Proof obvious.

(1-I) IN1[~α := ~σ] := IN1. Proof trivial.

(×-I) 〈r, s〉[~α := ~σ] := 〈r[~α := ~σ], s[~α := ~σ]〉. Proof obvious.

(×-E) (rL)[~α := ~σ] := r[~α := ~σ]L, (rR)[~α := ~σ] := r[~α := ~σ]R. Proof obvious.

(+-I) (INLσr)[~α := ~σ] := INLσ[~α:=~σ]r[~α := ~σ], (INRρr)[~α := ~σ] := INRρ[~α:=~σ]r[~α := ~σ].
Proof obvious.

(+-E) (rst)[~α := ~σ] := r[~α := ~σ]E+s[~α := ~σ]t[~α := ~σ]. Proof obvious.

Note that the families of term-forming constructs (INLρ)ρ and (INRρ)ρ are polymorphic in the
sense that type substitution on terms also affects those indices.
The statements made in section 2.1.2 are valid in eF, too.
The general definition of immediate subterms of a term gives the following extension for system
eF: IN1 has no immediate subterm, rE0ρ, rL, rR, INLσr and INRρr have only the immediate sub-
term r, 〈r, s〉 has exactly the immediate subterms s and t and rE+st has exactly the immediate
subterms r, s and t.
Let us interpret eF via the Curry-Howard isomorphism: The type 0 represents ⊥, 1 stands for
>, × for ∧ and + for ∨. The term formation rules are all valid in intuitionistic second-order
propositional logic and give a natural deduction proof system. The reading as a proof system
hopefully makes it easier to accept my decision to write eliminations as application: The main
premise is written to the left, the side premisses are written to the right. And the terms are
simply a linear notation for the deduction trees.

2.2. THE TERM REWRITE SYSTEM EF 27

2.2.3 Head form and normal forms

For terms r and finite lists ~s of typed terms and types and symbols L and R we define when r~s
is defined and in that case a term it denotes by adding the following clauses to the inductive
definition given for system F:

(0-E) If r~s : 0, then r(~s, ρ) := (r~s)ρ.

(×-E) If r~s : ρ× σ, then r(~s, L) := (r~s)L and r(~s,R) := (r~s)R.

(+-E) If r~s : ρ + σ, s : ρ → τ and t : σ → τ , then r(~s, s, t) := (r~s)st.

We will use the same convention for r~s as before.
The statement of Lemma 2.23 hold also true for eF. Lemma 2.24 has to be extended to:

Lemma 2.44 (Head form) Every term has exactly one of the following forms:

(V) xρ~s

(→-I) λxρr

(→-R) (λxρr)s~s

(∀-I) Λαr

(∀-R) (Λαr)σ~s

(1-I) IN1

(×-I) 〈r, s〉

(×-R) 〈r, s〉L~s, 〈r, s〉R~s

(+-I) INLρr, INRρr

(+-R) INLρrst~s, INRρrst~s

Proof Induction on terms (unicity again being obvious). Consider e. g. the case (→-E): If rρ→σ

has one of the forms (V), (→-R), (∀-R), (×-R) or (+-R), rs has the same form. Otherwise,
by induction hypothesis and because r is of arrow type, r is of form (→-I), hence rs of form
(→-R). �

Extend the inductive definition of the set NF for system F by the following clauses:

(1-I) IN1 ∈ NF.

(×-I) If r ∈ NF and s ∈ NF, then 〈r, s〉 ∈ NF.

(+-I) If r ∈ NF, then INLρr ∈ NF and INRρr ∈ NF.

The statements made in section 2.1.3 are valid in eF, too.
A general remark concerning the proofs of statements which are interpreted in an extended
system is in order. If e. g. the statement of Lemma 2.25 is proved for system eF also by induction
on r ∈ NF, one has to consider all the defining clauses for NF in eF. The clauses for NF of system
F appear verbatim in the definition of NF for eF, but they have a different interpretation simply
because their variables are ranging over a larger domain. This does no harm to the validity
of the respective clauses in the proof as they also can simply be reinterpreted as ranging over

28 CHAPTER 2. THE BASIC FRAMEWORK

this larger domain. But this reinterpretation is not always possible, e. g. if in the original proof
clauses a case analysis on the terms is carried out. Then a “quadratic effect” on the proof
urges us to extend the proof clauses to the new system and add completely new clauses. In
my presentation there is hardly any such “quadratic reasoning” because embedded analyses are
normally carried out beforehand and encapsulated in a lemma which has to be extended to the
larger system before extending the lemma in consideration.
Lemma 2.44 shows a different phenomenon. The statement of Lemma 2.24 had to be extended
to cover eF. Its proof by induction on terms has the additional clauses of the extended term
definition, and the proof clauses corresponding to the term definition of system F have to be
redone in order to capture the new statement. But as was shown in the proof in the case of
(→-E), this extension did not need any new arguments. If one used the expression “of any of
the forms with an R in the name” the original proof clause would not have needed any change.
Therefore, I consider this extension not to be “quadratic” in the following

Meta-Convention on Extensions: If a proof of a statement in the extension of a system is not
explicitly given and the statement is the same as that for the original system or an extension of
a statement in the original system, only “non-quadratic reasoning” will be needed for the proof.
(This is nothing but a promise by the author clarifying the words “analogous” and “similar”
which are thus avoided for system extensions.)

2.2.4 Reduction

Define the binary relation 7→ on terms by giving the only cases where it holds as follows:

(β→) (λxρr)s 7→ r[xρ := s]
(β∀) (Λαr)σ 7→ r[α := σ]
(β×) 〈r, s〉L 7→ r

〈r, s〉R 7→ s
(β+) INLρrst 7→ sr

INRρrst 7→ tr

As for system F the objects on the right side are automatically terms if the respective object on
the left is a term, and the types are equal.
The relation →whd is defined as for system F and has the same properties as stated there.
Extend the inductive definition of the relation → for system F by the following clauses (and
prove that if r → r′, then r and r′ have the same type and FV(r′) ⊆ FV(r)):

(0-E) If r → r′, then rρ → r′ρ.

(×-I) If r → r′, then 〈r, s〉 → 〈r′, s〉. If s → s′, then 〈r, s〉 → 〈r, s′〉.

(×-E) If r → r′, then rL → r′L and rR → r′R.

(+-I) If r → r′, then INLρr → INLρr
′ and INRρr → INRρr

′.

(+-E) If r → r′, then rst → r′st. If s → s′, then rst → rs′t. If t → t′, then rst → rst′.

(The proofs were trivial. See also footnote 4 concerning well-formedness.)
In the light of the Curry-Howard isomorphism the reduction rules are again completely justified
by the two properties which we just proved simultaneously with the definition: They are valid
proof transformation rules.

2.2. THE TERM REWRITE SYSTEM EF 29

Define the reducing eliminations Ê→ and Ê∀ as before and set

rρ×σÊ×L :=
{

s , if r = 〈sρ, tσ〉
rE×L , else

rρ×σÊ×R :=
{

t , if r = 〈sρ, tσ〉
rE×R , else

Hence, rE×L(= ∪ 7→)rÊ×L and rE×R(= ∪ 7→)rÊ×R.
The statement of Lemma 2.29 is true for eF.

Lemma 2.45 If rρ×σ ∈ NF, then rÊ×L ∈ NF and rÊ×R ∈ NF.

Proof Use case distinction on r ∈ NF. �

Define the reducing +-elimination Ê+ by

rρ+σÊ+st :=


sr′ , if r = INLσr′

tr′ , if r = INRρr
′

rE+st , else

Obviously, this reducing elimination does not preserve normal forms because s and t may be
λ-abstractions9. It will be used in section 8.2 for the confluence proof.
Extend the inductive definition of WN for system F by the following clauses:

(1-I) IN1 ∈ WN.

(×-I) If r ∈ WN and s ∈ WN, then 〈r, s〉 ∈ WN.

(β×) If r~s ∈ WN then 〈r, s〉L~s ∈ WN. If s~s ∈ WN then 〈r, s〉R~s ∈ WN.

(+-I) If r ∈ WN, then INLρr ∈ WN and INRρr ∈ WN.

(β+) If (INLρr)st~s is a term and sr~s ∈ WN, then (INLρr)st~s ∈ WN. If (INRρr)st~s is a
term and tr~s ∈ WN, then (INRρr)st~s ∈ WN.

WN is again well-parsed and therefore definitions by recursion on WN are possible. Extend the
recursive definition of the function Ω from WN to Λ and the simultaneous proof of r →∗ Ω(r) ∈
NF for r ∈ WN by the following clauses:

(1-I) Ω(IN1) := IN1.

(×-I) Ω(〈r, s〉) := 〈Ω(r),Ω(s)〉.

(β×) Ω(〈r, s〉L~s) := Ω(r~s). Ω(〈r, s〉R~s) := Ω(s~s).

(+-I) Ω(INLρr) := INLρΩ(r) and Ω(INRρr) := INRρΩ(r).

(β+) Ω((INLρr)st~s) := Ω(sr~s). Ω((INRρr)st~s) := Ω(tr~s).

The proofs are always obvious.
Extend the inductive definition of SN for system F by the following clauses:

(1-I) IN1 ∈ SN.
9One could optimize it but unless one studies additional conversions for sum types such as the variable elimi-

nation reduction sketched in appendix B this additional effort is not needed.

30 CHAPTER 2. THE BASIC FRAMEWORK

(×-I) If r ∈ SN and s ∈ SN, then 〈r, s〉 ∈ SN.

(β×) If r~s ∈ SN and s ∈ SN , then 〈r, s〉L~s ∈ SN.
If s~s ∈ SN and r ∈ SN , then 〈r, s〉R~s ∈ SN.

(+-I) If r ∈ SN, then INLρr ∈ SN and INRρr ∈ SN.

(β+) If (INLρr)st~s is a term and sr~s ∈ SN and t ∈ SN , then (INLρr)st~s ∈ SN.
If (INRρr)st~s is a term and tr~s ∈ SN and s ∈ SN , then (INRρr)st~s ∈ SN.

Every statement made in section 2.1.4 for system F (on nf, NF, wn, WN, Ω, SN and sn) is also
true for eF.
We may formulate a more conspicuous version of Lemma 2.37:

Lemma 2.46 There is no closed term of type 0 in WN.

Proof Assume a closed term r0 ∈ WN. Then Ω(r) ∈ NF, and Ω(r) is also a closed term of type
0 (due to the statement of Lemma 2.30). It is immediate from the definition of NF that this is
impossible. �

If we can show that every term is in WN, we may infer that the logical system represented by eF
(via Curry-Howard) is consistent (there is no closed proof of 0 which represents ⊥). Therefore
we have to expect a logically very demanding proof of WN = Λ which uses means beyond second-
order propositional logic. Because the number-theoretic functions which are provably total in
second-order arithmetic are representable in system eF, the proof has even to go beyond the
means of second-order arithmetic (see [GLT89], chapter 15, for this result).

2.2.5 Embeddings

An embedding of a typed term rewrite system S into a typed term rewrite system S ′ is a function
−′ (the − sign represents the indefinite argument of the function ′) which assigns to every type
ρ of S a type ρ′ of S ′ and to every term r : ρ of S a term r′ : ρ′ of S ′ such that the following
implication holds: If r → s in S, then r′ →+ s′ in S ′.
The main motivation for studying such embeddings is the inference of strong normalization for
the source system S from strong normalization of the target system S ′. This will now be made
precise.
Recall that the transitive closure →+ of the relation → is inductively defined by10:

(→) If r → s, then r →+ s.

(trans) If r →+ s and s →+ t, then r →+ t.

The reflexive transitive closure →∗ of the relation → is inductively defined by:

(→) If r → s, then r →∗ s.

(refl) r →∗ r.

(trans) If r →∗ s and s →∗ t, then r →∗ t.

Lemma 2.47 1. →+⊆→∗.
10In case of familiarity with this presentation one should only read the remark at the end of this section.

2.2. THE TERM REWRITE SYSTEM EF 31

2. →∗=→+ ∪ {(r, r)|r ∈ Λ}.

3. r →∗ s →+ t implies r →+ t.

4. r →+ t implies that there is an s such that r → s →∗ t.

Proof The first statement is trivial as the set of clauses for →+ is a subset of the set of clauses
for →∗. 2.: ⊇: by 1. and (refl). ⊆: Induction on r →∗ s. Cases (→) and (refl): Trivial. Case
(trans): Assume r →∗ s →∗ t. By induction hypothesis r →+ s or r = s. Also by induction
hypothesis s →+ t or s = t. In each of the four cases we get r →+ t or r = t. 3.: Follows
from 2. 4.: Induction on r →+ t. Case (→): Set s := t. Case (trans): Assume r →+ t0 →+ t.
By induction hypothesis there is an s such that r → s →∗ t0. t0 →+ t implies t0 →∗ t by 1.
s →∗ t0 →∗ t implies s →∗ t by transitivity. (One could also use 3. and 1.) �

Let sn be the set of strongly normalizing terms with respect to → as usual. Let sn+ be the set
of strongly normalizing terms with respect to →+.

Lemma 2.48 sn+ = sn.

Proof ⊆: Induction on r ∈ sn+: Assume that for all s with r →+ s we have s ∈ sn. Show
r ∈ sn. Let r → s. It suffices to show s ∈ sn. This follows because →⊆→+. ⊇: Induction on
r ∈ sn: Assume that for all s with r → s we have s ∈ sn+. Show r ∈ sn+. Let r →+ t. It suffices
to show t ∈ sn+. Due to Lemma 2.47 (4) there is an s such that r → s →∗ t. Hence, s ∈ sn+.
Due to Lemma 2.47 (2), s = t or s →+ t. The first case is trivial, in the second t ∈ sn+ because
of the definition of sn+. �

Lemma 2.49 (Main Lemma on Embeddings) Assume an embedding −′ of S in S ′. Let sn
be the set of strongly normalizing terms in S and sn′ be the set of strongly normalizing terms
in S ′. Then for every term r of S the following holds: If r′ ∈ sn′, then r ∈ sn.

Proof Induction on r′ ∈ (sn′)+, where (sn′)+ is the set of terms in S ′ which are strongly
normalizing with respect to →+: Lemma 2.48 shows that this set is the same as sn′. However,
we use the induction principle of (sn′)+: Assume that for every term t of S ′ with r′ →+ t and
every term s of S with s′ = t we have s ∈ sn. We have to show r ∈ sn. Let r → s. It suffices to
show s ∈ sn. The definition of embeddings implies r′ →+ s′. �

Another application of Lemma 2.48 is the following which will be used in section 4.7.1:

Lemma 2.50 If r →+ r, then r /∈ sn.

Proof Show that Λ\{r} satisfies the defining clause of sn+: Assume a term s such that for all s′

with s →+ s′ we have s′ 6= r. We have to show s 6= r. This is trivial. Hence, sn = sn+ ⊆ Λ \ {r}
and consequently r /∈ sn. �

It should be noted that this lemma is trivial if sn is defined via the notion of infinite reduction
sequences. The other statements of this section would have been obvious, too. Lemma 2.48
states that there is no difference between sn and sn+. Nevertheless the statement “induction on
r ∈ sn+” shall always express that induction along the inductive definition of sn+ is carried out,
i.e. “course-of-value induction”.
For convenience define the binary relations →n, n ∈ N, by recursion on n as follows:

r →0 s :⇔ r = s and r →n+1 s :⇔ ∃t.r → t ∧ t →n s.

32 CHAPTER 2. THE BASIC FRAMEWORK

2.2.6 Embedding system eF in system F

The result is essentially not new. See e. g. [GLT89, pp. 84f] for an exposition. Perhaps it is
interesting to see how many details have to be checked in this section. My interest concentrates
on the fact that the encoding of the types and type constructs is reduction-preserving as will
be the case for most of the encodings described in this work. And because β-reduction for →
and ∀ is term and type substitution it is natural that substitution issues and therefore also
considerations on variables dominate the “details”.
For every type ρ of system eF define the type ρ′ of system F by recursion on ρ and simultaneously
prove that FV(ρ′) = FV(ρ) as follows:

(V) α′ := α.

(→) (ρ → σ)′ := ρ′ → σ′.

(∀) (∀αρ)′ := ∀αρ′.

(0) 0′ := ∀αα.

(1) 1′ := ∀α.α → α.

(×) (ρ× σ)′ := ∀α.(ρ′ → σ′ → α) → α for α /∈ FV(ρ) ∪ FV(σ).

(+) (ρ + σ)′ := ∀α.(ρ′ → α) → (σ′ → α) → α for α /∈ FV(ρ) ∪ FV(σ).

(The proofs were obvious.) This definition is compatible with the variable conventions for the
systems F and eF. The rules (V), (→) and (∀) are called the homomorphic type rules for F.

Lemma 2.51 (ρ[~α := ~σ])′ = ρ′[~α := ~σ′].

Proof Induction on ρ. �

From now on we usually omit the type of a typed term variable except at binding occurrences
(that is directly behind the λ) if it is the type of the innermost binding occurrence of this
untyped variable, e. g. we write λxαx instead of λxαxα, but do not change λxαλxα→αxα because
λxαλxα→αx would mean λxαλxα→αxα→α. Of course, writing such a term is no good style.
For every term rρ of system eF define the term r′ of system F by recursion on r and simultaneously
prove that r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as follows:

(V) (xρ)′ := xρ′ . Proof trivial.

(→-I) (λxρr)′ := λxρ′r′, where we may assume that for every xσ ∈ FV(r) we have σ = ρ.
Proof obvious.

(→-E) (rs)′ := r′s′. Proof obvious.

(∀-I) (Λαr)′ := Λαr′. Proof obvious (Well-definedness follows from the claim on FV(r)).

(∀-E) (rσ)′ := r′σ′. Proof obvious.

(0-E) (rρ)′ := r′E∀ρ′. Proof obvious.

(1-I) IN1′ := Λαλxαx. Proof obvious.

(×-I) 〈rρ, sσ〉′ := Λαλzρ′→σ′→α.zr′s′ for α /∈ FTV(〈r, s〉) and z /∈ FV(r) ∪ FV(s). Proof
obvious (use Lemma 2.8).

2.3. EXTENSION BY INFIMUM TYPES 33

(×-E) (rρ×σL)′ := r′E∀ρ′(λxρ′λyσ′x) (for x 6= y). (rρ×σR)′ := r′E∀σ′(λxρ′λyσ′y) (again
for x 6= y). Proof obvious (use Lemma 2.8).

(+-I) (INLσrρ)′ := Λαλxρ′→αλyσ′→α.xr′ for α /∈ FTV(INLσrρ) and x, y /∈ FV(r) (with x 6=
y). (INRρr

σ)′ := Λαλxρ′→αλyσ′→α.yr′ for α /∈ FTV(INRρr
σ) and also x, y /∈ FV(r)

(with x 6= y). Proof obvious (use Lemma 2.8).

(+-E) (rE+τst)′ := r′E∀τ ′s′t′. Proof obvious (use Lemma 2.8).

This definition is again compatible with the variable conventions for F and eF. The rules (V),
(→-I), (→-E), (∀-I) and (∀-E) are called the homomorphic term rules for F.
Note that the condition in (→-I) prevents us from setting e. g. (λx∀ααx0)′ := λx∀ααx∀αα.

Lemma 2.52 (r[~x~ρ := ~s~ρ])′ = r′[~x~ρ′ := ~s ′] and (r[~α := ~σ])′ = r′[~α := ~σ′].

Proof Induction on r. �

Lemma 2.53 If r → r̂, then r′ →+ r̂′, i. e., −′ is an embedding of eF in F.

Proof Induction on r → r̂: The cases (β→) and (β∀) follow immediately from Lemma 2.52.
(β×): (〈rρ, sσ〉L)′ = (Λαλzρ′→σ′→α.zr′s′)ρ′(λxρ′λyσ′x)

→ (λzρ′→σ′→ρ′ .zr′s′)(λxρ′λyσ′x)
→ (λxρ′λyσ′x)r′s′

→ (λyσ′r′)s′

→ r′

We used Lemma 2.8, Corollary 2.2 and Lemma 2.16 for the first reduction step and Lemma 2.11
and FV(r′) = {xσ′ |xσ ∈ FV(r)} and FV(s′) = {xσ′ |xσ ∈ FV(s)} (implying z /∈ FV(r′) ∪ FV(s′))
for the second. The case with R in place of L is treated similarly.
(β+): ((INLσrρ)sρ→τ tσ→τ)′ = (Λαλxρ′→αλyσ′→α.xr′)τ ′s′t′

→ (λxρ′→τ ′λyσ′→τ ′ .xr′)s′t′

→ (λyσ′→τ ′ .s′r′)t′ where we assume that yσ′→τ ′ /∈ FV(s′)
→ s′r′ = (sr)′

We used the same lemmas as for the case (β×). The case with INR in place of INL is treated
similarly.
The other clauses are easily proved by using the induction hypothesis. �

2.3 Extension by infimum types

Infimum types are introduced to give a clear understanding of the embedding of monotone
inductive types with iteration (and no recursion, more specifically: of varEMIT–rec) into eF
carried out in section 4.3.3.
The following motivation11 could be made clear by using modified realizability as indicated in
the introduction.
Let (U,≤) be a complete lattice, i. e., U is a non-empty set and ≤ is a partial ordering on U
(≤ is a reflexive, antisymmetric and transitive relation on U) and for every M⊆ U there is an
infimum (greatest lower bound, meet)

∧
M and a supremum (least upper bound, join)

∨
M in

U . It is well-known that for M⊆ U , we have∨
M =

∧
{M ∈ U |∀M ′ ∈M.M ′ ≤ M},

11I got my motivation for this extension from reading in [Tat94] on greatest lower bound inductive definitions
which in my setting would be nothing else than studying iα.ρ → α instead of µαρ. I preferred to study general
iαρ and later (in section 4.3.3) embed varEMIT–rec into IT by only using infimum types of the above form.

34 CHAPTER 2. THE BASIC FRAMEWORK

i. e., the supremum of a set is12 the infimum of all upper bounds of that set. Hence, we may
exclusively concentrate on infima.
There are two defining properties of infima: I =

∧
M iff ∀M ∈ M.I ≤ M (I is a lower bound

of M) and ∀M ∈ U.(∀M ′ ∈ M.M ≤ M ′) ⇒ M ≤ I (I is maximal with respect to being lower
bound of M).
Hence, we have two rules for

∧
M:

(
∧

-I) ∀M ∈ U.(∀M ′ ∈M.M ≤ M ′) ⇒ M ≤
∧
M

(
∧

-E) ∀M ∈M.
∧
M≤ M

Now let (U,⊆) be a complete lattice of sets with set inclusion as partial ordering (⊆ will always
denote set inclusion also in the later chapters) and let |U | :=

∧
∅ be its underlying set of

elements. Let x, y always denote elements of |U | and M , M ′ elements of U .
The (implicitly universally quantified) rules now read (after some rearrangement)

(
∧

-I) (∀M ′.M ′ ∈M⇒ ∀y(y ∈ M ⇒ y ∈ M ′)) ⇒ x ∈ M ⇒ x ∈
∧
M

(
∧

-E) x ∈
∧
M⇒ M ∈M⇒ x ∈ M

Note that we associate ⇒ to the right as we do for → between types.
This is the motivation for the infimum types to be defined in this section. We model elements
of U and also statements on elements of U by types. Model “M ∈ M” by ρ[α := τ], if M is
modelled by λαρ and M by τ . We introduce a new type iαρ to model

∧
M. It will always be the

case that elements of |U | are irrelevant to the interpretation of lattice-theoretic concepts in our
typed systems. We try to interpret the rule (

∧
-I): Model M by τ . The quantifier over elements

of U is interpreted by ∀ and hence the truth of (∀M ′.M ′ ∈ M ⇒ ∀y(y ∈ M ⇒ y ∈ M ′)) by
some term of type ∀α.ρ → τ → α (of course with α /∈ FV(τ)) and the truth of x ∈ M by a term
of type τ . We infer the truth of x ∈

∧
M which will be modelled by some term of type iαρ

constructed out of the two terms. Hence, we have the rule of infimum introduction

(i-I) If `∀α.ρ→τ→α ∈ Λ and tτ ∈ Λ (with α /∈ FV(τ)) then (Ciαρ`t)iαρ ∈ Λ.

Now interpret (
∧

-E): Model M by σ. The truth of x ∈
∧
M is interpreted by a term of type

iαρ and the truth of M ∈ M by a term of type ρ[α := σ]. We infer the truth of x ∈ M , which
will be modelled by a construction of a term of type σ out of the two other terms. This gives
the rule of infimum elimination

(i-E) If riαρ ∈ Λ and sρ[α:=σ] ∈ Λ, then (rs)σ ∈ Λ.

2.3.1 Extension of the type system by infimum types

The type system of the extension by infimum types is defined by adding the following clause to
the inductive definition of Types for eF:

(i) If α ∈ Typevars and ρ ∈ Types, then iαρ ∈ Types.

The variable α in iαρ is considered to be bound by i in exactly the same way as α is bound in
∀αρ by ∀. Hence, the renaming convention for bound type variables in types will be extended
accordingly. i is assumed to syntactically bind stronger than →, × and +, as was done for ∀.
The definition of FV(ρ) for system eF is extended by the following clause:

12This fact may be spelled out constructively: The system of supremum types motivated in the same fashion
may be embedded into the system of infimum types and vice versa. Note that this includes preservation of
β-reduction for infimum and supremum types.

2.3. EXTENSION BY INFIMUM TYPES 35

(i) FV(iαρ) := FV(ρ) \ {α}.

The definition remains compatible with the renaming convention.
The definition of ρ[~α := ~σ] is extended by the following clause:

(i) (iαρ)[~α := ~σ] := iα.ρ[~α := ~σ], where we assume that α /∈ ~α ∪ FV(~σ).

It is again compatible with the renaming convention.
We adopt the same naming convention.
The statements on types given for system F are also true in this extension as for the time being,
i and ∀ are only different because of different names. If one added e. g. the existential quantifier
∃ to the system (see section 2.4.2) the same procedure would have to take place. This suggests
introducing the concept of abstracting a type variable α in a type ρ the result of which is denoted
by λαρ. The λ hints at our variable convention because it is traditional to adopt this convention
whenever one deals with λ-abstraction. ∀, i and ∃ would then simply be constants which applied
to an abstracted type give another type, e. g. ∀αρ would be replaced by ∀(λαρ). I decided not
to use such a framework, but nevertheless have to introduce the concept of abstracted types for
dealing with terms of positive inductive types (which are defined in section 3.2).

2.3.2 The term rewrite system IT of infimum types

The (second) definition of typed terms and their free variables for system eF is extended by the
following clauses:

(i-I) If `∀α.ρ→τ→α ∈ Λ and tτ ∈ Λ (with α /∈ FV(τ))13, then (Ciαρ`t)iαρ ∈ Λ and
FV(Ciαρ`t) := FV(`) ∪ FV(t).

(i-E) If riαρ ∈ Λ and sρ[α:=σ] ∈ Λ, then (rs)σ ∈ Λ (also written as rEiσs or shorter rEis)
and FV(rs) := FV(r) ∪ FV(s).

This definition is again compatible with the renaming convention for bound type variables.
If r : iαρ, we say that r is of infimum type. We extend the naming convention by assuming that
` always denotes a term.
If α ∈ FV(ρ) then σ can be read off ρ[α := σ] and therefore the type of the term rs is determined
by r and s. Otherwise rs can have any type. Because we want to have the uniqueness of the
type of a term (Lemma 2.7) we have to take the notation rEiσs as the “true” term. However,
in theoretic studies on the system IT it is quite unusual to focus specifically on cases where
α /∈ FV(ρ) and therefore the appearance of σ in the string which represents the type of sρ[α:=σ]

clearly indicates the type σ of rs.
Extend the recursive definition of FTV(r) by the following clauses:

(i-I) FTV(Ciαρ`t) := FV(iαρ) ∪ FTV(`) ∪ FTV(t).

(i-E) FTV(rs) := FTV(r) ∪ FV(σ) ∪ FTV(s) (Recall the convention on the type σ of rs).

13Note that without this condition the renaming convention for bound type variables would fail. Therefore,
conditions of this kind may be left implicit by tacitly assuming that every definition has an appropriate reading
which is compatible with the variable convention and by taking this reading for the “true” definition. Nevertheless,
the important side conditions will always be indicated in parentheses.

Because of α /∈ FV(τ) one could also require that ` : τ → ∀α.ρ → α. But then there would be no point in using
this ` and tτ and we could use the rule ` : ∀α.ρ → α ⇒ Ciαρ` : iαρ instead which would result in the embedding
into F becoming even more trivial. The reason for keeping to the original definition is the exact correspondence
with the lattice-theoretic reasoning.

36 CHAPTER 2. THE BASIC FRAMEWORK

The definition of r[~x~ρ := ~s] together with the proof of rρ[~x~ρ := ~s] : ρ and FV(r[~x~ρ := ~s]) =
(FV(r) \ ~x~ρ) ∪

⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i} (i. e., the statement of Lemma 2.10)
is extended by the following clauses:

(i-I) (Ciαρ`t)[~x~ρ := ~s] := Ciαρ`[~x~ρ := ~s]t[~x~ρ := ~s]. Proof obvious.

(i-E) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]Eis[~x~ρ := ~s]. Proof obvious.

The definition of r[~α := ~σ] together with the proof of rρ[~α := ~σ] : ρ[~α := ~σ] and FV(r[~α := ~σ]) =
{yτ [~α:=~σ]|yτ ∈ FV(r)} is extended by the following clauses:

(i-I) (Ciαρ`t)[~α := ~σ] := C(iαρ)[~α:=~σ]`[~α := ~σ]t[~α := ~σ]. Proof obvious.

(i-E) (rs)[~α := ~σ] := r[~α := ~σ]Ei(σ[~α := ~σ])s[~α := ~σ]. Proof obvious.

The statements made in section 2.1.2 are valid in IT, too.
The general definition of immediate subterms of a term gives the following extension for sys-
tem IT: Ciαρ`t has exactly the immediate subterms ` and t and rEis has exactly the immediate
subterms r and s.
Extend the inductive definition of r~s for system eF as follows:

(i-E) If r~s : iαρ and s : ρ[α := σ], then r(~s, s) := (r~s)s.

The statement of Lemma 2.23 holds also true for IT.

Lemma 2.54 (Head form) Every term has either exactly one of the forms given in Lemma
2.44 or exactly one of the following forms:

(i-I) Ciαρ`t

(i-R) (Ciαρ`t)s~s

Proof Induction on terms. �

Extend the inductive definition of the set NF for system eF by the following clause:

(i-I) If Ciαρ`t is a term and ` ∈ NF and t ∈ NF, then Ciαρ`t ∈ NF.

The statements made in section 2.1.4 are all valid in IT.
Define the relation 7→ as for system eF, but add the following clause:

(βi) (Ciαρ`t)Eiσs 7→ `σst

As for system eF the object on the right side is automatically a term if the respective object on
the left is a term (note that τ [α := σ] = τ), and the types are equal.
The relation →whd is defined as for system F and has the same properties as stated there.
Extend the inductive definition of the relation → for system eF by the following clauses (and
prove that if r → r′, then r and r′ have the same type and FV(r′) ⊆ FV(r)):

(i-I) If ` → `′, then Ciαρ`t → Ciαρ`
′t. If t → t′, then Ciαρ`t → Ciαρ`t

′.

(i-E) If r → r′, then rEis → r′Eis. If s → s′, then rEis → rEis
′.

(The proofs were trivial.)
Extend the inductive definition of WN for system eF by the following clauses:

2.3. EXTENSION BY INFIMUM TYPES 37

(i-I) If Ciαρ`t is a term and ` ∈ WN and t ∈ WN, then Ciαρ`t ∈ WN.

(βi) If (Ciαρ`t)Eiσs~s is a term and `σst~s ∈ WN, then (Ciαρ`t)Eiσs~s ∈ WN.

Again definition by recursion on WN is admissible. Extend the recursive definition of the function
Ω from WN to Λ and the simultaneous proof of r →∗ Ω(r) ∈ NF for r ∈ WN by the following
clauses:

(i-I) Ω(Ciαρ`t) := CiαρΩ(`)Ω(t).

(βi) Ω((Ciαρ`t)Eiσs~s) := Ω(`σst~s).

The proofs are always obvious.
Extend the definition of SN for system eF by the following clauses:

(i-I) If Ciαρ`t is a term and ` ∈ SN and t ∈ SN, then Ciαρ`t ∈ SN.

(βi) If (Ciαρ`t)Eiσs~s is a term and `σst~s ∈ SN, then (Ciαρ`t)Eiσs~s ∈ SN.

The only difference between the i-clauses for SN and WN is the name of the defined set.
Every statement made in section 2.1.4 for system F (on nf, NF, wn, WN, Ω, SN and sn) is also
true for IT.

2.3.3 The embedding of system IT in system eF

As a motivation let (U,⊆) be a complete lattice where the infimum is always given by set
intersection, i. e., for M ⊆ U ,

∧
M =

⋂
M = {x|∀M ∈ U.M ∈ M ⇒ x ∈ M}. (We use the

same conventions as in the introduction to infimum types.) Hence

x ∈
∧
M⇔ ∀M.(M ∈M⇒ x ∈ M)

We immediately read off this equivalence the interpretation of iαρ by ∀α.ρ → α. Now we have
to check that the definition based on this idea is also compatible with β-reduction for all type
constructs including βi.
For every type ρ of system IT define the type ρ′ of system eF by recursion on ρ and simultaneously
prove that FV(ρ′) = FV(ρ) as follows:

(F) The homomorphic type rules for F.

(◦) (ρ ◦ σ)′ := ρ′ ◦ σ′ for ◦ ∈ {×,+}.

(0) 0′ := 0.

(1) 1′ := 1.

(i) (iαρ)′ := ∀α.ρ′ → α.

(The proofs were obvious.) This definition is compatible with the variable conventions for the
systems IT and eF. The rules (F), (◦), (0) and (1) are called the homomorphic type rules for eF.

Lemma 2.55 (ρ[~α := ~σ])′ = ρ′[~α := ~σ′].

Proof Induction on ρ. �

For every term rρ of system IT define the term r′ of system eF by recursion on r and simulta-
neously prove that r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as follows:

38 CHAPTER 2. THE BASIC FRAMEWORK

(F) The homomorphic term rules for F.

(0-E) (rρ)′ := r′ρ′.

(1-I) IN1′ := IN1.

(×-I) 〈r, s〉′ := 〈r′, s′〉.

(×-E) (rL)′ := r′L. (rR)′ := r′R.

(+-I) (INLρr)′ := INLρ′r
′. (INRρr)′ := INRρ′r

′.

(+-E) (rE+τst)′ := r′E+τ ′s′t′.

(i-I) (Ciαρ`
∀α.ρ→τ→αtτ)′ := Λαλxρ′.`′αxt′, where we assume that α /∈ FTV(`) ∪ FTV(t)

and require x /∈ FV(`) ∪ FV(t).

(i-E) (riαρEis
ρ[α:=σ])′ := r′E∀σ′s′.

(The proofs were always obvious. (i-E) needs the previous lemma for type correctness.) This
definition is again compatible with the variable conventions for IT and eF. The rules (F), (0-E),
(1-I), (×-I), (×-E), (+-I) and (+-E) are called the homomorphic term rules for eF.

Lemma 2.56 (r[~x~ρ := ~s~ρ])′ = r′[~x~ρ′ := ~s ′] and (r[~α := ~σ])′ = r′[~α := ~σ′].

Proof Induction on r. �

Lemma 2.57 If r → r̂, then r′ →+ r̂′.

Proof Induction on r → r̂: The cases (β→) and (β∀) follow immediately from Lemma 2.56,
(β×) and (β+) are trivial.
(βi): ((Ciαρ`

∀α.ρ→τ→αtτ)Eis
ρ[α:=σ])′ = (Λαλxρ′.`′αxt′)E∀σ′s′

→ (λxρ′[α:=σ′].`′σ′xt′)s′

→ `′σ′s′t′ = (`σst)′

We used Lemma 2.16 for the first reduction step and Lemma 2.11 for the second (and x /∈
FV(`) ∪ FV(t) ⇒ x /∈ FV(`′) ∪ FV(t′)).
The other clauses are easily proved by using the induction hypothesis. �

2.4 Extension by the existential quantifier

Types of the form ∃αρ are added to eF. It is well-known that ∃αρ may be coded via universal
quantification. It is even reduction-preserving. As was the case for the extension of F to eF,
this does not carry over to every extension by µ-types, does not respect η-reduction and does
not allow for permutative conversions (for ∃). Strict positivity is also not preserved—already a
justification for this extension.

2.4.1 Extension of the type system by existential types

The type system of the extension by existential types is defined by adding the following clause
to the inductive definition of Types for eF:

(∃) If α ∈ Typevars and ρ ∈ Types, then ∃αρ ∈ Types.

2.4. EXTENSION BY THE EXISTENTIAL QUANTIFIER 39

As was the case for i and ∀, the variable α in ∃αρ is considered to be bound by ∃ . Hence,
the renaming convention for bound type variables in types will be extended accordingly. ∃ is
assumed to syntactically bind stronger than →, × and +, as was done for ∀ (and also for i).
The definition of FV(ρ) for system eF is extended by the following clause:

(∃) FV(∃αρ) := FV(ρ) \ {α}.

The definition of ρ[~α := ~σ] is extended by the following clause:

(∃) (∃αρ)[~α := ~σ] := ∃α.ρ[~α := ~σ], where we assume that α /∈ ~α ∪ FV(~σ).

Again ∃ and ∀ are only different because of their different names and therefore the statements
in section 2.1.1 remain true in this extension.

2.4.2 The extension eF+ex of system eF by existential types

The (second) definition of typed terms and their free variables for system eF is extended by the
following clauses:

(∃-I) If tρ[α:=τ] ∈ Λ, then (C∃αρ,τ t)∃αρ ∈ Λ and FV(C∃αρ,τ t) := FV(t).

(∃-E) If r∃αρ ∈ Λ and s∀α.ρ→σ ∈ Λ (with α /∈ FV(σ)), then (rs)σ ∈ Λ (also written as
rE∃σs or shorter rE∃s) and FV(rs) := FV(r) ∪ FV(s).

This definition is again compatible with the renaming convention for bound type variables.
If r : ∃αρ, we say that r is of existential type.
Extend the recursive definition of FTV(r) by the following clauses:

(∃-I) FTV(C∃αρ,τ t) := FV(∃αρ) ∪ FV(τ) ∪ FTV(t).

(∃-E) FTV(rs) := FTV(r) ∪ FTV(s)

The definition of r[~x~ρ := ~s] together with the proof of rρ[~x~ρ := ~s] : ρ and FV(r[~x~ρ := ~s]) =
(FV(r) \ ~x~ρ) ∪

⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i} (i. e., the statement of Lemma 2.10)
is extended by the following clauses:

(∃-I) (C∃αρ,τ t)[~x~ρ := ~s] := C∃αρ,τ t[~x~ρ := ~s]. Proof obivous.

(∃-E) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]E∃s[~x~ρ := ~s]. Proof obvious.

The definition of r[~α := ~σ] together with the proof of rρ[~α := ~σ] : ρ[~α := ~σ] and FV(r[~α := ~σ]) =
{yτ [~α:=~σ]|yτ ∈ FV(r)} is extended by the following clauses:

(∃-I) (C∃αρ,τ t)[~α := ~σ] := C(∃αρ)[~α:=~σ],τ [~α:=~σ]t[~α := ~σ]. Proof obvious.

(∃-E) (rs)[~α := ~σ] := r[~α := ~σ]E∃s[~α := ~σ]. Proof obvious.

The statements made in section 2.1.2 are valid in eF+ex, too.
The general definition of immediate subterms of a term gives the following extension for sys-
tem eF+ex: C∃αρ,τ t has exactly the immediate subterm t and rE∃s has exactly the immediate
subterms r and s.
Extend the inductive definition of r~s for system eF as follows:

(∃-E) If r~s : ∃αρ and s : ∀α.ρ → σ (with α /∈ FV(σ)), then r(~s, s) := (r~s)s.

The statement of Lemma 2.23 holds also true for eF+ex.

40 CHAPTER 2. THE BASIC FRAMEWORK

Lemma 2.58 (Head form) Every term has either exactly one of the forms given in Lemma
2.44 or exactly one of the following forms:

(∃-I) C∃αρ,τ t

(∃-R) (C∃αρ,τ t)s~s

Proof Induction on terms. �

Extend the inductive definition of the set NF for system eF by the following clause:

(∃-I) If C∃αρ,τ t is a term and t ∈ NF, then C∃αρ,τ t ∈ NF.

The statements made in section 2.1.4 are all valid in eF+ex.
Define the relation 7→ as for system eF, but add the following clause:

(β∃) (C∃αρ,τ t)E∃s 7→ sτt

As for system eF the object on the right side is automatically a term if the respective object on
the left is a term (note that σ[α := τ] = σ), and the types are equal.
The relation →whd is defined as for system F and has the same properties as stated there.
Extend the inductive definition of the relation → for system eF by the following clauses (and
prove that if r → r′, then r and r′ have the same type and FV(r′) ⊆ FV(r)):

(∃-I) If t → t′, then C∃αρ,τ t → C∃αρ,τ t
′.

(∃-E) If r → r′, then rE∃s → r′E∃s. If s → s′, then rE∃s → rE∃s′.

(The proofs were trivial.)
Extend the inductive definition of WN for system eF by the following clauses:

(∃-I) If C∃αρ,τ t is a term and t ∈ WN, then C∃αρ,τ t ∈ WN.

(β∃) If (C∃αρ,τ t)E∃s~s is a term and sτt~s ∈ WN, then (C∃αρ,τ t)E∃s~s ∈ WN.

Again definition by recursion on WN is admissible. Extend the recursive definition of the function
Ω from WN to Λ and the simultaneous proof of r →∗ Ω(r) ∈ NF for r ∈ WN by the following
clauses:

(∃-I) Ω(C∃αρ,τ t) := C∃αρ,τΩ(t).

(β∃) Ω((C∃αρ,τ t)E∃s~s) := Ω(sτt~s).

The proofs are always obvious.
Extend the definition of SN for system eF by the following clauses:

(∃-I) If C∃αρ,τ t is a term and t ∈ SN, then C∃αρ,τ t ∈ SN.

(β∃) If (C∃αρ,τ t)E∃s~s is a term and sτt~s ∈ SN, then (C∃αρ,τ t)E∃s~s ∈ SN.

The only difference between the ∃-clauses for SN and WN is the name of the defined set.
Every statement made in section 2.1.4 for system F (on nf, NF, wn, WN, Ω, SN and sn) is also
true for eF+ex.

2.4. EXTENSION BY THE EXISTENTIAL QUANTIFIER 41

2.4.3 The embedding of system eF+ex in system eF

The essence14 of this section may be found in [GLT89, p. 86].
For every type ρ of system eF+ex define the type ρ′ of system eF by recursion on ρ and simul-
taneously prove that FV(ρ′) = FV(ρ) as follows:

(eF) The homomorphic type rules for eF.

(∃) (∃αρ)′ := ∀β.(∀α.ρ′ → β) → β for β /∈ {α} ∪ FV(ρ).

(The proofs were obvious.) This definition is compatible with the variable conventions for the
systems eF+ex and eF.

Lemma 2.59 (ρ[~α := ~σ])′ = ρ′[~α := ~σ′].

Proof Induction on ρ. �

For every term rρ of system eF+ex define the term r′ of system eF by recursion on r and
simultaneously prove that r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as
follows:

(eF) The homomorphic term rules for eF.

(∃-I) (C∃αρ,τ t
ρ[α:=τ])′ := Λβλx∀α.ρ′→β.xτ ′t′ for β /∈ FV(τ) ∪ FTV(t) and x /∈ FV(t).

(∃-E) (r∃αρE∃s∀α.ρ→σ)′ := r′E∀σ′s′.

(The proofs were always obvious.) This definition is again compatible with the variable conven-
tions for eF+ex and eF.
Note that the classical interpretation of the existential quantifier via (∃αρ)′ := (∀α.ρ′ → 0) → 0
would be too weak because it does not allow the interpretation of the existential elimination.

Lemma 2.60 (r[~x~ρ := ~s~ρ])′ = r′[~x~ρ′ := ~s ′] and (r[~α := ~σ])′ = r′[~α := ~σ′].

Proof Induction on r. �

Lemma 2.61 If r → r̂, then r′ →+ r̂′.

Proof Induction on r → r̂: The cases (β→) and (β∀) follow immediately from Lemma 2.60,
(β×) and (β+) are trivial.
(β∃): ((C∃αρ,τ t

τ)E∃s∀α.ρ→σ)′ = (Λβλx∀α.ρ′→β.xτ ′t′)E∀σ′s′

→ (λx∀α.ρ′→σ′ .xτ ′t′)s′

→ s′τ ′t′ = (sτt)′
We used Lemma 2.16 and Corollary 2.2 for the first reduction step and Lemma 2.11 for the
second.
The other clauses are easily proved by using the induction hypothesis. �

14See the introductory remark to section 2.2.6.

42 CHAPTER 2. THE BASIC FRAMEWORK

Chapter 3

Extension of the type system by
inductive types (i. e., µ-types)

Let (U,≤) be a complete lattice and Φ : U → U be monotone1. By Tarski’s [Tar55] fixed-point
theorem Φ has a least fixed point2 lfp(Φ) which is given by

lfp(Φ) =
∧
{M ∈ U |Φ(M) ≤ M}.

It will be important to give and analyze the proof of this theorem in section 4.3.3.
M ∈ U is a pre-fixed-point of Φ is defined to mean Φ(M) ≤ M . By definition, we have that
lfp(Φ) ≤ M for all pre-fixed-points M of Φ, hence

(lfp-E) Φ(M) ≤ M ⇒ lfp(Φ) ≤ M .

Let now (U,⊆) be a complete lattice of sets and Φ a monotone operator on it. The last remark
now reads:

(lfp-E) If x ∈ lfp(Φ) and Φ(M) ⊆ M , then x ∈ M .

This is simply the rule of induction on lfp(Φ) which hence is seen as the set inductively defined
by Φ (see e. g. [Acz77]).
In the systems of inductive types lfp(Φ) is modelled by a type µαρ where Φ is represented by
some λαρ, i.e. a type ρ with a selected type variable α to indicate the argument of Φ. All the
systems with exception of those in the spirit of Mendler (in chapter 6) need λαρ to be monotone
in some sense. The systems of monotone inductive types need some “monotonicity witness”,
i. e., a term of type ∀α∀β.(α → β) → ρ → ρ[α := β] and the systems of positive inductive types
have the syntactic restriction of positivity on the formation rule for types of the form µαρ which
in turn ensures the existence of canonical monotonicity witnesses. The systems à la Mendler do
not have any restriction on forming µ-types but their interpretation is the least fixed point of
some canonical monotone operator associated with the given arbitrary operator and hence they
are also covered by Tarski’s theorem.
In this chapter we only consider the type systems for inductive types, the following chapters
introduce the term systems together with notions of β-reduction for µ-types which represent
iteration and (full primitive) recursion.

1In the context of inductive definitions it is customary to speak of monotone operators instead of monotone
(endo-)functions, see e. g. [Acz77].

2In [Tar55] it is even shown that the set of fixed points is a complete lattice and in particular there is also
a greatest fixed point. Those greatest fixed points are the natural semantics for coinductive types. (Note that
“coinductive” does not refer to the complement of an inductively defined set as in [Mos74, p. 17].) Note also that
the existence of fixed points of every monotone operator even characterizes the completeness property of lattices
[Dav55].

43

44 CHAPTER 3. EXTENSION OF THE TYPE SYSTEM BY INDUCTIVE TYPES

3.1 Inductive types

The type system of all of the extensions by inductive types which we will consider (unless some
subsystem is studied) is defined by adding the following clause to the inductive definition of
Types for eF:

(µ) If α ∈ Typevars and ρ ∈ Types, then µαρ ∈ Types.

As was the case for i and ∀, the variable α in µαρ is considered to be bound by µ. Hence,
the renaming convention for bound type variables in types will be extended accordingly. µ is
assumed to syntactically bind stronger than →, × and +, as was done for ∀ (and also for i).
The definition of FV(ρ) for system eF is extended by the following clause:

(µ) FV(µαρ) := FV(ρ) \ {α}.

The definition of ρ[~α := ~σ] is extended by the following clause:

(µ) (µαρ)[~α := ~σ] := µα.ρ[~α := ~σ], where we assume that α /∈ ~α ∪ FV(~σ).

Again µ and ∀ are only different because of their different names and therefore the statements
in section 2.1.1 remain true in this extension.
The intuitive meaning of µαρ is the least fixed point of σ 7→ ρ[α := σ] the existence of which is
guaranteed for monotone λαρ.
Some examples are in order:

• nat := µα.1 + α is the type of natural numbers.

• list(ρ) := µα.1 + ρ× α for α /∈ FV(ρ) is the type of finite lists with elements of type ρ.

• tree(ρ) := µα.1 + (ρ → α) for α /∈ FV(ρ) is the type of ρ-branching well-founded trees.

• tree′(ρ) := µα.1 + α + (ρ → α) for α /∈ FV(ρ) is the type of ρ-branching well-founded trees
with successor.

• tree := tree(nat) is a type representing Kleene’s O.

• fin := µα.list(α) is the type of finitely branching well-founded trees.

• cont(ρ) := µα.1 + ((α → ρ) → ρ) for α /∈ FV(ρ) is the type of “continuations for calcu-
lating results of type ρ” (which are used in an unpublished manuscript written by Martin
Hofmann).

• Tree := µα.1+(tree(α) → α) (which was first proposed by Ulrich Berger) is a type of trees
with autonomously generated branching degree. It would be interesting to see in which
way this type is related to autonomously iterated inductive definitions (see the theory
AUT(ID) in [BFPS81]).

• µα.α → 1, which is trivially monotone but not positive (for its use see appendix B).

• bizarre(ρ) := µα.1 + ((((α → ρ) → α) → α) → α) for α /∈ FV(ρ) (an invention by Ulrich
Berger of a non-trivially monotone non-positive inductive type discussed in section 4.1.2).

• pos(µαρ) := µα∀β.(α → β) → ρ[α := β] for β /∈ {α}∪FV(ρ) is the “positivization” of µαρ
playing a prominent role in section 6.3.3.

3.2. STRICTLY POSITIVE AND POSITIVE TYPES 45

3.2 Strictly positive and positive types

In the following we will define subsets of Types where we restrict the use of the µ-rule.
Inductively define the set SPosTypes of strictly positive types (as a subset of Types) and simul-
taneously for every ρ ∈ SPosTypes the set SPos(ρ) of type variables which only occur free at
strictly positive positions in ρ:

(V) α ∈ SPosTypes and SPos(α) := Typevars.

(→) If ρ ∈ SPosTypes and σ ∈ SPosTypes, then ρ → σ ∈ SPosTypes and SPos(ρ → σ) :=
SPos(σ) \ FV(ρ).

(∀) If ρ ∈ SPosTypes, then ∀αρ ∈ SPosTypes and SPos(∀αρ) := SPos(ρ) ∪ {α}.

(0) 0 ∈ SPosTypes and SPos(0) := Typevars.

(1) 1 ∈ SPosTypes and SPos(1) := Typevars.

(×) If ρ ∈ SPosTypes and σ ∈ SPosTypes, then ρ × σ ∈ SPosTypes and SPos(ρ × σ) :=
SPos(ρ) ∩ SPos(σ).

(+) If ρ ∈ SPosTypes and σ ∈ SPosTypes, then ρ + σ ∈ SPosTypes and SPos(ρ + σ) :=
SPos(ρ) ∩ SPos(σ).

(µ) If ρ ∈ SPosTypes and α ∈ SPos(ρ), then µαρ ∈ SPosTypes and SPos(µαρ) := SPos(ρ).

This definition is compatible with the renaming convention: This is implied by the following
lemma which in a more careful presentation would be proved simultaneously with the justification
of the renaming convention.

Lemma 3.1 Let ρ, ~σ ∈ SPosTypes. Then ρ[~α := ~σ] ∈ SPosTypes and SPos(ρ) \ FV(~σ) ⊆
SPos(ρ[~α := ~σ]). Moreover, if β /∈ FV(ρ) then α ∈ SPos(ρ) implies β ∈ SPos(ρ[α := β]).

Proof Induction on ρ ∈ SPosTypes. For the case (V) note that every type variable which does
not occur free in ρ is put in SPos(ρ) (e. g. SPos(µαρ) = SPos(ρ) ∪ {α}). In the case (µ) the
induction hypothesis for the second claim is needed to prove the first claim. �

It follows that if µαρ ∈ SPosTypes and β /∈ FV(ρ), then µβ.ρ[α := β] ∈ SPosTypes. But
µβ.ρ[α := β] = µαρ. However, this part of the lemma is only intended to show compatibility
with the renaming convention.
Let us look at the examples of inductive types:

• nat ∈ SPosTypes.

• If ρ ∈ SPosTypes, then list(ρ) ∈ SPosTypes. In this case SPos(list(ρ)) = SPos(ρ).

• If ρ ∈ SPosTypes, then tree(ρ) ∈ SPosTypes. In this case SPos(tree(ρ)) ∩ FV(ρ) = ∅. The
same holds for tree′(ρ).

• tree and fin are strictly positive types.

• cont(ρ), Tree, bizarre and pos(µαρ) are never in SPosTypes.

46 CHAPTER 3. EXTENSION OF THE TYPE SYSTEM BY INDUCTIVE TYPES

It is common to view types of the form µαρ ∈ SPosTypes as the types of well-founded trees (at
least if the rule (∀) is left out). But trees in this sense are not the only structures definable
by induction. Our understanding of an inductive definition rests on some monotone operator
described by the definition. The elements of a deterministic inductive definition may be identified
with the proof trees which justify their elementhood (see e. g. [Acz77, p. 748]). In this manner
we may view all of our µ-types as types of generalized well-founded trees. However, we leave
the realm of predicativity if we go beyond strictly positive types. Of course, we do this anyway
by basing our systems on system F, but one could try to produce predicative versions of them.
However, there is no general agreement as to where the “border of predicativity” is (see [Str99] on
“metapredicativity”). Clearly, system F is impredicative. Strictly positive inductive definitions
(without ∀) are mostly seen as predicative. However, this work does not aim at determining the
exact proof-theoretic strength of theories but investigates reduction behaviour by unrestricted
use of Tarski’s fixed-point theorem (which makes use of a Π1

1-comprehension) and by embeddings
using the expressive power of system F. Hence, we simply regard strictly positive types as an
instance of monotone inductive types where monotonicity already may be checked syntactically
by looking at the type.
And if we ask ourselves the question which types may also syntactically be checked for mono-
tonicity, we are directly led to the positive inductive types. Because of the contravariance of →
(seen as a functor) in the first argument we have to consider syntactically isotone and syntacti-
cally antitone types (seen as functions of a type variable) simultaneously:
Inductively define the set PosTypes of positive types (as a subset of Types) and simultaneously
for every ρ ∈ PosTypes the set Pos(ρ) of type variables which only occur free at positive positions
in ρ and the set Neg(ρ) of type variables which only occur free at negative positions in ρ:

(V) α ∈ PosTypes and Pos(α) := Typevars and Neg(α) := Typevars \ {α}.

(→) If ρ ∈ PosTypes and σ ∈ PosTypes, then ρ → σ ∈ PosTypes and Pos(ρ → σ) :=
Neg(ρ) ∩ Pos(σ) and Neg(ρ → σ) := Pos(ρ) ∩ Neg(σ).

(∀) If ρ ∈ PosTypes, then ∀αρ ∈ PosTypes. Pos(∀αρ) := Pos(ρ) ∪ {α} and Neg(∀αρ) :=
Neg(ρ) ∪ {α}.

(0) 0 ∈ PosTypes and Pos(0) := Typevars and Neg(0) := Typevars.

(1) 1 ∈ PosTypes and Pos(1) := Typevars and Neg(1) := Typevars.

(×) If ρ ∈ PosTypes and σ ∈ PosTypes, then ρ × σ ∈ PosTypes and Pos(ρ × σ) :=
Pos(ρ) ∩ Pos(σ) and Neg(ρ× σ) := Neg(ρ) ∩ Neg(σ).

(+) If ρ ∈ PosTypes and σ ∈ PosTypes, then ρ + σ ∈ PosTypes and Pos(ρ + σ) :=
Pos(ρ) ∩ Pos(σ) and Neg(ρ + σ) := Neg(ρ) ∩ Neg(σ).

(µ) If ρ ∈ PosTypes and α ∈ Pos(ρ), then µαρ ∈ PosTypes and Pos(µαρ) := Pos(ρ) and
Neg(µαρ) := Neg(ρ) ∪ {α}.

The definition is again compatible with the renaming convention: This is implied by the following
lemma which also in a more careful presentation would be proved simultaneously with the
justification of the renaming convention.

Lemma 3.2 Let ρ, ~σ ∈ PosTypes. Then ρ[~α := ~σ] ∈ PosTypes and

Pos(ρ) \ FV(~σ) ⊆ Pos(ρ[~α := ~σ]) and Neg(ρ) \ FV(~σ) ⊆ Neg(ρ[~α := ~σ]).

Moreover, if β /∈ FV(ρ) then α ∈ Pos(ρ) implies β ∈ Pos(ρ[α := β]) and α ∈ Neg(ρ) implies
β ∈ Neg(ρ[α := β]).

3.3. HEIGHT AND DEPTH FOR INDUCTIVE TYPES 47

Proof Induction on ρ ∈ PosTypes. For the case (V) note that every type variable which does
not occur free in ρ is put in Pos(ρ) and Neg(ρ) (e. g. Pos(µαρ) = Pos(ρ) ∪ {α}). In the case (µ)
the induction hypothesis for the second and third claim is needed to prove the first claim. �

It follows that if µαρ ∈ PosTypes and β /∈ FV(ρ), then µβ.ρ[α := β] ∈ PosTypes. We knew that
before as µβ.ρ[α := β] = µαρ. However, this part of the lemma is again only intended to show
compatibility with the renaming convention.

Lemma 3.3 For ρ ∈ PosTypes, Pos(ρ) ∩ Neg(ρ) ∩ FV(ρ) = ∅.

Proof Induction on ρ. �

Lemma 3.4 SPosTypes ⊂ PosTypes and for every ρ ∈ SPosTypes, we have that SPos(ρ) ⊆ Pos(ρ).

Proof Induction on the definition of SPosTypes and SPos(ρ). �

We have that PosTypes 6= SPosTypes, as e. g. µα.(α → 0) → 0 ∈ PosTypes \ SPosTypes.
Concerning the examples of inductive types:

• If ρ ∈ PosTypes, then list(ρ) ∈ PosTypes. In this case Pos(list(ρ)) = Pos(ρ) and Neg(list(ρ)) =
Neg(ρ).

• If ρ ∈ PosTypes, then tree(ρ) ∈ PosTypes. In this case we have the reverse situation, namely
Pos(tree(ρ)) = Neg(ρ) and Neg(tree(ρ)) = Pos(ρ). (The same holds for tree′(ρ).)

• If ρ ∈ PosTypes, then cont(ρ) ∈ PosTypes. In this case Pos(cont(ρ)) ∩ FV(ρ) = ∅ and
Neg(cont(ρ)) ∩ FV(ρ) = ∅.

• Tree ∈ PosTypes and bizarre /∈ PosTypes.

• If ρ ∈ PosTypes, then pos(µαρ) ∈ PosTypes. In this case Pos(pos(µαρ)) = Pos(µαρ) and
Neg(pos(µαρ)) = Neg(µαρ). The crucial point is that we did not assume µαρ ∈ PosTypes,
i. e., α ∈ Pos(ρ) is not required.

3.3 Height and depth for inductive types

Abstracted types are objects of the form λ~αρ, where ~α is a finite list of type variables and ρ is a
type. The type variables ~α are assumed to be bound in the abstracted type (the priority being
from the right to the left), and we will extend the renaming convention to abstracted types. If
~α is the list (α1, α2, . . . , αn), we will also write λα1λα2 . . . λαnρ for λ~αρ.
Define (λ~αρ)[~γ := ~σ] := λ~α.ρ[~γ := ~σ], where we assume that ~α ∩ (~γ ∪ FV(~σ)) = ∅.
For every abstracted type λ~αρ define its height h(λ~αρ) ∈ N by recursion on ρ as follows:

(triv) h(λ~αρ) := 0 if ~α ∩ FV(ρ) = ∅ (e. g. ρ = 0 or 1). The following rules will be under
the proviso “otherwise”.

(V) h(λ~αα) := 0 (the proviso implies α ∈ ~α)

(◦) h(λ~α.ρ ◦ σ) := 1 + max(h(λ~αρ), h(λ~ασ)) for ◦ ∈ {→,×,+}

(∇) h(λ~α∇αρ) := 1 + h(λ(~α, α)ρ) for ∇ ∈ {∀, µ}

This definition is compatible with the renaming convention (for abstracted types).

48 CHAPTER 3. EXTENSION OF THE TYPE SYSTEM BY INDUCTIVE TYPES

Lemma 3.5 1. h((λ~αρ)[~γ := ~σ]) = h(λ~αρ).

2. h(λ~αρ) ≥ h(λ~α′ρ) if ~α′ ⊆ ~α.

3. h(λ~α∇γρ) > h((λγρ)[~α := ~σ]) if ~α ∩ FV(∇γρ) 6= ∅ (for ∇ ∈ {∀, µ}).

4. h(λ~α∇γρ) > h((λ~αρ)[γ := σ]) if ~α ∩ FV(∇γρ) 6= ∅ (for ∇ ∈ {∀, µ}).

Proof The first two statements are easily proved by induction on ρ. 3.: h(λ~α∇γρ) Def.= 1 +
h(λ(~α, γ)ρ) ≥ 1 + h(λγρ) 1.= 1 + h((λγρ)[~α := ~σ]), where the ≥ uses 2. The fourth statement is
proved similarly. �

It is possible to show that h(λ~αρ) is the height (in the ordinary sense given by only counting
connectives and ∀ and µ) of a maximally general generalization of λ~αρ. This is not done here
because of the unpleasant work of defining this concept properly. Nevertheless, we do not need
this characterization for our purposes.
In most cases h(λ~αρ) will be used for abstracted types with a list ~α of length 1. We will now
study another measure d of height for abstracted types of this kind where the definition does
not use the “detour” through multiply abstracted types. Intuitively, d(λαρ) will be the maximal
depth3 of a free occurrence of α in ρ.
For every abstracted type of the form λαρ define its depth d(λαρ) ∈ N by recursion on ρ and
simultaneously prove that d(λαρ[~α := ~σ]) = d(λαρ) for α /∈ ~α ∪ FV(~σ) as follows:

(triv) d(λαρ) := 0 if α /∈ FV(ρ) (e. g. ρ = 0 or 1). The following rules will be under the
proviso “otherwise”. By Corollary 2.4, we have the same proviso for d(λαρ[~α := ~σ]).

(V) d(λαα) := 0. Proof trivial.

(◦) d(λα.ρ ◦ σ) := 1 + max(d(λαρ), d(λασ)) for ◦ ∈ {→,×,+}. Proof obvious.

(∇) d(λα∇γρ) := 1 + d(λαρ) for ∇ ∈ {∀, µ}. By induction hypothesis this definition is
compatible with a renaming of γ. The proof of the claim for λα∇γρ is easy.

This definition is compatible with the renaming convention (for abstracted types) because of
the simultaneously proved claim.
For ease of reference we formulate

Lemma 3.6 1. d((λαρ)[~α := ~σ]) = d(λαρ).

2. d(λα∇γρ) = 1 + d((λαρ)[γ := σ]) if α ∈ FV(∇γρ) (for ∇ ∈ {∀, µ}).

Proof 1.: Proved in the definition (we may assume that α /∈ ~α ∪ FV(~σ)). 2.: By definition and
by 1. �

Lemma 3.7 d(λαρ) ≤ h(λαρ).

Proof Induction on ρ using Lemma 3.5 (2.) for the cases (∀) and (µ). �

Equality does not hold: h(λα∀γ.(γ → γ) → α) = 3 and d(λα∀γ.(γ → γ) → α) = 2.

3This concept seems more intuitive than the one lying behind the definition of h. However, it is more problem-
atic with respect to our variable convention because variables become unbound in the recursive call. Moreover,
some proofs do not go through with d as induction measure instead of h.

3.4. EXTENSION BY THE EXISTENTIAL QUANTIFIER 49

3.4 Extension by the existential quantifier

The term systems with suffix +ex in the name will be based on the further extension by existential
types. Hence, the type system they will be based on is the system of inductive types extended
by the clause (∃) exactly in the same way as it was done in section 2.4.1 where the clause was
added to the type system of eF.
Extend the inductive definition of SPosTypes and the simultaneous recursive definition of SPos(ρ)
for every ρ ∈ SPosTypes by the following clause:

(∃) If ρ ∈ SPosTypes, then ∃αρ ∈ SPosTypes and SPos(∃αρ) := SPos(ρ) ∪ {α}.

The statement of Lemma 3.1 is valid also for this extension and implies compatibility of the
definition with the renaming convention for bound variables.
Extend the inductive definition of PosTypes and the simultaneous recursive definition of Pos(ρ)
and Neg(ρ) for every ρ ∈ PosTypes by the following clause:

(∃) If ρ ∈ PosTypes, then ∃αρ ∈ PosTypes. Pos(∃αρ) := Pos(ρ) ∪ {α}. Neg(∃αρ) :=
Neg(ρ) ∪ {α}.

The statement of Lemma 3.2 holds again for this extension and implies compatibility with the
variable convention. Also the statement of Lemma 3.4 holds.
All the extensions to the proofs are immediate because (∃) differs from (∀) only in the name of
the binder. For this reason the extension of the definition of h and d and Lemma 3.5, Lemma
3.6 and Lemma 3.7 are also trivial: Simply allow ∇ ∈ {∀, µ,∃}.
Recall the embedding of eF+ex in eF. The only clause of interest in the definition of ρ′ was

(∃) (∃αρ)′ := ∀β.(∀α.ρ′ → β) → β for β /∈ {α} ∪ FV(ρ).

This encoding of the existential quantifier is unproblematic with respect to positive types but
leads out of the strictly positive types. To be more precise: If ∃αρ ∈ PosTypes and γ ∈ Pos(∃αρ),
then ∀β.(∀α.ρ → β) → β ∈ PosTypes and γ ∈ Pos(∀β.(∀α.ρ → β) → β). On the other
hand, ∃αγ ∈ SPosTypes, γ ∈ SPos(∃αγ) and ∀β.(∀α.γ → β) → β ∈ SPosTypes, but we have
γ /∈ SPos(∀β.(∀α.γ → β) → β) (if γ /∈ {α, β}). Hence, µγ∃αγ ∈ SPosTypes and for γ /∈ {α, β}
we have µγ∀β.(∀α.γ → β) → β /∈ SPosTypes.
As a further example of inductive types consider

• spos(µαρ) := µα∃β.(β → α) × ρ[α := β] for β /∈ {α} ∪ FV(ρ). This type is the “strict
positivization” of µαρ which will be essential in section 6.2.3.

We note that if ρ ∈ SPosTypes, then spos(µαρ) ∈ SPosTypes and SPos(spos(µαρ)) = SPos(µαρ).
Moreover, if ρ ∈ PosTypes, then spos(µαρ) ∈ PosTypes and Pos(spos(µαρ)) = Pos(µαρ) and
Neg(spos(µαρ)) = Neg(µαρ).

3.5 Restriction to non-interleaving positive inductive types

The term rewrite systems whose names start with NI as NIPIT, NISPIT and NISPIT+ex, but also
MePIT and coMePIT, will be based on type systems where nested applications of the µ-rule are
only allowed as long as they do not interleave, i. e., types of the form µαρ are ruled out if ρ has
a subexpression of the form µβσ where α occurs free. More formally: Inductively define the set
NIPosTypes of non-interleaving positive types and simultaneously for every ρ ∈ NIPosTypes the
set NIPos(ρ) of type variables which only occur free at positive positions in ρ and are not in the
scope of an application of the µ-rule and the set NINeg(ρ) of type variables which only occur

50 CHAPTER 3. EXTENSION OF THE TYPE SYSTEM BY INDUCTIVE TYPES

free at negative positions in ρ and are not in the scope of an application of the µ-rule as follows:
Repeat the definition of PosTypes, Pos and Neg in the cases (V), (→), (∀), (0), (1), (×) and (+)
by replacing the words accordingly.
Case (µ): If ρ ∈ NIPosTypes and α ∈ NIPos(ρ), then µαρ ∈ NIPosTypes and NIPos(µαρ) :=
NIPos(ρ) \ FV(µαρ) and NINeg(µαρ) := (NINeg(ρ) \ FV(ρ)) ∪ {α}.

Lemma 3.8 NIPosTypes ⊂ PosTypes and for every ρ ∈ NIPosTypes, we have NIPos(ρ) ⊆ Pos(ρ)
and NINeg(ρ) ⊆ Neg(ρ).

Proof Induction on the definition. �

We have that NIPosTypes 6= PosTypes, as e. g. fin = µαµβ.1 + α× β ∈ PosTypes \ NIPosTypes.

Lemma 3.9 If ρ ∈ NIPosTypes, then Typevars \ FV(ρ) ⊆ NIPos(ρ) ∩ NINeg(ρ).

Proof Induction on ρ. �

Lemma 3.10 The statement of Lemma 3.2 is also valid if the words PosTypes, Pos and Neg are
replaced by NIPosTypes, NIPos and NINeg, respectively.

Proof Induction on ρ ∈ NIPosTypes. Evidently, there are only changes in the case (µ): The
proof of the first statement in Lemma 3.2 is refined by reference to Lemma 2.3, the proof of the
last statement becomes very easy because w.l.o.g. α /∈ FV(ρ). �

Define the set NISPosTypes and for every ρ ∈ NISPosTypes the set NISPos(ρ) of type variables
which only occur free at strictly positive positions in ρ and are not bound by an application of
the µ-rule in the same way: Take the definition of SPosTypes and SPos and replace the words
accordingly. The case (µ) becomes:
If ρ ∈ NISPosTypes and α ∈ NISPos(ρ), then µαρ ∈ NISPosTypes and NISPos(µαρ) := NISPos(ρ)\
FV(µαρ).

Lemma 3.11 If ρ ∈ NISPosTypes, then Typevars \ FV(ρ) ⊆ NISPos(ρ).

Proof Induction on ρ. �

It quite obvious that NISPosTypes stands in the same relation to NIPosTypes as SPosTypes
stands to PosTypes and consequently NISPosTypes is simply the intersection of SPosTypes and
NIPosTypes.
The extension by the existential quantifier is again trivial (because ∀ and ∃ are treated exactly
the same).
Let us review the examples of inductive types:

• nat ∈ NISPosTypes.

• If ρ ∈ NISPosTypes, then list(ρ) ∈ NISPosTypes and NISPos(list(ρ)) ∩ FV(ρ) = ∅.
If ρ ∈ NIPosTypes, then list(ρ) ∈ NIPosTypes and NIPos(list(ρ)) ∩ FV(ρ) = ∅ and also
NINeg(list(ρ)) ∩ FV(ρ) = ∅. The same holds for tree(ρ) and tree′(ρ).

• tree ∈ NISPosTypes and fin /∈ NIPosTypes, because tree is only nested but fin is interleaved.

• If ρ ∈ NIPosTypes, then cont(ρ) ∈ NIPosTypes.

• Tree /∈ NIPosTypes.

• If ρ ∈ NIPosTypes, then pos(µαρ) ∈ NIPosTypes due to Lemma 3.9.

• If ρ ∈ NISPosTypes, then spos(µαρ) ∈ NISPosTypes due to Lemma 3.11. If ρ ∈ NIPosTypes,
then spos(µαρ) ∈ NIPosTypes (again due to Lemma 3.9).

Chapter 4

Systems with monotone inductive
types

Let (U,⊆) be a complete lattice of sets and Φ a monotone operator on it. In the introduction
to the preceding chapter we stated the following corollary to Tarski’s fixed-point theorem:

(lfp-E) If x ∈ lfp(Φ) and Φ(M) ⊆ M , then x ∈ M .

In our näıve realizability interpretation we interpret Φ by some λαρ, lfp(Φ) by µαρ and M by
some type σ. The truth of x ∈ lfp(Φ) is modelled by some term r of type µαρ and the truth
of Φ(M) ⊆ M by some term s of type ρ[α := σ] → σ. We conclude the truth of x ∈ M , which
hence is to be modelled by a term of type σ constructed out of r and s. This motivates the
following rule1

of µ-elimination for EMIT (to be defined in the next section)

(µ-E) If rµαρ ∈ Λ and sρ[α:=σ]→σ ∈ Λ, then (rEµs)σ ∈ Λ.

Let us now introduce the concept of “extended induction” (which will turn out to be the coun-
terpart of full primitive recursion).
Let (U,≤) be a complete lattice and Φ a monotone operator on it and M ∈ U . We apply
the minimality of lfp(Φ) to M ′ := lfp(Φ) ∧ M .2 Therefore lfp(Φ) ≤ M ′, if Φ(M ′) ≤ M ′. Let
Φ(M ′) ≤ M . Because M ′ ≤ lfp(Φ) and Φ is monotone, also Φ(M ′) ≤ Φ(lfp(Φ)). Because lfp(Φ)
is a pre-fixed-point of Φ (it is even a fixed point) and due to transitivity Φ(M ′) ≤ lfp(Φ). Hence,
Φ(M ′) ≤ M ′. Using the trivial fact that lfp(Φ) ≤ M ′ implies lfp(Φ) ≤ M , we conclude

(lfp-E+) Φ(lfp(Φ) ∧M) ≤ M ⇒ lfp(Φ) ≤ M .

Let now (U,⊆) be even a complete lattice of sets and Φ be monotone. The preceding rule reads

(lfp-E+) If x ∈ lfp(Φ) and Φ(lfp(Φ) ∧M) ⊆ M , then x ∈ M .

This shall be called extended induction on lfp(Φ). As for (lfp-E) this directly motivates the
following second rule3 of µ-elimination for EMIT:

1Note that it would be more traditional to assume an iterator constant Iµαρ,σ of type (ρ[α := σ] → σ) →
µαρ → σ instead of this rule (µ-E). But the present notation allows a uniform treatment of eliminations as
expressed by the vector notation already introduced for every system in “the basic framework”.

2∧ denotes the infimum of two lattice elements.
3Again it would be closer to standard presentations of e. g. Gödel’s T if instead of the rule we had a recursor

constant Rµαρ,σ of type (ρ[α := µαρ× σ] → σ) → µαρ → σ in the system. Many thanks to Felix Joachimski for
encouraging me to use the elimination notation throughout which came up in a discussion with him.

51

52 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

(µ-E+) If rµαρ ∈ Λ and sρ[α:=µαρ×σ]→σ ∈ Λ, then (rE+
µ s)σ ∈ Λ.

We come to the introduction rule which is the rule pertaining to lfp(Φ) being a pre-fixed-point
of Φ:

(lfp-I) If x ∈ Φ(lfp(Φ)), then x ∈ lfp(Φ).

Note that although we always assumed Φ to be monotone, the rules (lfp-E(+)) would have
trivially been valid for any Φ if we had set lfp(Φ) :=

∧
U . (lfp-I) does not accord with this

setting. Hence, we pursue the following approach which is typical of logic: We assume lfp(Φ)
always to exist (in a formal system, we would introduce some predicate constant). We do not
require the monotonicity of Φ! Then we describe lfp(Φ) axiomatically by (lfp-E(+)) and the
following refined

(lfp-I-mon) If x ∈ Φ(lfp(Φ)) and Φ monotone, then x ∈ lfp(Φ).

Hence, for monotone Φ we may use Tarski’s theorem to construct lfp(Φ), and the trivial
∧

U
otherwise.
Φ monotone means ∀M∀M ′.(∀x.x ∈ M ⇒ x ∈ M ′) ⇒ ∀y(y ∈ Φ(M) ⇒ y ∈ Φ(M ′)). Hence, by
our usual interpretation we can motivate the rule of µ-introduction for EMIT

(µ-I) If tρ[α:=µαρ] ∈ Λ and m∀α∀β.(α→β)→ρ→ρ[α:=β] ∈ Λ (with β /∈ {α} ∪ FV(ρ)), then
(Cµαρmt)µαρ ∈ Λ.

The term m is the witness of monotonicity for λαρ. The monotonicity witnesses are thus
constructed simultaneously with the terms (they are terms) instead of being given from outside.
The idea of the systems ESMIT is to free the introduction rule from the monotonicity witness
but to ensure that for every µαρ in the system (those which are allowed have to be specified)
there is a monotonicity witness given beforehand. This witness also has to be a term of the
system and clearly, we have to restrict the use of (µ-I) (without the monotonicity witness) in
the construction of those witnesses. The exact condition will be called “stratification”.
A variant varEMIT of EMIT is introduced which is motivated by the observation that only special
cases of the monotonicity of Φ are needed for justifying the β-rules of EMIT.
The system IMIT is dual to the system EMIT in the sense that the monotonicity witnesses are
tied to the elimination rules instead of the introduction rule. (The rule (lfp-I) is valid if we set
lfp(Φ) :=

∧
∅ and the monotonicity requirement in the elimination rules guarantees that Tarski’s

theorem applies for the construction of lfp(Φ) validating all the rules in case Φ is monotone.)
The systems ISMIT and varIMIT are derived from the same considerations as ESMIT and varEMIT
are derived from EMIT. If one mimicks the construction of varEMIT directly for IMIT, then β-
reduction does not normalize!

4.1 The elimination-based term rewrite system EMIT of mono-
tone inductive types

EMIT is “elimination-based” because µ-elimination is primitive in the sense that no monotonicity
witness is needed there. It is a system of monotone inductive types because there is no syntactic
restriction on forming µαρ but the requirement of a monotonicity witness in the µ-introduction
rule. For the system IMIT defined in section 4.4 elimination and introduction change roles in this
description. It seems to be better compliant with the philosophical semantics of Martin-Löf’s
type theory in [ML84] if one fixes the monotonicity witness to the introduction rule because
monotonicity is a part of the justification for the existence of an object in the type µαρ—it is
the justification that µαρ is studied at all!

4.1. THE TERM REWRITE SYSTEM EMIT 53

4.1.1 Definition

The (second) definition of typed terms and their free variables for system eF is extended by the
following clauses:

(µ-I) If tρ[α:=µαρ] ∈ Λ and m∀α∀β.(α→β)→ρ→ρ[α:=β] ∈ Λ (with β /∈ {α} ∪ FV(ρ)), then
(Cµαρmt)µαρ ∈ Λ and FV(Cµαρmt) := FV(m) ∪ FV(t).

(µ-E) If rµαρ ∈ Λ and sρ[α:=σ]→σ ∈ Λ, then (rs)σ ∈ Λ (also written as rEµσs or shorter
rEµs) and FV(rs) := FV(r) ∪ FV(s).

(µ-E+) If rµαρ ∈ Λ and sρ[α:=µαρ×σ]→σ ∈ Λ, then (rs)σ ∈ Λ (also written as rE+
µ σs or

shorter rE+
µ s) and FV(rs) := FV(r) ∪ FV(s).

This definition is again compatible with the renaming convention for bound type variables.
We freely use all of the notational machinery previously introduced for F and eF. If r : µαρ, we
say that r is of µ-type. (The use of “inductive type” is discouraged because it should be used
more generally for any type of the systems which have iteration or primitive recursion.)
We extend the naming convention by assuming that m always denotes a term.
As was mentioned after giving the very first inductive definition of types (for system F) it is
our understanding that the rules freely generate the structure. If α ∈ FV(ρ) then ρ[α := σ] 6=
ρ[α := µαρ× σ] and therefore the types of the terms s in the rules (µ-E) and (µ-E+) are different.
Otherwise rs can be generated by both rules. But according to our free generation assumption
we have to distinguish them. Hence, the notation rEµs vs. rE+

µ s is nearer to the “true” terms.
However, in theoretic studies on the system EMIT it is quite unusual to focus specifically on
cases where α /∈ FV(ρ) and therefore the appearance of µαρ in the string which represents the
type of sρ[α:=µαρ×σ]→σ clearly indicates that the use of rule (µ-E+) is intended.
Extend the recursive definition of FTV(r) by the following clauses:

(µ-I) FTV(Cµαρmt) := FV(µαρ) ∪ FTV(m) ∪ FTV(t).

(µ-E(+)) FTV(rs) := FTV(r) ∪ FTV(s).

The definition of r[~x~ρ := ~s] together with the proof of rρ[~x~ρ := ~s] : ρ and FV(r[~x~ρ := ~s]) =
(FV(r) \ ~x~ρ) ∪

⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i} (i. e., the statement of Lemma 2.10)
is extended by the following clauses:

(µ-I) (Cµαρmt)[~x~ρ := ~s] := Cµαρm[~x~ρ := ~s]t[~x~ρ := ~s]. Proof obvious.

(µ-E) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]Eµs[~x~ρ := ~s]. Proof obvious.

(µ-E+) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]E+
µ s[~x~ρ := ~s]. Proof obvious.

The definition of r[~α := ~σ] together with the proof of rρ[~α := ~σ] : ρ[~α := ~σ] and FV(r[~α := ~σ]) =
{yτ [~α:=~σ]|yτ ∈ FV(r)} is extended by the following clauses:

(µ-I) (Cµαρmt)[~α := ~σ] := C(µαρ)[~α:=~σ]m[~α := ~σ]t[~α := ~σ]. Proof obvious.

(µ-E) (rs)[~α := ~σ] := r[~α := ~σ]Eµs[~α := ~σ]. Proof obvious.

(µ-E+) (rs)[~α := ~σ] := r[~α := ~σ]E+
µ s[~α := ~σ]. Proof obvious.

The statements made in section 2.1.2 are valid in EMIT, too.
The general definition of immediate subterms of a term gives the following extension for system
EMIT: Cµαρmt has exactly the immediate subterms m and t and rEµs and rE+

µ s have exactly
the immediate subterms r and s.
Extend the inductive definition of r~s for system eF as follows:

54 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

(µ-E) If r~s : µαρ and s : ρ[α := σ] → σ, then r(~s, s) := (r~s)s.

(µ-E+) If r~s : µαρ and s : ρ[α := µαρ× σ] → σ, then r(~s, s) := (r~s)s.

The statement of Lemma 2.23 holds also true for EMIT.

Lemma 4.1 (Head form) Every term has either exactly one of the forms given in Lemma
2.44 or exactly one of the following forms:

(µ-I) Cµαρmt

(µ-R(+)) (Cµαρmt)s~s, subsuming both eliminations for µ

Proof Induction on terms. �

Extend the inductive definition of the set NF for system eF by the following clause:

(µ-I) If Cµαρmt is a term and m ∈ NF and t ∈ NF, then Cµαρmt ∈ NF.

The statements made in section 2.1.4 are all valid in EMIT.
Define the relation 7→ as for system eF, but add the following clauses:

EMIT

(βµ) (Cµαρmt)Eµσs 7→ s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
(β+

µ) (Cµαρmt)E+
µ σs 7→ s

(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)

In both rules we require that xµαρ /∈ FV(s). The rule (βµ) is the reduction rule associated with
iteration and (β+

µ) represents primitive recursion.
As for system eF the objects on the right side are automatically terms if the respective object
on the left is a term, and the types are equal (which is not as trivial as before and is the main
proof-theoretic justification for these rules as was mentioned before in the discussion on the
Curry-Howard isomorphism).
The relation →whd is defined as for system F and has the same properties as stated there.
Extend the inductive definition of the relation → for system eF by the following clauses (and
prove that if r → r′, then r and r′ have the same type and FV(r′) ⊆ FV(r))4:

(µ-I) If m → m′, then Cµαρmt → Cµαρm
′t. If t → t′, then Cµαρmt → Cµαρmt′.

(µ-E) If r → r′, then rEµs → r′Eµs. If s → s′, then rEµs → rEµs′.

(µ-E+) If r → r′, then rE+
µ s → r′E+

µ s. If s → s′, then rE+
µ s → rE+

µ s′.

(The proofs were trivial.)
The extra β→-redex on the right side of the β+

µ -rule is useful for applications. In order to
represent a function which is defined by primitive recursion on an inductively defined set rep-
resented by µαρ with values in a set represented by σ, we assume a closed term s of type
ρ[α := µαρ× σ] → σ and set the representing term F := λxµαρ.xE+

µ σs which is a closed term
of type µαρ → σ. We have

F (Cµαρmt) 7→β→ CµαρmtE+
µ σs 7→β+

µ
s(m(µαρ)(µαρ× σ)(λxµαρ.〈x, Fx〉)t)

and therefore the left term →+-reduces to the right term which is valuable in practice. (Sub-
scripts to 7→ indicate the rule which is used.)
Extend the inductive definition of WN for system eF by the following clauses:

4See also footnote 4 on p. 19 concerning well-formedness.

4.1. THE TERM REWRITE SYSTEM EMIT 55

(µ-I) If Cµαρmt is a term and m ∈ WN and t ∈ WN, then Cµαρmt ∈ WN.

(βµ) If s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
~s ∈ WN, xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a

term, then (Cµαρmt)Eµσs~s ∈ WN.

(β+
µ) If s

(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ WN, xµαρ /∈ FV(s) and

(Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈ WN.

Again definition by recursion on WN is admissible. Extend the recursive definition of the function
Ω from WN to Λ and the simultaneous proof of r →∗ Ω(r) ∈ NF for r ∈ WN by the following
clauses:

(µ-I) Ω(Cµαρmt) := CµαρΩ(m)Ω(t).

(βµ) Ω((Cµαρmt)Eµσs~s) := Ω
(
s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
~s
)
.

(β+
µ) Ω((Cµαρmt)E+

µ s~s) := Ω
(
s
(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s
)
.

The proofs are always obvious.
Extend the definition of SN for system eF by the following clauses:

(µ-I) If Cµαρmt is a term and m ∈ SN and t ∈ SN, then Cµαρmt ∈ SN.

(βµ) If s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
~s ∈ SN, xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a term,

then (Cµαρmt)Eµσs~s ∈ SN.

(β+
µ) If s

(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ SN, xµαρ /∈ FV(s) and

(Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈ SN.

The only difference between the µ-clauses for SN and WN is the name of the defined set.
Every statement made in section 2.1.4 for system F (on nf, NF, wn, WN, Ω, SN and sn) is also
true for EMIT.

4.1.2 Monotonicity without positivity

In this section we give evidence that monotonicity is more general than positivity. Note, however,
that it is shown in this thesis that iteration on monotone inductive types may even be embedded
into system F and that primitive recursion on monotone inductive types may be reduced (via
impredicative encodings) to primitive recursion on positive inductive types.
The following example is due to Ulrich Berger (private communication, September 25, 1997).
For every type σ of system eF define ¬σ := σ → 0. Define ρ := (¬¬α → α) → α. Obviously,
ρ ∈ PosTypes, but α /∈ Pos(ρ) (where we view ρ as an inductive type formed without µ in order
to have the notion of positivity).
Let u, v and w be term variables. Define the closed term r of system eF by

r := ΛαΛβλxα→βλyρλz¬¬β→β.z(λu¬β.u(x(y(λv¬¬α.(v(λwα.u(xw)))E0α)))).

It is not hard to see that r : ∀α∀β.(α → β) → ρ → ρ[α := β].
This example should be contrasted with the following: Set ρ′ := (α → α) → α. Define the
closed term r of system F by

r := ΛαΛβλxα→βλyρ′λzβ→β .x(y(λuαu)).

56 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

It is very easy to see that r : ∀α∀β.(α → β) → ρ′ → ρ′[α := β]. This second example is not
convincing because there are closed terms s : ρ′ → α and t : α → ρ′ and trivially α ∈ Pos(α).
(Set s := λyρ′ .(y(λuαu)) and t := λxαλyα→αx.)
The first example does not have the tautology α → α in the premise of the implication but
¬¬α → α which is only a tautology in classical logic (it defines classical logic).
There is no hope for a type τ ∈ PosTypes with α ∈ Pos(τ) such that there are closed terms
s : ρ → τ and t : τ → ρ.
The example can be streamlined (Ulrich Berger, private communication, October 1, 1997) to
only use the →-fragment of minimal propositional logic, i. e., where only the type constructor
→ is used and not 0: ρ is replaced by (((α → σ) → α) → α) → α for an arbitrary σ with
α /∈ FV(σ). With the notation for the Peirce formula of Lemma 2.42 this type is peirce(σ) → α.
And by Corollary 2.43 we know that this example is essentially the same as the first one.
If we set τ := µα.peirce(σ) → α, we get a type which is not inhabited: There is a closed term s
of type ((((0 → σ) → 0) → 0) → 0) → 0, namely

s := λz((((0→σ)→0)→0)→0).z(λy(0→σ)→0.(λw0.wE0σ)).

Therefore we have the closed term λxτ .xEµ0s : τ → 0. Because 0 is not inhabited, neither is τ .
But we may define bizarre(σ) := µα.1 + (peirce(σ) → α) and get an inhabited type5 which is
monotone and not positive.
Note that λα.α → 1 is trivially monotone and not positive. The type µα.α → 1 will be dicussed
in appendix B.

4.2 The term rewrite systems ESMIT of elimination-based se-
lected monotone inductive types

These systems were invented to clarify the following observation: When trying to embed PIT
(to be defined in section 5.1.1) into EMIT apparently the specific definition of mapλαρ (and
comapλαρ) does not enter the argument. Due to interleaving those map-terms also have to use
the term rules for µ-types. And it is intuitively clear that the monotonicity witness used for
defining the reduction behaviour of a type should not make use of this very type. A deeper
analysis shows that the properties needed are exactly stratification and uniformity introduced
below.

4.2.1 Definition

Let MTypes (for “monotone types”) be a subset of Types which is closed under substitution and
the type-forming operations of system eF, i.e.

(V) If α ∈ Typevars, then α ∈ MTypes.

(◦) If ρ ∈ MTypes and σ ∈ MTypes, then ρ ◦ σ ∈ MTypes (for ◦ ∈ {→,×,+}).

(∀) If α ∈ Typevars and ρ ∈ MTypes, then ∀αρ ∈ MTypes.

(0) 0 ∈ MTypes.

(1) 1 ∈ MTypes.

5Note that this type need not be trivial. The type nat = µα.1 + α is much more interesting than µαα which
is also empty because 0 → 0 is inhabited.

4.2. THE TERM REWRITE SYSTEMS ESMIT 57

(sub) If ρ, ~σ ∈ MTypes, then ρ[~α := ~σ] ∈ MTypes.

Prominent examples for MTypes are the sets SPosTypes and PosTypes of section 3.2.
We set up the naming convention that in the systems ESMIT which are now being defined, the
symbols ρ, σ and τ (also with decoration) denote elements of MTypes.
Define a term system by extending the restriction of eF which is derived from eF by taking the
types ρ, σ and τ only out of MTypes as follows: Add the clauses

(µ-I) If µαρ ∈ MTypes and tρ[α:=µαρ] ∈ Λ, then (Cµαρt)µαρ ∈ Λ and FV(Cµαρt) := FV(t).

(µ-E) If rµαρ ∈ Λ and sρ[α:=σ]→σ ∈ Λ, then (rs)σ ∈ Λ (also written as rEµσs or shorter
rEµs) and FV(rs) := FV(r) ∪ FV(s).

(µ-E+) If rµαρ ∈ Λ and sρ[α:=µαρ×σ]→σ ∈ Λ then (rs)σ ∈ Λ (also written as rE+
µ σs or

shorter rE+
µ s) and FV(rs) := FV(r) ∪ FV(s).

Lemma 4.2 If π ∈ Types and rπ ∈ Λ, then π ∈ MTypes.

Proof Obvious. Use the closure properties imposed on MTypes (and the naming convention!).�

We use the notational machinery as for EMIT including the convention concerning the disam-
biguation of rs into rEµs and rE+

µ s.
Extend the recursive definition of FTV(r) by the following clauses:

(µ-I) FTV(Cµαρt) := FV(µαρ) ∪ FTV(t).

(µ-E) FTV(rs) := FTV(r) ∪ FTV(s).

(µ-E+) FTV(rs) := FTV(r) ∪ FTV(s).

The definition of r[~x~ρ := ~s] together with the proof of rρ[~x~ρ := ~s] : ρ and FV(r[~x~ρ := ~s]) =
(FV(r) \ ~x~ρ) ∪

⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i} (i. e., the statement of Lemma 2.10)
is extended by the following clauses:

(µ-I) (Cµαρt)[~x~ρ := ~s] := Cµαρt[~x~ρ := ~s]. Proof obvious.

(µ-E) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]Eµs[~x~ρ := ~s]. Proof obvious.

(µ-E+) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]E+
µ s[~x~ρ := ~s]. Proof obvious.

The definition of r[~α := ~σ] together with the proof of rρ[~α := ~σ] : ρ[~α := ~σ] and FV(r[~α := ~σ]) =
{yτ [~α:=~σ]|yτ ∈ FV(r)} is extended by the following clauses:

(µ-I) (Cµαρt)[~α := ~σ] := C(µαρ)[~α:=~σ]t[~α := ~σ]. Proof obvious. Note that we need the
(sub)-rule of the restriction on MTypes.

(µ-E) (rs)[~α := ~σ] := r[~α := ~σ]Eµs[~α := ~σ]. Proof obvious.

(µ-E+) (rs)[~α := ~σ] := r[~α := ~σ]E+
µ s[~α := ~σ]. Proof obvious.

The statements made in section 2.1.2 are valid in the systems ESMIT, too.
The general definition of immediate subterms of a term gives the following extension for the
systems ESMIT: Cµαρt has exactly the immediate subterm t and rEµs and rE+

µ s have exactly
the immediate subterms r and s.
Extend the inductive definition of r~s for system eF as follows:

58 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

(µ-E) If r~s : µαρ and s : ρ[α := σ] → σ, then r(~s, s) := (r~s)s.

(µ-E+) If r~s : µαρ and s : ρ[α := µαρ× σ] → σ, then r(~s, s) := (r~s)s.

The statement of Lemma 2.23 holds also true for the systems ESMIT.

Lemma 4.3 (Head form) Every term has either exactly one of the forms given in Lemma
2.44 or exactly one of the following forms:

(µ-I) Cµαρt

(µ-R) (Cµαρt)s~s, subsuming both eliminations for µ

Proof Induction on terms. �

Extend the inductive definition of the set NF for system eF by the following clause:

(µ-I) If Cµαρt is a term and t ∈ NF, then Cµαρt ∈ NF.

The statements made in section 2.1.4 are all valid in the systems ESMIT.
A term rewrite system of elimination-based selected monotone inductive types (generic name is
ESMIT) is given by a set MTypes as above and a family {mapλαρ|µαρ ∈ MTypes} where for every
µαρ ∈ MTypes the object mapλαρ is a closed term of type ∀α∀β.(α → β) → ρ → ρ[α := β] (with
β /∈ {α} ∪ FV(ρ)) under the following conditions:

(C) Compatibility: The indexing of the family is compatible with the renaming con-
vention for bound type variables. (This is understood, but mentioned once at this
place.)

(U) Uniformity: mapλαρ[~α := ~σ] = map(λαρ)[~α:=~σ].

(S) Stratification: There is a well-founded relation � on the types of the form µαρ such
that whenever Cµα′ρ′t is a subterm of mapλαρ, then µαρ � µα′ρ′.

Well-foundedness of a binary relation > on a set M shall for our purposes be defined to be the
following property: If A ⊆ M and ∀x ∈ M.(∀y ∈ M.x > y → y ∈ A) → x ∈ A, then A = M .
(In the language of term rewrite systems this is nothing but the assumption that > is strongly
normalizing.)
The existence of the family {mapλαρ|µαρ ∈ MTypes} ensures that the abstracted types λαρ with
µαρ ∈ MTypes may be “turned into functors”. In [Loa97] this is exemplified in the special case
of a predicative variant of SPIT (see section 5.2).
Define the relation 7→ as for system eF (but with types restricted to MTypes and the restriction
of the terms as above), but add the following clauses:

ESMIT

(βµ) (Cµαρt)Eµσs 7→ s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs)t

)
(β+

µ) (Cµαρt)E+
µ σs 7→ s

(
mapλαρ(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)

In both rules we require that xµαρ /∈ FV(s).
As for system EMIT the objects on the right side are automatically terms if the respective object
on the left is a term, and the types are equal (which needs the same reasoning as for EMIT).
The relation →whd is defined as for system F and has the same properties as stated there.
Extend the inductive definition of the relation → for system eF by the following clauses (and
prove that if r → r′, then r and r′ have the same type and FV(r′) ⊆ FV(r)):

4.2. THE TERM REWRITE SYSTEMS ESMIT 59

(µ-I) If t → t′, then Cµαρt → Cµαρt
′.

(µ-E) If r → r′, then rEµs → r′Eµs. If s → s′, then rEµs → rEµs′.

(µ-E+) If r → r′, then rE+
µ s → r′E+

µ s. If s → s′, then rE+
µ s → rE+

µ s′.

(The proofs were trivial.) The rules above are called the congruence rules for µ.
Extend the inductive definition of WN for system eF by the following clauses:

(µ-I) If Cµαρt is a term and t ∈ WN, then Cµαρt ∈ WN.

(βµ) If s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs)t

)
~s ∈ WN, xµαρ /∈ FV(s) and (Cµαρt)Eµσs~s is a

term, then (Cµαρt)Eµσs~s ∈ WN.

(β+
µ) If s

(
mapλαρ(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ WN, xµαρ /∈ FV(s)

and (Cµαρt)E+
µ σs~s is a term, then (Cµαρt)E+

µ σs~s ∈ WN.

Again definition by recursion on WN is admissible. Extend the recursive definition of the function
Ω from WN to Λ and the simultaneous proof of r →∗ Ω(r) ∈ NF for r ∈ WN by the following
clauses:

(µ-I) Ω(Cµαρt) := CµαρΩ(t).

(βµ) Ω((Cµαρt)Eµσs~s) := Ω
(
s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs)t

)
~s
)
.

(β+
µ) Ω((Cµαρt)E+

µs~s) := Ω
(
s
(
mapλαρ(µαρ)(µαρ× σ)

(
λxµαρ.〈x,(λxµαρ.xE+

µ σs)x〉
)
t
)
~s
)
.

The proofs are always obvious.
Extend the definition of SN for system eF by the following clauses:

(µ-I) If Cµαρt is a term and t ∈ SN, then Cµαρt ∈ SN.

(βµ) If s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs)t

)
~s ∈ SN, xµαρ /∈ FV(s) and (Cµαρt)Eµσs~s is a

term, then (Cµαρt)Eµσs~s ∈ SN.

(β+
µ) If s

(
mapλαρ(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ SN, xµαρ /∈ FV(s)

and (Cµαρt)E+
µ σs~s is a term, then (Cµαρt)E+

µ σs~s ∈ SN.

The only difference between the µ-clauses for SN and WN is the name of the defined set.
Every statement made in section 2.1.4 for system F (on nf, NF, wn, WN, Ω, SN and sn) is also
true for the systems ESMIT.
Note that the conditions (U) and (S) were not used in this section. Nevertheless to my mind
they should be part of the definition.

4.2.2 Embedding the systems ESMIT in EMIT

The embedding of the types will be the trivial one, i. e., ρ′ := ρ for every type ρ ∈ MTypes. Let
Λ′ be the set of terms of EMIT.
Inductively define the set ST of stratified terms of the system ESMIT as a subset of Λ as follows:

(eF) All of the term generation rules of eF (where Λ is replaced by ST).

(µ-I) If tρ[α:=µαρ] ∈ ST and mapλαρ ∈ ST, then Cµαρt ∈ ST.

60 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

(µ-E) If rµαρ ∈ ST and sρ[α:=σ]→σ ∈ ST, then rs ∈ ST.

(µ-E+) If rµαρ ∈ ST and sρ[α:=µαρ×σ]→σ ∈ ST then rs ∈ ST.

This definition is well-parsed in the sense which was explained for the definition of WN. Hence,
we may define functions on ST by recursion on the definition.
Define the function −′ : ST → Λ′ by recursion on ST and simultaneously prove that for r : ρ we
have r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF. (Because of ρ′ = ρ the rule (→-I) may be
simplified to (λxρr)′ := λxρr′ without the additional assumption.)

(µ-I) (Cµαρt)′ := Cµαρ(mapλαρ)′t′.

(µ-E) (rEµs)′ := r′Eµs′.

(µ-E+) (rE+
µ s)′ := r′E+

µ s′.

(The proofs are trivial.) The rules (µ-E) and (µ-E+) are called the homomorphic µ-elimination
rules. (µ-E) is called the homomorphic µ-elimination rule and (µ-E+) is called the homomorphic
µ+-elimination rule.

Lemma 4.4 Every (not necessarily proper) subterm r of mapλαρ is in ST.

Proof Main induction on µαρ along � coming from our assumption (S). Side induction on r
(i. e., on the definition of Λ). All the term formation rules of eF and (µ-E) and (µ-E+) are dealt
with by the side induction hypothesis. E. g. (→-E): Let rE→s be a subterm of mapλαρ. Then
r and s are subterms of mapλαρ. By the side induction hypothesis, r and s are in ST. By the
rule (eF) of the definition of ST, rs ∈ ST. We come to the crucial case (µ-I): Let Cµα′ρ′t be a
subterm of mapλαρ. By assumption (S) we have µαρ � µα′ρ′. By the main induction hypothesis
for mapλα′ρ′ itself, we know that mapλα′ρ′ ∈ ST. t is a subterm of mapλαρ. By the side induction
hypothesis, t ∈ ST. By the rule (µ-I) of the definition of ST, Cµα′ρ′t ∈ ST. �

Corollary 4.5 If t ∈ ST and Cµαρt ∈ Λ, then Cµαρt ∈ ST. �

Corollary 4.6 ST = Λ.

Proof ST has all the closure properties which define Λ. �

Therefore, −′ is defined on all terms. Obviously, it is injective on terms.
It should be mentioned that ST = Λ is not only a consequence of (S), but in fact equivalent to (S)
(relative to the setting without (U) and (S)). The relation � may be generated by assigning to
a µαρ the least ordinal θ (which exists under the assumption ST = Λ) such that Cµαρx

ρ[α:=µαρ]

(with a fixed x ∈ Vars) is in the application of the θ-iterate of the monotone operator associated
with the inductive definition of ST to the empty set, and by comparing those ordinals.

Lemma 4.7 If mapλαρ ∈ NF for all µαρ ∈ MTypes, then for every r ∈ NF, also r′ ∈ NF.

Proof Induction on r ∈ ST using case analysis on r ∈ NF. �

Lemma 4.8 (r[~x~ρ := ~s~ρ])′ = r′[~x~ρ := ~s ′] and (r[~α := ~σ])′ = r′[~α := ~σ].

4.2. THE TERM REWRITE SYSTEMS ESMIT 61

Proof Induction on r ∈ ST: All the cases except (µ-I) are straightforward. Case (µ-I):

((Cµαρt)[~x~ρ := ~s])′ = Cµαρ(mapλαρ)
′(t[~x~ρ := ~s])′.

(Cµαρt)′[~x~ρ := ~s ′] = Cµαρ(mapλαρ)
′[~x~ρ := ~s ′]t′[~x~ρ := ~s ′].

By induction hypothesis (t[~x~ρ := ~s])′ = t′[~x~ρ := ~s ′]. By assumption mapλαρ is closed, hence
(mapλαρ)′ is closed as was proved simultaneously with the definition of −′. (This part of the
lemma did not need the induction on ST. Induction on r ∈ Λ would have been sufficient.)

((Cµαρt)[~α := ~σ])′ = C(µαρ)[~α:=~σ](map(λαρ)[~α:=~σ])
′(t[~α := ~σ])′.

(Cµαρt)′[~α := ~σ] = C(µαρ)[~α:=~σ](mapλαρ)
′[~α := ~σ]t′[~α := ~σ].

By induction hypothesis (t[~α := ~σ])′ = t′[~α := ~σ] and (mapλαρ[~α := ~σ])′ = (mapλαρ)′[~α := ~σ].
We need to show (map(λαρ)[~α:=~σ])′ = (mapλαρ[~α := ~σ])′. Due to the injectivity of −′ this is
equivalent to (U) which we assumed in the definition of ESMIT. �

Lemma 4.9 If r → r̂, then r′ → r̂′.

Proof Induction on r → r̂: The cases (β→) and (β∀) follow immediately from Lemma 4.8. The
cases (β×) and (β+) are obvious. The cases (βµ) and (β+

µ) are easy. Check e. g.
((Cµαρt)Eµσs)′ = (Cµαρ(mapλαρ)′t′)Eµσs′

7→ s′
(
(mapλαρ)′(µαρ)σ(λxµαρ.xEµσs′)t′

)
=

(
s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs)t

))′
The other clauses are easily proved by using the induction hypothesis. �

This implies that −′ is an embedding of ESMIT in EMIT.

4.2.3 The term rewrite systems ESMITit and ESMITrec

The systems ESMITit are derived from ESMIT just by forbidding the use of the term generation
rule (µ-E+) in the terms mapλαρ (for µαρ ∈ MTypes). Consequently the systems ESMITrec are
defined by ruling out the term generation rule (µ-E) for the definition of the terms mapλαρ.

4.2.4 The term rewrite systems ESMIT+ex

The term rewrite systems ESMIT+ex are based on the types as described in section 3.4. Let
MTypes be a subset of this set of types which is closed under substitution and the type-forming
operations, i. e., MTypes is supposed to satisfy the conditions described in section 4.2.1 and

(∃) If α ∈ Typevars and ρ ∈ MTypes, then ∃αρ ∈ MTypes.

The most prominent examples are the sets SPosTypes and PosTypes of section 3.4.
The term system is defined by reinterpreting the term formation rules for ESMIT in the extended
type system and by adding the clauses (∃-I) and (∃-E) of section 2.4.2 (also interpreted in the
extended type system).
A term rewrite system ESMIT+ex is given by MTypes and by a family {mapλαρ|µαρ ∈ MTypes}
where again for every µαρ ∈ MTypes the object mapλαρ is a closed term (in the term system just
defined) of type ∀α∀β.(α → β) → ρ → ρ[α := β] (with β /∈ {α}∪FV(ρ)) such that the conditions
(C), (U) and (S) of section 4.2.1 are met.
The relation 7→ is defined by adding the clauses for system eF+ex to the rules (βµ) and (β+

µ)
of system ESMIT. All the statements made in section 4.2.1 are true for ESMIT+ex where the
definitions are simply the sum of the clauses for eF+ex and ESMIT.

62 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

4.3 The variant varEMIT of EMIT

A slight generalization of EMIT is defined. It is not intended to cover more interesting examples
of inductive types but serves as a challenge to prove strong normalization directly (see ap-
pendix A). Moreover, the embeddings of EMIT into other systems simply also work for varEMIT
and therefore they are carried out in the more general system.
In section 4.3.3 it is shown that monotone inductive types with iteration only are embedded into
IT (and hence also in F) via an analysis of Tarski’s fixed-point theorem. This result generalizes
and sharpens (because also reduction is preserved) earlier results on the impredicative encoding
of data types (e. g. [BB85] where simultaneous non-interleaved strictly positive inductive types
are studied, and I believe that simultaneous inductive types may easily be represented in EMIT
via interleaving). Compare also with the presentation of impredicative encodings in [GLT89]
and with [Lei90, p. 306] for the encoding (irrespective of reduction behaviour) in the case of
positive inductive types.

4.3.1 Definition

The reduction rules of system EMIT use the term m which comes with the rule (µ-I) only with
first type argument µαρ. In order to get maximal generality we define the variant varEMIT of
EMIT by considering terms m of type

∀α.(µαρ → α) → ρ[α := µαρ] → ρ

instead of the type
∀α∀β.(α → β) → ρ → ρ[α := β]

(note the renaming of variables which took place).
In the following only changes to EMIT are given. All the statements on EMIT hold as well in
varEMIT.
Changed clauses in the definition of terms:

(µ-I) If tρ[α:=µαρ] ∈ Λ and m∀α.(µαρ→α)→ρ[α:=µαρ]→ρ ∈ Λ, then (Cµαρmt)µαρ ∈ Λ and
FV(Cµαρmt) := FV(m) ∪ FV(t).

Changed clauses in the definition of reduction:

varEMIT

(βµ) (Cµαρmt)Eµσs 7→ s
(
mσ(λxµαρ.xEµσs)t

)
(β+

µ) (Cµαρmt)E+
µ σs 7→ s

(
m(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)

We again require xµαρ /∈ FV(s) in both rules. All the other definitions for system EMIT may be
adapted very easily.

4.3.2 Embedding EMIT in varEMIT

An embedding −′ of EMIT in varEMIT is straightforward to define: Set ρ′ := ρ and for every term
rρ of system EMIT define the term r′ of system varEMIT by recursion on r and simultaneously
prove that r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF.

4.3. THE TERM REWRITE SYSTEM VAREMIT 63

(µ-I) (Cµαρmt)′ := Cµαρ(m′µαρ)t′.

(µ-E) The homomorphic µ-elimination rules.

(The proofs are obvious.) The statements of Lemma 4.8 and Lemma 4.9 are true for this
definition and are proved by induction on r resp. by induction on r → r̂. Only (βµ) and (β+

µ)
deserve attention. Check e. g.
(β+

µ): ((Cµαρmt)E+
µ σs)′ = (Cµαρ(m′µαρ)t′)E+

µ σs′

7→ s′
(
(m′µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs′)x〉
)
t′
)

=
(
s
(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
))′

.

4.3.3 Embedding varEMIT–rec in IT

Let us prove Tarski’s fixed-point theorem (chapter 3). M ∈ U is a post-fixed-point of Φ is
defined to mean M ≤ Φ(M). Set

µΦ :=
∧
{M ∈ U |Φ(M) ≤ M}.

By definition, we have that µΦ ≤ M for all pre-fixed-points M of Φ. Show that µΦ is itself a pre-
fixed-point of Φ. Let M be a pre-fixed-point of Φ. Then µΦ ≤ M . Because Φ is monotone, this
implies Φ(µΦ) ≤ Φ(M). Because M is a pre-fixed-point of Φ and ≤ is transitive, Φ(µΦ) ≤ M
follows. Hence, Φ(µΦ) ≤ M for every pre-fixed-point M of Φ and therefore Φ(µΦ) ≤ µΦ by
definition of µΦ. We conclude that µΦ is the least pre-fixed-point of Φ.
µΦ is also a post-fixed-point6 of Φ (and consequently the least fixed point): We have to show
that µΦ ≤ Φ(µΦ). By definition of µΦ, it suffices to show that Φ(µΦ) is a pre-fixed-point of Φ,
i. e., Φ(Φ(µΦ)) ≤ Φ(µΦ). This follows from the first part of the proof and the monotonicity of
Φ.
Let now (U,⊆) be a complete lattice of sets. We rearrange the above proof in order to give the
intuition for this section’s embedding.
Firstly, by only applying (

∧
-E) to the definition of µΦ we get

(µΦ-E) If x ∈ µΦ and Φ(M) ⊆ M , then x ∈ M .

Secondly, we get

(µΦ-I) If Φ is monotone and x ∈ Φ(µΦ), then x ∈ µΦ.

via the following proof: Let Φ be monotone and x ∈ Φ(µΦ). We show x ∈ µΦ using (
∧

-I).
Let M ∈ U , Φ(M) ⊆ M and y ∈ Φ(µΦ). We show that y ∈ M . Let z ∈ µΦ. By (

∧
-E) and

Φ(M) ⊆ M , z ∈ M . Hence, µΦ ⊆ M . By monotonicity of Φ and y ∈ Φ(µΦ), y ∈ Φ(M). Due to
Φ(M) ⊆ M , y ∈ M . Hence we may apply (

∧
-I) using x ∈ Φ(µΦ) and get x ∈ µΦ.

Note that monotonicity is only used to conclude Φ(µΦ) ⊆ Φ(M) from µΦ ⊆ M and hence we
may model the proof even in varEMIT instead of EMIT.
The definition of µΦ and the proofs of (µΦ-E) and (µΦ-I) are reflected in the following clauses
of the embedding of varEMIT–rec in IT:

(µ) (µαρ)′ := iα.ρ′ → α.

(µ-E) (rµαρsρ[α:=σ]→σ)′ := r′Eiσ
′s′.

6Unfortunately, this fact cannot be used to embed fixed-point types into IT because of bad reduction behaviour.
See the discussion in appendix B.

64 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

(µ-I) (Cµαρm
∀α.(µαρ→α)→ρ[α:=µαρ]→ρtρ[α:=µαρ])′ := Ciα.ρ′→α`t′ setting

` := Λαλzρ′→αλyρ′[α:=(µαρ)′].z
(
m′α(λx(µαρ)′ .xEiαz)y

)
,

where we assume that α /∈ FTV(m) and require z, y /∈ FV(m).

More formally: Let varEMIT–rec (varEMIT minus recursion) be the system which is derived from
varEMIT by leaving out the term generation rule (µ-E+) and the reduction rule (β+

µ).
For every type ρ of system varEMIT–rec define the type ρ′ of system IT by recursion on ρ and
simultaneously prove that FV(ρ′) = FV(ρ) as follows:

(eF) The homomorphic type rules for eF.

(µ) (µαρ)′ := iα.ρ′ → α.

(The proofs were obvious.) This definition is compatible with the variable conventions for the
systems varEMIT–rec and IT.

Lemma 4.10 (ρ[~α := ~σ])′ = ρ′[~α := ~σ′].

Proof Induction on ρ. �

For every term rρ of system varEMIT–rec define the term r′ of system IT by recursion on r and
simultaneously prove that r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as
follows:

(eF) The homomorphic term rules for eF.

(µ-I) (Cµαρm
∀α.(µαρ→α)→ρ[α:=µαρ]→ρtρ[α:=µαρ])′ := Ciα.ρ′→α`t′ setting

` := Λαλzρ′→αλyρ′[α:=(µαρ)′].z
(
m′α(λx(µαρ)′ .xEiαz)y

)
,

where we assume that α /∈ FTV(m) and require z, y /∈ FV(m).

(µ-E) (rµαρsρ[α:=σ]→σ)′ := r′Eiσ
′s′.

(The proofs were always obvious.) This definition is again compatible with the variable conven-
tions for varEMIT–rec and IT.

Lemma 4.11 (r[~x~ρ := ~s~ρ])′ = r′[~x~ρ′ := ~s ′] and (r[~α := ~σ])′ = r′[~α := ~σ′].

Proof Induction on r. �

Lemma 4.12 If r → r̂, then r′ →+ r̂′.

Proof Induction on r → r̂: The cases (β→) and (β∀) follow immediately from Lemma 4.11,
(β×) and (β+) are trivial.
(βµ): ((Cµαρmt)Eµσs)′ = (Ciα.ρ′→α`t′)Eiσ

′s′ with ` as defined above
7→ `E∀σ′s′t′

→ (λzρ′[α:=σ′]→σ′λyρ′[α:=(µαρ)′].z(m′σ′(λx(µαρ)′ .xEiσ
′z)y))s′t′

→ (λyρ′[α:=(µαρ)′].s′(m′σ′(λx(µαρ)′ .xEiσ
′s′)y))t′

→ s′(m′σ′(λx(µαρ)′ .xEiσ
′s′)t′)

=
(
s(mσ(λxµαρ.xEµσs)t)

)′
We used Lemma 2.16 and Corollary 2.2 for the second reduction step and Lemma 2.11 for the
third and fourth. The other clauses are easily proved by using the induction hypothesis. �

4.4. THE TERM REWRITE SYSTEM IMIT 65

4.4 The introduction-based term rewrite system IMIT of mono-
tone inductive types

IMIT is “introduction-based” because the introduction rule is free from the monotonicity as-
sumption.
The (second) definition of typed terms and their free variables for system eF is extended by the
following clauses:

(µ-I) If tρ[α:=µαρ] ∈ Λ, then (Cµαρt)µαρ ∈ Λ and FV(Cµαρt) := FV(t).

(µ-E) If rµαρ ∈ Λ, m∀α∀β.(α→β)→ρ→ρ[α:=β] ∈ Λ and sρ[α:=σ]→σ ∈ Λ, then (rms)σ ∈ Λ (also
written as rEµσms or shorter rEµms) and FV(rs) := FV(r) ∪ FV(m) ∪ FV(s).

(µ-E+) If rµαρ ∈ Λ, m∀α∀β.(α→β)→ρ→ρ[α:=β] ∈ Λ and sρ[α:=µαρ×σ]→σ ∈ Λ then (rms)σ ∈ Λ
(also written as rE+

µ σms or shorter rE+
µ ms) and FV(rs) := FV(r)∪FV(m)∪FV(s).

In both elimination rules we require β /∈ {α} ∪ FV(ρ). Therefore, this definition is again com-
patible with the renaming convention for bound type variables.
The only difference between the systems EMIT and IMIT is the place where the monotonicity
witnesses are put in the terms. In EMIT monotonicity is needed in order to construct inhabi-
tants of µαρ, in IMIT monotonicity is required for “using” inhabitants of µαρ, i. e., for defining
functions on µαρ by iteration or primitive recursion.
All the other definitions in section 4.1.1 may be simply derived from those for system EMIT by
moving the term m from the position after the Cµαρ to the position after E+

µ and Eµ.
Define e. g. the relation 7→ by adding the following clauses to those for system eF:

IMIT

(βµ) (Cµαρt)Eµσms 7→ s
(
m(µαρ)σ(λxµαρ.xEµσms)t

)
(β+

µ) (Cµαρt)E+
µ σms 7→ s

(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)

(In both rules we now require that xµαρ /∈ FV(m) ∪ FV(s).)
Every statement made in section 2.1.4 for system F (on nf, NF, wn, WN, Ω, SN and sn) is also
true for IMIT.

4.5 Relating iteration and primitive recursion

In the introduction to this chapter the rule (lfp-E+) was derived from (lfp-E). Therefore we
might expect that also primitive recursion may be expressed by iteration. This is not the case.
It is easy to derive (lfp-E) from (lfp-E+). However, also iteration may not be satisfactorily
expressed by primitive recursion (although there are very complicated reduction-preserving em-
beddings into the fragments without iteration).

4.5.1 Coding IMIT in IMIT–rec

This section shows why (µ-E+) is not superfluous in IMIT (and also not in EMIT).
Let again (U,⊆) be a complete lattice of sets. We reconsider how (lfp-E+) is derived from (lfp-E)
for monotone Φ:
Set M ′ := lfp(Φ) ∧M . Assume x ∈ lfp(Φ) and Φ(M ′) ⊆ M . We first show x ∈ M ′ by induction
on lfp(Φ). We only have to show Φ(M ′) ⊆ M ′. Let y ∈ Φ(M ′). Show that (1) y ∈ lfp(Φ) and

66 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

(2) y ∈ M . Ad (1): Because Φ is monotone, M ′ ⊆ lfp(Φ) and y ∈ Φ(M ′), we get y ∈ Φ(lfp(Φ)).
By (lfp-I) we get (1). Ad (2): Because y ∈ Φ(M ′) and Φ(M ′) ⊆ M , we have y ∈ M which is
(2). Therefore x ∈ M ′. Because M ′ = lfp(Φ) ∧M , also x ∈ M .
Due to the use of Φ’s monotonicity in the inductive step, this is clearly best expressed in the
system IMIT which has monotonicity witnesses attached to (µ-E) and (µ-E+). Our informal
realizability method directly motivates the following clause of an encoding of IMIT in itself.

(µ-E+) (rµαρE+
µ σms)′ := (r′Eµ(µαρ× σ)m′ŝ)R setting

ŝ := λxρ[α:=µαρ×σ].〈Cµαρ

(
m′(µαρ× σ)(µαρ)(λzµαρ×σ.zL)x

)
, s′x〉,

where we require that x /∈ FV(m) ∪ FV(s).

Unfortunately, this encoding is not well-behaved with respect to reduction.
More formally: Let IMIT–rec (IMIT minus recursion) be the system which is derived from IMIT by
leaving out the term generation rule (µ-E+) and consequently the reduction rule (β+

µ). Define for
every term rρ of system IMIT the term r′ of system IMIT–rec by recursion on r and simultaneously
prove that r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF.

(µ-I) The homomorphic µ-introduction rule.

(µ-E) The homomorphic µ-elimination rule.

(µ-E+) (rµαρE+
µ σms)′ := (r′Eµ(µαρ× σ)m′ŝ)R setting

ŝ := λxρ[α:=µαρ×σ].〈Cµαρ

(
m′(µαρ× σ)(µαρ)(λzµαρ×σ.zL)x

)
, s′x〉,

where we require that x /∈ FV(m) ∪ FV(s).

(The proofs are obvious.)
The statement of Lemma 4.8 (compatibility with substitution) also holds for −′, but we do not
get an embedding:
(CµαρtE+

µ ms)′ = (Cµαρt
′Eµm′ŝ)R with ŝ as above

7→ ŝ
(
m′(µαρ)(µαρ× σ)(λxµαρ.xEµm′ŝ)t′

)
R

→2→ s′
(
m′(µαρ)(µαρ× σ)(λxµαρ.xEµm′ŝ)t′

)
6→∗6→ s′

(
m′(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σm′s′)x〉
)
t′
)

Instead of 6→∗ it is in general (except trivial cases) also correct to write “not being in the
symmetric closure =β of →∗”. There are two reasons: There is no induction hypothesis available
which would give λxµαρ.(xEµm′ŝ)R =β λxµαρ.xE+

µ σm′s′. Moreover, we would in addition have
to prove (Cµαρt

′Eµm′ŝ)L =β Cµαρt
′ which in turn would require functoriality properties of the

term m′ and also an induction hypothesis of the above kind. The first problem can be solved
by introducing extensional equality instead of =β , the second is then solvable only for positive
inductive types (see the remarks in appendix B). However, there is no hope for finding term
rewrite rules which make −′ an embedding.
For system EMIT there is even no hope for finding an encoding of (µ-E+) via (µ-E) following
the derivation of (lfp-E+) from (lfp-E). Where should the monotonicity witness come from? In
the lattice-theoretic situation this would require a rule

∀x.x ∈ lfp(Φ) ⇒ Φ monotone,

4.5. RELATING ITERATION AND PRIMITIVE RECURSION 67

which cannot be a consequence of (lfp-I-mon), (lfp-E) and (lfp-E+), because we can validate
these rules interpreting lfp(Φ) by Tarski’s construction for monotone Φ and by

∧
U otherwise.

And it is of course possible to have complete lattices U of sets with
∧

U 6= ∅ also having non-
monotone operators. These lattices refute the above rule. (Of course, in this situation we could
give a trivial proof that x ∈ lfp(Φ) and Φ(M ′) ⊆ M entail x ∈ M , because lfp(Φ) ⊆ M for every
M ∈ U . But such a non-uniform argument can never be expressed by means of EMIT.)

4.5.2 Coding IMIT in IMIT–it

This section shows why (µ-E) is not superfluous in IMIT(and also not in EMIT). But in principle
it could be eliminated.
Let (U,≤) be a complete lattice. We derive (lfp-E) from (lfp-E+) for monotone Φ:
Let Φ(M) ≤ M . We have to show that Φ(lfp(Φ)∧M) ≤ M . But trivially, lfp(Φ)∧M ≤ M and
by monotonicity of Φ, Φ(lfp(Φ)∧M) ≤ Φ(M). We are done by applying transitivity of ≤ to the
last formula and Φ(M) ≤ M .
Now let (U,⊆) be a complete lattice of sets. We reformulate the above proof to allow reading
off an encoding of (µ-E) by means of (µ-E+):
Let x ∈ lfp(Φ) and Φ(M) ⊆ M . We show that x ∈ M by extended induction on lfp(Φ): Let
y ∈ Φ(lfp(Φ) ∧M). We have to show y ∈ M . Because Φ is monotone, lfp(Φ) ∧M ⊆ M and by
the assumption on y, we get y ∈ Φ(M). Using Φ(M) ⊆ M , we conclude y ∈ M .
Again the monotonicity of Φ is used in the induction step and therefore we first try to use this
proof to get an encoding for IMIT. The following clause is read off the proof immediately:

(µ-E) (rµαρEµσms)′ := r′E+
µ σ

(
λxρ[α:=µαρ×σ].s′(m′(µαρ× σ)σ(λzµαρ×σ.zR)x)

)
, where we

require that x /∈ FV(m) ∪ FV(s).

Unfortunately, also this encoding is not well-behaved with respect to reduction.
More formally: Let IMIT–it (IMIT minus iteration) be the system which is derived from IMIT by
leaving out the term generation rule (µ-E) and consequently the reduction rule (βµ). Define for
every term rρ of system IMIT the term r′ of system IMIT–it by recursion on r and simultaneously
prove that r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF.

(µ-I) The homomorphic µ-introduction rule.

(µ-E) (rµαρEµσms)′ := r′E+
µ σ

(
λxρ[α:=µαρ×σ].s′(m′(µαρ× σ)σ(λzµαρ×σ.zR)x)

)
, where we

require that x /∈ FV(m) ∪ FV(s).

(µ-E+) The homomorphic µ+-elimination rule.

(The proofs are obvious.)
The statement of Lemma 4.8 (compatibility with substitution) also holds for −′, but we do not
get an embedding (set ŝ := λxρ[α:=µαρ×σ].s′(m′(µαρ× σ)σ(λzµαρ×σ.zR)x)):
(CµαρtEµms)′ = (Cµαρt

′E+
µ m′ŝ) 7→

ŝ
(
m′(µαρ)(µαρ× σ)(λxµαρ.〈x, (λxµαρ.xE+

µ m′ŝ)x〉)t′
)
→

s′
(
m′(µαρ× σ)σ(λzµαρ×σ.zR)

(
m′(µαρ)(µαρ× σ)(λxµαρ.〈x, (λxµαρ.xE+

µ m′ŝ)x〉)t′
))

.

The composition of λzµαρ×σ.zR with λxµαρ.〈x, (λxµαρ.xE+
µ m′ŝ)x〉 is β→-equal to λxµαρ.xE+

µ m′ŝ.
If m′ were “functorial” one could in some sense get to

s′
(
m′(µαρ)σ(λxµαρ.xE+

µ m′ŝ)t′).

68 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

At first sight it may seem that exactly the same problems arise as with embedding IMIT in
IMIT–rec. But here the situation is easier: One does not need some formal induction principle
but only faces the functoriality problem. This is not solvable in general (for monotone inductive
types). If one introduces extensional equality (exhibiting that formal induction principle) it is
possible to show functoriality for the canonical monotonicity witnesses of PIT (in the equality
theory). For NIPIT without sum types this is even possible with respect to the rewrite relation
after adding some η-rules which do no harm to confluence and strong normalization. (For full
NIPIT also permutative conversions have to be studied.) See also appendix B.
To sum up, we do not have an embedding and no hopes of finding an extension of the rewrite
relation which settles the problem for IMIT.
We also cannot expect to even get an encoding of iteration via recursion in EMIT.
Having said all this it may seem paradoxical that there are reduction-preserving embeddings
of IMIT in IMIT–it and of EMIT in EMIT–it (which is defined in the expected way). But these
embeddings are very different from the above encoding. And they also affect the rule (µ-E+)
which will have no relation to the homomorphic µ+-elimination rule.
For the argument we freely use facts spread over this thesis:

• IMIT embeds into varIMIT and varIMIT into MeIT and MeIT into MeIT–it.

• MeIT embeds into UVIT and UVIT into MePIT which is a subsystem of NISPIT+ex.
NISPIT+ex is one of the systems ISMIT+ex (ISMIT extended by ∃, NISPIT+ex is defined
as one of the systems ESMIT+ex but clearly is also an instance of ISMIT+ex).

• ISMIT embeds into IMIT.

• Therefore by extension of the proof that ISMIT embeds into IMIT also ISMIT+ex embeds
into IMIT+ex (which is defined in the expected way).

• Clearly, the proof that eF+ex embeds into eF carries over to a proof that IMIT+ex embeds
into IMIT.

• By the last four items, MeIT embeds into IMIT. By inspection of the proofs we note
that the rule (µ-E) is always only used to deal with (µ-E) of some other system. Note
that NISPIT+ex is a subsystem of PIT+ex not making use of (µ-E) in the definition of
the canonical monotonicity witnesses because it is a system of non-interleaving µ-types!
Therefore, also MeIT–it embeds into IMIT–it.

• Putting together the first item and the preceding one, we conclude that IMIT embeds into
IMIT–it.

We see that the elimination of iteration happens in MeIT and that an awful lot of encoding7

has to happen to go from IMIT to itself via MeIT. Note that the embedding of eF+ex in eF
does not carry over to systems of selected monotone inductive types because the encoding of the
existential quantifier is in general incompatible with the selected monotonicity witnesses.
The case of the embedding of EMIT in EMIT–it is somewhat easier because no existential quan-
tifiers come into play:

• EMIT embeds into varEMIT and varEMIT into coMeIT and coMeIT into coMeIT–it.
7Of course, one could slightly optimize the embedding coming from the composition of all those embeddings

by some normalization. Because (µαρ)′ = µβ∀γ.(∀α.(α → β)× ρ′ → γ) → γ this will still be quite complicate an
embedding.

4.6. THE TERM REWRITE SYSTEMS ISMIT 69

• coMeIT embeds into coMePIT8 which is a subsystem of NIPIT. NIPIT is one of the systems
ESMIT and every ESMIT embeds into EMIT.

• By inspection of the proofs we again see that the rule (µ-E) is always only used to deal
with (µ-E) of some other system and that although NIPIT is a subsystem of PITit, (µ-E)
is not used in the definition of the canonical monotonicity witnesses because it is a system
of non-interleaving µ-types. Therefore, also coMeIT–it embeds into EMIT–it.

• We conclude that EMIT embeds into EMIT–it.

This time the elimination of iteration happens in coMeIT.
Hopefully these lines of argumentation motivate the reader to go through all of the embeddings
presented in this thesis. They do serve a purpose. E. g. we may now conclude that iteration
may also be eliminated in favour of recursion in all the concrete systems appearing in the above
proofs because they show a circle of embeddings.
A similar solution to the problem of elimination of recursion by means of iteration is not in sight.
Using the embedding of varEMIT–rec in IT (section 4.3.3) and some other embeddings we would
arrive at embeddings of all the systems into system F which I strongly believe is impossible
although I have not yet seen a proof.

4.6 The term rewrite systems ISMIT

These systems are dual to the systems ESMIT. This time one has to restrict the use of µ(+)-
eliminations in the monotonicity witnesses.

4.6.1 Definition

The term rewrite systems ISMIT are defined to be the same as the systems ESMIT except that
condition (S) of ESMIT is replaced by the following condition (S) of ISMIT:

(S) Stratification: There is a well-founded relation � on the types of the form µαρ such
that whenever rµα′ρ′s is a subterm of mapλαρ, then µαρ � µα′ρ′.

As was remarked at the end of section 4.2.1, condition (S) is not used in that section and
therefore all of the results therein are true for the systems ISMIT.

4.6.2 Embedding ISMIT in IMIT

The following embedding of the systems ISMIT in IMIT is derived by obvious modifications of
the embedding of ESMIT in EMIT.
The embedding of the types is the trivial one, i. e., ρ′ := ρ for every type ρ ∈ MTypes. Let Λ′ be
the set of terms of IMIT.
Inductively define the set ST of stratified terms of the system ISMIT as a subset of Λ as follows:

(eF) All of the term generation rules of eF (where Λ is replaced by ST).

(µ-I) If tρ[α:=µαρ] ∈ ST , then Cµαρt ∈ ST.

(µ-E) If rµαρ ∈ ST, mapλαρ ∈ ST and sρ[α:=σ]→σ ∈ ST, then rs ∈ ST.

(µ-E+) If rµαρ ∈ ST, mapλαρ ∈ ST and sρ[α:=µαρ×σ]→σ ∈ ST then rs ∈ ST.

8This is the only embedding in this line of embeddings where types are changed.

70 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

This definition is again well-parsed. Hence, we may define functions on ST by recursion on the
definition.
Define the function −′ : ST → Λ′ by recursion on ST and simultaneously prove that for r : ρ we
have r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF.

(µ-I) (Cµαρt)′ := Cµαρt
′.

(µ-E) (rµαρEµs)′ := r′Eµ(mapλαρ)′s′.

(µ-E+) (rµαρE+
µ s)′ := r′E+

µ (mapλαρ)′s′.

(The proofs are trivial.) The rule (µ-I) is called the homomorphic µ-introduction rule.

Lemma 4.13 Every (not necessarily proper) subterm r of mapλαρ is in ST.

Proof Main induction on µαρ along � coming from our assumption (S). Side induction on r
(i. e., on the definition of Λ). All the term formation rules of eF and (µ-I) are dealt with by
the side induction hypothesis. E. g. (→-E): Let rE→s be a subterm of mapλαρ. Then r and s
are subterms of mapλαρ. By the side induction hypothesis, r and s are in ST. By the rule (eF)
of the definition of ST, rs ∈ ST. We come to the crucial µ-elimination cases: Let rµα′ρ′s be a
subterm of mapλαρ. By assumption (S) we have µαρ � µα′ρ′. By the main induction hypothesis
for mapλα′ρ′ itself, we know that mapλα′ρ′ ∈ ST. r and s are subterms of mapλαρ. By the side
induction hypothesis, r, s ∈ ST. By the definition of ST, rµα′ρ′s ∈ ST. �

Corollary 4.14 If r, s ∈ ST and rµαρs ∈ Λ, then rs ∈ ST. �

Corollary 4.15 ST = Λ.

Proof ST has all the closure properties which define Λ. �

Therefore, −′ is defined on all terms. Obviously, it is injective on terms.
Again ST = Λ is not only a consequence of (S), but in fact equivalent to (S) (relative to the
setting without (U) and (S)) as can be seen by using ordinals as was sketched for the embedding
of ESMIT in EMIT.
The statement of Lemma 4.7 is also true for this embedding.

Lemma 4.16 (r[~x~ρ := ~s~ρ])′ = r′[~x~ρ := ~s ′] and (r[~α := ~σ])′ = r′[~α := ~σ].

Proof Induction on r ∈ ST: All the cases except (µ-E) and (µ-E+) are straightforward. Consider
e. g. (µ-E):

((rEµs)[~x~ρ := ~s])′ = (r[~x~ρ := ~s])′Eµ(mapλαρ)
′(s[~x~ρ := ~s])′.

(rEµs)′[~x~ρ := ~s ′] = r′[~x~ρ := ~s ′](mapλαρ)
′[~x~ρ := ~s′]s′[~x~ρ := ~s ′].

By assumption mapλαρ is closed, hence (mapλαρ)′ is closed as was proved simultaneously with
the definition of −′. Hence we are done by the induction hypothesis for r and s. (This part of
the lemma did not need the induction on ST. Induction on r ∈ Λ would have been sufficient.)

((rEµs)[~α := ~σ])′ = (r[~α := ~σ])′Eµ(map(λαρ)[~α:=~σ])
′(s[~α := ~σ])′.

(rEµs)′[~α := ~σ] = r′[~α := ~σ]Eµ(mapλαρ)
′[~α := ~σ]s′[~α := ~σ].

By induction hypothesis (mapλαρ[~α := ~σ])′ = (mapλαρ)′[~α := ~σ]. Because of the induction
hypothesis for r and s we need to show (map(λαρ)[~α:=~σ])′ = (mapλαρ[~α := ~σ])′. Due to the
injectivity of −′ this is equivalent to (U) which we assumed in the definition of ISMIT. The case
(µ-E+) differs only in the name of the elimination symbol. �

4.7. THE TERM REWRITE SYSTEM VARIMIT 71

Lemma 4.17 If r → r̂, then r′ → r̂′.

Proof Induction on r → r̂: The cases (β→) and (β∀) follow immediately from Lemma 4.16. The
cases (β×) and (β+) are obvious. The cases (βµ) and (β+

µ) are easy. Check e. g.
((Cµαρt)Eµσs)′ = (Cµαρt

′)Eµσ(mapλαρ)′s′

7→ s′
(
(mapλαρ)′(µαρ)σ(λxµαρ.xEµσ(mapλαρ)′s′)t′

)
=

(
s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσmapλαρs)t

))′
The other clauses are easily proved by using the induction hypothesis. �

This implies that −′ is an embedding of ISMIT in IMIT.

4.7 The variant varIMIT of IMIT

In this section two extensions of IMIT in the spirit of the extension of EMIT to varEMIT are
presented. The first one shows that minor modifications may lead to non-normalizing systems.
The second one will get the name varIMIT.

4.7.1 Definition

First we study the modification of IMIT following the idea of forming varEMIT. After showing
that it is not normalizing we define varIMIT.
The reduction rule (βµ) of system IMIT uses the term m which comes with the rule (µ-E) only
with first type argument µαρ and second type argument σ. For (β+

µ) the two arguments are
µαρ and µαρ× σ. In order to get more terms we define a variant of IMIT by considering terms
m which are already instantiated to the first type µαρ in the same way as varEMIT was derived
from EMIT. In the following only changes to IMIT are given.
Changed clauses in the definition of terms:

(µ-E) If rµαρ ∈ Λ, m∀α.(µαρ→α)→ρ[α:=µαρ]→ρ ∈ Λ and sρ[α:=σ]→σ ∈ Λ, then (rms)σ ∈ Λ
(also written as rEµσms or shorter rEµms) and FV(rs) := FV(r)∪ FV(m)∪ FV(s).

(µ-E+) If rµαρ ∈ Λ, m∀α.(µαρ→α)→ρ[α:=µαρ]→ρ ∈ Λ and sρ[α:=µαρ×σ]→σ ∈ Λ then (rms)σ ∈ Λ
(also written as rE+

µ σms or shorter rE+
µ ms) and FV(rs) := FV(r)∪FV(m)∪FV(s).

Changed clauses in the definition of reduction:

a non-normalizing system

(βµ) (Cµαρt)Eµσms 7→ s
(
mσ(λxµαρ.xEµσms)t

)
(β+

µ) (Cµαρt)E+
µ σms 7→ s

(
m(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)

Let u ∈ Vars. Set m := Λαλzµαα→αλuµαα.z(Cµααu). Then for every term t : µαα and every
type σ we have:
(Cµααt)Eµσm(λyσy) 7→ (λyσy)(mσ(λxµαα.xEµσm(λyσy))t)

7→ mσ(λxµαα.xEµσm(λyσy))t
→ (λzµαα→σλuµαα.z(Cµααu))(λxµαα.xEµσm(λyσy))t
→ (λuµαα.(λxµαα.xEµσm(λyσy))(Cµααu))t
→ (λxµαα.xEµσm(λyσy))(Cµααt)
→ (Cµααt)Eµσm(λyσy)

72 CHAPTER 4. SYSTEMS WITH MONOTONE INDUCTIVE TYPES

Therefore by Lemma 2.50 (Cµααt)Eµσm(λyσy) /∈ sn and it is clear that the term is also not in
wn. Note that this does not show the inconsistency of the system, i. e., it does not give a closed
term of type µαα (which in turn would give a closed term of type 0 and hence closed terms of
all types).

We pursue the other possibility of getting more terms by specializing the terms m and define the
variant varIMIT of IMIT by considering terms m which are already instantiated to the second
type argument. This would not make sense for EMIT because there m is part of the introduction
rule.
In the following only changes to IMIT are given. All the statements on IMIT hold as well in
varIMIT.
Changed clauses in the definition of terms (always assuming that α /∈ FV(σ)):

(µ-E) If rµαρ ∈ Λ, m∀α.(α→σ)→ρ→ρ[α:=σ] ∈ Λ (for α /∈ FV(σ)) and sρ[α:=σ]→σ ∈ Λ, then
(rms)σ ∈ Λ (also written as rEµσms or shorter rEµms) and FV(rs) := FV(r) ∪
FV(m) ∪ FV(s).

(µ-E+) If rµαρ ∈ Λ, m∀α.(α→µαρ×σ)→ρ→ρ[α:=µαρ×σ] ∈ Λ (for α /∈ FV(σ)) and sρ[α:=µαρ×σ]→σ∈
Λ then (rms)σ ∈ Λ (also written as rE+

µ σms or shorter rE+
µ ms) and FV(rs) :=

FV(r) ∪ FV(m) ∪ FV(s).

Changed clauses in the definition of reduction:

varIMIT

(βµ) (Cµαρt)Eµσms 7→ s
(
m(µαρ)(λxµαρ.xEµσms)t

)
(β+

µ) (Cµαρt)E+
µ σms 7→ s

(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)

We again require xµαρ /∈ FV(m) ∪ FV(s). All the other definitions may be adapted very easily
from those in section 4.1.1 on EMIT.
Note that obviously the encodings of IMIT in IMIT–rec and in IMIT–it in section 4.5 cannot be
extended to varIMIT because the types of m and m′ do not fit.

4.7.2 Embedding IMIT in varIMIT

An embedding −′ of IMIT in varIMIT is straightforward to define: Set ρ′ := ρ and for every term
rρ of system IMIT define the term r′ of system varIMIT by recursion on r and simultaneously
prove that r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF.

(µ-I) The homomorphic µ-introduction rule.

(µ-E) (rµαρEµσms)′ := r′Eµσ(Λα.m′ασ)s′.

(µ-E+) (rµαρE+
µ σms)′ := r′E+

µ σ(Λα.m′α(µαρ× σ))s′.

In both µ-elimination rules we assume that α /∈ FV(σ) ∪ FTV(m). (The proofs are obvious.)
The statements of Lemma 4.16 and Lemma 4.17 are true for this definition and are proved by
induction on r resp. by induction on r → r̂ which does not make any difficulties.

Chapter 5

Systems with positive inductive
types

We define the systems of positive inductive types by constructing their monotonicity witnesses.
Because we have even non-strict positivity also witnesses for antitone type dependency have to
be defined. In the case of non-interleaving positive inductive types no reference to µαρ is needed
in the definitions. A lot of examples (including Gödel’s system T) is given to illustrate what
can be done with positive inductive types. MePIT and coMePIT are very special instances of
NISPIT+ex and NIPIT which serve for purposes of embedding.

5.1 The term rewrite systems PITit and PITrec

Usually (e. g. in PIT) the canonical witnesses use only iteration. In the system PITrec we enforce
the use of primitive recursion instead of iteration. Among other complications we do not get
normal forms any more which is achieved in PIT due to careful definitions.

5.1.1 Definition of PITit (also called PIT)

Define the term rewrite system PITit (also called system PIT) of positive inductive types as one
of the systems ESMITit. Let MTypes:=PosTypes. Lemma 3.2 and the definition itself guarantee
that MTypes fulfills the required closure conditions.
We have to define mapλαρ as a closed term of type ∀α∀β.(α → β) → ρ → ρ[α := β] for every
µαρ ∈ MTypes, i.e. ρ ∈ PosTypes and α ∈ Pos(ρ). Because positivity and negativity are defined
simultaneously, we define auxiliary terms comapλαρ for α ∈ Neg(ρ) simultaneously:
Define for every type ρ ∈ PosTypes and every α ∈ Pos(ρ) (and β /∈ {α} ∪ FV(ρ)) a closed term

mapλαρ : ∀α∀β.(α → β) → ρ → ρ[α := β]

and for every α ∈ Neg(ρ) (and β /∈ {α} ∪ FV(ρ)) a closed term

comapλαρ : ∀α∀β.(α → β) → ρ[α := β] → ρ

by recursion on d(λαρ).
In order to get terms in NF and not too much notation we will set (extending the naming
convention for types by π)

mapλαρ := ΛαΛβλfα→βλxρmap
λαρ,α,β

[fα→β, xρ] and

73

74 CHAPTER 5. SYSTEMS WITH POSITIVE INDUCTIVE TYPES

comapλαρ := ΛαΛβλfα→βλxρ[α:=β]comap
λαρ,α,β

[fα→β , xρ[α:=β]].

Here we assume that f ∈ Vars. Moreover, map
λαρ,π,σ

is a simultaneously defined term of type
ρ[α := σ] with

xρ[α:=π] ∈ FV(map
λαρ,π,σ

) ⊆ {fπ→σ, xρ[α:=π]}

and comap
λαρ,π,σ

is a simultaneously defined term of type ρ[α := π] with

xρ[α:=σ] ∈ FV(comap
λαρ,π,σ

) ⊆ {fπ→σ, xρ[α:=σ]}

and we use as shorthands

map
λαρ,π,σ

[rπ→σ, sρ[α:=π]] := map
λαρ,π,σ

[fπ→σ, xρ[α:=π] := r, s] and

comap
λαρ,π,σ

[rπ→σ, sρ[α:=σ]] := comap
λαρ,π,σ

[fπ→σ, xρ[α:=σ] := r, s].

In the definitions we do not write the types of the variables f and x because the only allowed
free variables are meant. We shorten ρ[α := σ] to ρ[σ] for every ρ and σ.
(triv) Case α /∈ FV(ρ). Then α ∈ Pos(ρ) ∩ Neg(ρ). Set map

λαρ,π,σ
:= x, comap

λαρ,π,σ
:= x. All

the other cases are under the proviso “otherwise”1.
(V) Case ρ = α. Then α ∈ Pos(ρ) \ Neg(ρ). Set map

λαρ,π,σ
:= fx.2

(→) Case ρ = ρ1 → ρ2. If α ∈ Pos(ρ) = Pos(ρ2) ∩ Neg(ρ1) then set

map
λαρ,π,σ

:= λyρ1[σ].map
λαρ2,π,σ

[
f, x(comap

λαρ1,π,σ
[f, y])

]
.

If α ∈ Neg(ρ) = Neg(ρ2) ∩ Pos(ρ1) then set

comap
λαρ,π,σ

:= λyρ1[π].comap
λαρ2,π,σ

[
f, x(map

λαρ1,π,σ
[f, y])

]
.

Because d(λαρ1) and d(λαρ2) are smaller than d(λαρ) this is a correct definition.
(∀) Case ρ = ∀γτ . Because of α ∈ FV(ρ), α 6= γ. Therefore, if α ∈ Pos(ρ) then α ∈ Pos(τ). Set

map
λαρ,π,σ

:= Λγ.map
λατ,π,σ

[f, xγ].

If α ∈ Neg(ρ) then α ∈ Neg(τ). Set

comap
λαρ,π,σ

:= Λγ.comap
λατ,π,σ

[f, xγ].

The proviso for Λ-abstraction is met as we may assume that γ /∈ FV(π) ∪ FV(σ). In order to
verify type correctness we assume the same and therefore have (∀γτ)[α := σ] = ∀γ.τ [α := σ]
and (∀γτ)[α := π] = ∀γ.τ [α := π]. Also note that according to the definition d(λατ) < d(λαρ).
(×) Case ρ = ρ1 × ρ2. If α ∈ Pos(ρ) = Pos(ρ1) ∩ Pos(ρ2) then set

map
λαρ,π,σ

:=
〈
map

λαρ1,π,σ
[f, xL],map

λαρ2,π,σ
[f, xR]

〉
.

1Typing reasons rule out this setting if α ∈ FV(ρ). Only because of this clause it is possible that f does not
occur in map

λαρ,π,σ
or comap

λαρ,π,σ
, and which would otherwise be λI-terms, i. e., terms where only variables

actually occurring free are abstracted.
The definition in [Lei90, p. 311] does not make this case distinction but uses (triv) only for the case where ρ

is a variable different from α. It seems that the case (µ) then makes the definition unfounded. The definition in
[How92, p. 27] has (triv) but no comap because it is designed for strictly positive inductive types.

2Therefore, mapλαα will not be η-normal (The rule λxα.fx 7→η→ f would apply).

5.1. THE TERM REWRITE SYSTEMS PITIT AND PITREC 75

If α ∈ Neg(ρ) = Neg(ρ1) ∩ Neg(ρ2) then set

comap
λαρ,π,σ

:=
〈
comap

λαρ1,π,σ
[f, xL], comap

λαρ2,π,σ
[f, xR]

〉
.

(+) Case ρ = ρ1 + ρ2. If α ∈ Pos(ρ) = Pos(ρ1) ∩ Pos(ρ2) then set

map
λαρ,π,σ

:= xE+

(
λy

ρ1[π]
1 .INLρ2[σ]map

λαρ1,π,σ
[f, y1]

)(
λy

ρ2[π]
2 .INRρ1[σ]map

λαρ2,π,σ
[f, y2]

)
.

If α ∈ Neg(ρ) = Neg(ρ1) ∩ Neg(ρ2) then set

comap
λαρ,π,σ

:= xE+

(
λy

ρ1[σ]
1 .INLρ2[π]comap

λαρ1,π,σ
[f, y1]

)(
λy

ρ2[σ]
2 .INRρ1[π]comap

λαρ2,π,σ
[f, y2]

)
.

(µ) Case ρ = µγτ . Because of α ∈ FV(ρ), α 6= γ. If α ∈ Pos(ρ) = Pos(τ) then set

map
λαρ,π,σ

:= xEµρ[σ]
(
λyτ [π][γ:=µγ.τ [σ]].Cµγ.τ [σ](map

λα.τ [γ:=µγ.τ [σ]],π,σ
[f, y])

)
.

If α ∈ Neg(ρ) then α ∈ Neg(τ). Set

comap
λαρ,π,σ

:= xEµρ[π]
(
λyτ [σ][γ:=µγ.τ [π]].Cµγτ [π](comap

λα.τ [γ:=µγ.τ [π]],π,σ
[f, y])

)
.

Let us verify that this case (µ) is a correct definition clause. We may assume that α, γ /∈
FV(π) ∪ FV(σ). Therefore ρ[π] = µγ.τ [π] and ρ[σ] = µγ.τ [σ] and

(τ [γ := µγ.τ [ρ1]])[ρ2] = τ [ρ2][γ := µγ.τ [ρ1]]

for any ρ1, ρ2 ∈ {π, σ} (use Corollary 2.2, Lemma 2.3 and Lemma 2.5). Let ρ0 ∈ {π, σ}. ρ ∈
PosTypes, hence by Lemma 3.2 ρ[ρ0] ∈ PosTypes. Therefore µγ.τ [ρ0] ∈ PosTypes and consequently
also τ [γ := µγ.τ [ρ0]] ∈ PosTypes. Because α /∈ FV(µγ.τ [ρ0]), Lemma 3.2 also gives us for
α ∈ Pos(τ) that α ∈ Pos(τ [γ := µγ.τ [ρ0]]) and for α ∈ Neg(τ) that α ∈ Neg(τ [γ := µγ.τ [ρ0]]).
By Lemma 3.6 (2.) d(λα.τ [γ := µγ.τ [ρ0]]) < d(λαρ). Therefore the induction hypothesis applies
in both cases, and the terms are well-formed.
It is obvious that the term generation rule (µ-E+) is not used in the definition of map and comap.

Lemma 5.1 The terms mapλαρ for µαρ ∈ PosTypes satisfy the conditions (C), (U) and (S) of
ESMIT.

Proof Of course, we have to prove appropriate statements also for comapλαρ. They are (co-C)
which does not differ from (C) in the verbal representation and (co-U) which is derived from
(U) by replacing “map” by “comap”. (S) has to be completely rewritten to (new-S):
There is a well-founded relation � on abstracted types of the form λαρ such that for every
ρ ∈ PosTypes and α ∈ Pos(ρ) and every subterm Cµα′ρ′t of mapλαρ we have λαρ � λα′ρ′ and
for every ρ ∈ PosTypes and α ∈ Neg(ρ) and every subterm Cµα′ρ′t of comapλαρ we also have
λαρ � λα′ρ′.
(C) and (co-C): This is clear because in the definitions of map and comap the variable α always
only occurs bound. (U) and (co-U): Applying the type substitution does not lead to a jump
from one case in the definition to another: neither in the distinction whether α ∈ FV(ρ) nor in
the analysis of the outermost type constructor nor in the cases due to positivity or negativity.
(new-S): The following approach does not work. Set

λαρ � λα′ρ′ :⇔ d(λαρ) > d(λα′ρ′).

76 CHAPTER 5. SYSTEMS WITH POSITIVE INDUCTIVE TYPES

In the (µ)-clause we have to check

d(λαµγτ) > d(λγ.τ [α := σ]) = d(λγτ)

(assuming γ /∈ FV(σ)). This is not true in general (e. g. for τ := α × ∀β∀δγ assuming that the
variables are different). The definition of h just aimed at solving this problem. Setting

λαρ � λα′ρ′ :⇔ h(λαρ) > h(λα′ρ′),

it is easy to show (new-S) by induction on d(λαρ) (or on the definition of map and comap)
using Lemma 3.5. It is also easy to see that mapλαρ and comapλαρ could have been defined by
recursion on h(λαρ). �

Note that it would be nearly the same proof for showing that PIT is also one of the systems
ISMIT (due to the observation that in the rule (µ) of the definition of map and comap the
µ-introduction and the µ-elimination happen with µ-types of the same height and depth).

Lemma 5.2 map and comap are always terms in NF.

Proof By induction on the definition using the statements of Lemma 2.25 and Lemma 2.26
which hold for ESMIT. �

Therefore, by Lemma 4.7 for every term r of PIT in NF, the term r′ in EMIT, to which r is
mapped by the canonical embedding −′ defined in section 4.2.2, is also in NF.
Note that the rule (µ-E+) is not used for the definition of map and comap. Note also that the
first argument to map and comap is always the variable f .

5.1.2 Examples of term rewriting in PIT

In the following some of the examples of inductive types introduced in section 3.1 which are
types in PIT are studied more carefully. The types of the variables which are bound will always
be omitted except at the binder.
As a first example consider nat = µα.1 + α. It is immediate that

mapλα.1+α = ΛαΛβλfα→βλx1+α.xE+(λy1.INLβy)(λyα.INR1(fy)).

Define
0 := Cnat(INLnatIN1) : nat
S := λxnat.Cnat(INR1x) : nat → nat

Given terms a : σ and b : nat → σ → σ we define Fa,b := λxnat.xE+
µ σs : nat → σ with

s := λx1+nat×σ.xE+(λy1.a)(λynat×σ.b(yL)(yR)),

where x, y /∈ FV(a) ∪ FV(b). We get the following reduction behaviour: Fa,b0 →+ a and
Fa,b(St) →+ bt(Fa,bt). Therefore we may say that Gödel’s system T (see e. g. [GLT89]) is a
subsystem of PIT.

Consider tree = tree(nat) = µα.1 + (nat → α). We see that

mapλα.1+(nat→α) = ΛαΛβλfα→βλx1+(nat→α).xE+(λy1.INLnat→βy)(λynat→α.INR1(λznat.f(yz))).

5.1. THE TERM REWRITE SYSTEMS PITIT AND PITREC 77

Define
nil := Ctree(INLnat→treeIN1) : tree

lim := λxnat→tree.Ctree(INR1x) : (nat → tree) → tree

Given terms a : σ and b : (nat → tree) → (nat → σ) → σ we define the term Fa,b :=
λxtree.xE+

µ σs : tree → σ with

s := λz1+(nat→(tree×σ)).zE+(λy1.a)(λynat→(tree×σ).b(λunat.yuL)(λunat.yuR)),

where y, z /∈ FV(a) ∪ FV(b). The reduction behaviour is as follows: Fa,bnil →+ a and

Fa,b(lim t) →+ b(λunat.tu)(λunat.Fa,b(tu)).

Although there is the unpleasant λunat.tu instead of t we see that this reduction behaviour
reflects our intuition of recursion on countably branching trees (and by adding η→-reduction
to the reduction rules we could avoid this nuisance without making the normalization proof
harder).

We turn to cont(ρ) = µα.1 + ((α → ρ) → ρ) with ρ ∈ PosTypes. We get

mapλα.1+((α→ρ)→ρ) = ΛαΛβλfα→βλx1+((α→ρ)→ρ).xE+(λy1.INL(β→ρ)→ρy)s

with
s := λy(α→ρ)→ρ.INR1(λgβ→ρ.y(λhα.g(fh))).

Define

nil := Ccont(ρ)(INL(cont(ρ)→ρ)→ρIN1) : cont(ρ)
lim := λx(cont(ρ)→ρ)→ρ.Ccont(ρ)(INR1x) : ((cont(ρ) → ρ) → ρ) → cont(ρ)

Let a be a closed term of type ρ. Define a closed term E of type cont(ρ) → ρ by

E := λxcont(ρ).xEµ(λz1+((ρ→ρ)→ρ).zE+(λy1.a)(λy(ρ→ρ)→ρ.y(λuρu))).

We get the following reduction behaviour: Enil →+ a and

E(lim t) →+ (λy(ρ→ρ)→ρ.y(λuρu))(λgρ→ρ.t(λhcont(ρ).g(Eh))) →+ t(λhcont(ρ).Eh).

If we ignore the difference between λhcont(ρ).Eh and E (which could again easily be removed
by introducing η-reduction for →) we may say that the following definition is by iteration on
cont(ρ):

Enil := a
E(lim t) := tE

We see that the recursive call is by no means to E with some term smaller than lim t in any sense.
The term E which stands for the function about to be defined is even fed in as an argument to
the term t. But nevertheless in chapter 9 it will be shown that PIT is strongly normalizing and
hence also the lambda calculus extended by this definition when seen as term rewrite rules.
As was mentioned in section 3.1 this type was studied before by Martin Hofmann. It was
brought to my attention by Ulrich Berger in the unpublished manuscript [Ber95]. The possibility
of defining a function with clauses as above and having termination guaranteed because it is

78 CHAPTER 5. SYSTEMS WITH POSITIVE INDUCTIVE TYPES

simply an instance of iteration on some inductively defined set caught my attention to an extent
which made this thesis possible.

Finally consider Tree = µα.1 + (tree(α) → α). By unwinding the definitions we get

mapλα.1+(tree(α)→α) = ΛαΛβλfα→βλx1+(tree(α)→α).xE+(λy1.INLtree(β)→βy)s,

where we set

s := λytree(α)→α.INR1(λztree(β).f(y(zEµ(λi1+(β→tree(α)).Ctree(α)t)))),

where we set
t := iE+(λk1.INLα→tree(α)k)(λkβ→tree(α).INR1(λmα.k(fm))).

Define
nil := CTree(INLtree(Tree)→TreeIN1) : Tree

lim := λxtree(Tree)→Tree.CTree(INR1x) : (tree(Tree) → Tree) → Tree

Given terms a : σ and b : (tree(σ) → σ) → σ we define Fa,b := λxTree.xEµσs : Tree → σ with

s := λx1+(tree(σ)→σ).xE+(λy1.a)b,

where x, y /∈ FV(a) and x /∈ FV(b). We get the following reduction behaviour: Fa,bnil →+ a and

Fa,b(lim t) →+ b(λztree(σ).Fa,b(t(zEµ(λi1+(σ→tree(Tree)).Ctree(Tree)(iE+s1s2))))) with

s1 := λk1.INLTree→tree(Tree)k

s2 := λkσ→tree(Tree).INR1(λmTree.k(Fa,bm)).

Note the occurrence of Fa,b in s2.

5.1.3 Definition of PITrec

We define the system PITrec as one of the systems ESMITrec. As for PIT let MTypes:=PosTypes.
The definition of the map-terms only introduces a reference to (µ-E) in the case (µ). As was
mentioned in the proof of Lemma 5.1, the definition of mapλαρ and comapλαρ could as well have
been done by recursion on h(λαρ). For PITrec we define mapλαρ and comapλαρ by recursion on
h(λαρ) introducing the map- and comap-terms as for PITit and only change the clause (µ) to:
(µ+) Case ρ = µγτ . Because of α ∈ FV(ρ), α 6= γ. If α ∈ Pos(ρ) = Pos(τ) then set

map
λαρ,π,σ

:= xE+
µ ρ[σ]

(
λyτ [π][γ:=(µγ.τ [π])×(µγ.τ [σ])].Cµγ.τ [σ](map

λα.τ [γ:=µγ.τ [σ]],π,σ
[f, r])

)
with

r := map
λγ.τ [π],(µγ.τ [π])×(µγ.τ [σ]),µγ.τ [σ]

[λz(µγ.τ [π])×(µγ.τ [σ]).zR, y].

If α ∈ Neg(ρ) then α ∈ Neg(τ). Set

comap
λαρ,π,σ

:= xE+
µ ρ[π]

(
λyτ [σ][γ:=(µγ.τ [σ])×(µγ.τ [π])].Cµγτ [π](comap

λα.τ [γ:=µγ.τ [π]],π,σ
[f, r])

)
with

r := map
λγ.τ [σ],(µγ.τ [σ])×(µγ.τ [π]),µγ.τ [π]

[λz(µγ.τ [σ])×(µγ.τ [π]).zR, y].

The justification is the same as for (µ), where d is replaced by h, and by using h(λαµγτ) >
h(µγ.τ [α := ρ0]) for ρ0 ∈ {π, σ}.

5.2. THE TERM REWRITE SYSTEMS SPIT, PIT+EX AND SPIT+EX 79

The use of recursion instead of iteration in these clauses clearly follows the idea of the first coding
of IMIT in IMIT–it in section 4.5.2. It is mainly intended to show that even the definitional
principle has to be improved (from d to h) in order to get the map-terms without iteration.
Lemma 5.1 is also true for PITrec and proved in the same way. Note that the statement of
Lemma 5.2 is no longer true:

map
λαα,ρ×σ,σ

[λzρ×σ.zR, x] = (λzρ×σ.zR)x /∈ NF.

Such a term will be used for the build-up of e. g. mapλαµγ.α+γ and by Lemma 2.27 it follows that
mapλαµγ.α+γ /∈ NF.
In some extensional theory it is possible to show that these map-terms are equal to the ones of
PITit. But this is by no means easy and requires functoriality of both monotonicity witnesses
(cf. appendix B).

5.2 The term rewrite systems SPIT, PIT+ex and SPIT+ex

Define the term rewrite system SPIT of strictly positive inductive types as the restriction of
PITit to SPosTypes, i. e., set MTypes := SPosTypes ⊆ PosTypes (by Lemma 3.4) and check that
every construction made in the definition of PITit does not lead out of MTypes. Therefore SPIT
is one of the systems ESMITit.
Lemma 3.1 and the definition of SPosTypes show that MTypes fulfills the required closure condi-
tions. Therefore, it is easily shown by induction on d(λαρ) that for ρ ∈ SPosTypes and α ∈ Pos(ρ)
the term mapλαρ of PITit is also a term of SPIT and for α ∈ Neg(ρ) the term comapλαρ of PITit
is also a term of SPIT. (Of course, the respective property has to be proved for map

λαρ,π,σ

and comap
λαρ,π,σ

with π, σ ∈ SPosTypes.) Note that the induction hypothesis is always applied
to abstracted types of the form λατ with τ ∈ SPosTypes. The following approach gives more
information:

Lemma 5.3 If ρ, π and σ ∈ SPosTypes and α ∈ SPos(ρ), then map
λαρ,πσ

is a term of SPIT.

Proof Induction on d(λαρ). The only cases of interest are (→) and (µ). (→): Case ρ = ρ1 → ρ2.
If α ∈ SPos(ρ) = SPos(ρ2) \ FV(ρ1), then α /∈ FV(ρ1). Therefore comap

λαρ1,π,σ
[f, y] = y, hence

map
λαρ,π,σ

= λyρ1[σ].map
λαρ2,π,σ

[f, xy]. (Note that xE→y is well-typed because ρ1[π] = ρ1[σ].)
Now the induction hypothesis applies. (µ): Case ρ = µγτ . If α ∈ SPos(ρ) = SPos(τ), then
making the assumption that α, γ /∈ FV(σ) we only have to show that α ∈ SPos(τ [γ := µγ.τ [σ]]).
This follows from Lemma 3.1 because α /∈ FV(µγ.τ [σ]). �

For easy reference the following list of properties of map is given. It could also serve as a
definition (by induction on d(λαρ)). All the types are assumed to range over SPosTypes.
If α /∈ FV(ρ), then map

λαρ,π,σ
= x. All the other cases are under the proviso α ∈ SPos(ρ)∩FV(ρ),

where ρ is the type which is λ-abstracted on the left side.

map
λαα,π,σ

= fx

map
λα.ρ1→ρ2,π,σ

= λyρ1[σ].map
λαρ2,π,σ

[f, xy]
map

λα∀γτ,π,σ
= Λγ.map

λατ,π,σ
[f, xγ]

map
λα.ρ1×ρ2,π,σ

=
〈
map

λαρ1,π,σ
[f, xL],map

λαρ2,π,σ
[f, xR]

〉
map

λα.ρ1+ρ2,π,σ
= xE+

(
λy

ρ1[π]
1 .INLρ2[σ]map

λαρ1,π,σ
[f, y1]

)(
λy

ρ2[π]
2 .INRρ1[σ]map

λαρ2,π,σ
[f, y2]

)
map

λαµγτ,π,σ
= xEµρ[σ]

(
λyτ [π][γ:=µγ.τ [σ]].Cµγ.τ [σ](map

λα.τ [γ:=µγ.τ [σ]],π,σ
[f, y])

)

80 CHAPTER 5. SYSTEMS WITH POSITIVE INDUCTIVE TYPES

Because of Lemma 5.1 the terms mapλαρ for µαρ ∈ SPosTypes satisfy the conditions (C), (U)
and (S) of ESMIT.
If one leaves out the rule (µ-E+) in the definition of terms for SPIT (and consequently also
the rule for full primitive recursion) and also removes universal type quantification, one gets a
system which is essentially Loader’s calculus of inductive types in [Loa97].

The systems PIT+ex and SPIT+ex are defined as systems ESMIT+ex setting MTypes:=PosTypes
and MTypes:=SPosTypes, respectively.
The definition of map and comap for PIT is extended by the following clause (recall that the
clauses have the proviso stated in the clause (triv)):
(∃) Case ρ = ∃γτ . If α ∈ Pos(ρ) then α ∈ Pos(τ) (due to the proviso α ∈ FV(ρ)). Set

map
λαρ,π,σ

:= xE∃(Λγλyτ [π].C∃γ.τ [σ],γmap
λατ,π,σ

[f, y]).

If α ∈ Neg(ρ) then α ∈ Neg(τ). Set

comap
λαρ,π,σ

:= xE∃(Λγλyτ [σ].C∃γ.τ [π],γcomap
λατ,π,σ

[f, y]).

The proviso for Λ-abstraction is met as we may assume that γ /∈ FV(π)∪FV(σ). The justification
is the same as for the clause (∀).
Obviously, these clauses may also be interpreted in SPIT+ex. Indeed, the statement of Lemma 5.3
(where SPIT is replaced by SPIT+ex) holds and may be proved in the same way. The clauses
for comap are not needed as was the case for SPIT.

5.3 The term rewrite systems NIPIT, NISPIT and NISPIT+ex

We define systems of non-interleaving positive inductive types, hence nesting is allowed but not
interleaving using the parameters of a type µαρ for forming another µ-type.
Define NIPIT as one of the systems ESMITit by restricting PIT to the type system defined by
MTypes:=NIPosTypes. Due to Lemma 3.10 the condition (sub) is satisfied for NIPosTypes. We
have to check that the terms mapλαρ with µαρ ∈ NIPosTypes are also terms in this restricted
system.

Lemma 5.4 Let ρ, π and σ ∈ NIPosTypes. If α ∈ NIPos(ρ), then map
λαρ,πσ

is a term of NIPIT.
If α ∈ NINeg(ρ), then comap

λαρ,πσ
is a term of NIPIT.

Proof Induction on ρ. The only case not being completely obvious is (µ): Let ρ = µγτ and
α ∈ FV(ρ). Therefore α /∈ NIPos(τ) \ FV(ρ) = NIPos(ρ) and α /∈ (NINeg(τ) \ FV(ρ)) ∪ {γ} =
NINeg(ρ). Hence, the case (µ) never applies! �

The proof shows that map
λαρ

and comap
λαρ

for NIPIT could also be defined by induction on ρ

by just leaving out the clause (µ) in the definition of map and comap for PIT. This definition
has been given in [Geu92]. It seems that in [Lei90] the definition even in the general case of
interleaved µ-types, viz. in PIT, has been given by induction on the type which unfortunately
is not possible. Because map and comap are defined without the term rules (µ-I), (µ-E) and
(µ-E+), NIPIT is trivially also one of the systems ESMITrec.
Define NISPIT by restricting SPIT to the types MTypes:=NISPosTypes. As for NIPIT and SPIT
we get a system ESMITit. The definition of mapλαρ may be done by induction on ρ and does
not contain a specific clause for (µ).

5.4. THE TERM REWRITE SYSTEMS MEPIT AND COMEPIT 81

The system NISPIT+ex is defined as the restriction of SPIT+ex to MTypes:=NISPosTypes (includ-
ing the existential quantifier). We get the following clauses (which are simply those of SPIT+ex
without the µ-clause):

map
λαρ,π,σ

= x, if α /∈ FV(ρ). The other clauses only otherwise!
map

λαα,π,σ
= fx

map
λα.ρ1→ρ2,π,σ

= λyρ1[σ].map
λαρ2,π,σ

[f, xy]
map

λα∀γτ,π,σ
= Λγ.map

λατ,π,σ
[f, xγ]

map
λα.ρ1×ρ2,π,σ

=
〈
map

λαρ1,π,σ
[f, xL],map

λαρ2,π,σ
[f, xR]

〉
map

λα.ρ1+ρ2,π,σ
= xE+

(
λy

ρ1[π]
1 .INLρ2[σ]map

λαρ1,π,σ
[f, y1]

)(
λy

ρ2[π]
2 .INRρ1[σ]map

λαρ2,π,σ
[f, y2]

)
map

λαρ,π,σ
= xE∃

(
Λγλyτ [π].C∃γ.τ [σ],γmap

λατ,π,σ
[f, y]

)
It might now be instructive to reconsider the examples discussed in 3.5.

5.4 The term rewrite systems MePIT and coMePIT

These are systems which only serve a purpose in the circles of embeddings. Their main advan-
tages over arbitrary NISPIT+ex and NIPIT, respectively, are their well-behaved map-terms not
using sum types.
MePIT is defined as one of the systems ESMIT+ex. Let the underlying set MTypes be defined
as the least set containing Typevars, 0 and 1 and being closed under →, ∀, ×, +, ∃ and the
following clause:

(µ) If ρ ∈ MTypes and α /∈ {β} ∪ FV(ρ), then µα∃β.(β → α)× ρ ∈ MTypes.

It is very easy to see that MTypes is closed under substitution, i.e. the condition (sub) in the
definition of ESMIT+ex is satisfied. It is also easy to see that MTypes is a subset of the type
system of NISPIT+ex. Hence we define MePIT to be the restriction of NISPIT+ex to MTypes.
The terms map do not use types outside MTypes. This is easily proved: The only case of interest
is (µ). We see that for α /∈ {β} ∪ FV(ρ) the definition yields

mapλα∃β.(β→α)×ρ = ΛαΛγλfα→γλx∃β.(β→α)×ρ.xE∃(Λβλy(β→α)×ρ.C∃β.(β→γ)×ρ,β〈λzβ.f(yLz), yR〉),

which is clearly okay.

The term rewrite system coMePIT is defined as one of the systems ESMIT. Let the underlying
set MTypes be defined as the least set containing Typevars, 0 and 1 and being closed under →,
∀, ×, + and the following clause:

(µ) If ρ ∈ MTypes and α /∈ {β} ∪ FV(ρ), then µα∀β.(α → β) → ρ ∈ MTypes.

It is again easy to see that MTypes is closed under substitution and that MTypes ⊂ NIPosTypes.
Hence we define coMePIT to be the restriction of NIPIT to MTypes. Again it is easily proved that
the terms map do not use types outside MTypes. Consider (µ). We see that for α /∈ {β}∪ FV(ρ)
the definition gives us

mapλα∀β.(α→β)→ρ = ΛαΛγλfα→γλx∀β.(α→β)→ρΛβλyγ→β.xβ(λzα.y(fz)),

which indeed only uses types in MTypes.

82 CHAPTER 5. SYSTEMS WITH POSITIVE INDUCTIVE TYPES

Chapter 6

Term rewrite systems in the spirit of
Mendler’s system of inductive types

The following motivation became clear to me in quite late a stage of the work on this thesis
although the report in [UV97] of an embedding of Mendler’s system in [Men87a] into the system
of positive inductive types suddenly clarified three mysterious facts on Mendler’s system: That I
succeeded in proving strong normalization without having to restrict to positive inductive types
as Mendler did. (The elimination-based proof given in section 9.4.1 is practically my original
proof of December 1996 presented at a workshop in Munich1.) That iteration is faithfully
represented by primitive recursion (which is now section 6.1.3) and that for positive inductive
types without + one can define a predecessor (which unrolls µαρ to ρ[α := µαρ]) having the
right reduction behaviour only after adding some η-rules which do no harm to confluence and
strong normalization.
It is interesting that already in [Lei90, p. 308] the idea behind the elimination rule corresponding
to iteration modelled after Mendler’s recursion rule was identified (and called M-induction) but
not used to get rid of the positivity restrictions.
Let (U,≤) be a complete lattice and Φ : U → U any function. There are two canonical ways of
producing a monotone function out of Φ. Define Φ≥ : U → U and Φ≤ : U → U by setting

Φ≥(M) :=
∨
{Φ(M ′)|M ′ ≤ M}

and
Φ≤(M) :=

∧
{Φ(M ′)|M ≤ M ′}.

Φ≥ and Φ≤ are monotone due to transitivity of ≤, and Φ≥(M) ≥ Φ(M) and Φ≤(M) ≤ Φ(M)
due to reflexivity of ≤ (of course, some properties of suprema and infima enter the argument).
Clearly, Φ≥ = Φ = Φ≤ for monotone Φ. And Φ is monotone, if Φ≥ = Φ or Φ≤ = Φ.
Because Φ 7→ Φ≥ and Φ 7→ Φ≤ are also monotone, it is clear that Φ≥ is the pointwise least
monotone function being pointwise greater than Φ and that Φ≤ is the pointwise greatest mono-
tone function being pointwise smaller than Φ. Therefore I would like to call Φ≥ the upper
monotonization and Φ≤ the lower monotonization of Φ.
By Tarski, there are least fixed points of Φ≥ and Φ≤. Let us study how their elimination and
introduction rules may be expressed in terms of Φ.
Set lfp≥(Φ) := lfp(Φ≥). The rule (lfp-E) says that Φ≥(M) ≤ M ⇒ lfp≥(Φ) ≤ M . This is
equivalent to

1Arbeitstagung Deduktive Aspekte von Beweistheorie und Informatik, Munich, December 19–20, 1996, orga-
nized by Gerhard Jäger (Bern) and Helmut Schwichtenberg (Munich).

83

84 CHAPTER 6. SYSTEMS WITH INDUCTIVE TYPES À LA MENDLER

(lfp≥-E) (∀M ′.M ′ ≤ M ⇒ Φ(M ′) ≤ M) ⇒ lfp≥(Φ) ≤ M .

The rule (lfp-E+) says that Φ≥(lfp≥(Φ) ∧M) ≤ M ⇒ lfp≥(Φ) ≤ M . This is equivalent to

(lfp≥-E+) (∀M ′.M ′ ≤ lfp≥(Φ) ⇒ M ′ ≤ M ⇒ Φ(M ′) ≤ M) ⇒ lfp≥(Φ) ≤ M .

Set lfp≤(Φ) := lfp(Φ≤). The rule (lfp-E) says that Φ≤(M) ≤ M ⇒ lfp≤(Φ) ≤ M . Unfortunately,
Φ≤(M) ≤ M cannot be expressed in simpler terms in this general setting.
Let now (U,⊆) be a complete lattice of sets. The rules (lfp≥-E) and (lfp≥-E+) may be expressed
as

(lfp⊇-E) If x ∈ lfp⊇(Φ) and ∀M ′.M ′ ⊆ M ⇒ Φ(M ′) ⊆ M , then x ∈ M .

(lfp⊇-E+) If x ∈ lfp⊇(Φ) and ∀M ′.M ′ ⊆ lfp⊇(Φ) ⇒ M ′ ⊆ M ⇒ Φ(M ′) ⊆ M , then x ∈ M .

This motivates the elimination rules of MeIT and UVIT whose common type system imposes no
restrictions on the formation on µαρ reflecting the use of any Φ:

(µ-E) If rµαρ ∈ Λ and s∀α.(α→σ)→ρ→σ ∈ Λ (with α /∈ FV(σ)), then (rEµs)σ ∈ Λ.

(µ-E+) If rµαρ ∈ Λ and s∀α.(α→µαρ)→(α→σ)→ρ→σ ∈ Λ (with α /∈ FV(σ)), then (rE+
µ s)σ ∈ Λ.

MeIT and UVIT will differ in the introduction rule. Let us go back to the general situation of
(U,≤): The fact that lfp≥(Φ) is a pre-fixed-point of Φ≥ is equivalent to

(lfp≥-I) ∀M.M ≤ lfp≥(Φ) ⇒ Φ(M) ≤ lfp≥(Φ).

As a trivial (due to reflexivity of ≤) instance we get

(lfp≥-I-wk) Φ(lfp≥(Φ)) ≤ lfp≥(Φ).

For (U,⊆) a complete lattice of sets we get

(lfp⊇-I) If M ⊆ lfp≥(Φ) and x ∈ Φ(M), then x ∈ lfp⊇(Φ).

(lfp⊇-I-wk) If x ∈ Φ(lfp⊇(Φ)), then x ∈ lfp⊇(Φ).

This directly motivates the introduction rules for UVIT and MeIT. For UVIT we take

(µ-I) If jτ→µαρ ∈ Λ and tρ[α:=τ] ∈ Λ, then (Cjt)µαρ ∈ Λ and FV(Cjt) := FV(j) ∪ FV(t).

corresponding to (lfp⊇-I) and for MeIT the introduction rule

(µ-I) If tρ[α:=µαρ] ∈ Λ, then (Cµαρt)µαρ ∈ Λ.

corresponding to (lfp⊇-I-wk).
The reader should be warned that the introduction rule for MeIT seems to be coming from (lfp-I)
depending on a monotone Φ. Although the rule pertaining to (lfp-I) is in fact the same (e. g. in
IMIT), an understanding of MeIT would be impossible2.
We did not yet model lfp≤(Φ) in a term system. Let now (U,⊆) be a complete lattice of sets
where the infimum is always given by set intersection. Hence,

Φ⊆(M) = {x|∀M ′.M ⊆ M ′ ⇒ x ∈ Φ(M ′)}.

The rules (lfp-E) and (lfp-E+) therefore give for Φ⊆ instead of Φ the following rules
2Presumably it is this wrong intuition which gave Mendler’s system a flavour of “mystery” (see the introductory

remarks to this section).

6.1. THE TERM REWRITE SYSTEM MEIT 85

(lfp⊆-E) If x ∈ lfp⊆(Φ) and ∀y.
(
∀M ′.M ⊆ M ′ ⇒ y ∈ Φ(M ′)

)
⇒ y ∈ M , then x ∈ M .

(lfp⊆-E+) If x ∈ lfp⊆(Φ) and ∀y.
(
∀M ′.lfp⊆(Φ) ∧ M ⊆ M ′ ⇒ y ∈ Φ(M ′)

)
⇒ y ∈ M , then

x ∈ M .

They serve as the motivation for the elimination rules of coMeIT (also without restrictions to
forming µαρ):

(µ-E) If rµαρ ∈ Λ and s(∀α.(σ→α)→ρ)→σ ∈ Λ (with α /∈ FV(σ)), then (rEµs)σ ∈ Λ.

(µ-E+) If rµαρ ∈ Λ and s(∀α.(µαρ×σ→α)→ρ)→σ ∈ Λ (with α /∈ FV(σ)), then (rE+
µ s)σ ∈ Λ.

The fact that lfp⊆(Φ) is a pre-fixed-point of Φ⊆ is equivalent to the following rule

(lfp⊆-I) If ∀M.lfp⊆(Φ) ⊆ M ⇒ x ∈ Φ(M), then x ∈ lfp⊆(Φ).

This directly motivates the introduction rule of coMeIT:

(µ-I) If t∀α.(µαρ→α)→ρ ∈ Λ then (Cµαρt)µαρ ∈ Λ.

What is the purpose of this chapter? The systems MeIT, UVIT and coMeIT are introduced
to elucidate the embeddings of the systems of monotone inductive types into systems of non-
interleaved positive (or—in the presence of the existential quantifier—even strictly positive)
inductive types.
The idea of forming Φ⊇ and Φ⊆ will later also be used in the direct proofs of strong normalization
of the systems of monotone inductive types, and hence it is interesting to isolate these concepts
in some formal system.
The embeddings given in this chapter all draw from the lattice-theoretic intuition: The embed-
dings of the newly introduced systems into systems of positive inductive types are derived from
analyzing the above arguments justifiying the rules, whereas the embeddings of the systems of
monotone inductive types into MeIT et al come from the fact that for monotone Φ (whence
Φ⊇ = Φ = Φ⊆) the original introduction and elimination rules for least fixed points may be
derived from those for lfp⊇ and lfp⊆, respectively. The latter fact is not at all surprising but the
impact it has due to the compatibility of its proof with reduction: Monotone inductive types
embed into non-interleaving positive inductive types.
In order to reduce notational overhead in the direct proofs of strong normalization for MeIT
and coMeIT, it is shown that iteration may be easily derived from recursion in these systems
(contrast this with the situation of monotone inductive types discussed in section 4.5).
The picture of the systems is completed by embedding their iterative fragments into system F.

6.1 The variant MeIT of a term rewrite system proposed by Nax
Mendler

The system corresponding to (lfp⊇-I-wk), (lfp⊇-E) and (lfp⊇-E+) is defined and its connection
with Mendler’s system in [Men87a] discussed. The system varIMIT is embedded into it and it is
embedded into its fragment without iteration and its iterative fragment embedded into eF.

86 CHAPTER 6. SYSTEMS WITH INDUCTIVE TYPES À LA MENDLER

6.1.1 Definition

The definition is again quite elaborate because a direct normalization proof (for MeIT–it) will
be given in section 9.4.1.
The (second) definition of typed terms and their free variables for system eF is extended by the
following clauses:

(µ-I) If tρ[α:=µαρ] ∈ Λ, then (Cµαρt)µαρ ∈ Λ and FV(Cµαρt) := FV(t).

(µ-E) If rµαρ ∈ Λ and s∀α.(α→σ)→ρ→σ ∈ Λ (with α /∈ FV(σ)), then (rs)σ ∈ Λ (also written
as rEµσs or shorter rEµs) and FV(rs) := FV(r) ∪ FV(s).

(µ-E+) If rµαρ ∈ Λ and s∀α.(α→µαρ)→(α→σ)→ρ→σ ∈ Λ (with α /∈ FV(σ)), then (rs)σ ∈ Λ
(also written as rE+

µ σs or shorter rE+
µ s) and FV(rs) := FV(r) ∪ FV(s).

This definition is again compatible with the renaming convention for bound type variables.
Extend the recursive definition of FTV(r) by the following clauses:

(µ-I) FTV(Cµαρt) := FV(µαρ) ∪ FTV(t).

(µ-E) FTV(rs) := FTV(r) ∪ FTV(s).

(µ-E+) FTV(rs) := FTV(r) ∪ FTV(s).

The definition of r[~x~ρ := ~s] together with the proof of rρ[~x~ρ := ~s] : ρ and FV(r[~x~ρ := ~s]) =
(FV(r) \ ~x~ρ) ∪

⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i} (i. e., the statement of Lemma 2.10)
is extended by the following clauses:

(µ-I) (Cµαρt)[~x~ρ := ~s] := Cµαρt[~x~ρ := ~s]. Proof obivous.

(µ-E) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]Eµs[~x~ρ := ~s]. Proof obvious.

(µ-E+) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]E+
µ s[~x~ρ := ~s]. Proof obvious.

The definition of r[~α := ~σ] together with the proof of rρ[~α := ~σ] : ρ[~α := ~σ] and FV(r[~α := ~σ]) =
{yτ [~α:=~σ]|yτ ∈ FV(r)} is extended by the following clauses:

(µ-I) (Cµαρt)[~α := ~σ] := C(µαρ)[~α:=~σ]t[~α := ~σ]. Proof obvious.

(µ-E) (rs)[~α := ~σ] := r[~α := ~σ]Eµs[~α := ~σ]. Proof obvious.

(µ-E+) (rs)[~α := ~σ] := r[~α := ~σ]E+
µ s[~α := ~σ]. Proof obvious.

The statements made in section 2.1.2 are valid in MeIT, too.
The general definition of immediate subterms of a term gives the following extension for sys-
tem MeIT: Cµαρt has exactly the immediate subterms t and rEµs and rE+

µ s have exactly the
immediate subterms r and s.
Extend the inductive definition of r~s for system eF as follows:

(µ-E) If r~s : µαρ and s : ∀α.(α → σ) → ρ → σ (with α /∈ FV(σ)), then r(~s, s) := (r~s)s.

(µ-E+) If r~s : µαρ and s : ∀α.(α → µαρ) → (α → σ) → ρ → σ (with α /∈ FV(σ)), then
r(~s, s) := (r~s)s.

The statement of Lemma 2.23 holds also true for MeIT.

6.1. THE TERM REWRITE SYSTEM MEIT 87

Lemma 6.1 (Head form) Every term has either exactly one of the forms given in Lemma
2.44 or exactly one of the following forms:

(µ-I) Cµαρt

(µ-R) (Cµαρt)s~s, subsuming both eliminations for µ

Proof Induction on terms. �

Extend the inductive definition of the set NF for system eF by the following clause:

(µ-I) If Cµαρt is a term and t ∈ NF, then Cµαρt ∈ NF.

The statements made in section 2.1.3 are all valid in MeIT.
Define the relation 7→ as for system eF, but add the following clauses:

MeIT
(βµ) (Cµαρt)Eµσs 7→ s(µαρ)(λxµαρ.xEµσs)t
(β+

µ) (Cµαρt)E+
µ σs 7→ s(µαρ)(λyµαρy)(λxµαρ.xE+

µ σs)t

In both rules we require that xµαρ /∈ FV(s).
As for system eF the objects on the right side are automatically terms if the respective object
on the left is a term, and the types are equal.
The relation →whd is defined as for system F and has the same properties as stated there.
Extend the inductive definition of the relation → for system eF by the congruence rules for µ
and prove that if r → r′, then r and r′ have the same type and FV(r′) ⊆ FV(r).
Extend the inductive definition of WN for system eF by the following clauses:

(µ-I) If Cµαρt is a term and t ∈ WN, then Cµαρt ∈ WN.

(βµ) If s(µαρ)(λxµαρ.xEµσs)t~s ∈ WN, xµαρ /∈ FV(s) and (Cµαρt)Eµσs~s is a term, then
(Cµαρt)Eµσs~s ∈ WN.

(β+
µ) If s(µαρ)(λyµαρy)(λxµαρ.xE+

µ σs)t~s ∈ WN, xµαρ /∈ FV(s) and (Cµαρt)E+
µ σs~s is a

term, then (Cµαρt)E+
µ σs~s ∈ WN.

Again definition by recursion on WN is admissible. Extend the recursive definition of the function
Ω from WN to Λ and the simultaneous proof of r →∗ Ω(r) ∈ NF for r ∈ WN by the following
clauses:

(µ-I) Ω(Cµαρt) := CµαρΩ(t).

(βµ) Ω((Cµαρt)Eµσs~s) := Ω
(
s(µαρ)(λxµαρ.xEµσs)t~s

)
.

(β+
µ) Ω((Cµαρm)E+

µ σs~s) := Ω
(
s(µαρ)(λyµαρy)(λxµαρ.xEµσs)t~s

)
.

The proofs are always obvious.
Extend the definition of SN for system eF by the following clauses:

(µ-I) If Cµαρt is a term and t ∈ SN, then Cµαρt ∈ SN.

(βµ) If s(µαρ)(λxµαρ.xEµσs)t~s ∈ SN, xµαρ /∈ FV(s) and (Cµαρt)Eµσs~s is a term, then
(Cµαρt)Eµσs~s ∈ SN.

88 CHAPTER 6. SYSTEMS WITH INDUCTIVE TYPES À LA MENDLER

(β+
µ) If s(µαρ)(λyµαρy)(λxµαρ.xE+

µ σs)t~s ∈ SN, xµαρ /∈ FV(s) and (Cµαρt)E+
µ σs~s is a

term, then (Cµαρt)E+
µ σs~s ∈ SN.

The only difference between the µ-clauses for SN and WN is the name of the defined set.
Every statement made in section 2.1.4 for system F (on nf, NF, wn, WN, Ω, SN and sn) is also
true for MeIT.
MeIT is not the original system of [Men87a]: The minor differences are as follows:

• In MeIT we have no coinductive types which however could be treated analogously.

• Iteration has been added although it may be eliminated as shown in section 6.1.3.

• Recursion is not expressed via a recursion operator but by a rule.

• MeIT is defined as an extension of eF and not only of F.

In contrast to the original system we allow any µαρ without positivity requirement and
have the introduction and elimination rules for any µαρ. This will be essential for the
embedding of varIMIT in MeIT in the next section.

6.1.2 Embedding varIMIT in MeIT

In the introduction to this chapter it was shown that (lfp⊇-E) and (lfp⊇-E+) are equivalent to
(lfp-E) and (lfp-E+) if one replaced Φ by Φ⊇ in the latter rules. The rule (lfp⊇-I-wk) was taken as
a consequence of (lfp-I) where again Φ was replaced by Φ⊇. If Φ is monotone, then Φ⊇ = Φ and
hence the replacement does not change anything3. Therefore, in this case (lfp-E) and (lfp-E+)
are consequences of (lfp⊇-E) and (lfp⊇-E+), respectively. Moreover, although (lfp⊇-I-wk) only
is an instance of (lfp-I) with Φ replaced by Φ⊇, it is the same rule for Φ⊇ = Φ. Because of the
latter fact we may take the homomorphic µ-introduction rule in the following definition. The
clauses pertaining to elimination reflect the proof of the other consequences—more precisely:
They reflect the proofs that for monotone Φ (lfp-E) and (lfp-E+) are consequences of (lfp⊇-E)
and (lfp⊇-E+) where lfp⊇ has been replaced by lfp in the latter rules. And because these proofs
only need monotonicity in a restricted way an embedding even for varIMIT is gained and not
only for IMIT4.
Set ρ′ := ρ (for ρ a type in varIMIT) and for every term rρ of system varIMIT define the term r′

of system MeIT by recursion on r and simultaneously prove that r′ : ρ and FTV(r′) = FTV(r)
and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF.

(µ-I) The homomorphic µ-introduction rule.

(µ-E) (rµαρEµσms)′ := r′Eµσŝ with ŝ := Λαλzα→σλyρ.s′(m′αzy), where we assume that
α /∈ FTV(s) ∪ FTV(m) and require z, y /∈ FV(s) ∪ FV(m) and z 6= y.

(µ-E+) (rµαρE+
µ σms)′ := r′E+

µ σŝ with ŝ := Λαλzα→µαρ
1 λzα→σ

2 λyρ.s′(m′α(λxα〈z1x, z2x〉)y),
where we assume that α /∈ FTV(s) ∪ FTV(m) and require z1, z2, y /∈ FV(s) ∪ FV(m)
and z1, z2, y different.

3This explains why we take ρ′ := ρ in the embedding. It is the clue to the problem of embedding term systems
with monotonicity witnesses into term systems with positivity restrictions in the types which therefore guarantee
monotonicity even on the level of types.

4An embedding of EMIT into MeIT cannot be constructed in this easy way because monotonicity enters the
arguments for the elimination rules where EMIT does not have the monotonicity witnesses.

6.1. THE TERM REWRITE SYSTEM MEIT 89

(The proofs are obvious.) Recall that α /∈ FV(σ) is part of the definition of the µ-rules of varIMIT,
which implies that α is not free in the type of s (in both rules). Therefore the assumption
α /∈ FTV(s) is admissible.
The statement of Lemma 4.16 is true for this definition and is proved by induction on r. That
−′ is an embedding is proved by induction on →. Only (βµ) and (β+

µ) deserve attention. Check
e. g.
(β+

µ): ((Cµαρt)E+
µ σms)′ = (Cµαρt

′)E+
µ σŝ with ŝ as defined above

7→ ŝ(µαρ)(λyµαρy)(λxµαρ.xE+
µ σŝ)t′

→4→ s′
(
m′(µαρ)

(
λxµαρ.〈(λyµαρy)x, (λxµαρ.xE+

µ σŝ)x〉
)
t′
)

→ s′
(
m′(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σŝ)x〉
)
t′
)

=
(
s
(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
))′

.

6.1.3 Embedding MeIT in MeIT–it

The following embedding is nearly trivial. Mendler’s original system in [Men87a] does not have
an iterator. This section shows that an iterator—in MeIT the rule (µ-E)—is superfluous. Note
that this reduction is not directly possible for the systems of monotone inductive types (see
section 4.5).
Let MeIT–it be the system which is derived from MeIT by leaving out the term rule (µ-E) and
the reduction rule (βµ).
Set ρ′ := ρ and for every term rρ of system MeIT define the term r′ of system MeIT–it by
recursion on r and simultaneously prove that r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r)
as follows:

(eF) The homomorphic term rules for eF.

(µ-I) The homomorphic µ-introduction rule.

(µ-E) (rµαρEµσs)′ := r′E+
µ σŝ with ŝ := Λαλzα→µαρ.s′α, where we assume that α /∈

FTV(s) and require z /∈ FV(s).

(µ-E+) The homomorphic µ+-elimination rule.

(The proofs are obvious.) Substitutivity (the statement of Lemma 4.16) is true for this definition
and is proved by induction on r. That −′ is an embedding is proved by induction on →. Only
the rule (βµ) deserves attention.
(βµ): ((Cµαρt)Eµσs)′ = (Cµαρt

′)E+
µ σŝ with ŝ as defined above

7→ ŝ(µαρ)(λyµαρy)(λxµαρ.xE+
µ σŝ)t′

→2→ s′(µαρ)(λxµαρ.xE+
µ σŝ)t′

=
(
s(µαρ)(λxµαρ.xEµσs)t

)′
.

6.1.4 Embedding MeIT–rec in eF

Because I have no idea for a direct embedding of IMIT–rec into IT, MeIT–rec is embedded into
eF. (Via the circle of embeddings we finally get that IMIT–rec embeds into eF.)
Let MeIT–rec be the system which is derived from MeIT by leaving out the term generation rule
(µ-E+) and the reduction rule (β+

µ).
For every type ρ of system MeIT–rec define the type ρ′ of system eF by recursion on ρ and
simultaneously prove that FV(ρ′) = FV(ρ) as follows:

90 CHAPTER 6. SYSTEMS WITH INDUCTIVE TYPES À LA MENDLER

(eF) The homomorphic type rules for eF.

(µ) (µαρ)′ := ∀β.(∀α.(α → β) → ρ′ → β) → β for β /∈ {α} ∪ FV(ρ).

(The proofs were obvious.) This definition is compatible with the variable conventions for the
systems MeIT–rec and eF.

Lemma 6.2 (ρ[~α := ~σ])′ = ρ′[~α := ~σ′].

Proof Induction on ρ. �

For every term rρ of system MeIT–rec define the term r′ of system eF by recursion on r and
simultaneously prove that r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as
follows:

(eF) The homomorphic term rules for eF.

(µ-I) (Cµαρt)′ := Λβλz∀α.(α→β)→ρ′→β.z(µαρ)′(λx(µαρ)′ .xβz)t′ for β /∈ {α} ∪ FV(ρ) ∪
FTV(t) and z /∈ FV(t).

(µ-E) (rµαρEµσs)′ := r′E∀σ′s′.

(The proofs were always obvious.) This definition is again compatible with the variable conven-
tions for MeIT–rec and eF.
The statement of Lemma 4.11 is true for −′ and proved by induction on the terms. That −′ is
an embedding is proved by induction on →. Only (βµ) deserves our attention:
((Cµαρt)Eµσs)′ = (Λβλz∀α.(α→β)→ρ′→β.z(µαρ)′(λx(µαρ)′ .xβz)t′)σ′s′

→ (λz∀α.(α→σ′)→ρ′→σ′ .z(µαρ)′(λx(µαρ)′ .xσ′z)t′)s′

7→ s′(µαρ)′(λx(µαρ)′ .xσ′s′)t′

=
(
s(µαρ)(λxµαρ.xEµσs)t

)′
.

6.2 The term rewrite system UVIT

The following system UVIT is a variant of MeIT which corresponds to the logical system mNIpµ,ν
r

in [UV97]. The name UVIT (system of inductive types à la Uustalu and Vene) intends to honour
[UV97] because it is the true junction between IMIT and NISPIT+ex, MeIT being only some
peculiar variant of UVIT on the way from IMIT to NISPIT+ex as is the variant varIMIT of IMIT.

6.2.1 Definition

In what follows only changes to MeIT are given. All the statements on MeIT hold as well in
UVIT. Changed clause in the definition of terms:

(µ-I) If jτ→µαρ ∈ Λ and tρ[α:=τ] ∈ Λ, then (Cjt)µαρ ∈ Λ and FV(Cjt) := FV(j) ∪ FV(t).

Changed clauses in the definition of reduction:

UVIT
(βµ) (Cjτ→µαρt)Eµσs 7→ sτ(λxτ .(jx)Eµσs)t
(β+

µ) (Cjτ→µαρt)E+
µ σs 7→ sτ(λxτ .jx)(λxτ .(jx)E+

µ σs)t

In both cases we require that xτ /∈ FV(j) ∪ FV(s).
All the other definitions may be adapted very easily from MeIT.

6.2. THE TERM REWRITE SYSTEM UVIT 91

6.2.2 Embedding MeIT in UVIT

The following trivial embedding reflects the fact that (lfp⊇-I-wk) is weaker than (lfp⊇-I).
Set ρ′ := ρ for every type ρ of MeIT.
Define for every term r of system MeIT the term r′ of UVIT by recursion on r and simultaneously
prove that for r : ρ we have r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF.

(µ-I) (Cµαρt)′ := C(λyµαρy)t′.

(µ-E(+)) The homomorphic µ-elimination rules.

(The proofs are trivial.) The statement of Lemma 4.16 is true for this definition and is proved
by induction on r. That −′ is an embedding is proved by induction on →. Only (βµ) and (β+

µ)
deserve attention. Check e. g.
(β+

µ): ((Cµαρt)E+
µ σs)′ = (C(λyµαρy)t′)E+

µ σs′

7→ s′(µαρ)(λxµαρ.(λyµαρy)x)(λxµαρ.(λyµαρy)xE+
µ σs′)t′

→2→ s′(µαρ)(λyµαρy)(λxµαρ.xE+
µ σs′)t′

=
(
s(µαρ)(λyµαρy)(λxµαρ.xE+

µ σs)t
)′

.

6.2.3 Embedding UVIT in MePIT

This section is nothing but the syntactic analogue of the considerations which motivated the
definition of UVIT including the verification that reduction is preserved.
For every type ρ of system UVIT define the type ρ′ of system MePIT by recursion on ρ and
simultaneously prove that FV(ρ′) = FV(ρ) as follows:

(eF) The homomorphic type rules for eF.

(µ) (µαρ)′ := spos(µαρ′) = µα∃β.(β → α)× ρ′[α := β] for β /∈ {α} ∪ FV(ρ) which is a
type of MePIT because α /∈ {β} ∪ FV(ρ′[α := β]).

(The proofs were obvious.) This definition is compatible with the variable conventions for the
systems UVIT and MePIT.

Lemma 6.3 (ρ[~α := ~σ])′ = ρ′[~α := ~σ′].

Proof Induction on ρ. �

Define for every term r of system UVIT the term r′ of MePIT by recursion on r and simultaneously
prove that r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as follows:

(eF) The homomorphic term rules for eF.

(µ-I) (Cjτ→µαρtρ[α:=τ])′ := C(µαρ)′ t̂ with t̂ := C∃β.(β→(µαρ)′)×ρ′[α:=β],τ ′〈j′, t′〉

(µ-E) (rµαρEµσs∀α.(α→σ)→ρ→σ)′ := r′Eµσ′ŝ with

ŝ := λz∃α.(α→σ′)×ρ′ .z(Λαλy(α→σ′)×ρ′ .s′α(yL)(yR))

(µ-E+) (rµαρE+
µ σs∀α.(α→µαρ)→(α→σ)→ρ→σ)′ := r′E+

µ σ′ŝ with

ŝ := λz∃α.(α→(µαρ)′×σ′)×ρ′.z(Λαλy(α→(µαρ)′×σ′)×ρ′ .s′α(λxα.yLxL)(λxα.yLxR)(yR))

92 CHAPTER 6. SYSTEMS WITH INDUCTIVE TYPES À LA MENDLER

(The proofs are trivial.) The passage from s′ to ŝ in both elimination cases is nothing but
uncurrying.
Substitutivity (the statement of Lemma 4.11) is again true for this definition.
By induction on → show that −′ indeed is an embedding. The only cases of interest are (βµ)
and (β+

µ). They require a long calculation which essentially only shows that uncurrying is well-
behaved with respect to reduction. We only check (β+

µ): ((Cjt)E+
µ σs)′ 7→β+

µ

ŝ
(
mapλα∃β.(β→α)×ρ′[α:=β](µαρ)′((µαρ)′ × σ′)(λx(µαρ)′ .〈x, (λx(µαρ)′ .xE+

µ σ′ŝ)x〉)t̂
)
→2

β∀
→2

β→

(setting r̂ := (λx(µαρ)′ .〈x, (λx(µαρ)′ .xE+
µ σ′ŝ)x〉))

ŝ
(
t̂E∃(Λβλy(β→(µαρ)′)×ρ′[α:=β].C∃β.(β→(µαρ)′×σ′)×ρ′[α:=β],β〈λzβ.r̂(yLz), yR〉)

)
→β∃

ŝ
(
(Λβλy(β→(µαρ)′)×ρ′[α:=β].C∃β.(β→(µαρ)′×σ′)×ρ′[α:=β],β〈λzβ .r̂(yLz), yR〉)τ ′〈j′, t′〉

)
→β∀→β→→2

β×

ŝ
(
C∃β.(β→(µαρ)′×σ′)×ρ′[α:=β],τ ′〈λzτ ′ .r̂(j′z), t′〉

)
= ŝ

(
C∃α.(α→(µαρ)′×σ′)×ρ′,τ ′〈λzτ ′ .r̂(j′z), t′〉

)
→2(

Λαλy(α→(µαρ)′×σ′)×ρ′ .s′α(λuα.yLuL)(λuα.yLuR)(yR)
)
τ ′〈λzτ ′ .r̂(j′z), t′〉 →β∀→β→→3

β×

s′τ ′
(
λuτ ′ .(λzτ ′ .r̂(j′z))uL

)(
λuτ ′ .(λzτ ′ .r̂(j′z))uR

)
t′ →4

β→
→2

β×

s′τ ′
(
λuτ ′ .j′u

)(
λuτ ′ .(λx(µαρ)′ .xE+

µ σ′ŝ)(j′u)
)
t′ →β→

s′τ ′(λxτ ′j′x)(λxτ ′ .(j′u)E+
µ σ′ŝ))t′ =

(
sτ(λxτ .jx)(λxτ .(jx)E+

µ σs)t
)′

6.3 The dual coMeIT of MeIT

The system corresponding to (lfp⊆-I), (lfp⊆-E) and (lfp⊆-E+) is defined. The system varEMIT
is embedded into it and it is embedded into its fragment without iteration and into coMePIT
which motivated its definition, and its iterative fragment is embedded into eF.
The system coMeIT is dual to MeIT because it is motivated by the monotone operator Φ⊆ which
is a construction dual to the definition of Φ⊇.

6.3.1 Definition

The (second) definition of typed terms and their free variables for system eF is extended by the
following clauses:

(µ-I) If t∀α.(µαρ→α)→ρ ∈ Λ then (Cµαρt)µαρ ∈ Λ and FV(Cµαρt) := FV(t).

(µ-E) If rµαρ ∈ Λ and s(∀α.(σ→α)→ρ)→σ ∈ Λ (with α /∈ FV(σ)), then (rs)σ ∈ Λ (also written
as rEµσs or shorter rEµs) and FV(rs) := FV(r) ∪ FV(s).

(µ-E+) If rµαρ ∈ Λ and s(∀α.(µαρ×σ→α)→ρ)→σ ∈ Λ5(with α /∈ FV(σ)), then (rs)σ ∈ Λ (also
written as rE+

µ σs or shorter rE+
µ s) and FV(rs) := FV(r) ∪ FV(s).

This definition is again compatible with the renaming convention for bound type variables.
Extend the recursive definition of FTV(r) for system eF by the following clauses:

(µ-I) FTV(Cµαρt) := FV(µαρ) ∪ FTV(t).

(µ-E) FTV(rs) := FTV(r) ∪ FTV(s).

(µ-E+) FTV(rs) := FTV(r) ∪ FTV(s).

5It would be easy to avoid the use of × by stipulating s(∀α.(µαρ→σ→α)→ρ)→σ ∈ Λ and changing (β+
µ) accordingly.

The embeddings into and from coMeIT would be less elegant, however.

6.3. THE TERM REWRITE SYSTEM COMEIT 93

The definition of r[~x~ρ := ~s] for system eF together with the proof of rρ[~x~ρ := ~s] : ρ and
FV(r[~x~ρ := ~s]) = (FV(r) \ ~x~ρ) ∪

⋃
{FV(si)|xρi

i ∈ FV(r) ∧ xρi
i 6= x

ρj

j for j < i} (i. e., the statement
of Lemma 2.10) is extended by the following clauses:

(µ-I) (Cµαρt)[~x~ρ := ~s] := Cµαρt[~x~ρ := ~s]. Proof obvious.

(µ-E) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]Eµs[~x~ρ := ~s]. Proof obvious.

(µ-E+) (rs)[~x~ρ := ~s] := r[~x~ρ := ~s]E+
µ s[~x~ρ := ~s]. Proof obvious.

The definition of r[~α := ~σ] for system eF together with the proof of rρ[~α := ~σ] : ρ[~α := ~σ] and
FV(r[~α := ~σ]) = {yτ [~α:=~σ]|yτ ∈ FV(r)} is extended by the following clauses:

(µ-I) (Cµαρt)[~α := ~σ] := C(µαρ)[~α:=~σ]t[~α := ~σ]. Proof obvious.

(µ-E) (rs)[~α := ~σ] := r[~α := ~σ]Eµs[~α := ~σ]. Proof obvious.

(µ-E+) (rs)[~α := ~σ] := r[~α := ~σ]E+
µ s[~α := ~σ]. Proof obvious.

The statements made in section 2.1.2 are valid in coMeIT, too.
Extend the inductive definition of r~s for system eF as follows:

(µ-E) If r~s : µαρ and s : (∀α.(σ → α) → ρ) → σ (with α /∈ FV(σ)), then r(~s, s) := (r~s)s.

(µ-E+) If r~s : µαρ and s : (∀α.(µαρ × σ → α) → ρ) → σ (with α /∈ FV(σ)), then
r(~s, s) := (r~s)s.

The statement of Lemma 2.23 holds also true for coMeIT.

Lemma 6.4 Every term has exactly one of the forms given in Lemma 2.44 or exactly one of
the following forms:

(µ-I) Cµαρt

(µ-R) (Cµαρt)s~s, subsuming both eliminations for µ

Proof Induction on terms. �

Extend the inductive definition of the set NF for system eF by the following clause:

(µ-I) If Cµαρt is a term and t ∈ NF, then Cµαρt ∈ NF.

The statements in section 2.1.3 hold again for coMeIT.
Define the relation 7→ as for system eF, but add the following clauses:

coMeIT

(βµ) (Cµαρt)Eµσs 7→ s
(
Λαλzσ→α.tα(λxµαρ.z(xEµσs))

)
(β+

µ) (Cµαρt)E+
µ σs 7→ s

(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

In both rules we require that xµαρ /∈ FV(s) and that z with the respective type is not in
FV(s) ∪ FV(t) and we assume that α /∈ FTV(s) ∪ FTV(t).
As for system eF the objects on the right side are automatically terms if the respective object
on the left is a term, and the types are equal.
The relation →whd is defined as for system F and has the same properties as stated there.
Extend the inductive definition of the relation → for system eF by the congruence rules for µ
and prove that if r → r′, then r and r′ have the same type and FV(r′) ⊆ FV(r).
Extend the inductive definition of WN for system eF by the following clauses:

94 CHAPTER 6. SYSTEMS WITH INDUCTIVE TYPES À LA MENDLER

(µ-I) If Cµαρt is a term and t ∈ WN, then Cµαρt ∈ WN.

(βµ) If s
(
Λαλzσ→α.tα(λxµαρ.z(xEµσs))

)
~s ∈ WN, the side conditions of the (βµ)-rule

are met and (Cµαρt)Eµσs~s is a term, then (Cµαρt)Eµσs~s ∈ WN.

(β+
µ) If s

(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

~s ∈ WN, the side conditions

of the (β+
µ)-rule are met and (Cµαρt)E+

µ σs~s is a term, then (Cµαρt)E+
µ σs~s ∈ WN.

Again definition by recursion on WN is admissible. Extend the recursive definition of the function
Ω from WN to Λ and the simultaneous proof of r →∗ Ω(r) ∈ NF for r ∈ WN by the following
clauses:

(µ-I) Ω(Cµαρt) := CµαρΩ(t).

(βµ) Ω((Cµαρt)Eµσs~s) := Ω
(
s
(
Λαλzσ→α.tα(λxµαρ.z(xEµσs))

)
~s
)
.

(β+
µ) Ω((Cµαρm)E+

µ σs~s) := Ω
(
s
(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

~s
)
.

The proofs are always obvious.
Extend the definition of SN for system eF by the following clauses:

(µ-I) If Cµαρt is a term and t ∈ SN, then Cµαρt ∈ SN.

(βµ) If s
(
Λαλzσ→α.tα(λxµαρ.z(xEµσs))

)
~s ∈ SN, the side conditions of the (βµ)-rule are

met and (Cµαρt)Eµσs~s is a term, then (Cµαρt)Eµσs~s ∈ SN.

(β+
µ) If s

(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

~s ∈ SN, the side conditions

of the (β+
µ)-rule are met and (Cµαρt)E+

µ σs~s is a term, then (Cµαρt)E+
µ σs~s ∈ SN.

The only difference between the µ-clauses for SN and WN is the name of the defined set.
Every statement made in section 2.1.4 for system F (on nf, NF, wn, WN, Ω, SN and sn) is also
true for coMeIT.

6.3.2 Embedding varEMIT in coMeIT

The motivation for this section is similar to the motivation for the embedding of varIMIT into
MeIT. In the introduction to this chapter it was shown that (lfp⊆-I), (lfp⊆-E) and (lfp⊆-E+) are
equivalent to (lfp-I), (lfp-E) and (lfp-E+) after replacing Φ by Φ⊆ in the latter three rules. If Φ
is monotone, then Φ⊆ = Φ. Hence, by using monotonicity of Φ we may derive (lfp-I), (lfp-E)
and (lfp-E+) from (lfp⊆-I), (lfp⊆-E) and (lfp⊆-E+), respectively, where lfp⊆ has been replaced by
lfp in the latter three rules. Because monotonicity does not enter the proofs for the elimination
rules and it is only used in a restricted way for the introduction rule, it is possible to produce an
embedding of varEMIT into coMeIT out of the proofs. Of course, one has to check that reduction
is also preserved.
Set ρ′ := ρ for every type ρ of varEMIT. Define for every term r of system varEMIT the term
r′ of coMeIT by recursion on r and simultaneously prove that for r : ρ we have r′ : ρ and
FTV(r′) = FTV(r) and FV(r′) = FV(r) as follows:

(eF) The homomorphic term rules for eF.

(µ-I) (Cµαρm
∀α.(µαρ→α)→ρ[α:=µαρ]→ρtρ[α:=µαρ])′ := Cµαρ(Λαλkµαρ→α.m′αkt′)

6.3. THE TERM REWRITE SYSTEM COMEIT 95

(µ-E) (rµαρEµσsρ[α:=σ]→σ)′ := r′Eµσ(λf∀α.(σ→α)→ρ.s′(fσ(λyσy)))

(µ-E+) (rµαρE+
µ σsρ[α:=µαρ×σ]→σ)′ := r′E+

µ σ(λf∀α.(µαρ×σ→α)→ρ.s′(f(µαρ× σ)(λyµαρ×σy)))

(The proofs are trivial.) Note that in both elimination cases the variable f is simply applied to
the identity (after instantiation to a type).
The statement of Lemma 4.16 is true for this definition and is proved by induction on r.
That −′ is an embedding is proved by induction on →. Only (βµ) and (β+

µ) deserve attention.
Check e. g. (β+

µ):
((Cµαρmt)E+

µ σs)′ =
Cµαρ(Λαλkµαρ→α.m′αkt′)E+

µ σ(λf∀α.(µαρ×σ→α)→ρ.s′(f(µαρ× σ)(λyµαρ×σy))) 7→β+
µ(

setting ŝ := (λf∀α.(µαρ×σ→α)→ρ.s′(f(µαρ× σ)(λyµαρ×σy)))
)

ŝ
(
Λαλzµαρ×σ→α.(Λαλkµαρ→α.m′αkt′)α(λxµαρ.z〈x, (λxµαρ.xE+

µ σŝ)x〉)) →β∀→β→

ŝ
(
Λαλzµαρ×σ→α.m′α(λxµαρ.z〈x, (λxµαρ.xE+

µ σŝ)x〉)t′
)
→β→→β∀→β→

s′
(
m′(µαρ× σ)(λxµαρ.(λyµαρ×σy)〈x, (λxµαρ.xE+

µ σŝ)x〉)t′
)
→β→

s′
(
m′(µαρ× σ)(λxµαρ.〈x, (λxµαρ.xE+

µ σŝ)x〉)t′
)

=(
s
(
m(µαρ× σ)(λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉)t
))′

6.3.3 Embedding coMeIT in coMePIT

This section is nothing but the syntactic analogue of the considerations which motivated the
definition of coMeIT including the verification that reduction is preserved.
For every type ρ of system coMeIT define the type ρ′ of system coMePIT by recursion on ρ and
simultaneously prove that FV(ρ′) = FV(ρ) as follows:

(eF) The homomorphic type rules for eF.

(µ) (µαρ)′ := pos(µαρ′) = µα∀β.(α → β) → ρ′[α := β] for β /∈ {α} ∪ FV(ρ) which is a
type of coMePIT because α /∈ {β} ∪ FV(ρ′[α := β]).

(The proofs were obvious.) This definition is compatible with the variable conventions for the
systems coMeIT and coMePIT.

Lemma 6.5 (ρ[~α := ~σ])′ = ρ′[~α := ~σ′].

Proof Induction on ρ. �

Define for every term r of system coMeIT the term r′ of coMePIT by recursion on r and simul-
taneously prove that r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as follows:

(eF) The homomorphic term rules for eF.

(µ-I) (Cµαρt
∀α.(µαρ→α)→ρ)′ := C(µαρ)′t

′.

(µ-E) (rµαρEµσs(∀α.(σ→α)→ρ)→σ)′ := r′Eµσs′.

(µ-E+) (rµαρE+
µ σs(∀α.(µαρ×σ→α)→ρ)→σ)′ := r′E+

µ σs′.

96 CHAPTER 6. SYSTEMS WITH INDUCTIVE TYPES À LA MENDLER

(The proofs are trivial except for r′ : ρ′.) Obviously, −′ is the identity on the underlying untyped
terms. (coMeIT has been designed such this trivial embedding works.)
Substitutivity (the statement of Lemma 4.11) is again true for this definition.
By induction on → show that −′ indeed is an embedding. The only cases of interest are (βµ)
and (β+

µ). We only check (β+
µ):

((Cµαρt)E+
µ σs)′ = (C(µαρ)′t

′)E+
µ σ′s′ 7→β+

µ

s′
(
mapλα∀β.(α→β)→ρ′(µαρ)′((µαρ)′ × σ′)(λx(µαρ)′ .〈x, (λx(µαρ)′ .xE+

µ σ′s′)x〉)t′
)
→2

β∀
→3

β→

s′
(
Λβλy(µαρ)′×σ′→β.t′β

(
λx(µαρ)′ .y〈x, (λx(µαρ)′ .xE+

µ σ′s′)x〉
))

=(
s
(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
)))′

We see that the verification that −′ gives an embedding is completely straightforward because
also the reduction rules for coMeIT were designed for that purpose. But note that due to the
fact that β-reduction for µ in coMePIT is defined by help of map (and not only by map and a
substitution) we get some extra reductions which also show that an embedding of coMePIT in
coMeIT cannot be given in an easy way.

6.3.4 Embedding coMeIT in coMeIT–it

Let coMeIT–it be the system which is derived from coMeIT by leaving out the term rule (µ-E)
and the reduction rule (βµ).
Set ρ′ := ρ and for every term rρ of system coMeIT define the term r′ of system coMeIT–it by
recursion on r and simultaneously prove that r′ : ρ and FTV(r′) = FTV(r) and FV(r′) = FV(r)
as follows:

(eF) The homomorphic term rules for eF.

(µ-I) The homomorphic µ-introduction rule.

(µ-E) (rµαρEµσs)′ := r′E+
µ σŝ with

ŝ := λz∀α.(µαρ×σ→α)→ρ.s′(Λαλyσ→α.zα(λkµαρ×σ.y(kR))),

where we assume that α /∈ FV(σ) and require z /∈ FV(s).

(µ-E+) The homomorphic µ+-elimination rule.

(The proofs are obvious.) Substitutivity (the statement of Lemma 4.16) is true for this definition
and is proved by induction on r. That −′ is an embedding is proved by induction on →. Only
the rule (βµ) deserves attention.
(βµ): ((Cµαρt)Eµσs)′ = (Cµαρt

′)E+
µ σŝ with ŝ as defined above

7→ ŝ
(
Λαλzµαρ×σ→α.t′α

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σŝ)x〉
))

→3→ s′
(
Λαλyσ→α.t′α

(
λxµαρ.(λkµαρ×σ.y(kR))〈x, (λxµαρ.xE+

µ σŝ)x〉
))

→3→ s′
(
Λαλyσ→α.t′α

(
λxµαρ.y(xE+

µ σŝ)
))

=
(
s
(
Λαλzσ→α.tα(λxµαρ.z(xEµσs))

))′
6.3.5 Embedding coMeIT–rec in eF

Let coMeIT–rec be the system which is derived from coMeIT by leaving out the term generation
rule (µ-E+) and the reduction rule (β+

µ).
For every type ρ of system coMeIT–rec define the type ρ′ of system eF by recursion on ρ and
simultaneously prove that FV(ρ′) = FV(ρ) as follows:

6.3. THE TERM REWRITE SYSTEM COMEIT 97

(eF) The homomorphic type rules for eF.

(µ) (µαρ)′ := ∀β.((∀α.(β → α) → ρ′) → β) → β for β /∈ {α} ∪ FV(ρ).

(The proofs were obvious.) This definition is compatible with the variable conventions for the
systems coMeIT–rec and eF.

Lemma 6.6 (ρ[~α := ~σ])′ = ρ′[~α := ~σ′].

Proof Induction on ρ. �

For every term rρ of system coMeIT–rec define the term r′ of system eF by recursion on r and
simultaneously prove that r′ : ρ′ and FTV(r′) = FTV(r) and FV(r′) = {xσ′ |xσ ∈ FV(r)} as
follows:

(eF) The homomorphic term rules for eF.

(µ-I) (Cµαρt)′ := Λβλz(∀α.(β→α)→ρ′)→β.z
(
Λαλyβ→α.t′α(λx(µαρ)′ .y(xβz))

)
for β /∈ {α} ∪

FV(ρ) ∪ FTV(t) and y, z /∈ FV(t).

(µ-E) (rµαρEµσs)′ := r′E∀σ′s′.

(The proofs were always obvious.) This definition is again compatible with the variable conven-
tions for coMeIT–rec and eF.
The statement of Lemma 4.11 is true for −′ and proved by induction on the terms. That −′ is
an embedding is proved by induction on →. Only (βµ) deserves our attention:

((Cµαρt)Eµσs)′ =
(
Λβλz(∀α.(β→α)→ρ′)→β.z

(
Λαλyβ→α.t′α(λx(µαρ)′ .y(xβz))

))
σ′s′

→2→ s′
(
Λαλyσ′→α.t′α(λx(µαρ)′ .y(xσ′s′))

)
=

(
s
(
Λαλzσ→α.tα(λxµαρ.z(xEµσs))

))′
.

There is another way to get an embedding of coMeIT–rec in eF which goes as follows: coMeIT
embeds into varEMIT by composing the embeddings via coMePIT, ESMIT and EMIT. Obviously,
one may leave the rule (µ-E+) out of all these embeddings in order to have an embedding of
coMeIT–rec in varEMIT–rec. Because there are also embeddings of varEMIT–rec in IT and of IT
in eF we are done.

98 CHAPTER 6. SYSTEMS WITH INDUCTIVE TYPES À LA MENDLER

Chapter 7

Composing the embeddings

Let us first list all of the embeddings proved in the preceding chapters. In addition it is listed if
a system is an instances of a class of systems or if it is a subsystem of a system (giving rise to
a trivial embedding). We write 4 for “embeds into”, ∈ for “is an instance of” and ≤ for “is a
subsystem of”. We also write 4 and ≤ between a system and a class of systems if the relation
holds for each of those systems. As expected we use ⊆ and ∩ set-theoretically for classes of
systems. (An asterisk marks the relation as interesting although it may be easy to establish.
Two asterisks stress the importance.)

• F ≤ eF 4∗ F.

• eF ≤ IT 4∗ eF.

• eF ≤ eF+ex 4∗ eF.

• eF ≤ EMIT.

• eF ≤ ESMIT 4∗∗ EMIT.

• ESMITit ⊆ ESMIT and ESMITrec ⊆ ESMIT.

• eF+ex ≤ ESMIT+ex.

• eF ≤ varEMIT, EMIT 4 varEMIT, eF ≤ varEMIT–rec ≤ varEMIT and varEMIT–rec 4∗ IT.

• eF ≤ IMIT, eF ≤ IMIT–rec ≤ IMIT, eF ≤ IMIT–it ≤ IMIT.

• eF ≤ EMIT–it ≤ EMIT, eF+ex ≤ ISMIT+ex and IMIT ≤ IMIT+ex.

• The following embeddings were only sketched (in section 4.5.2): IMIT 4∗ IMIT–it and
EMIT 4∗ EMIT–it. Auxiliary were: NISPIT+ex ∈ ISMIT+ex, ISMIT+ex 4 IMIT+ex,
IMIT+ex 4 IMIT, MeIT–it 4 IMIT–it and coMeIT–it 4 EMIT–it.

• eF ≤ ISMIT 4∗ IMIT.

• eF ≤ varIMIT and IMIT 4 varIMIT.

• PIT = PITit ∈∗∗ ESMITit ∩ ISMIT and PITrec ∈ ESMITrec.

• SPIT ≤ PIT and SPIT ∈ ESMITit.

• PIT+ex ∈ ESMIT+ex and SPIT+ex ∈ ESMIT+ex.

99

100 CHAPTER 7. COMPOSING THE EMBEDDINGS

• NIPIT ≤ PIT, NIPIT ∈∗ ESMITit ∩ ESMITrec.

• NISPIT ≤ SPIT, NISPIT ∈ ESMITit and NISPIT+ex ≤ SPIT+ex.

• MePIT ∈ ESMIT+ex and MePIT ≤ NISPIT+ex.

• coMePIT ∈ ESMIT and coMePIT ≤ NIPIT.

• eF ≤ MeIT and varIMIT 4∗∗ MeIT.

• eF ≤ MeIT–it ≤ MeIT and MeIT 4∗ MeIT–it.

• eF ≤ MeIT–rec ≤ MeIT and MeIT–rec 4 eF.

• eF ≤ UVIT and MeIT 4 UVIT 4∗ MePIT.

• eF ≤ coMeIT and varEMIT 4∗∗ coMeIT 4∗ coMePIT.

• eF ≤ coMeIT–it ≤ coMeIT and coMeIT 4∗ coMeIT–it.

• eF ≤ coMeIT–rec ≤ coMeIT and coMeIT–rec 4 eF.

We may now prove the part of the theorem in chapter 1 pertaining to embeddings:
The systems of class I embed into each other: F ≤ eF 4 F. The other systems are defined
as extensions of eF. Hence, they only have to be embedded into eF: This has been shown
directly for IT, eF+ex, varEMIT–rec, MeIT–rec and coMeIT–rec. For IMIT–rec we argue as follows:
In the proof of IMIT 4 varIMIT 4 MeIT one may leave out (µ-E+) everwhere and thus gets
IMIT–rec 4 MeIT–rec. Because MeIT–rec 4 eF, we are done.
The systems of class IIa embed into one of class III: NISPIT and SPIT are subsystems of PIT
and hence embed into it. Moreover, they are extensions of eF. Hence, every system of class I
embeds into them.
The systems of class IIb are all extensions of eF. They embed into one of the systems of class III:
ESMIT 4 EMIT, hence trivially also ESMITit 4 EMIT and ESMITrec 4 EMIT. ISMIT 4 IMIT.
Let us define the system EMIT+ex as the obvious extension of EMIT by ∃. Clearly, the proof that
ESMIT 4 EMIT extends to ESMIT+ex 4 EMIT+ex. Also, the proof that eF+ex 4 eF extends
to EMIT+ex 4 EMIT. Therefore, ESMIT+ex 4 EMIT. ISMIT+ex 4 IMIT+ex has already been
listed.
The systems of class III embed into each other: NIPIT ≤ PIT ∈ ISMIT. Also NIPIT ≤ PITrec ∈
ISMIT because NIPIT does neither use iteration nor recursion in the map terms and because the
height measure h does not only establish that PITrec ∈ ESMIT but also PITrec ∈ ISMIT.
ISMIT 4 IMIT 4 varIMIT 4 MeIT 4 UVIT 4 MePIT ≤ NISPIT+ex ≤ SPIT+ex ≤ PIT+ex ∈
ESMIT+ex 4 EMIT+ex 4 EMIT 4 varEMIT 4 coMeIT 4 coMePIT ≤ NIPIT.
Hence, the concrete members of this chain (not each of ISMIT and ESMIT+ex) embed into each
other and we are done with NIPIT, PIT=PITit, PITrec, IMIT, varIMIT, MeIT, UVIT, MePIT,
NISPIT+ex, SPIT+ex, PIT+ex, EMIT, varEMIT, coMeIT and coMePIT.
Therefore only IMIT+ex, MeIT–it, coMeIT–it, EMIT–it and IMIT–it remain to be dealt with. But
IMIT ≤ IMIT+ex 4 IMIT, MeIT–it ≤ MeIT 4 MeIT–it and coMeIT–it ≤ coMeIT 4 coMeIT–it.
These embeddings were used to etablish the same for IMIT–it and EMIT–it in section 4.5.2.
Confluence will be addressed in the next chapter and strong normalization in chapter 9. �

As a main consequence of the theorem I consider the equivalence with respect to β-reduction of
EMIT and IMIT. Hence, the two ways of fixing monotonicity witnesses to the term rules for µαρ
give essentially the same. An interesting technical detail is the embedding of varEMIT into EMIT

101

and of varIMIT into IMIT, hence showing that the relaxation of the monotonicity assumption
does not add to the capability of expressing algorithms1.
As a consequence we also get e. g. NISPIT+ex 4 NIPIT and NIPIT 4 NISPIT+ex which is not
at all obvious! One might think that the first embedding is furnished by simply coding the
existential quantifier as in eF+ex 4 eF. A coding is gained (note that it does not preserve strict
positivity and hence has target NIPIT), but it does not preserve reduction because the map term
is not transformed to the map term for the transformed type: Let −′ be the encoding. Let
ρ := ∃γτ for some γ and τ such that α ∈ FV(ρ). We have to show e. g. that

(CµαρtEµσs)′ →+
(
s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs)t

))′
.

We have that

(CµαρtEµσs)′ = Cµαρ′t
′Eµσ′s′ 7→ s′

(
mapλαρ′(µαρ′)σ′(λxµαρ′ .xEµσ′s′)t′

)
and (

s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs)t

))′
= s′

(
(mapλαρ)

′(µαρ′)σ′(λxµαρ′ .xEµσ′s′)t′
)
.

By looking at the definitions we see that mapλαρ′ 6= (mapλαρ)′ (the first corresponding map
starts with Λ-abstraction, the map corresponding to the second term is a term of the form x~r).
Because mapλαρ′ ∈ NF, also mapλαρ′ 6→∗ (mapλαρ)′. A second glance at the definitions reveals
that also except in trivial cases

s′
(
mapλαρ′(µαρ′)σ′(λxµαρ′ .xEµσ′s′)t′

)
6→∗ s′

(
(mapλαρ)

′(µαρ′)σ′(λxµαρ′ .xEµσ′s′)t′
)
.

We conclude that type-changing coding in general does not give embeddings for systems of
selected monotone inductive types because the selected monotonicity witnesses for the encoded
types are not the encoded witnesses.
Another interesting consequence of the theorem is PIT 4 NIPIT. Hence, even non-strict positivity
does not allow to make essential (in the sense of getting algorithms which cannot be simulated)
use of interleaving.
Open questions remain, most importantly whether SPIT 4 NISPIT or NIPIT 4 SPIT. If both
were true, then class IIa could be merged in class III. In order to show both embeddings it
is obviously enough to show that NIPIT embeds into NISPIT. In some sense it is the question
whether the intuitionistic theory of positive inductive definitions may be reduced to the intu-
itionistic theory of strictly positive inductive definitions which has been answered positively by
Buchholz in [BFPS81], chapter IV §5. But the analogy is not too close: Buchholz’ systems do
not have the second-order universal quantification because the aim is a proof-theoretic reduction.
On the other side, there is no account of primitive recursion and no notion of β-reduction. Nev-
ertheless it might be possible to get NIPIT 4 NISPIT from an analysis of the proof in [BFPS81].
If NIPIT 64 NISPIT then a proof of the non-embeddability would probably be even harder.

1Contrast this with the non-normalizing variant of IMIT considered in section 4.7.1.

102 CHAPTER 7. COMPOSING THE EMBEDDINGS

Chapter 8

Confluence

A binary relation → (with transitive and reflexive closure →∗) on a set M is locally confluent
iff for every r, r′ and r′′ in M with r → r′ and r → r′′ there is an r′′′ ∈ M such that r′ →∗ r′′′

and r′′ →∗ r′′′. → is confluent iff →∗ is locally confluent. (Note that →∗∗=→∗.) The major
consequence of confluence is that there is at most one normal form of any term. If the system
is also normalizing this gives decidability of the equality induced by →. Our goal is to establish
confluence for all the systems which have been introduced so far. The proof will use a variant
of Masako Takahashi’s method [Tak95] which in case of higher-order rewrite systems has been
worked out in [vR96] and for Orthogonal Pattern Rewrite Systems in [MN98]. It has to be
admitted that the variation on the method is not essential for getting the result. Also the
restriction to typed terms is not necessary. However, only typed terms are considered in this
thesis.
Note that there are also proofs of confluence via the computability predicate method presented
in the next chapter for proving strong normalization (see e. g. [Kol85] where predicates of mono-
valuedness are studied). For the systems of this thesis the method has the drawback of re-
flecting the expressive power of the systems (which therefore includes intuitionistic second-order
arithmetic) although the proof by complete superdevelopments shown here is an easy syntactic
analysis.

8.1 Confluence of system F

Define the relation � of parallel reduction between terms1 by induction and simultaneously
prove that r � r′ ⇒ r →∗ r′ as follows:

(V) xρ � xρ.

(→-I) If r � r′, then λxρr � λxρr′.

(→-E) If r � r′ and s � s′, then rE→s � r′E→s′. (We use the notation of section 2.2.2.)

(β→) If r � λxρr′ and sρ � s′, then rE→s � r′[xρ := s′].

(∀-I) If r � r′, then Λαr � Λαr′.

(∀-E) If r � r′, then rE∀σ � r′E∀σ.

1We adopt the convention of footnote 4 on p. 19. As for → a more careful formulation would clarify that the
well-formedness of r′ is always a consequence of the well-formedness of r in every clause which again gives an
operational reading to �. See also the discussion in section 2.1.4.

103

104 CHAPTER 8. CONFLUENCE

(β∀) If r � Λαr′, then rE∀σ � r′[α := σ].

(The proofs are omitted.)
Define for every term r the complete superdevelopment r∗ of r as a term of the same type as r
by recursion on terms and simultaneously prove that r � r∗ as follows:

(V) (xρ)∗ := xρ.

(→-I) (λxρr)∗ := λxρr∗.

(→-E) (rE→s)∗ := r∗Ê→s∗. (See section 2.1.4 for the notation Ê→.)

(∀-I) (Λαr)∗ := Λαr∗. (Note that Λαr∗ is well-formed due to FV(r∗) ⊆ FV(r) which
follows from the additional claim.)

(∀-E) rE∀σ := r∗Ê∀σ. (See section 2.1.4 for the notation Ê∀.)

(The proofs are again omitted.)
Let us consider two essential examples of complete superdevelopments (omitting types every-
where):

((λxx)(λyr)s)∗ = r∗[y := s∗]

((λxλyr)st)∗ = r∗[x, y := s∗, t∗], if x 6= y

We see that even created redices are contracted during the formation of the complete superde-
velopment. Of course, we do not contract every created redex, e. g.

((λx.xy)(λzz))∗ = (xy)[x := λzz] = (λzz)y.

The name superdevelopment was coined by van Raamsdonk [vR93]. I just mention that r∗ is a
maximal superdevelopment of r, if one extends van Raamsdonk’s notion to system F properly.
Below we will see that r∗ is a maximal reduct with respect to �. Nevertheless, � is not the
superdevelopment relation (� is stronger) because in the definition of superdevelopments it is
allowed that the term which is substituted via the (β→)-rule gets developped differently for the
different free occurrences of x in r (which is obviously impossible in the definition of �). One
would get maximal developments if one replaced the elimination clauses of the definition of r∗

in the following way:

(→-E) ((λxρt)s)∗ := t∗[xρ := s∗], and (rs)∗ := r∗s∗, if r is not a λ-abstraction.

(∀-E) (Λαt)σ)∗ := t∗[α := σ], and (rσ)∗ := r∗σ, if r is not a Λ-abstraction.

Deciding the cases according to the shape of r and not that of r∗ makes the difference. This
definition would fit to an alternate notion of parallel reduction by replacing the defining rules
of � as follows:

(β→) If r � r′ and s � s′, then (λxρr)s � r′[xρ := s′].

(β∀) If r � r′, then (Λαr)σ � r′[α := σ].

These definitions are the basis of the Takahashi method for proving confluence. My definitions
give more flexibility to the method. This will not become clear from this thesis, however.

Lemma 8.1 (Reflexivity of �) r � r.

8.1. CONFLUENCE OF SYSTEM F 105

Proof Induction on r. (The rules (β→) and (β∀) are not needed here.) �

Corollary 8.2 →⊆�.

Proof Induction on → using reflexivity almost everywhere. �

Corollary 8.3 →∗=�∗.

Proof Use �⊆→∗ and →∗∗=→∗. �

Lemma 8.4 If r � r′ and ~s � ~s ′ (i. e., si � s′i for all i), then r[~x~ρ := ~s] � r′[~x~ρ := ~s ′].

Proof Induction on r � r′. (V) Case xρ � xρ. Obvious.
(→-I) Case λxρr � λxρr′. Easy by induction hypothesis.
(→-E) Case rE→s � r′E→s′. By induction hypothesis.
(β→) Case rE→s � r′[xρ := s′]. We may assume that xρ /∈ ~x~ρ ∪ FV(~s). Therefore by induction
hypothesis r[~x~ρ := ~s] � λxρ.r′[~x~ρ := ~s ′] and s[~x~ρ := ~s] � s′[~x~ρ := ~s ′]. Hence

(rE→s)[~x~ρ := ~s] � (r′[~x~ρ := ~s ′])[xρ := s′[~x~ρ := ~s′]] = (r′[xρ := s′])[~x~ρ := ~s ′]

by Lemma 2.13.
(∀-I) Case Λαr � Λαr′. We may assume that α /∈ FTV(~s). By Lemma 2.30, α /∈ FTV(~s ′). The
claim now follows from the induction hypothesis.
(∀-E) Case rE∀σ � r′E∀σ. By induction hypothesis.
(β∀) Case rE∀σ � r′[α := σ]. We may assume that α /∈ FTV(~s ′). Therefore by induction
hypothesis r[~x~ρ := ~s] � Λαr′[~x~ρ := ~s ′]. Hence, (rE∀σ)[~x~ρ := ~s] � (r′[~x~ρ := ~s ′])[α := σ]. Due
to FV(~ρ) ⊆ FTV(~s ′) (by Lemma 2.8), α /∈ FV(~ρ). Because Λαr′ is well-formed, we have the
implication xρ ∈ FV(r′) ⇒ α /∈ FV(ρ). Therefore Corollary 2.21 applies and gives that

(r′[~x~ρ := ~s′])[α := σ] = r′[α := σ][~x~ρ := ~s′[α := σ]] = r′[α := σ][~x~ρ := ~s ′]

(as α /∈ FTV(~s ′)). �

Lemma 8.5 If r � r′, then r[~α := ~σ] � r′[~α := ~σ].

Proof Induction on r � r′. The cases (V), (→-I), (→-E), (∀-I) and (∀-E) are as easy as for the
preceding lemma. The case (β∀) uses Lemma 2.18.
Case (β→): By induction hypothesis r[~α := ~σ] � (λxρr′)[~α := ~σ]. We may assume that
xτ ∈ FV(r′) ⇒ τ = ρ. Hence, (λxρr′)[~α := ~σ] = λxρ[~α:=~σ].r′[~α := ~σ]. By induction hypothesis
s[~α := ~σ] � s′[~α := ~σ]. Therefore

(rs)[~α := ~σ] � (r′[~α := ~σ])[xρ[~α:=~σ] := s′[~α := ~σ]].

This last term equals r′[xρ := s′][~α := ~σ] by Corollary 2.22 (to the interchange law for substitu-
tion). �

Obviously, the parallel reduction relation � is not deterministic, i. e., given a term r there may
be several terms r′ such that r � r′. If r is not an elimination there is only one clause in the
definition which allows to derive r � r′ for any r′. This immediately leads to the following

Lemma 8.6 (V) If x � t, then t = x.

(→-I) If λxρr � t, then t = λxρr′ with r � r′.

106 CHAPTER 8. CONFLUENCE

(∀-I) If Λαr � t, then t = Λαr′ with r � r′.

Proof By induction on � without using the induction hypothesis. �

The following lemma is the key to proving confluence. It states that the complete superdevel-
opment r∗ of a term r is not only a parallel reduct of r (as is shown simultaneously with the
definition of r∗) but a parallel reduct of every parallel reduct r′ of r. In this sense r∗ is the
maximal parallel reduct of r.

Lemma 8.7 (Maximality of r∗) If r � r′, then r′ � r∗.

Proof Induction on r � r′. The cases (V), (→-I) and (∀-I) are very easy.
(→-E) Case rE→s � r′E→s′. By induction hypothesis r′ � r∗ and s′ � s∗. If r∗ = λxρt, then
r′s′ � t[xρ := s∗] = (rs)∗ by the rule (β→). If r∗ is not a λ-abstraction, then by rule (→-E)
r′s′ � r∗s∗ = (rs)∗.
(β→) Case rE→s � r′[xρ := s′]. By induction hypothesis λxρr′ � r∗ and s′ � s∗. By the
preceding lemma r∗ = λxρr′′ with r′ � r′′. Hence (rs)∗ = r′′[xρ := s∗] and by Lemma 8.4
r′[xρ := s′] � r′′[xρ := s∗].
The rules (∀-E) and (β∀) are treated similarly (where Lemma 8.5 is used instead of Lemma
8.4). �

Corollary 8.8 (“Diamond property” for �) If r � r′ and r � r′′, then there is a term r′′′

such that r′ � r′′′ and r′′ � r′′′.

Proof Set r′′′ := r∗. �

The main advantage of Takahashi’s method over the traditional approach by parallel reduction
seems to be the fact that r′′′ is identified as a term r∗ which does not depend on r′ and r′′.
Define the binary relations �n, n ∈ N, by recursion on n as follows:

r �0 s :⇔ r = s and r �n+1 s :⇔ ∃t.r � t ∧ t �n s.

Obviously, r �∗ r′ ⇔ ∃n.r �n r′, and if r �n r′, then r �m r′ for all m > n.

Corollary 8.9 If r �m r′ and r �n r′′, then there is a term r′′′ such that r′ �n r′′′ and
r′′ �m r′′′.

Proof Induction on m + n. Trivial for m = 0 or n = 0. Otherwise there are terms s′ and s′′

such that r � s′ �m−1 r′ and r � s′′ �n−1 r′′. By the preceding corollary, there is a term s
(viz. r∗) such that s′ � s and s′′ � s. m− 1 + 1 < m + n, hence by induction hypothesis there
is a term t such that r′ � t and s �m−1 t. m − 1 + 1 + n − 1 < m + n, hence by induction
hypothesis (applied to the term s′′) there is a term r′′′ such that t �n−1 r′′′ and r′′ �m−1+1 r′′′.
Therefore also r′ �n r′′′. (Of course, it would be easier to draw a big rectangle built up from
mn small rectangles derived by applying the “diamond property” that many times.) �

Corollary 8.10 (Confluence) → is confluent.

Proof We have to show that →∗=�∗ is locally confluent. This follows immediately from the
preceding corollary. �

8.2. CONFLUENCE OF THE OTHER SYSTEMS 107

8.2 Confluence of the other systems

Unfortunately there is no result on preservation of confluence via embeddings. It is clear from
the definition that even taking a subset of reduction rules may destroy confluence2. Of course,
the confluence proof given in the previous section is also modular in the sense which allows us
to appeal to the meta-convention on extensions introduced in section 2.2.3 (more precisely the
extension thereof which will be introduced on p. 122).
Only the confluence proof for ESMIT will be given in the sequel. It will turn out that stratification
is not needed, that the principles modelled by the system are not reflected and that compatibility
with substitution of mapλαρ is the only feature of ESMIT entering the arguments.
Extend the definition of the relation � of parallel reduction for system F to ESMIT and simul-
taneously prove that r � r′ ⇒ r →∗ r′ as follows:

(0-E) If r � r′, then rE0ρ � r′E0ρ.

(1-I) IN1 � IN1.

(×-I) If r � r′ and s � s′, then 〈r, s〉 � 〈r′, s′〉.

(×-E) If r � r′, then rL � r′L and rR � r′R.

(β×) If r � 〈r′, s′〉, then rL � r′ and rR � s′.

(+-I) If r � r′, then INLσr � INLσr′ and INRρr � INRρr
′.

(+-E) If r � r′, s � s′ and t � t′, then rE+st � r′E+s′t′.

(β+) If r � INLσr′ and s � s′, then rE+st � s′r′. If r � INRρr
′ and t � t′, then

rE+st � t′r′.

(µ-I) If t � t′, then Cµαρt � Cµαρt
′.

(µ-E) If r � r′ and s � s′, then rEµs � r′Eµs′.

(βµ) If r � Cµαρt and s � s′, then rEµσs � s′
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs′)t

)
.

(µ-E+) If r � r′ and s � s′, then rE+
µ s � r′E+

µ s′.

(β+
µ) If r � Cµαρt and s � s′, then

rE+
µ σs � s′

(
mapλαρ(µαρ)(µαρ× σ)(λxµαρ.〈x, (λxµαρ.xE+

µ σs′)x〉t
)
.

(The proofs are omitted.)
Define the reducing eliminations Êµ and Ê

+
µ by

rµαρÊµσs :=

{
s
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs)t

)
, if r = Cµαρt

rEµσs , else

rµαρÊ
+
µ σs :=

{
s
(
mapλαρ(µαρ)(µαρ× σ)(λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉t
)

, if r = Cµαρt

rE+
µ σs , else

Unlike the situation of Ê→, Ê∀ and Ê×, these reducing eliminations never preserve normal forms
if the first case applies. Therefore one may doubt whether the complete superdevelopment to
be defined next deserves its name3.

2This is the idea of completion: add rules (justified by the equality theory) until confluence is achieved.
3At least it deserves a name indicating that more is done than usual developments.

108 CHAPTER 8. CONFLUENCE

Extend the definition of the complete superdevelopment r∗ of a term r as a term of the same
type as r by recursion on terms and simultaneously prove that r � r∗ as follows:

(0-E) (rE0ρ)∗ := r∗E0ρ.

(1-I) IN1∗ := IN1.

(×-I) 〈r, s〉∗ := 〈r∗, s∗〉.

(×-E) (rL)∗ := r∗Ê×L and (rR)∗ := r∗Ê×R (see section 2.2.4 for the notation Ê×).

(+-I) (INLσr)∗ := INLσr∗ and (INRρr)∗ := INRρr
∗.

(+-E) (rE+st)∗ := r∗Ê+s∗t∗.

(µ-I) (Cµαρt)∗ := Cµαρt
∗.

(µ-E) (rEµσs)∗ := r∗Êµσs∗.

(µ-E+) (rE+
µ σs)∗ := r∗Ê

+
µ σs∗.

(The proofs are again omitted.)
We see that stratification does not enter this definition because in the definitions of Êµ and Ê

+
µ

the term mapλαρ is not completely super-developped, i. e., we do not use map∗λαρ
4.

Now we check that the confluence proof for system F goes through with these definitions.
Reflexivity of � (Lemma 8.1) and its corollaries are immediate. Lemma 8.4 which essentially
shows that � is parallel reduction goes through because in the cases (βµ) and (β+

µ) we know that
mapλαρ is closed. Compatibility with type substitution (Lemma 8.5) works in these critical cases
because of the uniformity condition of ESMIT which says that mapλαρ[~α := ~σ] = map(λαρ)[~α:=~σ].
Lemma 8.6 on parallel reducts of introduction terms is extended by the following

Lemma 8.11 (1-I) If IN1 � t, then t = IN1.

(×-I) If 〈r, s〉 � t, then t = 〈r′, s′〉 with r � r′ and s � s′.

(+-I) If INLσr � t, then t = INLσr′ with r � r′. If INRρr � t, then t = INRρr
′ with

r � r′.

(µ-I) If Cµαρr � t, then t = Cµαρr
′ with r � r′.

Proof As before by induction on � without using the induction hypothesis (also called inversion).�

The Maximality Lemma (Lemma 8.7) is the only part deserving some attention. The reasoning
used in the proofs of its corollaries (including confluence) works in any abstract reduction system
(= binary relation) and hence does not need any adjustment to ESMIT.

Lemma 8.12 (Maximality of r∗ for ESMIT) If r � r′, then r′ � r∗.

Proof Induction on r � r′ as before. Only the cases (µ-I), (µ-E) and (βµ) are shown.
(µ-I) Case Cµαρt � Cµαρt

′. By induction hypothesis t′ � t∗. Hence also Cµαρt
′ � Cµαρt

∗ =
(Cµαρt)∗.

(µ-E) Case rEµσs � r′Eµσs′. By induction hypothesis r′ � r∗ and s′ � s∗. If r∗ = Cµαρt, then

4In PIT this could not even change anything because due to Lemma 5.2 mapλαρ is already in normal form.

8.2. CONFLUENCE OF THE OTHER SYSTEMS 109

r′Eµσs′ � s∗
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs∗)t

)
= (rEµσs)∗. Otherwise r′Eµσs′ � r∗Eµσs∗ =

(rEµσs)∗.

(βµ) Case rEµσs � s′
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs′)t

)
. By induction hypothesis we have

Cµαρt � r∗ and s′ � s∗. By the preceding lemma r∗ = Cµαρt
′ with t � t′. Hence (rEµσs)∗ =

s∗
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs∗)t′

)
. By using reflexivity and the definition of � several times

we get s′
(
mapλαρ(µαρ)σ(λxµαρ.xEµσs′)t

)
� s∗

(
mapλαρ(µαρ)σ(λxµαρ.xEµσs∗)t′

)
. �

This establishes confluence for every system ESMIT (among them PIT, PITrec, SPIT, NIPIT and
coMePIT) and the reader will hopefully be convinced that the other systems may be handled
by the same apparatus. (Note that stratification did not enter neither the definitions nor the
proofs. Hence, also ISMIT is covered. The need for closed mapλαρ satisfying uniformity does
not carry over to analogous conditions on the monotonicity witnesses of systems of monotone
inductive types simply because they are “carried around” which makes the induction hypotheses
in all the proofs apply. Hence, the situation becomes even easier for EMIT and its relatives. The
systems in the spirit of Mendler are essentially nothing more than systems of non-interleaved
positive inductive types and hence also do not pose new problems.)
There are other reasons why not so much effort is put into the confluence proofs: Because all of
the systems are strongly normalizing (as will be shown in the next chapter), confluence follows
from local confluence which is the content of Newman’s Lemma (see e. g. [Mit96, p. 227]). And
local confluence could be checked by a boring analysis of both reducts of the term in question (by
double induction on the definition of→ and consideration of every possible pair of rules including
the congruence rules). An even stronger reason comes from the theory of higher-order rewrite
systems: All of the rewrite rules in our systems are left-linear and non-overlapping. Those
systems are called orthogonal5 and are confluent in the first-order case. In [MN98] this result
is lifted to Orthogonal Pattern Rewrite Systems which are higher-order rewrite systems using
simply-typed lambda calculus as meta-language. The proof of this fact hopefully is extensible
to cover our situation: One would have to extend the substitution calculus from simply-typed
lambda calculus to system F with η-expansion which is also strongly normalizing and confluent
(see [Joa97]) and therefore should allow to define the notions of [MN98] accordingly.

Note again that the induction principles expressed by the µ-types did not enter the proof of
confluence. In the next chapter this will be different.

5If we added η-rules trivial critical pairs would arise and hence make the systems “weakly orthogonal”.

110 CHAPTER 8. CONFLUENCE

Chapter 9

Strong normalization

Every system having a name in this thesis is strongly normalizing, i. e., sn = Λ holds for all of
them. The proof might be carried out by proving strong normalization for the system NIPIT of
non-interleaving positive inductive types or for the system NISPIT+ex of non-interleaving strictly
positive inductive types including the existential quantifier and then referring to the reduction-
preserving embeddings. I decided to prove strong normalization directly for some of the systems
because this gives a lot of insight into the flexibility of the proof method by saturated sets which
is a variant of Girard’s candidate method. Two different proofs are given for every system:
A proof where the definition of the computability predicate essentially fixes which introduction
terms enter the predicate (the introduction-based proof1) and a proof where the definition of the
computability predicate specifies that a term only may enter if sufficiently many eliminations
with this term as main premise have the right properties (the elimination-based proof).
The informal modified realizability interpretation which served as a motivation in the earlier
chapters now will lead to additional information after the proofs have been carried out: By
considering the extracted type of the definition of the computability predicates encodings of the
system at hand into other systems may be read off. All known examples of extracted encodings
even preserve reduction (i. e., they are embeddings). An interesting project would be to justify
this observation by a meta-theorem on proofs of strong normalization via the methods described
in this chapter. It would be a refinement of the usual soundness theorem of modified realizability
(see e. g. the presentations in [Ber93, vdP96b]).

9.1 Strong normalization of system F

Anyone interested in mastering polymorphic lambda calculus should try to
come up with one’s own proof of normalization and see oneself make a mistake
in the process. Then try giving a correct proof. Andre Scedrov [Sce89]

9.1.1 Terms in SN are strongly normalizing

As was promised in section 2.1.4 we prove that SN ⊆ sn. Note that we already know that
SN ⊆ wn. If someone is only interested in weak normalization, he or she should should skip this
section and proceed with section 9.1.2.

Lemma 9.1 If xρ~s is a term and the terms in ~s are in sn, then xρ~s ∈ sn.

Proof Main induction on the first term in ~s being in sn, side induction on the second being in
sn, etc. Let r be any term such that xρ~s → r. We have to show that r ∈ sn. It is easy to see

1In [Pra71] (proof) terms in computability predicates of this kind are called strongly valid.

111

112 CHAPTER 9. STRONG NORMALIZATION

that r = xρ~s ′ where ~s ′ is derived from ~s by reduction of one term. (This will henceforth be
written as ~s → ~s ′.) Therefore the induction hypothesis applies to xρ~s ′. �

Lemma 9.2 If r ∈ sn, then λxρr ∈ sn.

Proof Induction on r ∈ sn. Let s be any term such that λxρr → s. We have to show that s ∈ sn.
Obviously, s = λxρr′ with a term r′ such that r → r′. By induction hypothesis, λxρr′ ∈ sn. �

Lemma 9.3 If (λxρr)s~s is a term, s ∈ sn and r[xρ := s]~s ∈ sn, then (λxρr)s~s ∈ sn.

Proof For ease of understanding the proof will first be given in a somewhat intuitive form:
Main induction on s ∈ sn, side induction2 on r[xρ := s]~s ∈ sn. Let t be any term such that
(λxρr)s~s → t. We have to show that t ∈ sn.

• If t = (λxρr′)s~s with r → r′, then r[xρ := s]~s → r′[xρ := s]~s. By side induction hypothesis,
t ∈ sn.

• If t = (λxρr)s′~s with s → s′, then r[xρ := s]~s →∗ r[xρ := s′]~s, hence also r[xρ := s′]~s ∈ sn.
By main induction hypothesis, t ∈ sn.

• If t = (λxρr)s~s ′ with ~s → ~s ′, then r[xρ := s]~s → r[xρ := s]~s ′. By side induction hypothesis,
t ∈ sn.

• If t = r[xρ := s]~s, then t ∈ sn by assumption.

• There are no other possibilities (which can easily shown by induction on the inductive
definition of →).

As this lemma is crucial to the proof of strong normalization and to my knowledge is an un-
avoidable3 part of any strong normalization proof by the Tait method, I give a second proof
which should be seen as justification for the preceding proof. The very first proof of strong
normalization (in [Tai75]) had a similar lemma which was proved by refuting the existence of
infinite reduction sequences. My aim is to avoid reasoning by reduction sequences and to confine
to the use of the induction principle coming from the inductive definition of the set sn.
Fix a variable xρ and the length of all vectors (and the types of the terms in the vectors) in the
proof to follow. Define

M := {s|∀r, ~s : r[xρ := s]~s ∈ sn ⇒ (λxρr)s~s ∈ sn}.

We have to show that sn ⊆ M . We do induction on sn. Let s be a term. We assume that
for every term s′ such that s → s′ we have s′ ∈ M . We have to show that s ∈ M . Assume
r[xρ := s]~s ∈ sn. We have to show (λxρr)s~s ∈ sn. Define

N := {t ∈ sn|∀r, ~s : t = r[xρ := s]~s ⇒ (λxρr)s~s ∈ sn}.
2Note that the term r[xρ := s]~s of the side induction depends on the term s of the main induction.
3In [Gal98] it is argued that the proof presented there does not “involve rather strange looking terms such as

M [N/x]N1 . . . Nk” (p. 233). On p. 236 it is conceded that “it is no surprise that they crop up again” but that
they do not have to be dealt with explicitly. On p. 250, it becomes clear that those terms in fact do not enter
the refined arrangement of the proof. But there is a reference to finite reduction sequences in property (P3) on
p. 248 which is the price to pay which to me seems to be higher than to consider r[xρ := s]~s. Therefore I stick to
the word “unavoidable” but do not take it too serious.

9.1. STRONG NORMALIZATION OF SYSTEM F 113

It suffices to show that sn ⊆ N . We do induction4 on sn. Let t be a term. We assume that for
every term t′ such that t → t′ we have t′ ∈ N . We have to show that t ∈ N . t ∈ sn follows5

from N ⊆ sn. Let t = r[xρ := s]~s for some r and ~s. We have to show (λxρr)s~s ∈ sn. Let v be
any term such that (λxρr)s~s → v and show v ∈ sn.

• If v = (λxρr′)s~s with r → r′, then r[xρ := s]~s → r′[xρ := s]~s, hence r′[xρ := s]~s ∈ N .
Therefore v ∈ sn.

• If v = (λxρr)s′~s with s → s′, then r[xρ := s]~s →∗ r[xρ := s′]~s, hence also r[xρ := s′]~s ∈ sn.
Because of s′ ∈ M , also v ∈ sn.

• If v = (λxρr)s~s ′ with ~s → ~s ′, then r[xρ := s]~s → r[xρ := s]~s ′, hence r[xρ := s]~s′ ∈ N .
Therefore v ∈ sn.

• If v = r[xρ := s]~s, then v = t ∈ sn.

• There are no other possibilities (to be shown as in the first proof).

We conclude that the second proof is nothing but the first proof with explicit statements of the
induction formulas added. �

Lemma 9.4 If Λαr is a term and r ∈ sn, then Λαr ∈ sn.

Proof Induction on r ∈ sn. Let s be any term such that Λαr → s. We have to show that s ∈ sn.
Obviously, s = Λαr′ with a term r′ such that r → r′. By induction hypothesis, Λαr′ ∈ sn. �

Lemma 9.5 If (Λαr)σ~s is a term and r[α := σ]~s ∈ sn, then (Λαr)σ~s ∈ sn.

Proof Induction on r[α := σ]~s ∈ sn. Let t be any term such that (Λαr)σ~s → t. We have to
show that t ∈ sn.

• If t = (Λαr′)σ~s with r → r′, then r[α := σ]~s → r′[α := σ]~s, hence t ∈ sn by induction
hypothesis.

• If t = (Λαr)σ~s ′ with ~s → ~s ′, then r[α := σ]~s → r[α := σ]~s ′, hence t ∈ sn by induction
hypothesis.

• If t = r[α := σ]~s, then t ∈ sn by assumption.

• There are no other possibilities.

Note that this proof is essentially easier than the one covering (β→). �

Lemma 9.6 SN ⊆ sn.

Proof The preceding lemmas simply say that the defining properties of SN are closure properties
of sn. �

We remark that types do not play a role in the proof and that therefore SN ⊆ sn could also be
proved for a untyped term system.

4This is the same as proving sn ⊆ N ′ := {t term|∀r, ~s : t = r[xρ := s]~s ⇒ (λxρr)s~s ∈ sn} by extended induction
(as defined in the introduction to chapter 4) on sn.

5The proof by the principle of extended induction would not need this (in this case very short) reasoning
because it is once done in the derivation of that principle from the induction principle.

114 CHAPTER 9. STRONG NORMALIZATION

9.1.2 Saturated sets

The main goal of this chapter is to establish that every term is in SN which of course is not true
for untyped terms. The following proof is by the Tait method of computability predicates. In
its very first form it appeared in [Tai67]. Due to the presence of type quantification the notion
of computability predicate has to be relativized to any sensible predicate which Girard called
“candidats de reductibilité” [Gir72] (see [Gal90] for a discussion of several variations on the
definition). The least criterion for being sensible is that only strongly normalizing terms may
enter the candidates. Girard’s candidates in [GLT89] are closed under reduction and “neutral”
terms (i. e., terms which are no abstractions) enter if all their reducts are already in the set.
Tait’s candidates (“propositions” in [Tai75]) are also closed under reduction but this is never
used in his proof of strong normalization. His essential condition for M being a candidate is

r[x := s]~s ∈M∧ s is strongly normalizing ⇒ (λxr)s~s ∈M.

Thorsten Altenkirch observed that this is a pattern which may be generalized considerably:
One may base the candidates on weak head expansion6 under the proviso that this expansion
does not lead out of the set of strongly normalizing term. Those sets are then called saturated
(a name which is also used in [Bar93] for candidates in the spirit of [Tai75]). In [Alt93a] this
approach is used for the calculus of constructions extended by some generalization of trees. In
the following proof the explicit reference to strongly normalizing terms is abandoned in favour
of the set SN.7 The definition of saturated sets is modelled after the definition of SN. In this
thesis only typed terms are considered. Therefore also the saturated sets consist only of typed
terms as opposed e. g. to the treatment in [Alt93a]. In my view this makes the definition more
intuitive: All the terms in a saturated set are required to have the same type, and saturated sets
by definition have all the closure properties of SN which do not conflict with this requirement.
It is possible to show that by adding closure under reduction one gets back8 Girard’s candidates
as in [GLT89].
Let SNτ be the set of terms of type τ in SN. A set M of terms is called τ -saturated, if the
following conditions are met.

(SN) If r ∈M, then r ∈ SNτ .

(V) If xρ~s is a term of type τ and the terms in ~s are in SN, then xρ~s ∈M.

(β→) If (λxρr)s~s is a term, s ∈ SN and r[xρ := s]~s ∈M, then (λxρr)s~s ∈M.

(β∀) If (Λαr)σ~s is a term and r[α := σ]~s ∈M, then (Λαr)σ~s ∈M.

Note that the rules (→-I) and (∀-I) of the definition of SN do not enter this definition because
they change the type of the term.
Let SATτ be the set of all τ -saturated sets and SAT :=

⋃
τ SATτ . Elements of SAT are called

saturated sets. Obviously, SNτ ∈ SATτ . Note that SATτ is closed under arbitrary intersections
6In [MKO95] this process is reversed in some sense: The computability predicates have a very easy definition

but instead of checking whether a term is in the predicate one checks whether its weak head normal form is in
the predicate. The price to pay is that in some sense one has to calculate with equivalence classes modulo weak
head reduction.

7At first sight, the approach taken in [BTG91] of studying arbitrary “candidate-closed” sets instead of the
strongly normalizing terms, seems to be even more general. However, it turns out that any candidate-closed set
is a superset of SN and hence both approaches are equivalent (ignoring algebraic term rewriting which is also
present in [BTG91]).

8Hence, Girard’s candidates are nothing but saturated sets which are closed under reduction. I consider the
freedom from analyses of the possible reducts (except when showing that SN ⊆ sn where it conceptually cannot
be avoided) as the main advantage of the method shown in this thesis.

9.1. STRONG NORMALIZATION OF SYSTEM F 115

(the empty intersection being SNτ) and hence is a complete lattice. For M∈ SAT write Mτ to
indicate that M∈ SATτ .
If one is only interested in weak normalization, one could leave out the condition s ∈ SN from
(β→) which would clearly amount to basing the definition of saturatedness on WN instead of
SN. Then one would have WN ∩ Λτ ∈ SATτ and would finally get that WN = Λ. But this does
not simplify any of the arguments to follow. And of course, there would be no justification of
an embedding extracted from the proof of normalization (see section 9.3).
Let M be a set of terms. The τ -saturated closure clτ (M) of M is defined inductively by the
following clauses.

(⊆) If r ∈ M ∩ SNτ , then r ∈ clτ (M).

(V) If xρ~s is a term of type τ and the terms in ~s are in SN, then xρ~s ∈ clτ (M).

(β→) If (λxρr)s~s is a term, s ∈ SN and r[xρ := s]~s ∈ clτ (M), then (λxρr)s~s ∈ clτ (M).

(β∀) If (Λαr)σ~s is a term and r[α := σ]~s ∈ clτ (M), then (Λαr)σ~s ∈ clτ (M).

This is a strictly positive inductive definition. By induction on the definition one shows clτ (M) ⊆
SNτ . Therefore, clτ (M) is the smallest τ -saturated set containing M ∩SNτ . Obviously, clτ is an
isotone mapping of sets of terms to SATτ .

Calculating with saturated sets

We define operations on saturated sets which correspond to the type constructions.

Arrow types We define an arrow construction for saturated sets, i. e., given a ρ-saturated set
M and a σ-saturated set N , we define a (ρ → σ)-saturated set M → N . There are mainly
two ways how to do that: In the introduction-based definition, sufficiently many λ-abstractions
are put into the set whereas in the elimination-based definition only terms enter the set which
behave well with respect to →-elimination. Define

MI := {r ∈ Λρ→σ|∃xρ∃tσ.r = λxρt ∧ ∀s ∈M t[xρ := s] ∈ N}
ME := {r ∈ Λρ→σ|∀s ∈M rs ∈ N}

and set M→I N := clρ→σ(MI) and M→E N := clρ→σ(ME). Hence, M→I N and M→E N
are (ρ → σ)-saturated sets and the construction is isotone in the argument N and antitone in
the argument M.

Lemma 9.7 ME ∩ SN ∈ SAT (which implies M→E N = ME ∩ SN).

Proof Very easy. One only has to append the term s to the vector ~s. �

Note that we do not immediately see that ME ⊆ SN. Some more traditional proofs of strong
normalization would require to prove it (where SN would be replaced by sn), and it would be
done in the following way: Let xρ be a variable. Hence xρ ∈M. By assumption rx ∈ N , hence
rx ∈ SN. Because r is a subterm of rx, also r ∈ SN. A similar reasoning is indeed possible
with our set SN, but only for xρ /∈ FV(r) which does no harm. But in our approach we do
not need the underlying lemma, viz. rxρ ∈ SN ∧ xρ /∈ FV(r) ⇒ r ∈ SN which in some sense
contradicts the philosophy of only using the reduction strategy expressed in the definition of
SN. (Ex post—after the proof of the main theorem which is SN = Λ—we know that it is true in
a trivial sense.)

116 CHAPTER 9. STRONG NORMALIZATION

Lemma 9.8 MI ⊆ SN (which implies M→I N ⊇ MI).

Proof Choose s := xρ, which trivially is in M. Then t ∈ N by definition, hence t ∈ SN and
consequently r = λxρt ∈ SN. �

Lemma 9.9 M→I N ⊆M→E N .

Proof It suffices to show MI ⊆ ME . This is an application of the rule (β→) of the definition of
saturated sets (with empty ~s). �

The preceding three statements immediately imply the following rules for calculating withM→I

N and M→E N :

(→E-E) If r ∈M→E N and s ∈M, then rE→s ∈ N .

(→I -E) If r ∈M→I N and s ∈M, then rE→s ∈ N .

(→I -I) If t[xρ := s] ∈ N for all s ∈M, then λxρt ∈M→I N .

(→E-I) If t[xρ := s] ∈ N for all s ∈M, then λxρt ∈M→E N .

In the sequel M→ N will denote either M→I N or M→E N as long as it does not matter
which one is meant, i.e. the use of this set is restricted to the following rules9:

(SAT) M→N ∈ SATρ→σ.

(→-I) If t[xρ := s] ∈ N for all s ∈M, then λxρt ∈M→ N .

(→-E) If r ∈M→ N and s ∈M, then rE→s ∈ N .

It is possible that M→I N 6= M→E N : Let ρ, σ := α → α, M := SNα→α and N := clα→α(N)
with N := {(λzα→αz)t|t ∈ SNα→α}. Clearly, N ⊆ SNα→α and hence N ⊆ N .
Let r := λzα→αz. We claim that r ∈M→E N \M→I N .
We want to show r ∈M→E N . r ∈ SN(α→α)→α→α. Hence it suffices to show rt ∈ N for every
t ∈ SNα→α. By definition rt ∈ N and therefore also rt ∈ N .
For every set M , we have that λxρr ∈ cl(M) ⇒ λxρr ∈ M . This is easily seen by induction on
the definition of the saturated closure cl.
Assume that r ∈M→I N . By the preceding observation, r ∈ MI . Hence for every t ∈ SNα→α,
t ∈ N . Take t := λxαx. Therefore λxαx ∈ N and again by the above observation λxαx ∈ N
which is not the case.

9This would not suffice to get the normalization proof through in extensions of the system having introduction
constants of arrow type instead of term forming rules (e. g. injection constants for sum types instead of INLρ

and INRρ in eF which are not terms but term formers). In those systems one would have to base the definitions
of computability predicates on M →E N and thus would be forced to follow an elimination-based approach
concerning the arrow type. More disturbing on the aesthetic side would be the obligation to unwind the definition
of M →E N several times in the proof instead of only using the above rules which directly correspond to
a semantical view on the introduction and elimination rule for terms. This aesthetic defect will affect future
formalizations of the arguments and hence the process of extraction of embeddings from normalization proofs.

9.1. STRONG NORMALIZATION OF SYSTEM F 117

Universal types Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ].
Define

MI := {r ∈ Λ∀αρ|∃α∃tρ.r = Λαt ∧ ∀τ∀P ∈ SATτ t[α := τ] ∈ Φτ (P)}
ME := {r ∈ Λ∀αρ|∀τ∀P ∈ SATτ rτ ∈ Φτ (P)}

and set ∀I(Φ) := cl∀αρ(MI) and ∀E(Φ) := cl∀αρ(ME). Hence, ∀I(Φ) and ∀E(Φ) are ∀αρ-saturated
sets and the construction is (pointwise) isotone in the argument Φ.

Lemma 9.10 ME ∩ SN ∈ SAT (which implies ∀E(Φ) = ME ∩ SN).

Proof As easy as for the arrow type (simply append τ to ~s). �

Lemma 9.11 MI ⊆ SN (which implies ∀I(Φ) ⊇ MI).

Proof Choose τ := α and P := SNα. Hence, t ∈ Φα(SNα) ⊆ SN. Therefore Λαt ∈ SN. �

Lemma 9.12 ∀I(Φ) ⊆ ∀E(Φ).

Proof It suffices to show MI ⊆ ME . This is an application of the rule (β∀) of the definition of
saturated sets (with empty ~s). �

As for arrow types we get the following rules:

(∀E-E) If r ∈ ∀E(Φ), then ∀τ∀P ∈ SATτ rE∀τ ∈ Φτ (P).

(∀I -E) If r ∈ ∀I(Φ), then ∀τ∀P ∈ SATτ rE∀τ ∈ Φτ (P).

(∀I -I) If ∀τ∀P ∈ SATτ t[α := τ] ∈ Φτ (P), then Λαt ∈ ∀I(Φ).

(∀E-I) If ∀τ∀P ∈ SATτ t[α := τ] ∈ Φτ (P), then Λαt ∈ ∀E(Φ).

(The introduction rules are under the proviso that Λαt is a term.)
From now on ∀(Φ) shall denote ∀I(Φ) or ∀E(Φ) if only the following rules are used.

(SAT) ∀(Φ) ∈ SAT∀αρ.

(∀-I) If ∀τ∀P ∈ SATτ t[α := τ] ∈ Φτ (P), then Λαt ∈ ∀(Φ).

(∀-E) If r ∈ ∀(Φ), then ∀τ∀P ∈ SATτ rE∀τ ∈ Φτ (P).

It is possible that ∀I(Φ) 6= ∀E(Φ). Let ρ := β → β with β 6= α. Let M := clβ→β(M) with
M := {(Λαr)τ |τ type, r ∈ SNβ→β with α /∈ FTV(r)}. Because r[α := τ] = r, M ⊆ SNβ→β and
hence M ⊆M ∈ SATβ→β. Let Φτ (P) := M for all τ and all P ∈ SATτ .
Let r := Λαλxβx. We claim that r ∈ ∀E(Φ) \ ∀I(Φ).
We want to show r ∈ ∀E(Φ). r ∈ SN∀α.β→β. Let τ be a type and P ∈ SATτ . It suffices to show
that rτ ∈ Φτ (P) = M. By definition rτ ∈ M ⊆M.
For every set M , we have that Λαr ∈ cl(M) ⇒ Λαr ∈ M . This is easily seen by induction on
the definition of the saturated closure cl.
Assume that r ∈ ∀I(Φ). By the preceding observation, r ∈ MI . Hence for every type τ and
every P ∈ SATτ : (λxβx)[α := τ] ∈ Φτ (P), whence λxβx ∈ M. By the observation on cl at the
end of the section on arrow types we conclude λxβx ∈ M which is not the case.

118 CHAPTER 9. STRONG NORMALIZATION

Computability predicates

Define the (ρ[~α := ~σ])-saturated set SCρ[~α := ~P] of strongly computable terms w.r.t. the type
ρ, the finite list of type variables ~α and the (equally long) list of saturated sets ~P, where σi is
the unique type such that Pi is σi-saturated, by recursion on ρ as follows.

(V) SCα[~α := ~P] := clα(∅)10, if α does not occur in the list ~α.
SCα[~α := ~P] := Pi, if i is the smallest index such that αi = α.

(→) SCρ→σ[~α := ~P] := SCρ[~α := ~P] → SCσ[~α := ~P].

(∀) SC∀αρ[~α := ~P] := ∀(Φ) with Φ = (Φσ)σ, where Φσ : SATσ → SATρ[~α,α:=~σ,σ] is
defined by Φσ(P) := SCρ[~α, α := ~P,P] (We assume that α /∈ ~α ∪ FV(~σ) and use
Lemma 2.6 to conclude that this definition is type-correct).

The definition in case (∀) may be written more intuitively as follows:

SC∀αρ[~α := ~P] := ∀P.SCρ[~α, α := ~P,P]

The implicit quantification over all types σ hopefully will always be clear from the context. This
notation will be used in the sequel (especially in the normalization proofs for the systems with
inductive types).
Obviously, the indetermination of whether the introduction-based or the elimination-based con-
structions for saturated sets are used has to be handled with care. E. g. the choice for →I or
→E in the definition of SCρ→σ[~α := ~P] must not depend on Pi with αi /∈ FV(ρ → σ) because
otherwise the following lemma would fail to hold. The next but one lemma imposes much
stronger restrictions: The choice has to be the same for any substitution instance of ρ → σ.
To be on the safe side, simply assume that e. g. → means →E everywhere and ∀(Φ) means
∀I(Φ) everywhere. Hence, the freedom in the choice reduces to 4 possibilities. And the com-
putability predicates indeed depend on this choice: The examples that M→I N 6= M→E N
and ∀I(Φ) 6= ∀E(Φ) suffice because SCβ→γ [β, γ := M,N] = M→ N (generally for β 6= γ) and
(for γ /∈ {α, β}) SC∀αγ [γ := M] = ∀(Φ) with Φτ (P) = SCγ [γ, α := M,P] = M (for the specific
example shown on p. 117).

Lemma 9.13 If α /∈ FV(ρ), then SCρ[~α, α := ~P,P] = SCρ[~α := ~P].

Proof By induction on ρ show that even SCρ[~α, α, ~α′ := ~P,P, ~P ′] = SCρ[~α, ~α′ := ~P, ~P ′] holds if
α /∈ FV(ρ). �

Lemma 9.14 If α /∈ ~α, then SCρ[α:=τ][~α := ~P] = SCρ[~α, α := ~P,SCτ [~α := ~P]].

Proof By induction on ρ show that for α /∈ ~α ∪ ~α′ we have

SCρ[α:=τ][~α, ~α′ := ~P, ~P ′] = SCρ[~α, α, ~α′ := ~P,SCτ [~α, ~α′ := ~P, ~P ′], ~P ′].

The preceding lemma is needed in the case (∀). �

Corollary 9.15 If β /∈ ~α ∪ FV(ρ) and α /∈ ~α, then

SCρ[α:=β][~α, β := ~P,P] = SCρ[~α, α := ~P,P].

10One could take any set instead of ∅.

9.1. STRONG NORMALIZATION OF SYSTEM F 119

Proof Trivial, if α = β. Otherwise

SCρ[α:=β][~α, β := ~P,P] = SCρ[~α, β, α := ~P,P,SCβ [~α, β := ~P,P]] by the preceding lemma

= SCρ[~α, α := ~P,P] due to the proof of the last but one lemma.

�

Lemma 9.13 is the “coincidence lemma” and Lemma 9.14 is the “substitution lemma” which
are auxiliary statements for the next lemma which should be called the “soundness lemma”.
This next lemma shows that every term is strongly computable—even if term variables are
substituted by strongly computable terms. This generalization is needed in the case (→-I) of
the proof. The case (∀-I) needs the freedom in the number of saturated sets to which the notion
of strong computability is relativized. The proviso in the statement (see below) is only present for
technical reasons: It is tailored to make the statement true for variables! This technical problem
arises because of the natural deduction formulation of system F as opposed to a formulation
with contexts which many authors prefer.

Lemma 9.16 Let rρ be a term, ~x~ρ a list of variables and ~s an equally long list of terms such
that ~s ∈ SC~ρ[~α := ~P~σ] for some ~P ⊆ SAT. Assume that

∀x∀π∀π′.(xπ, xπ′ ∈ FV(r) ∪ ~x~ρ) ∧ (π[~α := ~σ] = π′[~α := ~σ]) ⇒ π = π′.

Then r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] ∈ SCρ[~α := ~P].

Proof Induction on r. Abbreviate r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] by r′ (also for any other terms instead
of r). The assumption in the statement will be referenced to as “injectivity”.
(V) Case xρ. If xρ /∈ ~x~ρ, then xρ[~α:=~σ] /∈ ~x~ρ[~α:=~σ]. (For a proof assume xρ[~α:=~σ] = x

ρi[~α:=~σ]
i for

some i. Hence x = xi and ρ[~α := ~σ] = ρi[~α := ~σ]. Because xρ, xρi
i ∈ FV(xρ) ∪ ~x~ρ, this implies

ρ = ρi, and consequently xρ = xρi
i ∈ ~x~ρ which is not the case.)

(xρ)′ = xρ[~α:=~σ][~x~ρ[~α:=~σ] := ~s] = xρ[~α:=~σ] ∈ SCρ[~α := ~P],

because SCρ[~α := ~P] ∈ SATρ[~α:=~σ].

If xρ ∈ ~x~ρ, then let i be the smallest number such that x
ρi[~α:=~σ]
i = xρ[~α:=~σ]. Due to injectivity,

ρi = ρ. Hence

(xρ)′ = x
ρi[~α:=~σ]
i [~x~ρ[~α:=~σ] := ~s] = si ∈ SCρi [~α := ~P] = SCρ[~α := ~P].

(→-I) Case λxρrσ. We may assume (1): xπ ∈ FV(r) ⇒ π = ρ. Therefore (λxρr)[~α := ~σ] =
λxρ[~α:=~σ].r[~α := ~σ]. We may assume (2): xρ[~α:=~σ] /∈ ~x~ρ[~α:=~σ] ∪ FV(~s). Therefore (λxρr)′ =
λxρ[~α:=~σ].r′. We have to show λxρ[~α:=~σ].r′ ∈ SCρ→σ[~α := ~P]. Use (→-I) for saturated sets. Let
s ∈ SCρ[~α := ~P]. Show that r′[xρ[~α:=~σ] := s] ∈ SCσ[~α := ~P]. Because of (2) and Lemma 2.14,

r′[xρ[~α:=~σ] := s] = r[~α := ~σ][~x~ρ[~α:=~σ], xρ[~α:=~σ] := ~s, s].

By induction hypothesis for r this term is in SCρ[~α := ~P] provided injectivity holds for this
situation. If yπ, yπ′ ∈ (FV(r) \ {xρ}) ∪ ~x~ρ, then by assumption π[~α := ~σ] = π′[~α := ~σ] implies
π = π′. Hence we only have to consider xρ and xπ ∈ FV(r) ∪ ~x~ρ. If xπ ∈ FV(r), then ρ = π by
(1). If xπ ∈ ~x~ρ, then xπ = xρi

i for some i. ρ[~α := ~σ] = ρi[~α := ~σ] is impossible due to (2), hence
trivially ρ[~α := ~σ] = π[~α := ~σ] ⇒ ρ = π.

120 CHAPTER 9. STRONG NORMALIZATION

(→-E) Case rρ→σsρ. (rs)′ = r′s′. Because FV(rs) = FV(r) ∪ FV(s), injectivity holds also for
r and s. By induction hypothesis r′ ∈ SCρ→σ[~α := ~P] and s′ ∈ SCρ[~α := ~P], which implies
r′s′ ∈ SCσ[~α := ~P] by (→-E) for saturated sets.
(∀-I) Case Λαrρ. We may assume that (1): α /∈ ~α∪FV(~σ). Hence (Λαr)[~α := ~σ] = Λα.r[~α := ~σ].
We may assume (2): α /∈ FTV(~s), which gives (Λαr)′ = Λαr′. We have to show Λαr′ ∈
SC∀αρ[~α := ~P]. Use (∀-I) for saturated sets: Let σ be a type and P ∈ SATσ. Show that
r′[α := σ] ∈ SCρ[~α, α := ~P,P]. We first show that

r′[α := σ] = r[~α, α := ~σ, σ][~x~ρ[~α,α:=~σ,σ] := ~s]. (∗)

We want to apply Corollary 2.21 (to the interchange law for substitution) in order to get

r[~α := ~σ][~x~ρ[~α:=~σ] := ~s][α := σ] = r[~α := ~σ][α := σ][~x~ρ[~α:=~σ] := ~s[α := σ]].

If xπ ∈ FV(r[~α := ~σ]), then α /∈ FV(π) because Λαr is well-formed and consequently by help of
(1) also Λα.r[~α := ~σ]. Moreover, α /∈ FV(~ρ[~α := ~σ]) follows by help of (2) and Lemma 2.8 which
gives FV(ρi[~α := ~σ]) ⊆ FTV(si) for all i. Hence, Corollary 2.21 applies. By (1) and Lemma 2.19

r[~α := ~σ][α := σ] = r[~α, α := ~σ, σ].

Because α /∈ FV(ρi[~α := ~σ]) and hence by (1) and Corollary 2.4 which give α /∈ FV(ρi), we get

ρi[~α := ~σ] = ρi[~α, α := ~σ, σ].

Because α /∈ FTV(si), si[α := σ] = si. We conclude that (∗) holds. Show that

r[~α, α := ~σ, σ][~x~ρ[~α,α:=~σ,σ] := ~s] ∈ SCρ[~α, α := ~P,P]

by induction hypothesis: For all i, si ∈ SCρi [~α, α := ~P,P] by Lemma 9.13 because α /∈ FV(ρi).
Finally we have to check injectivity: Let xπ ∈ FV(r) ∪ ~x~ρ. Then α /∈ FV(π): If xπ ∈ FV(r), this
follows from the well-formedness of Λαr. If xπ = xρi

i for some i, then it follows from α /∈ FV(ρi).
Therefore π[~α, α := ~σ, σ] = π[~α := ~σ]. Now injectivity (“for ~α, α”) follows immediately from the
assumed injectivity (“for ~α”).
(∀-E) Case r∀αρσ. (rσ)′ = r′(σ[~α := ~σ]). Set τ := σ[~α := ~σ] and P := SCσ[~α := ~P]. Then
P ∈ SATτ and we have to show that r′τ ∈ SCρ[α:=σ][~α := ~P]. Because FV(r) = FV(rσ),
the induction hypothesis gives r′ ∈ SC∀αρ[~α := ~P]. By (∀-E) for saturated sets it follows
r′τ ∈ SCρ[~α, α := ~P,P] = SCρ[α:=σ][~α := ~P] by Lemma 9.1411. �

Theorem SN = Λ.

Proof Take empty lists in the preceding lemma. Because empty substitutions do not affect
the types and terms (Corollary 2.2, Lemma 2.11 and Lemma 2.16), the injectivity condition is
trivially fulfilled and r ∈ SCρ[:=]12 ∈ SAT which implies SCρ[:=] ⊆ SN and hence r ∈ SN13. �

Corollary 9.17 Every term of system F is strongly normalizing.

Proof Lemma 9.6. �

11We already assumed α /∈ ~α in the definition of SC∀αρ[~α := ~P].
12Perhaps one should prefer to write SCρ instead of SCρ[:=].
13 It might be interesting to check that we never used the induction on the inductively defined set SN. We only

used the defining clauses expressing the head reduction strategy.

9.2. STRONG NORMALIZATION OF SYSTEM EF+EX 121

Corollary 9.18 The function Ω defined in section 2.1.4 is a function from Λ to NF and hence
a normalizing function.

Proof Lemma 2.38. �

Corollary 9.19 There is no closed term of type ∀αα.

Proof Lemma 2.37. �

9.2 Strong normalization of system eF+ex

In the section following this proof we will see how the well-known impredicative encoding of +
and ∃ which was already used in the embedding of eF into F and in that of eF+ex into eF may
be read off the proof.

9.2.1 Terms in SN are strongly normalizing

Lemma 9.20 If r, s ∈ sn, then 〈r, s〉 ∈ sn.

Proof For example by main induction on r ∈ sn and side induction on s ∈ sn. As for system F
the immediate reducts have to be analyzed. �

Lemma 9.21 If r~s ∈ sn and s ∈ sn, then 〈r, s〉L~s ∈ sn. If s~s ∈ sn and r ∈ sn, then 〈r, s〉R~s ∈ sn.

Proof By induction on the ingredients being in sn. �

Lemma 9.22 If r ∈ sn, then INLρr ∈ sn and INRρr ∈ sn.

Proof Similarly. �

Lemma 9.23 If (INLρr)st~s is a term and sr~s ∈ sn and t ∈ sn, then (INLρr)st~s ∈ sn. If
(INRρr)st~s is a term and tr~s ∈ sn and s ∈ sn, then (INRρr)st~s ∈ sn.

Proof Similarly. �

Lemma 9.24 If C∃αρ,τ t is a term and t ∈ sn, then C∃αρ,τ t ∈ sn.

Proof Similarly. �

Lemma 9.25 If (C∃αρ,τ t)E∃s~s is a term and sτt~s ∈ sn, then (C∃αρ,τ t)E∃s~s ∈ sn.

Proof Similarly. �

Corollary 9.26 SN ⊆ sn.

Proof As for Lemma 9.6. Note that also IN1 ∈ sn. �

122 CHAPTER 9. STRONG NORMALIZATION

A remark is in order: SN ⊆ sn is proved by showing that all the defining clauses of SN are
closure properties of sn. But we did not show this for (V), (→-I), (β→), (∀-I) and (β∀). Those
clauses were only considered for system F. But the systems are organized in such a way as to
allow modular proofs. Hence, the proofs in section 9.1.1 hold verbatim for eF+ex. This is a
general pattern: In the proof of any lemma needed for the proof of strong normalization we only
have to consider the newly introduced type or term constructs because the proof clauses for the
original constructs are also valid in the extended system. This is what I called non-quadratic
reasoning in section 2.2.3. The meta-convention on extensions stated in that section shall now
also cover the above pattern: If in the proof of a statement in the extension of a system for
which the same statement has already been proved only clauses are given which correspond to
the additional constructs of the extension then the proofs for the original system hold verbatim
for the extension.

9.2.2 Saturated sets

Extend the definition for system F of M being a τ -saturated set by the following clauses:

(β×) If r~s ∈M and s ∈ SN, then 〈r, s〉L~s ∈M. If s~s ∈M and r ∈ SN, then 〈r, s〉R~s ∈M.

(β+) If (INLρr)st~s is a term and sr~s ∈M and t ∈ SN, then (INLρr)st~s ∈M. If (INRρr)st~s
is a term and tr~s ∈M and s ∈ SN, then (INRρr)st~s ∈M.

(β∃) If (C∃αρ,τ t)E∃s~s is a term and sτt~s ∈M, then (C∃αρ,τ t)E∃s~s ∈M.

Extend the definition of the τ -saturated closure clτ (M) accordingly by the clauses

(β×) If r~s ∈ clτ (M) and s ∈ SN, then 〈r, s〉L~s ∈ clτ (M). If s~s ∈ clτ (M) and r ∈ SN, then
〈r, s〉R~s ∈ clτ (M).

(β+) If (INLρr)st~s is a term and sr~s ∈ clτ (M) and t ∈ SN, then (INLρr)st~s ∈ clτ (M). If
(INRρr)st~s is a term and tr~s ∈ clτ (M) and s ∈ SN, then (INRρr)st~s ∈ clτ (M).

(β∃) If (C∃αρ,τ t)E∃s~s is a term and sτt~s ∈ clτ (M), then (C∃αρ,τ t)E∃s~s ∈ clτ (M).

As for system F this is a strictly positive inductive definition. One also shows clτ (M) ⊆ SNτ .
Hence, again clτ (M) is the smallest τ -saturated set containing M ∩ SNτ .

Calculating with saturated sets

The zero type Define 0SAT := cl0(∅).

Lemma 9.27 If r ∈ 0SAT, ρ type and M∈ SATρ, then rE0ρ ∈M.

Proof Induction on r ∈ cl0(∅). �

Therefore, we have the following rule:

(0-E) If r ∈ 0SAT, then ∀ρ∀M ∈ SATρ rE0ρ ∈M.

The one type Define 1SAT := cl1(Λ1) = SN1. Obviously, we have the following rule:

(1-I) IN1 ∈ 1SAT.

9.2. STRONG NORMALIZATION OF SYSTEM EF+EX 123

Product types Let M∈ SATρ and N ∈ SATσ. Define

MI := {r ∈ Λρ×σ|∃s ∈M∃t ∈ N .r = 〈s, t〉}
ME := {r ∈ Λρ×σ|rL ∈M∧ rR ∈ N}

and set M×I N := clρ×σ(MI) and M×E N := clρ×σ(ME). Hence, M×I N and M×E N are
(ρ× σ)-saturated sets and the construction is isotone in the arguments M and N .

Lemma 9.28 ME ∩ SN ∈ SAT (which implies M×E N = ME ∩ SN).

Proof Very easy. One only has to append the symbols L and R to the vector ~s. �

Lemma 9.29 MI ⊆ SN (which implies M×I N ⊇ MI). �

Lemma 9.30 M×I N ⊆M×E N .

Proof It suffices to show MI ⊆ ME . This is an application of the rule (β×) of the definition of
saturated sets (with empty ~s). �

The preceding three statements immmediately imply the following rules for calculating with
M×I N and M×E N :

(×E-E) If r ∈M×E N , then rL ∈M and rR ∈ N .

(×I -E) If r ∈M×I N , then rL ∈M and rR ∈ N .

(×I -I) If r ∈M and s ∈ N , then 〈r, s〉 ∈ M×I N .

(×E-I) If r ∈M and s ∈ N , then 〈r, s〉 ∈ M×E N .

In the sequel M×N will denote either M×I N or M×EN as long as it does not matter which
one is meant, i.e. the use of this set is restricted to the following rules:

(SAT) M×N ∈ SATρ×σ.

(×-I) If r ∈M and s ∈ N , then 〈r, s〉 ∈ M×N .

(×-E) If r ∈M×N , then rL ∈M and rR ∈ N .

It is also possible to produce an example showing M×I N 6= M×E N : Let ρ, σ := α × α,
M := clα×α({〈t, t〉L|t ∈ SNα×α}) and N := clα×α({〈t, t〉R|t ∈ SNα×α}). It is easy to show that
〈〈xα, xα〉, 〈xα, xα〉〉 ∈ M×E N \M×I N .

Sum types Let M∈ SATρ and N ∈ SATσ. Define

MI := {r ∈ Λρ+σ|(∃s ∈M.r = INLσs) ∨ (∃s ∈ N .r = INRρs)}
ME := {r ∈ Λρ+σ|∀τ∀P ∈ SATτ∀s ∈M→ P∀t ∈ N → P.rE+τst ∈ P}

and set M+I N := clρ+σ(MI) and M+E N := clρ+σ(ME). Hence, M+I N and M+E N are
(ρ + σ)-saturated sets and the construction is isotone in the arguments M and N . (M +E N
is non-strictly positive in M and N .) Note that we already use the indeterminate construction
→ for saturated sets in the definition of ME .

Lemma 9.31 ME ∩ SN ∈ SAT (which implies M+E N = ME ∩ SN).

124 CHAPTER 9. STRONG NORMALIZATION

Proof Very easy. One only has to append s and t to the vector ~s. �

Lemma 9.32 MI ⊆ SN (which implies M+I N ⊇ MI). �

Lemma 9.33 M+I N ⊆M+E N .

Proof It suffices to show MI ⊆ ME . This is an application of the rule (β+) of the definition of
saturated sets (with empty ~s) and of (→-E) for saturated sets. �

The preceding three statements immediately imply the following rules for calculating with
M+I N and M+E N :

(+E-E) If r ∈M+E N , then ∀τ∀P ∈ SATτ∀s ∈M→ P∀t ∈ N → P.rE+τst ∈ P.

(+I -E) If r ∈M+I N , then ∀τ∀P ∈ SATτ∀s ∈M→ P∀t ∈ N → P.rE+τst ∈ P.

(+I -I) If s ∈M, then INLσs ∈M+I N . If s ∈ N , then INRρs ∈M+I N .

(+E-I) If s ∈M, then INLσs ∈M+E N . If s ∈ N , then INRρs ∈M+E N .

In the sequel M+N will denote either M+I N or M+EN as long as it does not matter which
one is meant, i.e. the use of this set is restricted to the following rules:

(SAT) M+N ∈ SATρ+σ.

(+-I) If s ∈M, then INLσs ∈M+N . If s ∈ N , then INRρs ∈M+N .

(+-E) If r ∈M+N , then ∀τ∀P ∈ SATτ∀s ∈M→ P∀t ∈ N → P.rE+τst ∈ P.

Existential types Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ].
Define

MI := {r ∈ Λ∃αρ|∃τ∃P ∈ SATτ∃t ∈ Φτ (P).r = C∃αρ,τ t}
ME := {r ∈ Λ∃αρ|∀σ∀N ∈ SATσ∀s ∈ (∀P.Φ(P) → N).rE∃σs ∈ N}

and set ∃I(Φ) := cl∃αρ(MI) and ∃E(Φ) := cl∃αρ(ME). Hence, ∃I(Φ) and ∃E(Φ) are ∃αρ-
saturated sets and the construction is (pointwise) isotone in the argument Φ. Note that we use
the indeterminate → and ∀ for saturated sets in the definition of ME .

Lemma 9.34 ME ∩ SN ∈ SAT (which implies ∃E(Φ) = ME ∩ SN).

Proof Append s to ~s. �

Lemma 9.35 MI ⊆ SN (which implies ∃I(Φ) ⊇ MI). �

Lemma 9.36 ∃I(Φ) ⊆ ∃E(Φ).

Proof It suffices to show MI ⊆ ME . This is an application of the rule (β∃) of the definition of
saturated sets (with empty ~s) and of (∀-E) and (→-E) for saturated sets. �

We get the following rules:

(∃E-E) If r ∈ ∃E(Φ), then ∀σ∀N ∈ SATσ∀s ∈ (∀P.Φ(P) → N).rE∃σs ∈ N .

(∃I -E) If r ∈ ∃I(Φ), then ∀σ∀N ∈ SATσ∀s ∈ (∀P.Φ(P) → N).rE∃σs ∈ N .

9.2. STRONG NORMALIZATION OF SYSTEM EF+EX 125

(∃I -I) If t ∈ Φτ (P) for some P ∈ SATτ , then C∃αρ,τ t ∈ ∃I(Φ).

(∃E-I) If t ∈ Φτ (P) for some P ∈ SATτ , then C∃αρ,τ t ∈ ∃E(Φ).

From now on ∃(Φ) shall denote ∃I(Φ) or ∃E(Φ) if only the following rules are used.

(SAT) ∃(Φ) ∈ SAT∃αρ.

(∃-I) If t ∈ Φτ (P) for some P ∈ SATτ , then C∃αρ,τ t ∈ ∃(Φ).

(∃-E) If r ∈ ∃(Φ), then ∀σ∀N ∈ SATσ∀s ∈ (∀P.Φ(P) → N).rE∃σs ∈ N .

Computability predicates

Extend the definition of SCρ[~α := ~P] by the following clauses:

(0) SC0[~α := ~P] := 0SAT.

(1) SC1[~α := ~P] := 1SAT.

(×) SCρ×σ[~α := ~P] := SCρ[~α := ~P]× SCσ[~α := ~P].

(+) SCρ+σ[~α := ~P] := SCρ[~α := ~P] + SCσ[~α := ~P].

(∃) SC∃αρ[~α := ~P] := ∃(Φ) with Φ = (Φσ)σ, where Φσ : SATσ → SATρ[~α,α:=~σ,σ] is de-
fined by Φσ(P) := SCρ[~α, α := ~P,P] (with the same assumptions as in the definition
of strong computability for universal types in order to guarantee type-correctness).

The definition in clause (∃) will be written more intuitively as follows:

SC∃αρ[~α := ~P] := ∃P.SCρ[~α, α := ~P,P].

Evidently, the choice whether one uses the introduction-based or the elimination-based construc-
tion for saturated sets has to be consistent in the sense that if one uses e. g. ∃E(Φ) with ME

defined by reference to →I , then SCρ→σ[~α := ~P] also has to be defined by means of →I . As for
system F we therefore assume that this choice is made once for every type construct and then
used throughout.
With this fixed choice, it is obvious that coincidence and substitution lemma (Lemma 9.13 and
Lemma 9.14) extend to eF+ex.
Now we extend Lemma 9.16 to eF+ex:

Lemma 9.37 Let rρ be a term, ~x~ρ a list of variables and ~s an equally long list of terms such
that ~s ∈ SC~ρ[~α := ~P~σ] for some ~P ⊆ SAT. Assume that

∀x∀π∀π′.(xπ, xπ′ ∈ FV(r) ∪ ~x~ρ) ∧ (π[~α := ~σ] = π′[~α := ~σ]) ⇒ π = π′.

Then r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] ∈ SCρ[~α := ~P].

Proof Induction on r. Again abbreviate r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] by r′ (for any term r). The
assumption in the statement will again be referenced to as “injectivity”. We only have to consider
the term generation rules corresponding to the types and type constructions newly introduced
in eF+ex.
(0-E) Case r0ρ. (rρ)′ = r′(ρ[~α := ~σ]). Because FV(rρ) = FV(r), injectivity holds also for r. By
induction hypothesis, r′ ∈ SC0[~α := ~P] = 0SAT. By (0-E) for saturated sets (the reference to the
named rules will in the sequel always mean those for saturated sets), r′(ρ[~α := ~σ]) ∈ SCρ[~α := ~P].

126 CHAPTER 9. STRONG NORMALIZATION

(1-I) Case IN1. IN1′ = IN1. By (1-I), IN1 ∈ 1SAT = SC1[~α := ~P].
(×-I) Case 〈rρ, sσ〉. 〈r, s〉′ = 〈r′, s′〉. Because FV(〈r, s〉) = FV(r) ∪ FV(s), injectivity also holds
for r and s. By induction hypothesis, r′ ∈ SCρ[~α := ~P] and s′ ∈ SCσ[~α := ~P]. By (×-I) we
conclude 〈r′, s′〉 ∈ SCρ×σ[~α := ~P].
(×-E) Case rρ×σL. (rL)′ = r′L. Because FV(rL) = FV(r), injectivity also holds for r. By
induction hypothesis, r′ ∈ SCρ×σ[~α := ~P]. By (×-E), we get r′L ∈ SCρ[~α := ~P]. The case rρ×σR
is similar.
(+-I) Case INLσrρ. (INLσr)′ = INLσ[~α:=~σ]r

′. Because FV(INLσr) = FV(r), injectivity also holds
for r. By induction hypothesis, r′ ∈ SCρ[~α := ~P]. By (+-I), INLσ[~α:=~σ]r

′ ∈ SCρ+σ[~α := ~P]. The
case INRρr

σ is similar.
(+-E) Case rρ+σE+τsρ→τ tσ→τ . (rst)′ = r′E+τ [~α := ~σ]s′t′. Because FV(rst) = FV(r) ∪ FV(s) ∪
FV(t), injectivity holds also for r, s and t. By induction hypothesis we have r′ ∈ SCρ+σ[~α := ~P],
s′ ∈ SCρ→τ [~α := ~P] and t′ ∈ SCσ→τ [~α := ~P]. Hence, by (+-E): r′E+τ [~α := ~σ]s′t′ ∈ SCτ [~α := ~P].
(∃-I) Case C∃αρ,τ t

ρ[α:=τ]. We may assume that α /∈ ~α ∪ FV(~σ). Therefore, we have that
(C∃αρ,τ t)′ = C∃α.ρ[~α:=~σ],τ [~α:=~σ]t

′. Show C∃α.ρ[~α:=~σ],τ [~α:=~σ]t
′ ∈ SC∃αρ[~α := ~P] by use of (∃-I).

It suffices to show
t′ ∈ SCρ[~α, α := ~P,SCτ [~α := ~P]].

By the substitution lemma we have

SCρ[~α, α := ~P,SCτ [~α := ~P]] = SCρ[α:=τ][~α := ~P].

Hence it suffices to show t′ ∈ SCρ[α:=τ][~α := ~P] which follows from the induction hypothesis
because injectivity also holds for t due to FV(C∃αρ,τ t) = FV(t).
(∃-E) Case r∃αρE∃σs∀α.ρ→σ (with α /∈ FV(σ)). (rs)′ = r′E∃σ[~α := ~σ]s′. Because FV(rs) =
FV(r) ∪ FV(s), injectivity also holds for r and s. By induction hypothesis r′ ∈ SC∃αρ[~α := ~P]
and s′ ∈ SC∀α.ρ→σ[~α := ~P]. Show that r′E∃σ[~α := ~σ]s′ ∈ SCσ[~α := ~P] by help of (∃-E). It
suffices to show that s′ ∈ ∀P.SCρ[~α, α := ~P,P] → SCσ[~α := ~P]. This holds by definition of
strong computability and by the coincidence lemma (recall that α /∈ FV(σ)). �

As for system F we get as corollaries that SN = Λ, that every term is strongly normalizing, that
Ω is a normalizing function and that there is no closed term of type ∀αα. Lemma 2.46 also gives
us that there is no closed term of type 0.
Note that every definition and lemma in this section can be done for system eF by simply leaving
out the clauses referring to the existential quantifier. The definitions in the next section will be
based on these concepts for eF.

9.3 Extracting embeddings from normalization proofs

The proofs of strong normalization of F and eF+ex are very close to a formalization. There is no
analysis of reducts and only the introduction rule and the elimination rule for the constructions
of saturated sets corresponding to the type formation rules are used in the final soundness lemma
9.16 (strong computability under substitution). It appears that there is a considerable overhead
for dealing with substitution issues. After all, substitution is the governing principle of system F.
Therefore, program extraction from intuitionistic proofs seems quite promising because it divides
the bookkeeping part from the interesting combinatorial problem solved. Modified realizability
will again be used informally.
Let us first study the case of sum types.

M+I N = clρ+σ({r ∈ Λρ+σ|(∃s ∈M.r = INLσs) ∨ (∃s ∈ N .r = INRρs)})

9.4. STRONG NORMALIZATION OF MEIT–IT AND COMEIT–IT 127

If M already had the extracted type ρ′ and N had extracted type σ′, we would get as extracted
type of the predicate M+I N the type ρ′ + σ′: The closure cl is responsible for closing compre-
hension predicates and r = INLσs and r = INRρs carry no essential information. What counts
is only the extracted types of the predicates involved.

M+E N = clρ+σ({r ∈ Λρ+σ|∀τ∀P ∈ SATτ∀s ∈M→ P∀t ∈ N → P.rE+τst ∈ P})

This time we would get as extracted type of the predicate M +E N the type ∀α.(ρ′ → α) →
(σ′ → α) → α with α /∈ FV(ρ′) ∪ FV(σ′): The universal quantifier does not come from ∀τ but
from ∀P ∈ SATτ and the extracted type of M→ P is ρ′ → α regardless of the decision whether
M → P is M →I P or M →E P. Why? Because clearly the extracted type is the same in
both cases. The same effect happens with ×: If M has extracted type ρ′ and N has extracted
type σ′, then M×I N and M×E N have extracted type ρ′ × σ′. Also the extracted type of
0SAT is 0 (corresponding to the least element of SAT0) and that of 1SAT is 1 (corresponding to
the greatest element of SAT1).
We want to reconstruct the part of the embedding of eF into F pertaining to +. The proof of
the lemma stating that M +I N ⊆ M +E N goes as follows: It suffices to show MI ⊆ ME

(nothing combinatorial). There are two cases: First let r ∈ M. We have to show that ∀τ∀P ∈
SATτ∀s ∈ M → P∀t ∈ N → P.INLσrE+τst ∈ P. Let τ be a type, P ∈ SATτ , s ∈ M → P
and t ∈ N → P. We have to show INLσrE+τst ∈ P. Because P is saturated (bookkeeping!)
it suffices to show sr ∈ P and t ∈ SN (bookkeeping). Because of (→-E) for saturated sets,
applied to s ∈ M → P and r ∈ M, finally sr ∈ P. Clearly, we may read off this proof the
term Λαλxρ′→αλyσ′→α.xr′ if we assume that r′ is the extracted term of “r ∈ M”. This was
exactly the term (INLσrρ)′ in the embedding of eF into F and it is one half of the proof which
gives the rule (+E-I) not counting the proof of (+I -I) which is only done by checking something
without combinatorial content. The proof of (+E-E) is no better and hence explains why the
clause (+-E) of the embedding of eF into F is so simple.
Consider ∃I(Φ). If Φ has λαρ′ as extracted type, then ∃I(Φ) has extracted type ∃αρ′. This
does not give an interesting encoding. But ∃E(Φ) has extracted type ∀β.(∀α.ρ′ → β) → β for
β /∈ {α} ∪ FV(ρ′) because the extraction read off the definitions for the universal quantifier is
in both cases the homomorphic rule. And this is exactly the crucial clause in the embedding
of eF+ex into eF. The proof that ∃I(Φ) ⊆ ∃E(Φ) contains the idea for the clause (∃-I) of that
embedding.
The open question is: Do those encodings read off the proof by saturated sets always preserve
β-reduction, i. e., are they in fact embeddings?
In the next sections we will see many more proofs where the method works.

9.4 Strong normalization of MeIT–it and coMeIT–it

For MeIT–it and for coMeIT–it we give an introduction-based and an elimination-based proof. In
contrast to the situation of eF following both possibilities of defining a fixed-point construction
for saturated sets is more work than only following one of them. Nevertheless, it seems worthwile
studying the differences of the proofs of Lemma 9.44 and Lemma 9.46.

9.4.1 Strong normalization of MeIT–it

Lemma 9.38 If t ∈ sn, then Cµαρt ∈ sn.

Proof Induction on t ∈ sn. �

128 CHAPTER 9. STRONG NORMALIZATION

Lemma 9.39 If s(µαρ)(λyµαρy)(λxµαρ.xE+
µ σs)t~s ∈ sn, xµαρ /∈ FV(s) and (Cµαρt)E+

µ σs~s is a
term, then (Cµαρt)E+

µ σs~s ∈ sn.

Proof Induction on s(µαρ)(λyµαρy)(λxµαρ.xE+
µ σs)t~s ∈ sn+ by the usual analysis of the imme-

diate reducts of (Cµαρt)E+
µ σs~s. (Note that we need sn+ because s occurs twice in the canonical

reduct of (Cµαρt)E+
µ σs~s.) �

Corollary 9.40 SN ⊆ sn.

Proof The same as for Lemma 9.6. �

Saturated sets for MeIT–it

Extend the definition for system eF of M being a τ -saturated set by the following clause:

(β+
µ) If s(µαρ)(λyµαρy)(λxµαρ.xE+

µ σs)t~s ∈ M, xµαρ /∈ FV(s) and (Cµαρt)E+
µ σs~s is a

term, then (Cµαρt)E+
µ σs~s ∈M.

Extend the definition of the τ -saturated closure clτ (M) accordingly by the clause

(β+
µ) If s(µαρ)(λyµαρy)(λxµαρ.xE+

µ σs)t~s ∈ clτ (M), xµαρ /∈ FV(s) and (Cµαρt)E+
µ σs~s is a

term, then (Cµαρt)E+
µ σs~s ∈ clτ (M).

Again clτ (M) is the smallest τ -saturated set containing M ∩ SNτ .

Calculating with saturated sets for MeIT–it

From now on we always adopt the same operator precedences for constructions of saturated sets
as for types, e. g. P → Q →M denotes P → (Q →M).
Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define for
M∈ SATµαρ

MI(M) := {r ∈ Λµαρ|∃t ∈ Φµαρ(M).r = Cµαρt}
ME(M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ∀s ∈ ∀P.(P →M) → (P → N) → Φ(P) → N .rs ∈ N}

and ΨI : SATµαρ → SATµαρ by setting

ΨI(M) := clµαρ(MI(M))

and
µE(Φ) := any fixed point of ΨE : SATµαρ → SATµαρ,

defined by
ΨE(M) := clµαρ(ME(M)).

Because ΨE is monotone (it is even non-strictly positive) and SATµαρ is a complete lattice, such
a fixed point exists. Hence, µE(Φ) is µαρ-saturated. If we took the least fixed point for µE(Φ),
µE(Φ) would be (pointwise) isotone in the argument Φ. If Φµαρ were monotone, ΨI would
also be monotone and we could define µI(Φ) as the least fixed point of ΨI . Unfortunately, in
the definition of the computability predicates we cannot ensure the monotonicity of Φµαρ: Let
ρ := α → 1. (Hence, λαρ is trivially monotone although it is not positive.) Assume that → (for
saturated sets) is →E . In order to define SCµαρ we have to study Φµαρ, defined by

Φµαρ(M) := SCρ[~α, α := ~P,M] := SCα[~α, α := ~P,M] →E SC1[~α, α := ~P,M] := M→E SN1.

9.4. STRONG NORMALIZATION OF MEIT–IT AND COMEIT–IT 129

Let M ⊆ M′ and r ∈ Φµαρ(M). How could we show r ∈ Φµαρ(M′)? r ∈ SN is clear. Let
s ∈M′. We would have to show rE→s ∈ SN1. By assumption on r we have that rE→t ∈ SN1 for
t ∈ M ⊆ M′. Hence, we cannot use this assumption. However, if we already knew that every
term is in SN, we could infer that Φµαρ is constantly equal to SNµαρ→1 and hence monotone.
But we are about to proving Λ = SN!14

Nevertheless, there is an introduction-based approach which works. Define for M∈ SATµαρ

M⊇
I (M) := {r ∈ Λµαρ|∃M′ ∈ SATµαρ.M′ ⊆M∧ ∃t ∈ Φµαρ(M′).r = Cµαρt}

and set
µI(Φ) := the least fixed point of Ψ⊇

I : SATµαρ → SATµαρ,

defined by
Ψ⊇

I (M) := clµαρ(M
⊇
I (M)).

Because Ψ⊇
I is monotone (is is even strictly positive), such a fixed point exists. It is obvious

that Ψ⊇
I ⊇ ΨI (pointwise). Therefore any pre-fixed-point of Ψ⊇

I is also a pre-fixed-point of ΨI .
Note that for Ψ⊇

I only Φµαρ is needed. However, for ease of presentation also in this case the
existence of the family (Φτ)τ is assumed.
Using informal modified realizability the above definitions motivate two encodings of the types:
The definition of µI(Φ) gives rise15 to

(µαρ)′ := µα∃β.(β → α)× ρ′[α := β]

for β /∈ {α}∪FV(ρ), hence (µαρ)′ = spos(µαρ′) which is the encoding used for embedding UVIT
(and hence also MeIT) into MePIT (in section 6.2.3).
The definition of µE(Φ) suggests16 the following

(µαρ)′ := µ̂β∀γ.(∀α.(α → β) → (α → γ) → ρ′ → γ) → γ

where µ̂ indicates that a fixed-point type is used instead of an inductive type (see appendix B).
Following the proofs of this section one may also read off embeddings: In the first case into
MePIT, in the second17 into a system of non-interleaving positive fixed-point types. That both
preserve reduction has to be checked due to the lack of a general theorem saying when the
extracted encodings are in fact embeddings.

Lemma 9.41 ME(M) ∩ SN ∈ SAT (which implies ΨE(M) = ME(M) ∩ SN).

Proof Straightforward. �

Lemma 9.42 MI(M) ⊆ SN (which implies ΨI(M) ⊇ MI(M)). �

14We could partly solve the problem by considering only µαρ with α ∈ Pos(ρ) and monotone Φµαρ and later
proving simultaneously with the definition of the computability predicates that the function P 7→ SCρ[~α, α := ~P,P]
is monotone for α ∈ Pos(ρ) and antitone for α ∈ Neg(ρ). We would thus get strong normalization only for the
original system of Mendler (coinductive types not taken into account) and were not allowed to infer strong
normalization of IMIT from this result.

15The existence of M′ is reflected by ∃β, the inclusion by →, the conjunction by × and t ∈ Φµαρ(M′) by
ρ′[α := β]. r = Cµαρt has no computational content and hence is not represented.

16∀γ reflects ∀σ∀N ∈ SATσ.
17For the translation of the introduction rule one uses the slightly easier proof that µE(Φ) is a pre-fixed-point

of ΨI instead of Lemma 9.44.

130 CHAPTER 9. STRONG NORMALIZATION

Lemma 9.43 Let M be a µαρ-saturated set.
M is a pre-fixed-point of ΨI iff for all t ∈ Φµαρ(M), we have that Cµαρt ∈M.
M is a post-fixed-point of ΨE iff for all r ∈ M, types σ, N ∈ SATσ and for all terms s ∈
∀P.(P →M) → (P → N) → Φ(P) → N , we have rE+

µ σs ∈ N .

Proof Use the two preceding lemmas. �

Lemma 9.44 µE(Φ) is a pre-fixed-point of Ψ⊇
I .

Proof We have to show that
Ψ⊇

I (µE(Φ)) ⊆ µE(Φ).

Because µE(Φ) is a pre-fixed-point of ΨE , it suffices to show

Ψ⊇
I (µE(Φ)) ⊆ ΨE(µE(Φ)).

Because clµαρ is monotone, it suffices to show

M⊇
I (µE(Φ)) ⊆ ME(µE(Φ)).

Let M∈ SATµαρ with M⊆ µE(Φ). Let t ∈ Φµαρ(M). We have to show

Cµαρt ∈ ME(µE(Φ)).

Let σ be a type, N ∈ SATσ and s ∈ ∀P.(P → µE(Φ)) → (P → N) → Φ(P) → N . We have to
show that

CµαρtE+
µ σs ∈ N .

Because N is saturated it suffices to show

s(µαρ)(λyµαρy)(λxµαρ.xE+
µ σs)t ∈ N .

Because of (→-E) for saturated sets (in the sequel the named rules will always be those for
saturated sets) and t ∈ Φµαρ(M) it suffices to show

s(µαρ)(λyµαρy)(λxµαρ.xE+
µ σs) ∈ Φµαρ(M) → N .

Because of (∀-E) we have

s(µαρ) ∈ (M→ µE(Φ)) → (M→N) → Φµαρ(M) → N .

By help of (→-I) we know λyµαρy ∈M→ µE(Φ). Hence by (→-E)

s(µαρ)(λyµαρy) ∈ (M→N) → Φµαρ(M) → N .

Again because of (→-E) it suffices to show

λxµαρ.xE+
µ σs ∈M→ N .

Use (→-I). Let r ∈M. We have to show

rE+
µ σs ∈ N .

This follows from the preceding lemma because r ∈M ⊆ µE(Φ) and µE(Φ) is a post-fixed-point
of ΨE . �

9.4. STRONG NORMALIZATION OF MEIT–IT AND COMEIT–IT 131

Note that we used from µE(Φ) the properties of being a pre-fixed-point and a post-fixed-point
of ΨE . Note also that for the purposes of the normalization proof it would have been enough
to show that µE(Φ) is a pre-fixed-point of ΨI instead of Ψ⊇

I , but from the above result we even
get the following

Corollary 9.45 µI(Φ) ⊆ µE(Φ).

Proof µI(Φ) is the least pre-fixed-point of Ψ⊇
I . �

Lemma 9.46 µI(Φ) is a post-fixed-point of ΨE .

Proof Set M := µI(Φ). We prove M ⊆ ΨE(M) by extended induction (as defined in the
introduction to chapter 4) on M. Let M′ := ΨE(M) ∩M. We have to show

Ψ⊇
I (M′) ⊆ ΨE(M).

Because clµαρ is monotone, it suffices to show

M⊇
I (M′) ⊆ ME(M).

Let r ∈ M⊇
I (M′), i. e., r = Cµαρt with t ∈ Φµαρ(M′′) for some M′′ ∈ SATµαρ with M′′ ⊆ M′.

We have to show that
Cµαρt ∈ ME(M).

Let σ be a type, N ∈ SATσ and s ∈ ∀P.(P → M) → (P → N) → Φ(P) → N . We have to
show that

CµαρtE+
µ σs ∈ N .

Because N is saturated it suffices to show

s(µαρ)(λyµαρy)(λxµαρ.xE+
µ σs)t ∈ N .

Because of (→-E) for saturated sets (in the sequel the named rules will always be those for
saturated sets) and t ∈ Φµαρ(M′′) it suffices to show

s(µαρ)(λyµαρy)(λxµαρ.xE+
µ σs) ∈ Φµαρ(M′′) → N .

Because of (∀-E) we have

s(µαρ) ∈ (M′′ →M) → (M′′ → N) → Φµαρ(M′′) → N .

By help of (→-I) and because M′′ ⊆M we know λyµαρy ∈M′′ →M. Hence by (→-E)

s(µαρ)(λyµαρy) ∈ (M′′ → N) → Φµαρ(M′′) → N .

Again because of (→-E) it suffices to show

λxµαρ.xE+
µ σs ∈M′′ → N .

Use (→-I). Let r′ ∈M′′. We have to show

r′E+
µ σs ∈ N .

This follows from r′ ∈M′′ ⊆M′ ⊆ ΨE(M) ⊆ ME(M). �

132 CHAPTER 9. STRONG NORMALIZATION

Note that we only used that µI(Φ) is a least pre-fixed-point. Note also that the stronger induction
principle is essential to the argument because we have to show that λyµαρy ∈M′′ →M. Finally
note that some sort of induction is indispensable because otherwise one could never use the rule
(β+

µ) for saturated sets.
If we took the greatest fixed point in the definition of µE(Φ) (which would be the greatest
post-fixed-point by dualization of Tarski’s theorem) we would have µI(Φ) ⊆ µE(Φ) again as a
consequence of the preceding lemma.
Putting everything together we get the following rules for reasoning with µI(Φ) and µE(Φ) where
we simply write µ(Φ) for both of them:

(SAT) µ(Φ) ∈ SATµαρ.

(µ-I) If t ∈ Φµαρ(µ(Φ)), then Cµαρt ∈ µ(Φ).

(µ-E+) If r ∈ µ(Φ), σ type, N ∈ SATσ and s ∈ ∀P.(P → µ(Φ)) → (P → N) → Φ(P) → N ,
then rE+

µ σs ∈ N .

Computability predicates for MeIT–it

Extend the definition of SCρ[~α := ~P] by the following clause:

(µ) SCµαρ[~α := ~P] := µ(Φ) with Φ = (Φσ)σ, where Φσ : SATσ → SATρ[~α,α:=~σ,σ] is de-
fined by Φσ(P) := SCρ[~α, α := ~P,P] (with the same assumptions as in the definition
of strong computability for universal types in order to guarantee type-correctness).

The definition will be written more intuitively as follows:

SCµαρ[~α := ~P] := µP.SCρ[~α, α := ~P,P].

We want to extend the coincidence and substitution lemma (Lemma 9.13 and Lemma 9.14) to
MeIT–it. This is not possible if we interpret “any fixed point of ΨE” in the definition of µE(Φ)18

too liberally. We have to stipulate that this choice only depends on ΨE . This means that we
assume a function giving for any monotone Ψ : SATµαρ → SATµαρ a fixed point of Ψ and that
this function is used for choosing the fixed point in the definition of µE(Φ)19. With this extra
condition it is obvious that the coincidence and substitution lemma extend to MeIT–it.
Now we extend Lemma 9.16 to MeIT–it:

Lemma 9.47 Let rρ be a term, ~x~ρ a list of variables and ~s an equally long list of terms such
that ~s ∈ SC~ρ[~α := ~P~σ] for some ~P ⊆ SAT. Assume that

∀x∀π∀π′.(xπ, xπ′ ∈ FV(r) ∪ ~x~ρ) ∧ (π[~α := ~σ] = π′[~α := ~σ]) ⇒ π = π′.

Then r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] ∈ SCρ[~α := ~P].

Proof Induction on r. Again abbreviate r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] by r′ (for any term r). The
assumption in the statement will again be referenced to as “injectivity”. We only have to
consider the rules (µ-I) and (µ-E+).
(µ-I) Case Cµαρt. (Cµαρt)′ = Cµαρ[~α:=~σ]t

′. We may assume that α /∈ ~α. We have to show
Cµαρ[~α:=~σ]t

′ ∈ SCµαρ[~α := ~P]. By the rule (µ-I) for saturated sets it suffices to show

t′ ∈ SCρ[~α, α := ~P,SCµαρ[~α := ~P]].
18For the restrictions of the choice between µI and µE see the discussion immediately before Lemma 9.13 on

p. 118.
19This uniformity assumption will be tacitly made also for the other systems of inductive types.

9.4. STRONG NORMALIZATION OF MEIT–IT AND COMEIT–IT 133

Because FV(Cµαρt) = FV(t), injectivity holds trivially also for t. By induction hypothesis
t′ ∈ SCρ[α:=µαρ][~α := ~P]. By the substitution lemma (which for system F is Lemma 9.14) we
have

SCρ[α:=µαρ][~α := ~P] = SCρ[~α, α := ~P,SCµαρ[~α := ~P]].

(µ-E+) Case rE+
µ σs. (rE+

µ σs)′ = r′E+
µ (σ[~α := ~σ])s′. We have to show that r′E+

µ σ[~α := ~σ]s′ ∈
SCσ[~α := ~P]. Use (µ-E+) for saturated sets. Show that r′ ∈ SCµαρ[~α := ~P] and

s′ ∈ ∀P.(P → SCµαρ[~α := ~P]) → (P → SCσ[~α := ~P]) → SCρ[~α, α := ~P,P] → SCσ[~α := ~P].

Injectivity holds for r and s because FV(r),FV(s) ⊆ FV(rE+
µ σs). Therefore by induction hypoth-

esis r′ ∈ SCµαρ[~α := ~P] and s′ ∈ SC∀α.(α→µαρ)→(α→σ)→ρ→σ[~α := ~P]. Unwinding the definition
and using the coincidence lemma (α /∈ FV(µαρ) ∪ FV(σ)) and α /∈ ~α (which we assumed in the
definition of SCµαρ[~α := ~P]) leads to the desired result. �

As for system eF we get as corollaries that SN = Λ, that every term is strongly normalizing,
that Ω is a normalizing function and that there is no closed term of type 020.

9.4.2 Strong normalization of coMeIT–it

Lemma 9.48 If t ∈ sn, then Cµαρt ∈ sn.

Proof Induction on t ∈ sn. �

Lemma 9.49 If s
(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

~s ∈ sn, the side conditions

of the (β+
µ)-rule are met and (Cµαρt)E+

µ σs~s is a term, then (Cµαρt)E+
µ σs~s ∈ sn.

Proof Induction on s
(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

~s ∈ sn+ by the usual

analysis of the reducts of (Cµαρt)E+
µ σs~s. (Note that we need sn+ because s occurs twice in the

canonical reduct of (Cµαρt)E+
µ σs~s.) �

Corollary 9.50 SN ⊆ sn.

Proof The same as for Lemma 9.6. �

Saturated sets for coMeIT–it

Extend the definition for system eF of M being a τ -saturated set by the following clause:

(β+
µ) If s

(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

~s ∈ M, the side conditions

of the (β+
µ)-rule are met and (Cµαρt)E+

µ σs~s is a term, then (Cµαρt)E+
µ σs~s ∈M.

Extend the definition of the τ -saturated closure clτ (M) accordingly by the clause

(β+
µ) If s

(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

~s ∈ clτ (M), the side condi-

tions of the (β+
µ)-rule are met and (Cµαρt)E+

µ σs~s is a term, then (Cµαρt)E+
µ σs~s ∈

clτ (M).

Again clτ (M) is the smallest τ -saturated set containing M ∩ SNτ .
20As was mentioned in footnote 13 concerning system F we never used induction on SN. This is also true of this

system (and of all the others considered in this thesis). It would not be possible e. g. in the following variant of
MeIT–it with (µ-E+) replaced by: If r : µαρ and σ type, then rE+

µ σ : (∀α.(α → µαρ) → (α → σ) → ρ → σ) → σ.
We would have to prove rµαρ ∈ SN ⇒ rE+

µ σ ∈ SN by induction on SN.

134 CHAPTER 9. STRONG NORMALIZATION

Calculating with saturated sets for coMeIT–it

Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define for
M∈ SATµαρ

MI(M) := {r ∈ Λµαρ|∃t ∈
(
∀P.(M→ P) → Φ(P)

)
.r = Cµαρt}

ME(M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ∀s ∈
(
∀P.(M×N → P) → Φ(P)

)
→ N .rE+

µ s ∈ N}

and set
µI(Φ) := the least fixed point of ΨI : SATµαρ → SATµαρ,

defined by
ΨI(M) := clµαρ(MI(M))

and
µE(Φ) := any fixed point of ΨE : SATµαρ → SATµαρ,

defined by
ΨE(M) := clµαρ(ME(M)).

Because ΨI and ΨE are monotone (they are even non-strictly positive) and SATµαρ is a complete
lattice, such fixed points exist. Hence, µI(Φ) and µE(Φ) are µαρ-saturated sets. µI(Φ) is
(pointwise) isotone in the argument Φ. If we took the least fixed point for µE(Φ), the same
would hold.
The first approach corresponds to the encoding

(µαρ)′ := µα∀β.(α → β) → ρ′[α := β]

for β /∈ {α} ∪ FV(ρ). Hence (µαρ)′ = pos(µαρ′) which is the encoding used for embedding
coMeIT into coMePIT in section 6.3.3.
The second approach (via µE(Φ)) corresponds to

(µαρ)′ := µ̂β∀γ.((∀α.(β × γ → α) → ρ′) → γ) → γ

with “new” β and γ. Following the proof below one even gets an embedding into a system of
non-interleaved positive fixed-point types (see appendix B).

Lemma 9.51 ME(M) ∩ SN ∈ SAT (which implies ΨE(M) = ME(M) ∩ SN).

Proof Straightforward. �

Lemma 9.52 MI(M) ⊆ SN (which implies ΨI(M) ⊇ MI(M)). �

Lemma 9.53 A µαρ-saturated set M is a pre-fixed-point of ΨI iff for all t ∈ ∀P.(M→ P) →
Φ(P), we have that Cµαρt ∈ M. A µαρ-saturated set M is a post-fixed-point of ΨE iff for all

r ∈M, types σ, N ∈ SATσ and s ∈
(
∀P.(M×N → P) → Φ(P)

)
→ N , we have rE+

µ σs ∈ N .

Proof Use the two preceding lemmas. �

Lemma 9.54 µE(Φ) is a pre-fixed-point of ΨI .

9.4. STRONG NORMALIZATION OF MEIT–IT AND COMEIT–IT 135

Proof Set M := µE(Φ). We have to show that

ΨI(M) ⊆M.

Because M is a pre-fixed-point of ΨE , it suffices to show

ΨI(M) ⊆ ΨE(M).

Because clµαρ is monotone it suffices to show

MI(M) ⊆ ME(M).

Let t ∈ ∀P.(M→ P) → Φ(P). We have to show

Cµαρt ∈ ME(M).

Let σ be a type, N ∈ SATσ and s ∈
(
∀P.(M×N → P) → Φ(P)

)
→ N . We have to show that

CµαρtE+
µ σs ∈ N .

Because N is saturated it suffices to show

s
(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

∈ N .

Because of (→-E) for saturated sets (in the sequel the named rules will always be those for
saturated sets) it suffices to show

Λαλzµαρ×σ→α.tα
(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
)
∈ ∀P.(M×N → P) → Φ(P).

We use (∀-I). Let τ be a type and P ∈ SATτ . We have to show

λzµαρ×σ→τ .tτ
(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
)
∈ (M×N → P) → Φτ (P).

We use (→-I). Let u ∈M×N → P. We may assume that xµαρ /∈ FV(u). Therefore we have to
show

tτ
(
λxµαρ.u〈x, (λxµαρ.xE+

µ σs)x〉
)
∈ Φτ (P).

Because of (∀-E) we have that tτ ∈ (M→ P) → Φτ (P). By (→-E) it suffices to show

λxµαρ.u〈x, (λxµαρ.xE+
µ σs)x〉 ∈ M→ P.

We use (→-I). Let r ∈M. We have to show

u〈r, (λxµαρ.xE+
µ σs)r〉 ∈ P.

Because of (→-E) and (×-I) it suffices to show

r ∈M and (λxµαρ.xE+
µ σs)r ∈ N .

Because r ∈M ⊆ SN and N is saturated it suffices to show

rE+
µ σs ∈ N .

This follows from the preceding lemma because M is a post-fixed-point of ΨE . �

136 CHAPTER 9. STRONG NORMALIZATION

Note that we used from µE(Φ) the properties of being a pre-fixed-point and a post-fixed-point
of ΨE .

Corollary 9.55 µI(Φ) ⊆ µE(Φ).

Proof µI(Φ) is the least pre-fixed-point of ΨI . �

Lemma 9.56 µI(Φ) is a post-fixed-point of ΨE .

Proof Set M := µI(Φ). We prove M ⊆ ΨE(M) by extended induction (as defined in the
introduction to chapter 4) on M. Let M′ := ΨE(M) ∩M. We have to show

ΨI(M′) ⊆ ΨE(M).

Because clµαρ is monotone it suffices to show

MI(M′) ⊆ ME(M).

Let r ∈ MI(M′), i. e., r = Cµαρt with t ∈ ∀P.(M′ → P) → N . We have to show that

Cµαρt ∈ ME(M).

Let σ be a type, N ∈ SATσ and s ∈
(
∀P.(M×N → P) → Φ(P)

)
→ N . We have to show

CµαρtE+
µ σs ∈ N .

Because N is saturated it suffices to show

s
(
Λαλzµαρ×σ→α.tα

(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
))

∈ N .

Because of (→-E) it suffices to show

Λαλzµαρ×σ→α.tα
(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
)
∈ ∀P.(M×N → P) → Φ(P).

We use (∀-I). Let τ be a type and P ∈ SATτ . We have to show

λzµαρ×σ→τ .tτ
(
λxµαρ.z〈x, (λxµαρ.xE+

µ σs)x〉
)
∈ (M×N → P) → Φτ (P).

We use (→-I). Let u ∈M×N → P. We may assume that xµαρ /∈ FV(u). Therefore we have to
show

tτ
(
λxµαρ.u〈x, (λxµαρ.xE+

µ σs)x〉
)
∈ Φτ (P).

Because of (∀-E) we have that tτ ∈ (M′ → P) → Φτ (P). By (→-E) it suffices to show

λxµαρ.u〈x, (λxµαρ.xE+
µ σs)x〉 ∈ M′ → P.

We use (→-I). Let r′ ∈M′. We have to show

u〈r′, (λxµαρ.xE+
µ σs)r′〉 ∈ P.

Because of (→-E) and (×-I) it suffices to show

r′ ∈M and (λxµαρ.xE+
µ σs)r′ ∈ N .

Because r′ ∈M′ ⊆M ⊆ SN and N is saturated it suffices to show

r′E+
µ σs ∈ N .

This follows from r′ ∈M′ ⊆ ΨE(M) ⊆ ME(M). �

9.4. STRONG NORMALIZATION OF MEIT–IT AND COMEIT–IT 137

Note that we only used that µI(Φ) is a least pre-fixed-point. Note also that the stronger induction
principle is essential to the argument because we have to show that r′ ∈ M. Finally note that
some sort of induction is indispensable because otherwise one could never use the rule (β+

µ) for
saturated sets.
If we took the greatest fixed point in the definition of µE(Φ) we would have µI(Φ) ⊆ µE(Φ)
again as a consequence of the preceding lemma.
Putting everything together we get the following rules for reasoning with µI(Φ) and µE(Φ) where
we simply write µ(Φ) for both of them:

(SAT) µ(Φ) ∈ SATµαρ.

(µ-I) If t ∈ ∀P.(µ(Φ) → P) → Φ(P), then Cµαρt ∈ µ(Φ).

(µ-E+) If r ∈ µ(Φ), σ type, N ∈ SATσ and s ∈
(
∀P.(µ(Φ)×N → P) → Φ(P)

)
→ N , then

rE+
µ σs ∈ N .

Computability predicates for coMeIT–it

Extend the definition of SCρ[~α := ~P] by the following clause:

(µ) SCµαρ[~α := ~P] := µ(Φ) with Φ = (Φσ)σ, where Φσ : SATσ → SATρ[~α,α:=~σ,σ] is de-
fined by Φσ(P) := SCρ[~α, α := ~P,P] (with the same assumptions as in the definition
of strong computability for universal types in order to guarantee type-correctness).

The definition will be written more intuitively as follows:

SCµαρ[~α := ~P] := µP.SCρ[~α, α := ~P,P].

It is obvious that coincidence and substitution lemma (Lemma 9.13 and Lemma 9.14) extend
to coMeIT–it21.
Now we extend Lemma 9.16 to coMeIT–it:

Lemma 9.57 Let rρ be a term, ~x~ρ a list of variables and ~s an equally long list of terms such
that ~s ∈ SC~ρ[~α := ~P~σ] for some ~P ⊆ SAT. Assume that

∀x∀π∀π′.(xπ, xπ′ ∈ FV(r) ∪ ~x~ρ) ∧ (π[~α := ~σ] = π′[~α := ~σ]) ⇒ π = π′.

Then r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] ∈ SCρ[~α := ~P].

Proof Induction on r. Again abbreviate r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] by r′ (for any term r). The
assumption in the statement will again be referenced to as “injectivity”. We only have to
consider the rules (µ-I) and (µ-E+).
(µ-I) Case Cµαρt. (Cµαρt)′ = Cµαρ[~α:=~σ]t

′. We have to show Cµαρ[~α:=~σ]t
′ ∈ SCµαρ[~α := ~P]. By

the rule (µ-I) for saturated sets it suffices to show

t′ ∈ ∀P.(SCµαρ[~α := ~P] → P) → SCρ[~α, α := ~P,P].

Because FV(Cµαρt) = FV(t), injectivity holds trivially also for t. By induction hypothesis
t′ ∈ SC∀α.(µαρ→α)→ρ[~α := ~P]. By definition of strong computability,

SC∀α.(µαρ→α)→ρ[~α := ~P] = ∀P.(SCµαρ[~α, α := ~P,P] → SCα[~α, α := ~P,P]) → SCρ[~α, α := ~P,P].

21Cf. the discussion for MeIT–it.

138 CHAPTER 9. STRONG NORMALIZATION

Using the implicit assumption α /∈ ~α, we get SCα[~α, α := ~P,P]) = P. By the coincidence lemma
(for F this is Lemma 9.13), we get SCµαρ[~α, α := ~P,P] = SCµαρ[~α := ~P].
(µ-E+) Case rE+

µ σs. (rE+
µ σs)′ = r′E+

µ (σ[~α := ~σ])s′. We have to show that r′E+
µ σ[~α := ~σ]s′ ∈

SCσ[~α := ~P]. Use (µ-E+) for saturated sets. Show that r′ ∈ SCµαρ[~α := ~P] and

s′ ∈
(
∀P.(SCµαρ[~α := ~P]× SCσ[~α := ~P] → P) → SCρ[~α, α := ~P,P]

)
→ SCσ[~α := ~P].

Injectivity holds for r and s because FV(r),FV(s) ⊆ FV(rE+
µ σs). Therefore by induction hy-

pothesis r′ ∈ SCµαρ[~α := ~P] and s′ ∈ SC(∀α.(µαρ×σ→α)→ρ)→σ[~α := ~P]. Unwinding the definition
and using the coincidence lemma (α /∈ FV(µαρ)∪FV(σ)) and α /∈ ~α leads to the desired result.�

As before we get as corollaries that SN = Λ, that every term is strongly normalizing, that Ω is
a normalizing function and that there is no closed term of type 0.

9.5 Strong normalization of EMIT, varEMIT, IMIT and varIMIT

Direct proofs of strong normalization are given although strong normalization follows already
via the embeddings into MeIT–it and coMeIT–it. Technically it is interesting that monotonicity
of the operators is mainly enforced not by the general method described in the introduction to
the chapter on systems à la Mendler but by a construction based on the monotonicity witnesses
which for the elimination-based proof for EMIT follows an idea of [Alt93c]. Because for the
systems varEMIT and varIMIT this construction does partly not work the general method is
applied almost purely.

9.5.1 Strong normalization of EMIT

Lemma 9.58 If m ∈ sn and t ∈ sn, then Cµαρmt ∈ sn.

Proof Induction on m ∈ sn and t ∈ sn. �

Lemma 9.59 If s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
~s ∈ sn, xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a

term, then (Cµαρmt)Eµσs~s ∈ sn.

Proof Induction on s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
~s ∈ sn+ by the usual analysis of the reducts

of (Cµαρmt)Eµσs~s. (Note that we need sn+ because s occurs twice in the canonical reduct of
(Cµαρmt)Eµσs~s.) �

Lemma 9.60 If s
(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ sn, xµαρ /∈ FV(s) and

(Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈ sn.

Proof Induction on s
(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ sn+ by analysis of

the reducts of (Cµαρmt)E+
µ σs~s. (Note that we need sn+ because s occurs twice in the canonical

reduct of (Cµαρmt)E+
µ σs~s.) �

Corollary 9.61 SN ⊆ sn.

Proof The same as for Lemma 9.6. �

9.5. STRONG NORMALIZATION OF EMIT, VAREMIT, IMIT AND VARIMIT 139

Saturated sets for EMIT

Extend the definition for system eF of M being a τ -saturated set by the following clause:

(βµ) If s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
~s ∈M, xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a term,

then (Cµαρmt)Eµσs~s ∈M.

(β+
µ) If s

(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ M, xµαρ /∈ FV(s) and

(Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈M.

Extend the definition of the τ -saturated closure clτ (M) accordingly by the clause

(βµ) If s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
~s ∈ clτ (M), xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a

term, then (Cµαρmt)Eµσs~s ∈ clτ (M).

(β+
µ) If s

(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ clτ (M), xµαρ /∈ FV(s)

and (Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈ clτ (M).

Again clτ (M) is the smallest τ -saturated set containing M ∩ SNτ .

Calculating with saturated sets for EMIT

Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define for
M∈ SATµαρ

MI(M) := {r ∈ Λµαρ|∃m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)∃t ∈ Φµαρ(M).r = Cµαρmt}
ME(M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ.∀s ∈ Φσ(N) → N rEµσs ∈ N∧

∀s ∈ Φµαρ×σ(M×N) → N rE+
µ σs ∈ N}

and define ΨI : SATµαρ → SATµαρ by

ΨI(M) := clµαρ(MI(M))

and ΨE : SATµαρ → SATµαρ by

ΨE(M) := clµαρ(ME(M)).

We cannot ensure ΨI or ΨE to be monotone. In order to overcome this problem we define (with
Pow denoting the power set) for m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)

Φ⊇m : SATµαρ → Pow(SNρ[α:=µαρ])

via

Φ⊇m(M) := {t ∈ SNρ[α:=µαρ]|∀σ∀N ∈ SATσ∀s ∈M→ N .m(µαρ)σst ∈ Φσ(N)}

and Φ⊆ := (Φ⊆σ)σ with
Φ⊆σ : SATσ → SATρ[α:=σ]

via
Φ⊆σ (N) := clρ[α:=σ]({r ∈ Λρ[α:=σ]|∃m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)

∃M ∈ SATµαρ∃s ∈M→ N∃t ∈ Φµαρ(M).r = m(µαρ)σst})

Φ⊇m is monotone (even non-strictly positive) and Φ⊇m ⊇ Φµαρ (pointwise) because of the rules
(∀-E) and (→-E) for saturated sets. Φ⊆σ is monotone (even strictly positive) and Φ⊆σ ⊆ Φσ

140 CHAPTER 9. STRONG NORMALIZATION

(pointwise) also because of the rules (∀-E) and (→-E) for saturated sets. (Note that already the
set which is the argument to clρ[α:=σ] is a subset of Φσ(M) and therefore also Φ⊆σ (M) because
Φσ(M) is saturated.)
Define for M∈ SATµαρ

M⊇
I (M) := {r ∈ Λµαρ|∃m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)∃t ∈ Φ⊇m(M).r = Cµαρmt}

M⊆
E (M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ.∀s ∈ Φσ(N) → N rEµσs ∈ N∧

∀s ∈ Φ⊆µαρ×σ(M×N) → N rE+
µ σs ∈ N}

and set
µI(Φ) := the least fixed point of Ψ⊇

I : SATµαρ → SATµαρ,

defined by
Ψ⊇

I (M) := clµαρ(M
⊇
I (M))

and
µE(Φ) := any fixed point of Ψ⊆

E : SATµαρ → SATµαρ,

defined by
Ψ⊆

E(M) := clµαρ(M
⊆
E (M)).

Because ΨI and ΨE are monotone (they are even non-strictly positive) and SATµαρ is a complete
lattice, such fixed points exists. Hence, µI(Φ) and µE(Φ) are µαρ-saturated sets.
Let us extract an encoding of types from the definition of µI(Φ):

(µαρ)′ := µβ.Mon(λαρ′)× ∀α.(β → α) → ρ′,

where we write Mon(λαρ) for ∀α∀β.(α → β) → ρ → ρ[α := β] and assume that β /∈ {α}∪FV(ρ).
The extraction read off the following proofs indeed gives an embedding of EMIT into NIPIT.
Following the elimination-based proof one presumably gets an embedding into a system of non-
interleaving positive fixed-point types.

Lemma 9.62 ME(M) ∩ SN ∈ SAT and M⊆
E (M) ∩ SN ∈ SAT (which implies that ΨE(M) =

ME(M) ∩ SN and Ψ⊆
E(M) = M⊆

E (M) ∩ SN).

Proof Straightforward. �

Lemma 9.63 MI(M) ⊆ SN and M⊇
I (M) ⊆ SN (which implies that ΨI(M) ⊇ MI(M) and

Ψ⊇
I (M) ⊇ M⊇

I (M)). �

Lemma 9.64 Let M be a µαρ-saturated set M.
M is a pre-fixed-point of ΨI iff for all m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q) and for all
t ∈ Φµαρ(M), we have that Cµαρmt ∈M.
M is a post-fixed-point of ΨE iff for all r ∈ M, types σ, N ∈ SATσ and s ∈ Φσ(N) → N , we
have rEµσs ∈ N and for all s ∈ Φµαρ×σ(M×N) → N , rE+

µ σs ∈ N .

Proof Use the two preceding lemmas. �

Lemma 9.65 µI(Φ) is a pre-fixed-point of ΨI .

9.5. STRONG NORMALIZATION OF EMIT, VAREMIT, IMIT AND VARIMIT 141

Proof µI(Φ) is a pre-fixed-point of Ψ⊇
I by definition. Hence

µI(Φ) ⊇ Ψ⊇
I (µI(Φ)) ⊇ ΨI(µI(Φ)),

which clearly follows from Φ⊇m ⊇ Φµαρ because MI(M) and M⊇
I (M) have the same definition

with exception of the occurrence of Φµαρ and Φ⊇m, respectively, which is at a strictly positive
position. �

Lemma 9.66 µE(Φ) is a post-fixed-point of ΨE .

Proof µE(Φ) is a post-fixed-point of Ψ⊆
E by definition. Hence

µE(Φ) ⊆ Ψ⊆
E(µE(Φ)) ⊆ ΨE(µE(Φ)),

which clearly follows from Φ⊆ ⊆ Φ (typewise) because ME(M) and M⊆
E (M) have the same

definition with exception of the occurrence of Φµαρ×σ and Φ⊆µαρ×σ, respectively, which is at a
non-strictly positive position. �

Lemma 9.67 µE(Φ) is a pre-fixed-point of ΨI
22.

Proof Set M := µE(Φ). We have to show

ΨI(M) ⊆M.

Because M is a pre-fixed-point of Ψ⊆
E , it suffices to show

ΨI(M) ⊆ Ψ⊆
E(M).

Because clµαρ is monotone, it suffices to show

MI(M) ⊆ M⊆
E (M).

Let m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q) and t ∈ Φµαρ(M). We have to show

Cµαρmt ∈ M⊆
E (M).

Let σ be a type, N ∈ SATσ and s ∈ Φσ(N) → N . We have to show that

CµαρmtEµσs ∈ N .

Because N is saturated it suffices to show

s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
∈ N .

Because of (→-E) for saturated sets (in the sequel the named rules will always be those for
saturated sets) it suffices to show

m(µαρ)σ(λxµαρ.xEµσs)t ∈ Φσ(N).

By (∀-E) and (→-E) it suffices to show

λxµαρ.xEµσs ∈M→ N .

22It does not seem possible to show that µE(Φ) is even a pre-fixed-point of Ψ⊇
I and hence I do not know whether

µI(Φ) ⊆ µE(Φ).

142 CHAPTER 9. STRONG NORMALIZATION

We use (→-I). Let r ∈M. We have to show

rEµσs ∈ N .

This follows from M⊆ Ψ⊆
E(M) ⊆ M⊆

E (M).
We come to the case for which Ψ⊆

E was designed, namely s ∈ Φ⊆µαρ×σ(M×N) → N . We have
to show

CµαρmtE+
µ σs ∈ N .

By saturatedness of N it suffices to show

s
(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
∈ N .

Because of (→-E) it suffices to show

m(µαρ)(µαρ× σ)
(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t ∈ Φ⊆µαρ×σ(M×N).

According to the definition of Φ⊆ (the closure in the definition of Φ⊆ only makes the set larger)
we are done if we show

λxµαρ.〈x, (λxµαρ.xE+
µ σs)x〉 ∈ M→M×N .

We use (→-I). Let r ∈M. We have to show

〈r, (λxµαρ.xE+
µ σs)r〉 ∈ M×N .

By (×-I) it suffices to show
(λxµαρ.xE+

µ σs)r ∈ N .

Because N is saturated, we only need to show

rE+
µ σs ∈ N .

This follows again from M⊆ Ψ⊆
E(M) ⊆ M⊆

E (M). �

Note that we used from µE(Φ) the properties of being a pre-fixed-point and a post-fixed-point
of Ψ⊆

E .

Lemma 9.68 µI(Φ) is a post-fixed-point of ΨE
23.

Proof Set M := µI(Φ). We prove M ⊆ ΨE(M) by extended induction (as defined in the
introduction to chapter 4) on M. Let M′ := ΨE(M) ∩M. We have to show

Ψ⊇
I (M′) ⊆ ΨE(M).

Because clµαρ is monotone, it suffices to show

M⊇
I (M′) ⊆ ME(M).

Let r ∈ M⊇
I (M′), i. e., r = Cµαρmt with m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q) and t ∈

Φ⊇m(M′). We have to show that
Cµαρmt ∈ ME(M).

23It does not seem possible to show that µI(Φ) is even a post-fixed-point of Ψ⊆
E and hence also this lemma does

not give an information whether µI(Φ) ⊆ µE(Φ) (in case the greatest fixed point of Ψ⊆
E is chosen to give µE(Φ)).

9.5. STRONG NORMALIZATION OF EMIT, VAREMIT, IMIT AND VARIMIT 143

Let σ be a type, N ∈ SATσ and s ∈ Φσ(N) → N . We have to show that

CµαρmtEµσs ∈ N .

Because N is saturated it suffices to show

s
(
m(µαρ)σ(λxµαρ.xEµσs)t

)
∈ N .

Because of (→-E) for saturated sets it suffices to show

m(µαρ)σ(λxµαρ.xEµσs)t ∈ Φσ(N).

By definition24 of Φ⊇m(M′) it suffices to show

λxµαρ.xEµσs ∈M′ → N .

We use (→-I). Let r′ ∈M′. We have to show

r′Eµσs ∈ N .

This follows from M′ ⊆ ΨE(M) ⊆ ME(M).
We come to the case which needs the extended form of induction. Let s ∈ Φµαρ×σ(M×N) → N .
We have to show

CµαρmtE+
µ σs ∈ N .

By saturatedness of N it suffices to show

s
(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
∈ N .

Because of (→-E) it suffices to show

m(µαρ)(µαρ× σ)
(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t ∈ Φµαρ×σ(M×N).

By definition of Φ⊇m(M′) it suffices to show

λxµαρ.〈x, (λxµαρ.xE+
µ σs)x〉 ∈ M′ →M×N .

We use (→-I). Let r′ ∈M′. We have to show

〈r′, (λxµαρ.xE+
µ σs)r′〉 ∈ M×N .

By (×-I) it suffices to show

r′ ∈M and (λxµαρ.xE+
µ σs)r′ ∈ N .

Because N is saturated and M′ ⊆M (this argument needs the extension of induction), we only
need to show

r′E+
µ σs ∈ N .

This follows again from M′ ⊆ ΨE(M) ⊆ ME(M). �

24This would not work if in the definition of Φ⊇m(M′) the closure operation would have been used to finally give
a saturated set. Therefore locally the realm of saturated sets is left. A formalization in a theory of saturated sets
is nevertheless possible because we may view the definition of Φ⊇m(M′) as an abbreviation like classes are seen as
abbreviations in set theory. In contrast to that taking the closure would correspond to set comprehension.

144 CHAPTER 9. STRONG NORMALIZATION

Note that we only used that µI(Φ) is a least pre-fixed-point.
Putting everything together we get the following rules for reasoning with µI(Φ) and µE(Φ) where
we simply write µ(Φ) for both of them:

(SAT) µ(Φ) ∈ SATµαρ.

(µ-I) If m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q) and t ∈ Φµαρ(µ(Φ)), then Cµαρmt ∈ µ(Φ).

(µ-E) If r ∈ µ(Φ), σ type, N ∈ SATσ and s ∈ Φσ(N) → N , then rEµσs ∈ N .

(µ-E+) If r ∈ µ(Φ), σ type, N ∈ SATσ and s ∈ Φµαρ×σ(µ(Φ)×N) → N , then rE+
µ σs ∈ N .

Computability predicates for EMIT

Extend (as for MeIT–it and coMeIT–it) the definition of SCρ[~α := ~P] by the following clause:

(µ) SCµαρ[~α := ~P] := µ(Φ) with Φ = (Φσ)σ, where Φσ : SATσ → SATρ[~α,α:=~σ,σ] is de-
fined by Φσ(P) := SCρ[~α, α := ~P,P] (with the same assumptions as in the definition
of strong computability for universal types in order to guarantee type-correctness).

The definition will again be written more intuitively as follows:

SCµαρ[~α := ~P] := µP.SCρ[~α, α := ~P,P].

It is obvious that coincidence and substitution lemma (Lemma 9.13 and Lemma 9.14) extend
to EMIT25.
Now we extend Lemma 9.16 to EMIT:

Lemma 9.69 Let rρ be a term, ~x~ρ a list of variables and ~s an equally long list of terms such
that ~s ∈ SC~ρ[~α := ~P~σ] for some ~P ⊆ SAT. Assume that

∀x∀π∀π′.(xπ, xπ′ ∈ FV(r) ∪ ~x~ρ) ∧ (π[~α := ~σ] = π′[~α := ~σ]) ⇒ π = π′.

Then r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] ∈ SCρ[~α := ~P].

Proof Induction on r. Again abbreviate r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] by r′ (for any term r). The
assumption in the statement will again be referenced to as “injectivity”. We only have to
consider the rules (µ-I), (µ-E) and (µ-E+).
(µ-I) Case Cµαρmt. (Cµαρmt)′ = Cµαρ[~α:=~σ]m

′t′. We may assume that α /∈ ~α. We have to show
Cµαρ[~α:=~σ]m

′t′ ∈ SCµαρ[~α := ~P]. By the rule (µ-I) for saturated sets it suffices to show

m′ ∈ ∀P∀Q.(P → Q) → SCρ[~α, α := ~P,P] → SCρ[~α, α := ~P,Q] and

t′ ∈ SCρ[~α, α := ~P,SCµαρ[~α := ~P]].

Because FV(Cµαρmt) = FV(m) ∪ FV(t), injectivity holds trivially also for m and t. By induc-
tion hypothesis m′ ∈ SC∀α∀β.(α→β)→ρ→ρ[α:=β][~α := ~P] and t′ ∈ SCρ[α:=µαρ][~α := ~P]. By two
applications of the coincidence lemma (which for system F is Lemma 9.13) and the equivalent
to Corollary 9.15 (stated for F) we see that

SC∀α∀β.(α→β)→ρ→ρ[α:=β][~α := ~P] = ∀P∀Q.(P → Q) → SCρ[~α, α := ~P,P] → SCρ[~α, α := ~P,Q]

25See the discussion for MeIT–it.

9.5. STRONG NORMALIZATION OF EMIT, VAREMIT, IMIT AND VARIMIT 145

(one of the applications even needs the generalization which is in fact proved).
By the substitution lemma (which for system F is Lemma 9.14) we have

SCρ[α:=µαρ][~α := ~P] = SCρ[~α, α := ~P,SCµαρ[~α := ~P]].

(µ-E) Case rEµσs. This is only a minor variant to the following (µ-E+) and therefore not shown.
(µ-E+) Case rE+

µ σs. (rE+
µ σs)′ = r′E+

µ (σ[~α := ~σ])s′. We have to show that

r′E+
µ σ[~α := ~σ]s′ ∈ SCσ[~α := ~P].

Use (µ-E+) for saturated sets. Show that r′ ∈ SCµαρ[~α := ~P] and that

s′ ∈ SCρ[~α, α := ~P,SCµαρ[~α := ~P]× SCσ[~α := ~P]] → SCσ[~α := ~P].

Injectivity holds for r and s because FV(r),FV(s) ⊆ FV(rE+
µ σs). Therefore by induction hy-

pothesis r′ ∈ SCµαρ[~α := ~P] and s′ ∈ SCρ[α:=µαρ×σ]→σ[~α := ~P]. Because we may assume α /∈ ~α
the substitution lemma gives the desired result. �

As before we get as corollaries that SN = Λ, that every term is strongly normalizing, that Ω is
a normalizing function and that there is no closed term of type 0.
Note that one could have also defined Φ⊆σ : SATσ → SATρ[α:=σ] via

Φ⊆σ (N) := clρ[α:=σ]({r ∈ Λρ[α:=σ]|∃m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)
∃τ∃M ∈ SATτ∃s ∈M→ N∃t ∈ Φτ (M).r = mτσst})

Every proof concerning Φ⊆ would go through without any changes (the new Φ⊆ is typewise
larger than the former but still smaller than Φ). But the former definition is more informative
because it shows that only µαρ is relevant as first argument to m (which is not too surprising).
We also could replace the definition of Φ⊇m(M) by a definition of

Φ⊇(M) : SATµαρ → Pow(SNρ[α:=µαρ])

(without the parameter m) via

Φ⊇(M) := {t ∈ SNρ[α:=µαρ]|∀m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)
∀σ∀N ∈ SATσ∀s ∈M→ N .m(µαρ)σst ∈ Φσ(N)}

The proof with Φ⊇(M) instead of Φ⊇m(M) would also go through without explicit changes
because the universal m may always be instantiated to the existential m in the proof of Lemma
9.68. (Note that Φ⊇ is smaller than Φ⊇m for every appropriate m but still larger than Φ.)

Acknowledgement: I owe the definition of Φ⊆ to [Alt93c] where a version without the closure
and with a fixed monotonicity witness and untyped terms in the saturated sets is defined.

9.5.2 Strong normalization of varEMIT

We try to extend the proof for EMIT in order to cover varEMIT. We first have to replace

m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q) by m ∈ ∀Q.(M→Q) → Φµαρ(M) → Φ(Q)

in the definitions of MI(M), Φ⊇(M)26,Φ⊆σ (N) and M⊇
I (M) and remove the first argument to m

(the removal of which only type-checks because this argument is always µαρ). In the definition
26We clearly have to use Φ⊇(M) considered at the end of the proof for EMIT instead of Φ⊇m(M).

146 CHAPTER 9. STRONG NORMALIZATION

of Φ⊆σ (N) we also have to put the existential over m inside the scope of the existential over M.
Although these definitions make sense there is no chance to get monotonicity of Ψ⊇

I . But Ψ⊆
E is

monotone and therefore we may expect the elimination-based proof for EMIT to carry over to
varEMIT. That this expectation is justified will be shown in appendix A. Essentially using the
general idea of defining Ψ⊇

I as a monotone operator being pointwise larger than ΨI presented in
the introduction to chapter 6 we also give an introduction-based proof in that appendix. Here
only the definition of µE(Φ) and µI(Φ) are shown.
Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define Φ⊆ := (Φ⊆σ)σ

with
Φ⊆σ : SATσ → SATρ[α:=σ]

via

Φ⊆σ (N) := clρ[α:=σ]({r ∈ Λρ[α:=σ]|∃M ∈ SATµαρ∃m ∈ ∀Q.(M→Q) → Φµαρ(M) → Φ(Q)
∃s ∈M→ N∃t ∈ Φµαρ(M).r = mσst})

Φ⊆σ is monotone (even strictly positive) and Φ⊆σ ⊆ Φσ (pointwise) because of the rules (∀-E) and
(→-E) for saturated sets.
Define for M∈ SATµαρ

M⊇
I (M) := {r ∈ Λµαρ|∃M′ ∈ SATµαρ.M′ ⊆M∧

∃m ∈ ∀Q.(M′ → Q) → Φµαρ(M′) → Φ(Q)∃t ∈ Φµαρ(M′).r = Cµαρmt}
M⊆

E (M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ.∀s ∈ Φσ(N) → N rEµσs ∈ N∧
∀s ∈ Φ⊆µαρ×σ(M×N) → N rE+

µ σs ∈ N}

and set
µI(Φ) := the least fixed point of Ψ⊇

I : SATµαρ → SATµαρ,

defined by
Ψ⊇

I (M) := clµαρ(M
⊇
I (M))

and set
µE(Φ) := any fixed point of Ψ⊆

E : SATµαρ → SATµαρ,

defined by
Ψ⊆

E(M) := clµαρ(M
⊆
E (M)).

Because ΨI and ΨE are monotone (ΨI is even strictly positive and ΨE non-strictly positive) and
SATµαρ is a complete lattice, the fixed points exists. Hence, µI(Φ) and µE(Φ) are µαρ-saturated
sets.
See appendix A for all the details leading to SN = Λ and discussion of the failure of the
generalization of the introduction-based proof for EMIT.

9.5.3 Strong normalization of IMIT

We may easily transform the normalization proof for EMIT given in section 9.5.1 to yield a
normalization proof for IMIT. We only have to adjust the definition of saturated sets and the
closure operation to the different definition of SN and then define the construction of µI(Φ)
and µE(Φ) as before except that the reference to the monotonicity witness moves from MI(M)
to ME(M) and from M⊇

I (M) to M⊆
E (M) (the quantifier changes from ∃ to ∀) and that the

parameter m in Φ⊇m has to be internalized (by universal quantification) to give Φ⊇ and the
existentially quantified m inside Φ⊆σ is made a parameter to yield Φ⊆m,σ. Only the definition of

9.5. STRONG NORMALIZATION OF EMIT, VAREMIT, IMIT AND VARIMIT 147

µI(Φ) and µE(Φ) will be shown here. For the other definitions and all the proofs see appendix
A.
Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define

Φ⊇ : SATµαρ → Pow(SNρ[α:=µαρ])

via
Φ⊇(M) := {t ∈ SNρ[α:=µαρ]|∀m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)

∀σ∀N ∈ SATσ∀s ∈M→ N .m(µαρ)σst ∈ Φσ(N)}

and for m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q) define Φ⊆m := (Φ⊆m,σ)σ with

Φ⊆m,σ : SATσ → SATρ[α:=σ]

via

Φ⊆m,σ(N) := clρ[α:=σ]({r ∈ Λρ[α:=σ]|∃M ∈ SATµαρ∃s ∈M→ N∃t ∈ Φµαρ(M).
r = m(µαρ)σst})

Φ⊇ and Φ⊆m,σ are monotone.
Define for M∈ SATµαρ

M⊇
I (M) := {r ∈ Λµαρ|∃t ∈ Φ⊇(M).r = Cµαρt}

M⊆
E (M) := {r ∈ Λµαρ|∀m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)∀σ∀N ∈ SATσ

∀s ∈ Φσ(N) → N rEµσms ∈ N ∧ ∀s ∈ Φ⊆m,µαρ×σ(M×N) → N rE+
µ σms ∈ N}

and set
µI(Φ) := the least fixed point of Ψ⊇

I : SATµαρ → SATµαρ,

defined by
Ψ⊇

I (M) := clµαρ(M
⊇
I (M))

and
µE(Φ) := any fixed point of Ψ⊆

E : SATµαρ → SATµαρ,

defined by
Ψ⊆

E(M) := clµαρ(M
⊆
E (M)).

Because ΨI and ΨE are monotone (they are even non-strictly positive) and SATµαρ is a complete
lattice, such fixed points exists. Hence, µI(Φ) and µE(Φ) are µαρ-saturated sets.
In appendix A it will be shown that in fact the proof of SN = Λ given for EMIT goes through
without changes to the content of it. Clearly, this reflects that β-reduction for µ-types only
applies if the introduction and the elimination rule come together and then the monotonicity
witness is used in the same way for EMIT and for IMIT.

9.5.4 Strong normalization of varIMIT

Extend the proof for IMIT to varIMIT by refining it in the same spirit as the proof for EMIT is
refined to cover varEMIT. This time only the introduction-based approach directly generalizes.
For the elimination-based definition another idea has to be adopted: We essentially use the gen-
eral method of defining Ψ⊆

E as a monotone operator being pointwise smaller than ΨE presented
in the introduction to chapter 6. Here only the definitions which show the construction of µI(Φ)
and µE(Φ) are shown. All the details may be found in appendix A.

148 CHAPTER 9. STRONG NORMALIZATION

Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define

Φ⊇ : SATµαρ → Pow(SNρ[α:=µαρ])

via

Φ⊇(M) := {t ∈ SNρ[α:=µαρ]|∀σ∀N ∈ SATσ∀m ∈ ∀P.(P → N) → Φ(P) → Φσ(N)
∀s ∈M→ N .m(µαρ)st ∈ Φσ(N)}

Φ⊇ is monotone (even non-strictly positive) and Φ⊇ ⊇ Φµαρ (pointwise) because of the rules
(∀-E) and (→-E) for saturated sets.
Define for M∈ SATµαρ

M⊇
I (M) := {r ∈ Λµαρ|∃t ∈ Φ⊇(M).r = Cµαρt}

M⊆
E (M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ

∀m ∈ ∀P.(P → N) → Φ(P) → Φσ(N)
∀s ∈ Φσ(N) → N rEµσms ∈ N ∧
∀M′ ∈ SATµαρ.M⊆M′ ⇒
∀m ∈ ∀P.(P →M′ ×N) → Φ(P) → Φµαρ×σ(M′ ×N)
∀s ∈ Φµαρ×σ(M′ ×N) → N rE+

µ σms ∈ N}

and set
µI(Φ) := the least fixed point of Ψ⊇

I : SATµαρ → SATµαρ,

defined by
Ψ⊇

I (M) := clµαρ(M
⊇
I (M))

and
µE(Φ) := any fixed point of Ψ⊆

E : SATµαρ → SATµαρ,

defined by
Ψ⊆

E(M) := clµαρ(M
⊆
E (M)).

Because ΨI and ΨE are monotone (they are even non-strictly positive) and SATµαρ is a complete
lattice, such fixed points exists. Hence, µI(Φ) and µE(Φ) are µαρ-saturated sets.
See appendix A for all the details leading to SN = Λ and discussion of the failure of the
generalization of the elimination-based proof for IMIT.

9.6 Strong normalization of the other systems

In chapter 7 all the embeddings claimed in the main theorem in chapter 1 have been proved.
Hence every system embeds into any of the systems in class III. Therefore due to Lemma 2.49
we only needed to prove strong normalization for one of those, e. g. for MeIT–it, and this has
been done in this chapter twice: with the help of introduction-based computability predicates
and with elimination-based such predicates.
The embeddings only show that every term is in sn. But it has been always easy to prove that
sn ⊆ SN and hence we also get the induction principle of SN and because SN ⊆ WN also the
induction principle of WN which allows to define the normalization function Ω.
Also Corollary 2.43 (concerning the Peirce formula) may be proved in all of the systems with
the same proof (as was the case for Lemma 2.37 and 2.46 expressing consistency).

9.6. STRONG NORMALIZATION OF THE OTHER SYSTEMS 149

Although we now know strong normalization of PIT by indirect means it is interesting to think
of a direct proof. It would work as indicated in the footnote 14 on p. 129: For the construction
of the fixed points µI(Φ) and µE(Φ) one would require that every Φτ be monotone. This
monotonicity has to be preserved by any of the constructions and hence one would be forced to
take the least or greatest fixed point in the elimination-based approach. The essential lemmas
which say that µI(Φ) is a post-fixed-point of ΨE and that µE(Φ) is a pre-fixed-point of ΨI can
only be proved under the assumption that already mapλαρ ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q).
The definition of computability predicates would be done simultaneously with the proof that
the function P 7→ SCρ[~α, α := ~P,P] is monotone for α ∈ Pos(ρ) and antitone for α ∈ Neg(ρ)
which of course needs the preservation of monotonicity of the construction of µE(Φ). The
final soundness lemma (stating strong computability under substitution) cannot be proved by
structural recursion because of the assumptions on mapλαρ in the crucial lemmas. If µI(Φ) is
used, the proof goes by induction on the set ST of stratified terms of ISMIT (of which PIT is an
instance) and in case µE(Φ) is chosen, induction on ST of ESMIT works.
For NIPIT a direct proof would be a lot easier: Because there is no interleaving, µE(Φ) need
not be monotone in Φ. Hence, we may take any fixed point of ΨE as usual. The definition
of computability predicates would be done simultaneously with the proof that the function
P 7→ SCρ[~α, α := ~P,P] is monotone for α ∈ NIPos(ρ) and antitone for α ∈ NINeg(ρ) and
constant if α /∈ FV(ρ) (this already includes the coincidence lemma). Although the crucial
lemmas have the same condition as in the proof for PIT, no reference to ST is needed because
mapλαρ does not use the term rules pertaining to µ-types: Simply show the soundness lemma
first for terms without the rules (µ-I), (µ-E) and (µ-E+) and then for all terms by reusing the
proof clauses for the other term rules.
I decided to show the other direct proofs because they give a lot of insight into the techniques
of proving strong normalization and into ways of dealing with monotonicity beyond positivity.
Moreover, the extracted embeddings deserve the reader’s attention.

150 CHAPTER 9. STRONG NORMALIZATION

Appendix A

Other proofs of strong normalization

In this appendix direct proofs of strong normalization are studied for the systems varEMIT, IMIT
and varIMIT. Also the extracted embeddings are given. In the final section some remarks on
the different methods of monotonization are made and it is sketched how the embeddings of
monotone inductive types into MePIT and coMePIT could be drawn from normalization proofs.

A.1 Proof of strong normalization for varEMIT

This section contains the elimination-based proof for varEMIT which is only a minor variant to
the proof for EMIT. The introduction-based proof could not directly be generalized to varEMIT.
But an introduction-based proof following the general idea of strict positivization already used
for MeIT–it is also presented.
Extend the definition of SN for system eF by the expected clauses:

(µ-I) If Cµαρmt is a term and m ∈ SN and t ∈ SN, then Cµαρmt ∈ SN.

(βµ) If s
(
mσ(λxµαρ.xEµσs)t

)
~s ∈ SN, xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a term, then

(Cµαρmt)Eµσs~s ∈ SN.

(β+
µ) If s

(
m(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ SN, xµαρ /∈ FV(s) and the

expression (Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈ SN.

Lemma A.1 If m ∈ sn and t ∈ sn, then Cµαρmt ∈ sn.

Proof Induction on m ∈ sn and t ∈ sn. �

Lemma A.2 If s
(
mσ(λxµαρ.xEµσs)t

)
~s ∈ sn, xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a term, then

(Cµαρmt)Eµσs~s ∈ sn.

Proof Induction on s
(
mσ(λxµαρ.xEµσs)t

)
~s ∈ sn+ by the usual analysis of the reducts of

(Cµαρmt)Eµσs~s. (Note that we need sn+ because s occurs twice in the canonical reduct of
(Cµαρmt)Eµσs~s.) �

Lemma A.3 If s
(
m(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ sn, xµαρ /∈ FV(s) and the

expression (Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈ sn.

151

152 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

Proof Induction on s
(
m(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ sn+ by analysis of the

reducts of (Cµαρmt)E+
µ σs~s. (Note that we need sn+ because s occurs twice in the canonical

reduct of (Cµαρmt)E+
µ σs~s.) �

Corollary A.4 SN ⊆ sn.

Proof The same as for Lemma 9.6. �

A.1.1 Saturated sets for varEMIT

Extend the definition for system eF of M being a τ -saturated set by the following clause:

(βµ) If s
(
mσ(λxµαρ.xEµσs)t

)
~s ∈M, xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a term, then

(Cµαρmt)Eµσs~s ∈M.

(β+
µ) If s

(
m(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ M, xµαρ /∈ FV(s) and the

expression (Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈M.

Extend the definition of the τ -saturated closure clτ (M) accordingly by the clause

(βµ) If s
(
mσ(λxµαρ.xEµσs)t

)
~s ∈ clτ (M), xµαρ /∈ FV(s) and (Cµαρmt)Eµσs~s is a term,

then (Cµαρmt)Eµσs~s ∈ clτ (M).

(β+
µ) If s

(
m(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
~s ∈ clτ (M), xµαρ /∈ FV(s) and

(Cµαρmt)E+
µ σs~s is a term, then (Cµαρmt)E+

µ σs~s ∈ clτ (M).

Again clτ (M) is the smallest τ -saturated set containing M ∩ SNτ .

A.1.2 Calculating with saturated sets for varEMIT

Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define for
M∈ SATµαρ

MI(M) := {r ∈ Λµαρ|∃m ∈ ∀Q.(M→Q) → Φµαρ(M) → Φ(Q)∃t ∈ Φµαρ(M).r = Cµαρmt}
ME(M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ.∀s ∈ Φσ(N) → N rEµσs ∈ N∧

∀s ∈ Φµαρ×σ(M×N) → N rE+
µ σs ∈ N}

and define ΨI : SATµαρ → SATµαρ by

ΨI(M) := clµαρ(MI(M))

and ΨE : SATµαρ → SATµαρ by

ΨE(M) := clµαρ(ME(M)).

We again cannot ensure ΨI or ΨE to be monotone. In order to overcome this problem we define
(with Pow denoting the power set)

Φ⊇ : SATµαρ → Pow(SNρ[α:=µαρ])

via
Φ⊇(M) := {t ∈ SNρ[α:=µαρ]|∀m ∈ ∀Q.(M→Q) → Φµαρ(M) → Φ(Q)

∀σ∀N ∈ SATσ∀s ∈M→ N .mσst ∈ Φσ(N)}

A.1. PROOF OF STRONG NORMALIZATION FOR VAREMIT 153

and Φ⊆ := (Φ⊆σ)σ with
Φ⊆σ : SATσ → SATρ[α:=σ]

via

Φ⊆σ (N) := clρ[α:=σ]({r ∈ Λρ[α:=σ]|∃M ∈ SATµαρ∃m ∈ ∀Q.(M→Q) → Φµαρ(M) → Φ(Q)
∃s ∈M→ N∃t ∈ Φµαρ(M).r = mσst})

Φ⊇ is presumably not monotone (in general). Φ⊇ ⊇ Φµαρ (pointwise) because of the rules (∀-E)
and (→-E) for saturated sets. Φ⊆σ is monotone (even strictly positive) and Φ⊆σ ⊆ Φσ (pointwise)
also because of the rules (∀-E) and (→-E) for saturated sets. (Note that already the set which
is the argument to clρ[α:=σ] is a subset of Φσ(M) and therefore also Φ⊆σ (M) because Φσ(M) is
saturated.)
Define for M∈ SATµαρ

M⊇
I (M) := {r ∈ Λµαρ|∃m ∈ ∀Q.(M→Q) → Φµαρ(M) → Φ(Q)∃t ∈ Φ⊇(M).r = Cµαρmt}

M⊆
E (M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ.∀s ∈ Φσ(N) → N rEµσs ∈ N∧

∀s ∈ Φ⊆µαρ×σ(M×N) → N rE+
µ σs ∈ N}

and define
Ψ⊇

I : SATµαρ → SATµαρ,

by
Ψ⊇

I (M) := clµαρ(M
⊇
I (M))

and set
µE(Φ) := any fixed point of Ψ⊆

E : SATµαρ → SATµαρ,

defined by
Ψ⊆

E(M) := clµαρ(M
⊆
E (M)).

Because ΨE is monotone (it is even non-strictly positive) and SATµαρ is a complete lattice, the
fixed point exists. Hence, µE(Φ) is a µαρ-saturated set. Ψ⊇

I cannot be monotone in general
(not only the problem with Φ⊇ propagates but also M⊇

I (M)’s definition has several critical
occurrences of M). The definitions of Φ⊇, M⊇

I (M) and Ψ⊇
I are thus useless. Φ⊇ will not be

used any further and M⊇
I (M) and Ψ⊇

I are redefined in the following way:

M⊇
I (M) := {r ∈ Λµαρ|∃M′ ∈ SATµαρ.M′ ⊆M∧

∃m ∈ ∀Q.(M′ → Q) → Φµαρ(M′) → Φ(Q)∃t ∈ Φµαρ(M′).r = Cµαρmt}
Ψ⊇

I (M) := clµαρ(M
⊇
I (M))

Ψ⊇
I is monotone (even strictly positive) and trivially, Ψ⊇

I ⊇ ΨI (pointwise). We may now form

µI(Φ) := the least fixed point of Ψ⊇
I ,

which therefore is also a pre-fixed-point of ΨI .
An analysis of the definition of µI(Φ) gives the following encoding (for “new” β and γ):

(µαρ)′ := µβ∃α.(α → β)×
(
∀γ.(α → γ) → ρ′ → ρ′[α := γ]

)
× ρ′.

An embedding of varEMIT into NISPIT+ex may now be read off the proofs that µI(Φ) is a
pre-fixed-point of ΨI and that µI(Φ) is a post-fixed-point of ΨE

1 which are given below. It is
possible to show that this indeed gives an embedding.

1In fact we prove that µI(Φ) is a post-fixed-point of Ψ⊆
E but the proof of the weaker statement has exactly the

same combinatorial content.

154 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

The elimination-based approach presumably gives a quite complicated embedding into non-
interleaving positive fixed-point types based on
(µαρ)′ := µ̂α∀β.((ρ′[α := β] → β) → β)×

(((∃γ.(∀δ.(γ → δ) → ρ′[α := γ] → ρ′[α := δ])× (γ → α× β)× ρ′[α := γ]) → β) → β)
with “new” β, γ and δ2.

Lemma A.5 ME(M) ∩ SN ∈ SAT and M⊆
E (M) ∩ SN ∈ SAT (which implies that ΨE(M) =

ME(M) ∩ SN and Ψ⊆
E(M) = M⊆

E (M) ∩ SN).

Proof Straightforward. �

Lemma A.6 MI(M) ⊆ SN and M⊇
I (M) ⊆ SN (which implies that ΨI(M) ⊇ MI(M) and

Ψ⊇
I (M) ⊇ M⊇

I (M)). �

Lemma A.7 Let M be a µαρ-saturated set M.
M is a pre-fixed-point of ΨI iff for all m ∈ ∀Q.(M → Q) → Φµαρ(M) → Φ(Q) and for all
t ∈ Φµαρ(M), we have that Cµαρmt ∈M.
M is a post-fixed-point of ΨE iff for all r ∈ M, types σ, N ∈ SATσ and s ∈ Φσ(N) → N , we
have rEµσs ∈ N and for all s ∈ Φµαρ×σ(M×N) → N , rE+

µ σs ∈ N .

Proof Use the two preceding lemmas. �

Lemma A.8 Every post-fixed-point of Ψ⊆
E is also a post-fixed-point of ΨE .

Proof Let M be a post-fixed-point of Ψ⊆
E . Hence

M⊆ Ψ⊆
E(M) ⊆ ΨE(M),

which clearly follows from Φ⊆ ⊆ Φ (typewise) because ME(M) and M⊆
E (M) have the same

definition with exception of the occurrence of Φµαρ×σ and Φ⊆µαρ×σ, respectively, which is at a
non-strictly positive position. �

Lemma A.9 µE(Φ) is a pre-fixed-point of Ψ⊇
I .

Proof We have to show that
Ψ⊇

I (µE(Φ)) ⊆ µE(Φ).

Because µE(Φ) is a pre-fixed-point of Ψ⊆
E , it suffices to show

Ψ⊇
I (µE(Φ)) ⊆ Ψ⊆

E(µE(Φ)).

Because clµαρ is monotone, it suffices to show

M⊇
I (µE(Φ)) ⊆ M⊆

E (µE(Φ)).

Let M ∈ SATµαρ with M ⊆ µE(Φ). Let m ∈ ∀Q.(M → Q) → Φµαρ(M) → Φ(Q) and
t ∈ Φµαρ(M). We have to show

Cµαρmt ∈ M⊆
E (µE(Φ)).

2If we only had iteration then (µαρ)′ := ∀β.((ρ′[α := β] → β) → β) would be sufficient which is nothing but
the composition of the embeddings of varEMIT–rec into IT and IT into eF.

A.1. PROOF OF STRONG NORMALIZATION FOR VAREMIT 155

Let σ be a type, N ∈ SATσ and s ∈ Φσ(N) → N . We have to show that

CµαρmtEµσs ∈ N .

Because N is saturated it suffices to show

s
(
mσ(λxµαρ.xEµσs)t

)
∈ N .

Because of (→-E) for saturated sets (in the sequel the named rules will always be those for
saturated sets) it suffices to show

mσ(λxµαρ.xEµσs)t ∈ Φσ(N).

By (∀-E) and (→-E) it suffices to show

λxµαρ.xEµσs ∈M→ N .

We use (→-I). Let r ∈M. We have to show

rEµσs ∈ N .

This follows from r ∈M ⊆ µE(Φ) ⊆ Ψ⊆
E(µE(Φ)) ⊆ M⊆

E (µE(Φ)).
We come to the case for which Ψ⊆

E was designed, namely s ∈ Φ⊆µαρ×σ(µE(Φ) × N) → N . We
have to show

CµαρmtE+
µ σs ∈ N .

By saturatedness of N it suffices to show

s
(
m(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
∈ N .

Because of (→-E) it suffices to show

m(µαρ× σ)
(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t ∈ Φ⊆µαρ×σ(µE(Φ)×N).

According to the definition of Φ⊆ (the closure in the definition of Φ⊆ only makes the set larger)
we are done if we show

λxµαρ.〈x, (λxµαρ.xE+
µ σs)x〉 ∈ M→ µE(Φ)×N .

We use (→-I). Let r ∈M. We have to show

〈r, (λxµαρ.xE+
µ σs)r〉 ∈ µE(Φ)×N .

By (×-I) and because M⊆ µE(Φ) it suffices to show

(λxµαρ.xE+
µ σs)r ∈ N .

Because N is saturated, we only need to show

rE+
µ σs ∈ N .

This follows again from r ∈M ⊆ µE(Φ) ⊆ Ψ⊆
E(µE(Φ)) ⊆ M⊆

E (µE(Φ)). �

156 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

Note that we used from µE(Φ) the properties of being a pre-fixed-point and a post-fixed-point
of Ψ⊆

E . Note also that for the purposes of the normalization proof it would have been enough
to show that µE(Φ) is a pre-fixed-point of ΨI instead of Ψ⊇

I , but from the above result we even
get the following

Corollary A.10 µI(Φ) ⊆ µE(Φ).

Proof µI(Φ) is the least pre-fixed-point of Ψ⊇
I . �

Lemma A.11 µI(Φ) is a post-fixed-point of Ψ⊆
E .

Proof Set M := µI(Φ). We prove M ⊆ Ψ⊆
E(M) by extended induction (as defined in the

introduction to chapter 4) on M. Let M′ := Ψ⊆
E(M) ∩M. We have to show

Ψ⊇
I (M′) ⊆ Ψ⊆

E(M).

Because clµαρ is monotone, it suffices to show

M⊇
I (M′) ⊆ M⊆

E (M).

Let r ∈ M⊇
I (M′), i. e., r = Cµαρmt with m ∈ ∀Q.(M′′ → Q) → Φ(M′′) → Φ(Q) and t ∈

Φµαρ(M′′) with M′′ ∈ SATµαρ and M′′ ⊆M′. We have to show that

Cµαρmt ∈ M⊆
E (M).

Let σ be a type, N ∈ SATσ and s ∈ Φσ(N) → N . We have to show that

CµαρmtEµσs ∈ N .

Because N is saturated it suffices to show

s
(
mσ(λxµαρ.xEµσs)t

)
∈ N .

Because of (→-E) for saturated sets it suffices to show

mσ(λxµαρ.xEµσs)t ∈ Φσ(N).

By (∀-E) and (→-E) it suffices to show

λxµαρ.xEµσs ∈M′′ → N .

We use (→-I). Let r′ ∈M′′. We have to show

r′Eµσs ∈ N .

This follows from M′′ ⊆M′ ⊆ Ψ⊆
E(M) ⊆ M⊆

E (M).
We come to the case which needs the extended form of induction. Let s ∈ Φ⊆µαρ×σ(M×N) → N .
We have to show

CµαρmtE+
µ σs ∈ N .

By saturatedness of N it suffices to show

s
(
m(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t
)
∈ N .

A.1. PROOF OF STRONG NORMALIZATION FOR VAREMIT 157

Because of (→-E) it suffices to show

m(µαρ× σ)
(
λxµαρ.〈x, (λxµαρ.xE+

µ σs)x〉
)
t ∈ Φ⊆µαρ×σ(M×N).

By definition of Φ⊆ (the closure in the definition of Φ⊆ only makes the set larger) it suffices to
show

λxµαρ.〈x, (λxµαρ.xE+
µ σs)x〉 ∈ M′′ →M×N .

We use (→-I). Let r′ ∈M′′. We have to show

〈r′, (λxµαρ.xE+
µ σs)r′〉 ∈ M×N .

By (×-I) it suffices to show

r′ ∈M and (λxµαρ.xE+
µ σs)r′ ∈ N .

Because N is saturated and M′′ ⊆M′ ⊆M (this argument needs the extension of induction),
we only need to show

r′E+
µ σs ∈ N .

This follows again from M′′ ⊆M′ ⊆ Ψ⊆
E(M) ⊆ M⊆

E (M). �

Note that we only used that µI(Φ) is a least pre-fixed-point. Note also that for the purposes of
the normalization proof it would have been enough to show that µI(Φ) is a post-fixed-point of
ΨE instead of Ψ⊆

E
3.

Putting everything together we get the following rules for reasoning with µI(Φ) and µE(Φ) where
we simply write µ(Φ) for both of them:

(SAT) µ(Φ) ∈ SATµαρ.

(µ-I) If m ∈ ∀Q.(µ(Φ) → Q) → Φ(µ(Φ)) → Φ(Q) and t ∈ Φµαρ(µ(Φ)), then Cµαρmt ∈
µ(Φ).

(µ-E) If r ∈ µ(Φ), σ type, N ∈ SATσ and s ∈ Φσ(N) → N , then rEµσs ∈ N .

(µ-E+) If r ∈ µ(Φ), σ type, N ∈ SATσ and s ∈ Φµαρ×σ(µ(Φ)×N) → N , then rE+
µ σs ∈ N .

A.1.3 Computability predicates for varEMIT

Extend (as for MeIT–it and coMeIT–it) the definition of SCρ[~α := ~P] by the following clause:

(µ) SCµαρ[~α := ~P] := µ(Φ) with Φ = (Φσ)σ, where Φσ : SATσ → SATρ[~α,α:=~σ,σ] is de-
fined by Φσ(P) := SCρ[~α, α := ~P,P] (with the same assumptions as in the definition
of strong computability for universal types in order to guarantee type-correctness).

The definition will again be written more intuitively as follows:

SCµαρ[~α := ~P] := µP.SCρ[~α, α := ~P,P].

It is obvious that coincidence and substitution lemma (Lemma 9.13 and Lemma 9.14) extend
to varEMIT.
Now we extend Lemma 9.16 to varEMIT:

3If the greatest fixed point is taken for µE(Φ), then also the preceding lemma implies that µI(Φ) ⊆ µE(Φ).

158 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

Lemma A.12 Let rρ be a term, ~x~ρ a list of variables and ~s an equally long list of terms such
that ~s ∈ SC~ρ[~α := ~P~σ] for some ~P ⊆ SAT. Assume that

∀x∀π∀π′.(xπ, xπ′ ∈ FV(r) ∪ ~x~ρ) ∧ (π[~α := ~σ] = π′[~α := ~σ]) ⇒ π = π′.

Then r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] ∈ SCρ[~α := ~P].

Proof Induction on r. Again abbreviate r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] by r′ (for any term r). The
assumption in the statement will again be referenced to as “injectivity”. We only have to
consider the rules (µ-I), (µ-E) and (µ-E+).
(µ-I) Case Cµαρmt. (Cµαρmt)′ = Cµαρ[~α:=~σ]m

′t′. We may assume that α /∈ ~α. We have to show
Cµαρ[~α:=~σ]m

′t′ ∈ SCµαρ[~α := ~P]. By the rule (µ-I) for saturated sets it suffices to show

m′ ∈ ∀Q.(SCµαρ[~α := ~P] → Q) → SCρ[~α, α := ~P,SCµαρ[~α := ~P]] → SCρ[~α, α := ~P,Q] and

t′ ∈ SCρ[~α, α := ~P,SCµαρ[~α := ~P]].

Because FV(Cµαρmt) = FV(m)∪FV(t), injectivity holds trivially also for m and t. By induction
hypothesis m′ ∈ SC∀α.(µαρ→α)→ρ[α:=µαρ]→ρ[~α := ~P] and t′ ∈ SCρ[α:=µαρ][~α := ~P]. By two
applications of the coincidence lemma (which for system F is Lemma 9.13) we see that

SC∀α.(µαρ→α)→ρ[α:=µαρ]→ρ[~α := ~P] =

∀Q.(SCµαρ[~α := ~P] → Q) → SCρ[α:=µαρ][~α := ~P] → SCρ[~α, α := ~P,Q].

By the substitution lemma (which for system F is Lemma 9.14) we have

SCρ[α:=µαρ][~α := ~P] = SCρ[~α, α := ~P,SCµαρ[~α := ~P]].

(µ-E) and (µ-E+): Trivially the same as for EMIT. �

As for EMIT we get as corollaries that SN = Λ and that every term is strongly normalizing.

A.2 Proof of strong normalization for IMIT

This section contains the proof for IMIT which is only a minor variant to the proof for EMIT.
Extend the definition of SN for system eF by the expected clauses:

(µ-I) If t ∈ SN, then Cµαρt ∈ SN.

(βµ) If s
(
m(µαρ)σ(λxµαρ.xEµσms)t

)
~s ∈ SN, xµαρ /∈ FV(s) and (Cµαρt)Eµσms~s is a

term, then (Cµαρt)Eµσms~s ∈ SN.

(β+
µ) If s

(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ SN, xµαρ /∈ FV(s) and

(Cµαρt)E+
µ σms~s is a term, then (Cµαρt)E+

µ σms~s ∈ SN.

Lemma A.13 If t ∈ sn, then Cµαρt ∈ sn.

Proof Induction on t ∈ sn. �

Lemma A.14 If s
(
m(µαρ)σ(λxµαρ.xEµσms)t

)
~s ∈ sn, xµαρ /∈ FV(s) and (Cµαρt)Eµσms~s is a

term, then (Cµαρt)Eµσms~s ∈ sn.

A.2. PROOF OF STRONG NORMALIZATION FOR IMIT 159

Proof Induction on s
(
m(µαρ)σ(λxµαρ.xEµσms)t

)
~s ∈ sn+ by the usual analysis of the reducts

of (Cµαρt)Eµσms~s. (Note that we need sn+ because s occurs twice in the canonical reduct of
(Cµαρt)Eµσms~s.) �

Lemma A.15 If s
(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ sn, xµαρ /∈ FV(s)

and (Cµαρt)E+
µ σms~s is a term, then (Cµαρt)E+

µ σms~s ∈ sn.

Proof Induction on s
(
m(µαρ)(µαρ×σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ sn+ by analysis of

the reducts of (Cµαρt)E+
µ σms~s. (Note that we need sn+ because s occurs twice in the canonical

reduct of (Cµαρt)E+
µ σms~s.) �

Corollary A.16 SN ⊆ sn.

Proof The same as for Lemma 9.6. �

A.2.1 Saturated sets for IMIT

Extend the definition for system eF of M being a τ -saturated set by the following clause:

(βµ) If s
(
m(µαρ)σ(λxµαρ.xEµσms)t

)
~s ∈ M, xµαρ /∈ FV(s) and (Cµαρt)Eµσms~s is a

term, then (Cµαρt)Eµσms~s ∈M.

(β+
µ) If s

(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ M, xµαρ /∈ FV(s) and

(Cµαρt)E+
µ σms~s is a term, then (Cµαρt)E+

µ σms~s ∈M.

Extend the definition of the τ -saturated closure clτ (M) accordingly by the clause

(βµ) If s
(
m(µαρ)σ(λxµαρ.xEµσms)t

)
~s ∈ clτ (M), xµαρ /∈ FV(s) and (Cµαρt)Eµσms~s is

a term, then (Cµαρt)Eµσms~s ∈ clτ (M).

(β+
µ) If s

(
m(µαρ)(µαρ × σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ clτ (M), xµαρ /∈ FV(s)

and (Cµαρt)E+
µ σms~s is a term, then (Cµαρt)E+

µ σms~s ∈ clτ (M).

Again clτ (M) is the smallest τ -saturated set containing M ∩ SNτ .

A.2.2 Calculating with saturated sets for IMIT

Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define for
M∈ SATµαρ

MI(M) := {r ∈ Λµαρ|∃t ∈ Φµαρ(M).r = Cµαρt}
ME(M) := {r ∈ Λµαρ|∀m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)∀σ∀N ∈ SATσ

∀s ∈ Φσ(N) → N rEµσms ∈ N ∧ ∀s ∈ Φµαρ×σ(M×N) → N rE+
µ σms ∈ N}

and define ΨI : SATµαρ → SATµαρ by

ΨI(M) := clµαρ(MI(M))

and ΨE : SATµαρ → SATµαρ by

ΨE(M) := clµαρ(ME(M)).

160 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

We cannot ensure ΨI or ΨE to be monotone. In order to overcome this problem we define (with
Pow denoting the power set)

Φ⊇ : SATµαρ → Pow(SNρ[α:=µαρ])

via
Φ⊇(M) := {t ∈ SNρ[α:=µαρ]|∀m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)

∀σ∀N ∈ SATσ∀s ∈M→ N .m(µαρ)σst ∈ Φσ(N)}

and for m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q) we define Φ⊆m := (Φ⊆m,σ)σ with

Φ⊆m,σ : SATσ → SATρ[α:=σ]

via

Φ⊆m,σ(N) := clρ[α:=σ]({r ∈ Λρ[α:=σ]|∃M ∈ SATµαρ∃s ∈M→ N∃t ∈ Φµαρ(M).
r = m(µαρ)σst})

Φ⊇ is monotone (even non-strictly positive) and Φ⊇ ⊇ Φµαρ (pointwise) because of the rules
(∀-E) and (→-E) for saturated sets. Φ⊆m,σ is monotone (even strictly positive) and Φ⊆m,σ ⊆ Φσ

(pointwise) also because of the rules (∀-E) and (→-E) for saturated sets. (Note that already the
set which is the argument to clρ[α:=σ] is a subset of Φσ(M) and therefore also Φ⊆m,σ(M) because
Φσ(M) is saturated.)
Define for M∈ SATµαρ

M⊇
I (M) := {r ∈ Λµαρ|∃t ∈ Φ⊇(M).r = Cµαρt}

M⊆
E (M) := {r ∈ Λµαρ|∀m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q)∀σ∀N ∈ SATσ

∀s ∈ Φσ(N) → N rEµσms ∈ N ∧ ∀s ∈ Φ⊆m,µαρ×σ(M×N) → N rE+
µ σms ∈ N}

and set
µI(Φ) := the least fixed point of Ψ⊇

I : SATµαρ → SATµαρ,

defined by
Ψ⊇

I (M) := clµαρ(M
⊇
I (M))

and
µE(Φ) := any fixed point of Ψ⊆

E : SATµαρ → SATµαρ,

defined by
Ψ⊆

E(M) := clµαρ(M
⊆
E (M)).

Because ΨI and ΨE are monotone (they are even non-strictly positive) and SATµαρ is a complete
lattice, such fixed points exists. Hence, µI(Φ) and µE(Φ) are µαρ-saturated sets.
Let us extract an encoding of types from the definition of µI(Φ):

(µαρ)′ := µβ.Mon(λαρ′)× ∀α.(β → α) → ρ′,

where we write Mon(λαρ) for ∀α∀β.(α → β) → ρ → ρ[α := β] and assume that β /∈ {α}∪FV(ρ).
The extraction read off the following proofs indeed gives an embedding of IMIT into NIPIT.
Following the elimination-based proof one presumably gets an embedding into a system of non-
interleaving positive fixed-point types.

Lemma A.17 ME(M) ∩ SN ∈ SAT and M⊆
E (M) ∩ SN ∈ SAT (which implies that ΨE(M) =

ME(M) ∩ SN and Ψ⊆
E(M) = M⊆

E (M) ∩ SN).

A.2. PROOF OF STRONG NORMALIZATION FOR IMIT 161

Proof Straightforward. �

Lemma A.18 MI(M) ⊆ SN and M⊇
I (M) ⊆ SN (which implies that ΨI(M) ⊇ MI(M) and

Ψ⊇
I (M) ⊇ M⊇

I (M)). �

Lemma A.19 Let M be a µαρ-saturated set M.
M is a pre-fixed-point of ΨI iff for all t ∈ Φµαρ(M), we have that Cµαρt ∈M.
M is a post-fixed-point of ΨE iff for all r ∈M, m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q), types σ,
N ∈ SATσ and s ∈ Φσ(N) → N , we have rEµσms ∈ N and for all s ∈ Φµαρ×σ(M×N) → N ,
rE+

µ σms ∈ N .

Proof Use the two preceding lemmas. �

Lemma A.20 µI(Φ) is a pre-fixed-point of ΨI .

Proof µI(Φ) is a pre-fixed-point of Ψ⊇
I by definition. Hence

µI(Φ) ⊇ Ψ⊇
I (µI(Φ)) ⊇ ΨI(µI(Φ)),

which clearly follows from Φ⊇ ⊇ Φµαρ because MI(M) and M⊇
I (M) have the same definition

with exception of the occurrence of Φµαρ and Φ⊇, respectively, which is at a strictly positive
position. �

Lemma A.21 µE(Φ) is a post-fixed-point of ΨE .

Proof µE(Φ) is a post-fixed-point of Ψ⊆
E by definition. Hence

µE(Φ) ⊆ Ψ⊆
E(µE(Φ)) ⊆ ΨE(µE(Φ)),

which clearly follows from Φ⊆m ⊆ Φ (typewise) because ME(M) and M⊆
E (M) have the same

definition with exception of the occurrence of Φµαρ×σ and Φ⊆m,µαρ×σ, respectively, which is at a
non-strictly positive position. �

Lemma A.22 µE(Φ) is a pre-fixed-point of ΨI
4.

Proof Set M := µE(Φ). We have to show that

ΨI(M) ⊆M.

Because M is a pre-fixed-point of Ψ⊆
E , it suffices to show

ΨI(M) ⊆ Ψ⊆
E(M).

Because clµαρ is monotone, it suffices to show

MI(M) ⊆ M⊆
E (M).

Let t ∈ Φµαρ(M). We have to show

Cµαρt ∈ M⊆
E (M).

4As for EMIT this seems not to extend to Ψ⊇
I instead of ΨI , and hence it is open whether µI(Φ) ⊆ µE(Φ).

162 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

Let m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q), σ be a type, N ∈ SATσ and s ∈ Φσ(N) → N . We
have to show that

CµαρtEµσms ∈ N .

Because N is saturated it suffices to show

s
(
m(µαρ)σ(λxµαρ.xEµσms)t

)
∈ N .

Because of (→-E) for saturated sets (in the sequel the named rules will always be those for
saturated sets) it suffices to show

m(µαρ)σ(λxµαρ.xEµσms)t ∈ Φσ(N).

By (∀-E) and (→-E) it suffices to show

λxµαρ.xEµσms ∈M→ N .

We use (→-I). Let r ∈M. We have to show

rEµσms ∈ N .

This follows from M⊆ Ψ⊆
E(M) ⊆ M⊆

E (M).
We come to the case for which Ψ⊆

E was designed, namely s ∈ Φ⊆m,µαρ×σ(M×N) → N . We have
to show

CµαρtE+
µ σms ∈ N .

By saturatedness of N it suffices to show

s
(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
∈ N .

Because of (→-E) it suffices to show

m(µαρ)(µαρ× σ)
(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t ∈ Φ⊆m,µαρ×σ(M×N).

According to the definition of Φ⊆m (the closure in the definition of Φ⊆m only makes the set larger)
we are done if we show

λxµαρ.〈x, (λxµαρ.xE+
µ σms)x〉 ∈ M→M×N .

We use (→-I). Let r ∈M. We have to show

〈r, (λxµαρ.xE+
µ σms)r〉 ∈ M×N .

By (×-I) it suffices to show
(λxµαρ.xE+

µ σms)r ∈ N .

Because N is saturated, we only need to show

rE+
µ σms ∈ N .

This follows again from M⊆ Ψ⊆
E(M) ⊆ M⊆

E (M). �

Note that we used from µE(Φ) the properties of being a pre-fixed-point and a post-fixed-point
of Ψ⊆

E .

A.2. PROOF OF STRONG NORMALIZATION FOR IMIT 163

Lemma A.23 µI(Φ) is a post-fixed-point of ΨE
5.

Proof Set M := µI(Φ). We prove M ⊆ ΨE(M) by extended induction (as defined in the
introduction to chapter 4) on M. Let M′ := ΨE(M) ∩M. We have to show

Ψ⊇
I (M′) ⊆ ΨE(M).

Because clµαρ is monotone, it suffices to show

M⊇
I (M′) ⊆ ME(M).

Let r ∈ M⊇
I (M′), i. e., r = Cµαρt with t ∈ Φ⊇(M′). We have to show that

Cµαρt ∈ ME(M).

Let m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q), σ be a type, N ∈ SATσ and s ∈ Φσ(N) → N . We
have to show that

CµαρtEµσms ∈ N .

Because N is saturated it suffices to show

s
(
m(µαρ)σ(λxµαρ.xEµσms)t

)
∈ N .

Because of (→-E) for saturated sets it suffices to show

m(µαρ)σ(λxµαρ.xEµσms)t ∈ Φσ(N).

By definition of Φ⊇(M′) it suffices to show

λxµαρ.xEµσms ∈M′ → N .

We use (→-I). Let r′ ∈M′. We have to show

r′Eµσms ∈ N .

This follows from M′ ⊆ ΨE(M) ⊆ ME(M).
We come to the case which needs the extended form of induction. Let s ∈ Φµαρ×σ(M×N) → N .
We have to show

CµαρtE+
µ σms ∈ N .

By saturatedness of N it suffices to show

s
(
m(µαρ)(µαρ× σ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
∈ N .

Because of (→-E) it suffices to show

m(µαρ)(µαρ× σ)
(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t ∈ Φµαρ×σ(M×N).

By definition of Φ⊇(M′) it suffices to show

λxµαρ.〈x, (λxµαρ.xE+
µ σms)x〉 ∈ M′ →M×N .

5Again as for EMITthis seems not to extend to Ψ⊆
E instead of ΨE .

164 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

We use (→-I). Let r′ ∈M′. We have to show

〈r′, (λxµαρ.xE+
µ σms)r′〉 ∈ M×N .

By (×-I) it suffices to show

r′ ∈M and (λxµαρ.xE+
µ σms)r′ ∈ N .

Because N is saturated and M′ ⊆M (this argument needs the extension of induction), we only
need to show

r′E+
µ σms ∈ N .

This follows again from M′ ⊆ ΨE(M) ⊆ ME(M). �

Note that we only used that µI(Φ) is a least pre-fixed-point.
Putting everything together we get the following rules for reasoning with µI(Φ) and µE(Φ) where
we simply write µ(Φ) for both of them:

(SAT) µ(Φ) ∈ SATµαρ.

(µ-I) If t ∈ Φµαρ(µ(Φ)), then Cµαρt ∈ µ(Φ).

(µ-E) If r ∈ µ(Φ), m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q), σ type, N ∈ SATσ and
s ∈ Φσ(N) → N , then rEµσms ∈ N .

(µ-E+) If r ∈ µ(Φ), m ∈ ∀P∀Q.(P → Q) → Φ(P) → Φ(Q), σ type, N ∈ SATσ and
s ∈ Φµαρ×σ(µ(Φ)×N) → N , then rE+

µ σms ∈ N .

A.2.3 Computability predicates for IMIT

Extend (as for EMIT) the definition of SCρ[~α := ~P] by the following clause:

(µ) SCµαρ[~α := ~P] := µ(Φ) with Φ = (Φσ)σ, where Φσ : SATσ → SATρ[~α,α:=~σ,σ] is de-
fined by Φσ(P) := SCρ[~α, α := ~P,P] (with the same assumptions as in the definition
of strong computability for universal types in order to guarantee type-correctness).

The definition will once again be written more intuitively as follows:

SCµαρ[~α := ~P] := µP.SCρ[~α, α := ~P,P].

It is obvious that coincidence and substitution lemma (Lemma 9.13 and Lemma 9.14) extend
to IMIT.
Now we extend Lemma 9.16 to IMIT:

Lemma A.24 Let rρ be a term, ~x~ρ a list of variables and ~s an equally long list of terms such
that ~s ∈ SC~ρ[~α := ~P~σ] for some ~P ⊆ SAT. Assume that

∀x∀π∀π′.(xπ, xπ′ ∈ FV(r) ∪ ~x~ρ) ∧ (π[~α := ~σ] = π′[~α := ~σ]) ⇒ π = π′.

Then r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] ∈ SCρ[~α := ~P].

A.3. PROOF OF STRONG NORMALIZATION FOR VARIMIT 165

Proof Induction on r. Again abbreviate r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] by r′ (for any term r). The
assumption in the statement will again be referenced to as “injectivity”. We only have to
consider the rules (µ-I), (µ-E) and (µ-E+).
(µ-I) Case Cµαρt. (Cµαρt)′ = Cµαρ[~α:=~σ]t

′. We may assume that α /∈ ~α. We have to show
Cµαρ[~α:=~σ]t

′ ∈ SCµαρ[~α := ~P]. By the rule (µ-I) for saturated sets it suffices to show

t′ ∈ SCρ[~α, α := ~P,SCµαρ[~α := ~P]].

Because FV(Cµαρt) = FV(t), injectivity holds trivially also for t. By induction hypothesis
t′ ∈ SCρ[α:=µαρ][~α := ~P].
By the substitution lemma (which for system F is Lemma 9.14) we have

SCρ[α:=µαρ][~α := ~P] = SCρ[~α, α := ~P,SCµαρ[~α := ~P]].

(µ-E) Case rEµσs. This is only a minor variant to the following (µ-E+) and therefore not shown.
(µ-E+) Case rE+

µ σms. (rE+
µ σms)′ = r′E+

µ (σ[~α := ~σ])m′s′. We have to show that

r′E+
µ σ[~α := ~σ]m′s′ ∈ SCσ[~α := ~P].

Use (µ-E+) for saturated sets. Show that r′ ∈ SCµαρ[~α := ~P],

m′ ∈ ∀P∀Q.(P → Q) → SCρ[~α, α := ~P,P] → SCρ[~α, α := ~P,Q] and

s′ ∈ SCρ[~α, α := ~P,SCµαρ[~α := ~P]× SCσ[~α := ~P]] → SCσ[~α := ~P].

Injectivity holds for r, m and s because FV(r),FV(m),FV(s) ⊆ FV(rE+
µ σms). Therefore by

induction hypothesis we have r′ ∈ SCµαρ[~α := ~P], m′ ∈ SC∀α∀β.(α→β)→ρ→ρ[α:=β][~α := ~P] and
s′ ∈ SCρ[α:=µαρ×σ]→σ[~α := ~P].
By two applications of the coincidence lemma (which for system F is Lemma 9.13) we see that

SC∀α∀β.(α→β)→ρ→ρ[α:=β][~α := ~P] = ∀P∀Q.(P → Q) → SCρ[~α, α := ~P,P] → SCρ[~α, α := ~P,Q]

(one of the applications even needs the generalization which is in fact shown).
Because we may assume α /∈ ~α the substitution lemma also gives the desired property of s′. �

As for EMIT we get as corollaries that SN = Λ and that every term is strongly normalizing.

A.3 Proof of strong normalization for varIMIT

This section contains the proof for varIMIT where the introduction-based proof is only a minor
variant to the proof for IMIT. The elimination-based proof follows the more general approach to
enforce monotonicity.
Extend the definition of SN for system eF by the expected clauses:

(µ-I) If t ∈ SN, then Cµαρt ∈ SN.

(βµ) If s
(
m(µαρ)(λxµαρ.xEµσms)t

)
~s ∈ SN, xµαρ /∈ FV(s) and (Cµαρt)Eµσms~s is a term,

then (Cµαρt)Eµσms~s ∈ SN.

(β+
µ) If s

(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ SN, xµαρ /∈ FV(s) and the ex-

pression (Cµαρt)E+
µ σms~s is a term, then (Cµαρt)E+

µ σms~s ∈ SN.

166 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

Lemma A.25 If t ∈ sn, then Cµαρt ∈ sn.

Proof Induction on t ∈ sn. �

Lemma A.26 If s
(
m(µαρ)(λxµαρ.xEµσms)t

)
~s ∈ sn, xµαρ /∈ FV(s) and (Cµαρt)Eµσms~s is a

term, then (Cµαρt)Eµσms~s ∈ sn.

Proof Induction on s
(
m(µαρ)(λxµαρ.xEµσms)t

)
~s ∈ sn+ by the usual analysis of the reducts

of (Cµαρt)Eµσms~s. (Note that we need sn+ because s occurs twice in the canonical reduct of
(Cµαρt)Eµσms~s.) �

Lemma A.27 If s
(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ sn, xµαρ /∈ FV(s) and the

expression (Cµαρt)E+
µ σms~s is a term, then (Cµαρt)E+

µ σms~s ∈ sn.

Proof Induction on s
(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ sn+ by analysis of the

reducts of (Cµαρt)E+
µ σms~s. (Note that we need sn+ because s occurs twice in the canonical

reduct of (Cµαρt)E+
µ σms~s.) �

Corollary A.28 SN ⊆ sn.

Proof The same as for Lemma 9.6. �

A.3.1 Saturated sets for varIMIT

Extend the definition for system eF of M being a τ -saturated set by the following clause:

(βµ) If s
(
m(µαρ)(λxµαρ.xEµσms)t

)
~s ∈M, xµαρ /∈ FV(s) and (Cµαρt)Eµσms~s is a term,

then (Cµαρt)Eµσms~s ∈M.

(β+
µ) If s

(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ M, xµαρ /∈ FV(s) and the ex-

pression (Cµαρt)E+
µ σms~s is a term, then (Cµαρt)E+

µ σms~s ∈M.

Extend the definition of the τ -saturated closure clτ (M) accordingly by the clause

(βµ) If s
(
m(µαρ)(λxµαρ.xEµσms)t

)
~s ∈ clτ (M), xµαρ /∈ FV(s) and (Cµαρt)Eµσms~s is a

term, then (Cµαρt)Eµσms~s ∈ clτ (M).

(β+
µ) If s

(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
~s ∈ clτ (M), xµαρ /∈ FV(s) and the

expression (Cµαρt)E+
µ σms~s is a term, then (Cµαρt)E+

µ σms~s ∈ clτ (M).

Again clτ (M) is the smallest τ -saturated set containing M ∩ SNτ .

A.3.2 Calculating with saturated sets for varIMIT

Fix λαρ. Let Φ := (Φτ)τ be a family of mappings Φτ : SATτ → SATρ[α:=τ]. Define for
M∈ SATµαρ

MI(M) := {r ∈ Λµαρ|∃t ∈ Φµαρ(M).r = Cµαρt}
ME(M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ

∀m ∈ ∀P.(P → N) → Φ(P) → Φσ(N)
∀s ∈ Φσ(N) → N rEµσms ∈ N ∧
∀m ∈ ∀P.(P →M×N) → Φ(P) → Φµαρ×σ(M×N)
∀s ∈ Φµαρ×σ(M×N) → N rE+

µ σms ∈ N}

A.3. PROOF OF STRONG NORMALIZATION FOR VARIMIT 167

and define ΨI : SATµαρ → SATµαρ by

ΨI(M) := clµαρ(MI(M))

and ΨE : SATµαρ → SATµαρ by

ΨE(M) := clµαρ(ME(M)).

We cannot ensure ΨI or ΨE to be monotone. In order to overcome this problem we define (with
Pow denoting the power set)

Φ⊇ : SATµαρ → Pow(SNρ[α:=µαρ])

via

Φ⊇(M) := {t ∈ SNρ[α:=µαρ]|∀σ∀N ∈ SATσ∀m ∈ ∀P.(P → N) → Φ(P) → Φσ(N)
∀s ∈M→ N .m(µαρ)st ∈ Φσ(N)}

and Φ⊆ := (Φ⊆σ)σ with
Φ⊆σ : SATσ → SATρ[α:=σ]

via

Φ⊆σ (N) := clρ[α:=σ]({r ∈ Λρ[α:=σ]|∃m ∈ ∀P.(P → N) → Φ(P) → Φσ(N)∃M ∈ SATµαρ

∃s ∈M→ N∃t ∈ Φµαρ(M).r = m(µαρ)st})

Φ⊇ is monotone (even non-strictly positive) and Φ⊇ ⊇ Φµαρ (pointwise) because of the rules
(∀-E) and (→-E) for saturated sets. Φ⊆σ is obviously not monotone (in general) and Φ⊆σ ⊆ Φσ

(pointwise) also because of the rules (∀-E) and (→-E) for saturated sets. (Note that already the
set which is the argument to clρ[α:=σ] is a subset of Φσ(M) and therefore also Φ⊆σ (M) because
Φσ(M) is saturated.)
Define for M∈ SATµαρ

M⊇
I (M) := {r ∈ Λµαρ|∃t ∈ Φ⊇(M).r = Cµαρt}

M⊆
E (M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ

∀m ∈ ∀P.(P → N) → Φ(P) → Φσ(N)
∀s ∈ Φσ(N) → N rEµσms ∈ N ∧
∀m ∈ ∀P.(P →M×N) → Φ(P) → Φµαρ×σ(M×N)

∀s ∈ Φ⊆µαρ×σ(M×N) → N rE+
µ σms ∈ N}

and set
µI(Φ) := the least fixed point of Ψ⊇

I : SATµαρ → SATµαρ,

defined by
Ψ⊇

I (M) := clµαρ(M
⊇
I (M))

and define Ψ⊆
E : SATµαρ → SATµαρ by

Ψ⊆
E(M) := clµαρ(M

⊆
E (M)).

Because ΨI is monotone (it is even non-strictly positive) and SATµαρ is a complete lattice, such
a fixed point exists. Hence, µI(Φ) is a µαρ-saturated set. Ψ⊆

E cannot be monotone in general

168 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

(not only the problem with Φ⊆ propagates but also M⊆
E (M)’s definition has several critical

occurrences of M). The definitions of Φ⊆, M⊆
E (M) and Ψ⊆

E are thus useless. Φ⊇ will not be
used any further and M⊆

E (M) and Ψ⊆
E are redefined as follows:

M⊆
E (M) := {r ∈ Λµαρ|∀σ∀N ∈ SATσ

∀m ∈ ∀P.(P → N) → Φ(P) → Φσ(N)
∀s ∈ Φσ(N) → N rEµσms ∈ N∧
∀M′ ∈ SATµαρ.M⊆M′ ⇒
∀m ∈ ∀P.(P →M′ ×N) → Φ(P) → Φµαρ×σ(M′ ×N)
∀s ∈ Φµαρ×σ(M′ ×N) → N rE+

µ σms ∈ N}
Ψ⊆

E(M) := clµαρ(M
⊆
E (M))

Ψ⊆
E is monotone (even non-strictly positive) and obviously Ψ⊆

E ⊆ ΨE (pointwise). We may now
form

µE(Φ) := any fixed point of Ψ⊆
E ,

which therefore is also a post-fixed-point of ΨE .
An analysis of the definition of µI(Φ) gives the following encoding (for “new” β and γ):

(µαρ)′ := µβ∀α.
(
∀γ.(γ → α) → ρ′[α := γ] → ρ′

)
→ (β → α) → ρ′.

An embedding of varIMIT into NIPIT may now be read off the proofs that µI(Φ) is a pre-fixed-
point of ΨI and that µI(Φ) is a post-fixed-point of ΨE

6 which are given below. It is possible to
show that this indeed gives an embedding.
The elimination-based approach presumably gives a quite complicated embedding into non-
interleaving positive fixed-point types.

Lemma A.29 ME(M) ∩ SN ∈ SAT and M⊆
E (M) ∩ SN ∈ SAT (which implies that ΨE(M) =

ME(M) ∩ SN and Ψ⊆
E(M) = M⊆

E (M) ∩ SN).

Proof Straightforward. �

Lemma A.30 MI(M) ⊆ SN and M⊇
I (M) ⊆ SN (which implies that ΨI(M) ⊇ MI(M) and

Ψ⊇
I (M) ⊇ M⊇

I (M)). �

Lemma A.31 Let M be a µαρ-saturated set M.
M is a pre-fixed-point of ΨI iff for all t ∈ Φµαρ(M), we have that Cµαρt ∈M.
M is a post-fixed-point of ΨE iff for all r ∈ M, types σ, N ∈ SATσ, m ∈ ∀P.(P → N) →
Φ(P) → Φσ(N) and s ∈ Φσ(N) → N , we have rEµσms ∈ N and for m ∈ ∀P.(P →M×N) →
Φ(P) → Φµαρ×σ(M×N) and s ∈ Φµαρ×σ(M×N) → N , rE+

µ σms ∈ N .

Proof Use the two preceding lemmas. �

Lemma A.32 Every pre-fixed-point of Ψ⊇
I is also a pre-fixed-point of ΨI .

Proof Let M be a pre-fixed-point of Ψ⊇
I . Hence

M⊇ Ψ⊇
I (M) ⊇ ΨI(M),

which clearly follows from Φ⊇ ⊇ Φµαρ because MI(M) and M⊇
I (M) have the same definition

with exception of the occurrence of Φµαρ and Φ⊇, respectively, which is at a strictly positive
position. �

6In fact we prove that µI(Φ) is a post-fixed-point of Ψ⊆
E and should analyze the slightly easier proof of the

weaker statement.

A.3. PROOF OF STRONG NORMALIZATION FOR VARIMIT 169

Lemma A.33 µE(Φ) is a pre-fixed-point of Ψ⊇
I .

Proof Set M := µE(Φ). We have to show that

Ψ⊇
I (M) ⊆M.

Because M is a pre-fixed-point of Ψ⊆
E , it suffices to show

Ψ⊇
I (M) ⊆ Ψ⊆

E(M).

Because clµαρ is monotone, it suffices to show

M⊇
I (M) ⊆ M⊆

E (M).

Let t ∈ Φ⊇(M). We have to show
Cµαρt ∈ M⊆

E (M).

Let σ be a type, N ∈ SATσ, m ∈ ∀P.(P → N) → Φ(P) → Φσ(N) and s ∈ Φσ(N) → N . We
have to show that

CµαρtEµσms ∈ N .

Because N is saturated it suffices to show

s
(
m(µαρ)(λxµαρ.xEµσms)t

)
∈ N .

Because of (→-E) for saturated sets (in the sequel the named rules will always be those for
saturated sets) it suffices to show

m(µαρ)(λxµαρ.xEµσms)t ∈ Φσ(N).

By definition of Φ⊇(M) it suffices to show

λxµαρ.xEµσms ∈M→ N .

We use (→-I). Let r ∈M. We have to show

rEµσms ∈ N .

This follows from M⊆ Ψ⊆
E(M) ⊆ M⊆

E (M).
We come to the case for which Ψ⊆

E was designed, namely m ∈ ∀P.(P → M′ × N) → Φ(P) →
Φµαρ×σ(M′ × N) and s ∈ Φµαρ×σ(M′ × N) → N for some M′ ∈ SATµαρ with M ⊆ M′. We
have to show

CµαρtE+
µ σms ∈ N .

By saturatedness of N it suffices to show

s
(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
∈ N .

Because of (→-E) it suffices to show

m(µαρ)(µαρ× σ)
(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t ∈ Φµαρ×σ(M′ ×N).

According to the definition of Φ⊇ we are done if we show

λxµαρ.〈x, (λxµαρ.xE+
µ σms)x〉 ∈ M→M′ ×N .

170 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

We use (→-I). Let r ∈M. We have to show

〈r, (λxµαρ.xE+
µ σms)r〉 ∈ M′ ×N .

By (×-I) and because of M⊆M′ it suffices to show

(λxµαρ.xE+
µ σms)r ∈ N .

Because N is saturated, we only need to show

rE+
µ σms ∈ N .

This follows again from M⊆ Ψ⊆
E(M) ⊆ M⊆

E (M). �

Note that we used from µE(Φ) the properties of being a pre-fixed-point and a post-fixed-point
of Ψ⊆

E . Note also that for the purposes of the normalization proof it would have been enough
to show that µE(Φ) is a pre-fixed-point of ΨI instead of Ψ⊇

I , but from the above result we even
get the following

Corollary A.34 µI(Φ) ⊆ µE(Φ).

Proof µI(Φ) is the least pre-fixed-point of Ψ⊇
I . �

Lemma A.35 µI(Φ) is a post-fixed-point of Ψ⊆
E .

Proof Set M := µI(Φ). We prove M ⊆ Ψ⊆
E(M) by extended induction (as defined in the

introduction to chapter 4) on M. Let M′ := Ψ⊆
E(M) ∩M. We have to show

Ψ⊇
I (M′) ⊆ Ψ⊆

E(M).

Because clµαρ is monotone, it suffices to show

M⊇
I (M′) ⊆ M⊆

E (M).

Let r ∈ M⊇
I (M′), i. e., r = Cµαρt with t ∈ Φ⊇(M′). We have to show that

Cµαρt ∈ M⊆
E (M).

Let σ be a type, N ∈ SATσ, m ∈ ∀P.(P → N) → Φ(P) → Φσ(N) and s ∈ Φσ(N) → N . We
have to show that

CµαρtEµσms ∈ N .

Because N is saturated it suffices to show

s
(
m(µαρ)(λxµαρ.xEµσms)t

)
∈ N .

Because of (→-E) for saturated sets it suffices to show

m(µαρ)(λxµαρ.xEµσms)t ∈ Φσ(N).

By definition of Φ⊇(M′) it suffices to show

λxµαρ.xEµσms ∈M′ → N .

A.3. PROOF OF STRONG NORMALIZATION FOR VARIMIT 171

We use (→-I). Let r′ ∈M′. We have to show

r′Eµσms ∈ N .

This follows from M′ ⊆ Ψ⊆
E(M) ⊆ M⊆

E (M).
We come to the case which needs the extended form of induction. Let M′′ ∈ SATµαρ with M⊆
M′′, m ∈ ∀P.(P → M′′ × N) → Φ(P) → Φµαρ×σ(M′′ × N) and s ∈ Φµαρ×σ(M′′ × N) → N .
We have to show

CµαρtE+
µ σms ∈ N .

By saturatedness of N it suffices to show

s
(
m(µαρ)

(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t
)
∈ N .

Because of (→-E) it suffices to show

m(µαρ)
(
λxµαρ.〈x, (λxµαρ.xE+

µ σms)x〉
)
t ∈ Φµαρ×σ(M′′ ×N).

By definition of Φ⊇(M′) it suffices to show

λxµαρ.〈x, (λxµαρ.xE+
µ σms)x〉 ∈ M′ →M′′ ×N .

We use (→-I). Let r′ ∈M′. We have to show

〈r′, (λxµαρ.xE+
µ σms)r′〉 ∈ M′′ ×N .

By (×-I) it suffices to show

r′ ∈M′′ and (λxµαρ.xE+
µ σms)r′ ∈ N .

Because N is saturated and M′ ⊆M ⊆M′′ (this argument needs the extension of induction),
we only need to show

r′E+
µ σms ∈ N .

This follows again from M′ ⊆ Ψ⊆
E(M) ⊆ M⊆

E (M). �

Note that we only used that µI(Φ) is a least pre-fixed-point. Note also that for the purposes of
the normalization proof it would have been enough to show that µI(Φ) is a post-fixed-point of
ΨE instead of Ψ⊆

E
7.

Putting everything together we get the following rules for reasoning with µ(Φ) := µI(Φ):

(SAT) µ(Φ) ∈ SATµαρ.

(µ-I) If t ∈ Φµαρ(µ(Φ)), then Cµαρt ∈ µ(Φ).

(µ-E) If r ∈ µ(Φ), σ type, N ∈ SATσ, m ∈ ∀P.(P → N) → Φ(P) → Φσ(N) and
s ∈ Φσ(N) → N , then rEµσms ∈ N .

(µ-E+) If r ∈ µ(Φ), σ type, N ∈ SATσ, m ∈ ∀P.(P →M×N) → Φ(P) → Φµαρ×σ(M×N)
and s ∈ Φµαρ×σ(µ(Φ)×N) → N , then rE+

µ σms ∈ N .

7If the greatest fixed point is taken for µE(Φ), then also the preceding lemma implies that µI(Φ) ⊆ µE(Φ).

172 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

A.3.3 Computability predicates for varIMIT

Extend (as for IMIT) the definition of SCρ[~α := ~P] by the following clause:

(µ) SCµαρ[~α := ~P] := µ(Φ) with Φ = (Φσ)σ, where Φσ : SATσ → SATρ[~α,α:=~σ,σ] is de-
fined by Φσ(P) := SCρ[~α, α := ~P,P] (with the same assumptions as in the definition
of strong computability for universal types in order to guarantee type-correctness).

The definition will once again be written more intuitively as follows:

SCµαρ[~α := ~P] := µP.SCρ[~α, α := ~P,P].

It is obvious that coincidence and substitution lemma (Lemma 9.13 and Lemma 9.14) extend
to varIMIT.
Now we extend Lemma 9.16 to varIMIT:

Lemma A.36 Let rρ be a term, ~x~ρ a list of variables and ~s an equally long list of terms such
that ~s ∈ SC~ρ[~α := ~P~σ] for some ~P ⊆ SAT. Assume that

∀x∀π∀π′.(xπ, xπ′ ∈ FV(r) ∪ ~x~ρ) ∧ (π[~α := ~σ] = π′[~α := ~σ]) ⇒ π = π′.

Then r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] ∈ SCρ[~α := ~P].

Proof Induction on r. Again abbreviate r[~α := ~σ][~x~ρ[~α:=~σ] := ~s] by r′ (for any term r). The
assumption in the statement will again be referenced to as “injectivity”. We only have to
consider the rules (µ-I), (µ-E) and (µ-E+).
(µ-I) Trivially the same as for IMIT.
(µ-E) Case rEµσs. This is only a minor variant to the following (µ-E+) and therefore not shown.
(µ-E+) Case rE+

µ σms. (rE+
µ σms)′ = r′E+

µ (σ[~α := ~σ])m′s′. We have to show that

r′E+
µ σ[~α := ~σ]m′s′ ∈ SCσ[~α := ~P].

Use (µ-E+) for saturated sets. Show that r′ ∈ SCµαρ[~α := ~P],

m′ ∈ ∀P.(P → SCµαρ[~α := ~P]× SCσ[~α := ~P]) → SCρ[~α, α := ~P,P] →

SCρ[~α, α := ~P,SCµαρ[~α := ~P]× SCσ[~α := ~P]]

and
s′ ∈ SCρ[~α, α := ~P,SCµαρ[~α := ~P]× SCσ[~α := ~P]] → SCσ[~α := ~P].

Injectivity holds for r, m and s because FV(r),FV(m),FV(s) ⊆ FV(rE+
µ σms). Therefore by

induction hypothesis we have r′ ∈ SCµαρ[~α := ~P], m′ ∈ SC∀α.(α→µαρ×σ)→ρ→ρ[α:=µαρ×σ][~α := ~P]
and s′ ∈ SCρ[α:=µαρ×σ]→σ[~α := ~P].
By several applications of the coincidence lemma (which for system F is Lemma 9.13) we see that
m′ is already in the right set (use α /∈ FV(σ)). Because we may assume α /∈ ~α the substitution
lemma also gives the desired property of s′. �

As for IMIT we get as corollaries that SN = Λ and that every term is strongly normalizing.

A.4. CONCLUDING REMARKS 173

A.4 Concluding remarks

For the systems of monotone inductive types we preferred to monotonize Φ by help of mono-
tonicity witnesses and then to replace Φ by the monotonized variant in the definition of the
operators ΨI and ΨE in order to get Ψ⊇

I and Ψ⊆
E

8. In the introduction-based proof for varEMIT
and in the elimination-based proof for varIMIT this approach failed and therefore a more primi-
tive monotonization had to happen directly in the definition of M⊇

I (M) and M⊆
E (M). It is easy

to see that
M⊇

I (M) =
⋃
{MI(M′)|M′ ⊆M} in the proof for varEMIT

and
M⊆

E (M) =
⋂
{ME(M′)|M′ ⊇M} in the proof for varIMIT

which is quite similar to the definitions of upper and lower monotonization. By applying the
saturated closure monotone operators Ψ⊇

I and Ψ⊆
E were defined. One can show that in fact Ψ⊇

I

is the upper monotonization of ΨI (use MI(M) ⊆ SN) and that Ψ⊆
E is the lower monotoniza-

tion of ΨE (use ME(M) ∩ SN ∈ SAT). We may now ask whether the use of those canonical
monotonizations would be fruitful even in case the other method works. The answer is positive.
Let us consider varIMIT. We set

M̃⊇
I (M) =

⋃
{MI(M′)|M′ ⊆M},

define Ψ̃⊇
I (M) := clµαρ(M̃

⊇
I (M)) and take for µ̃I(Φ) the least fixed point of Ψ̃⊇

I . Then again Ψ̃⊇
I

is the upper monotonization of ΨI and hence due to the minimality of the upper monotonization
Ψ̃⊇

I ⊆ Ψ⊇
I (pointwise). We conclude that µ̃I(Φ) ⊆ µI(Φ). It can be shown that µ̃I(Φ) is a post-

fixed-point of Ψ⊆
E (ΨE would suffice) and hence µ̃I(Φ) also qualifies for the definition of the

computability predicates and the normalization proof. The extracted encoding of types is

(µαρ)′ := µα∃β.(β → α)× ρ′[α := β]

with β /∈ {α} ∪ FV(ρ′) which is exactly the encoding of types used in the embedding of UVIT
into MePIT and also the encoding of types in the embedding of varIMIT into MePIT which is
derived from the composition of the embeddings via MeIT and UVIT. By analysis of the proof
that µ̃I(Φ) is a post-fixed-point of ΨE we even get the embedding of varIMIT into MePIT for
the terms.
Now consider EMIT: If we also take the upper monotonization of ΨI we get another introduction-
based proof for EMIT giving rise to the encoding

(µαρ)′ := µβ.Mon(λαρ′)× ∃α.(α → β)× ρ′

with β /∈ {α} ∪ FV(ρ′) which extends to an embedding of EMIT into NISPIT+ex but (trivially)
not into MePIT. In section 9.5.1 we got via the encoding

(µαρ)′ := µβ.Mon(λαρ′)× ∀α.(β → α) → ρ′

an embedding of EMIT into NIPIT.
Unlike the situation of varIMIT we get a type encoding being free from the monotonicity state-
ment in neither of the two approaches. Of course, we would like to get back the encoding into

8Clearly, the introduction-based operator has to be made bigger and the elimination-based operator has to
made smaller such that in the first case a pre-fixed-point of the new operator is also a pre-fixed-point of the
original operator ΨI and in the second case that a post-fixed-point of the new operator is also a post-fixed-point
of the original operator ΨE .

174 APPENDIX A. OTHER PROOFS OF STRONG NORMALIZATION

the types of coMePIT (in chapter 6). But in the introduction-based proof for EMIT (which led
to the last-mentioned encoding) we urgently needed the monotonicity assumptions in order to
have that M⊇

I (M) ⊇ MI(M). Already the type ∀α.(β → α) → ρ′ reflects the lower mono-
tonization which hints at the impossibility of getting rid of Mon(λαρ′) without giving up the
essential M⊇

I (M) ⊇ MI(M). Nevertheless, it is possible even for varEMIT which does not allow
the introduction-based proof by the method used in the proof for EMIT! This was shown in
section 6.3.2 and section 6.3.3 by making use of coMeIT (being designed for that purpose). How
is this possible? In the lattice-theoretic motivation of the embedding of varEMIT into coMeIT
we used a monotone Φ and studied the rules of its lower monotonization knowing that it is the
same as Φ. It turned out that for the embedding to work it was sufficient that there is a mono-
tonicity witness. In the normalization proof however, the operator is not monotone and hence
its monotonization different from it. Only via the monotonicity requirement (for EMIT this is
∀P∀Q.(P → Q) → Φ(P) → Φ(Q)) for the monotonicity witnesses they relate to each other.
Therefore we do not get a normalization proof whose extract gives the embedding of varEMIT
into coMePIT. But we may take the embedding read off the first proof for EMIT, recognize that
the monotonicity witnesses do not play an essential role in the embedding(!) and then optimize
the embedding and finally see that it even captures varEMIT although the normalization proof
we started with did not extend to varEMIT.

Appendix B

Directions for future research

In the introductory chapter the impossibility of having a “good” predecessor function on the
natural numbers represented in system F was a motivation for studying extensions of system F
by primitive recursion. In section 5.1.2 we saw that Gödel’s system T is represented faithfully
in NISPIT via the type µα.1 + α. Therefore we have the required predecessor function. The
question now is whether a general predecessor may be defined, i. e., a closed term P of type
µαρ → ρ[α := µαρ] such that P (Cµαρt) →∗ t for every term t of type ρ[α := µαρ]. We first
study the situation for monotone inductive types.
In EMIT the exact question would be: Is there a closed term P of type µαρ → ρ[α := µαρ] such
that P (Cµαρmt) →∗ t for every m and t? For IMIT it would be the question as above.
Let us look at the lattice-theoretic situation: If (U,≤) is a complete lattice and Φ : U → U
is a monotone, we want to show that lfp(Φ) ≤ Φ(lfp(Φ)). It is done by applying the rule (lfp-
E+). We have to show Φ(lfp(Φ) ∧ Φ(lfp(Φ))) ≤ Φ(lfp(Φ)). This follows by mononicity from
lfp(Φ) ∧ Φ(lfp(Φ)) ≤ lfp(Φ).
The proof motivates the following “definition” for EMIT:

P := λxµαρ.xE+
µ

(
m(µαρ× ρ[α := µαρ])(µαρ)(λzµαρ×ρ[α:=µαρ].zL)

)
.

Where do we take m from? In EMIT I see no chance. Neither in IMIT, where m also has to be
put after “E+

µ ”. But even for a type with a fixed closed monotonicity witness there need not
be any predecessor: Define one of the systems ESMIT by setting MTypes to the least set closed
under all the type forming operations except (µ) and having π := µα.α → 1 ∈ MTypes. Set

mapλα.α→1 := ΛαΛβλfα→βλxα→1λyβ.IN1.

That this gives one of the systems ESMIT (and also ISMIT) is trivial to see. The constructor Cπ

has type (π → 1) → π. Assume that there is a term P : π → π → 1 such that P (Cπtπ→1) →∗ t
for every term t. Consider ω := λxπ.Pxx : π → 1. Then Cπω : π. Setting Ω := ω(Cπω) : 1, we
get P (Cπω) →∗ ω and hence

Ω 7→β→ P (Cπω)(Cπω) →∗ ω(Cπω) = Ω.

By Lemma 2.50 we conclude that Ω /∈ sn contradicting strong normalization1.
The same proof works verbatim for IMIT and by decorating Cπ with mapλα.α→1 everywhere also
for EMIT.
We observe that the monotonicity witness does not enter the specification of the predecessor.
This leads to the following idea (formulated for EMIT): Define a weak predecessor to be a closed

1Here we need strong normalization.

175

176 APPENDIX B. DIRECTIONS FOR FUTURE RESEARCH

term P of type µαρ → ρ[α := µαρ] such that P (Cµαρmt) and m(µαρ)(µαρ)(λyµαρy)t have a
common reduct for every m and t.
For IMIT an m∀α∀β.(α→β)→ρ→ρ[α:=β]-predecessor is a closed term P of type µαρ → ρ[α := µαρ]
such that P (Cµαρt) and m(µαρ)(µαρ)(λyµαρy)t have a common reduct for every t.
For ESMIT a weak predecessor is a closed term P of type µαρ → ρ[α := µαρ] such that P (Cµαρt)
and mapλαρ(µαρ)(µαρ)(λyµαρy)t have a common reduct for every t.
For the example type π this would require that P (Cπt) and mapλα.α→1ππ(λyπy)t have a common
reduct. Hence, P := λxπλyπ.IN1 suffices—reflecting the triviality of the monotonicity witness.
This is the basis for the definition of systems of monotone fixed-point types. (We write now
µ̂ instead of µ to emphasize the difference.) We show the elimination-based system: The (µ)-
introduction rule of EMIT is kept, and the (µ)-elimination rules are replaced by:

(µ̂-E) If rµ̂αρ ∈ Λ, then rEµ̂ ∈ Λ.

The rules (βµ) and (β+
µ) of iteration and primitive recursion are replaced by

(βµ̂) (Cµ̂αρmt)Eµ̂ 7→ m(µ̂αρ)(µ̂αρ)(λyµ̂αρy)t.

One can show that this extension of F is strongly normalizing either by a direct proof in the style
of this thesis’ normalization proofs or by an embedding into a system of non-interleaved positive
fixed-point types. There are two such systems: one having the intuitive predecessor modelled by
(Cµ̂αρt)Eµ̂ 7→ t, the other being defined as above for monotone fixed-point types but with canon-
ical monotonicity witnesses existing due to the absence of interleaving. One may then embed
them into each other (if we leave out sum types and add standard η-rules) because the canonical
monotonicity witnesses then map the identity to the identity, i. e. mapλαρσσ(λyσy)sρ[α:=σ] →∗ s
for every type σ and any term s.
The extracted embeddings motivated in the sections with the direct normalization proofs em-
bed monotone inductive types into non-interleaving positive fixed-point types, but also non-
interleaving positive fixed-point types embed into non-interleaving positive inductive types
(again if sum types are left out and this time because the canonical witnesses are functorial
with respect to some restricted composition). We see that we may separate concerns: The
behaviour of the monotonicity witnesses on the identity and their behaviour with respect to
composition.
Because of these embeddings we also cannot expect an embedding of non-interleaving positive
fixed-point types into IT. However, led by the proof of Tarski’s theorem where it is even shown
that the infimum of the pre-fixed-points is a post-fixed-point (see section 4.3.3) we can define
an encoding of the system into IT2. The crucial definition clause is

(µ̂-E) (rµ̂αρEµ̂)′ := r′Ei

(
mapλαρ′(ρ′[α := (µ̂αρ)′])(µ̂αρ)′(λzρ[α:=µ̂αρ].Cµ̂αρz)′

)
.

Note that (λzρ[α:=µ̂αρ].Cµ̂αρz)′ has first3 to be expanded according to the rule (µ̂-I) which will
be the same as for the embedding of varIMIT–rec into IT but with canonical witnesses instead
of any m. As expected it turns out that this encoding does not preserve reduction and hence is

2Unlike the situation of section 4.3.3 we cannot deal with elimination-based monotone fixed-point types because
the argument for getting a post-fixed-point again uses the monotonicity of Φ which is reflected by the need
of a monotonicity witness also in the rule (µ̂-E) and hence requiring to keep to systems which have selected
monotonicity witnesses.

3Recall that in the proof of Tarski’s theorem we first proved that µΦ is a pre-fixed-point and then used this
fact for the proof that µΦ is also a post-fixed-point.

177

no embedding. As was the case for the attempt to code recursion via iteration (in section 4.5)
not only functoriality is needed but also some formal induction principle. In addition one would
have to define η-reduction for infimum types.
Sum types make things more complicated when trying to attack functoriality problems. One
needs some η-rule and permutative conversions which may be handled though.
The question of existence of the predecessor for interleaved positive inductive types is more
involved because one needs an η-rule and permutative conversions for µ-types (which are not
yet known). One may at least show that in extensional equality theory (with a rule meaning
that µαρ not only expresses a weakly initial algebra but even an initial algebra, cf. [Geu92])
the intuitive definition of the predecessor shown at the beginning of this section is correct. The
proofs of functoriality of map and comap which enter the argument are quite intricate and rely
on naturality. For PITrec where map and comap do not use (µ-E) but (µ-E+) the proofs are
even more involved. Extensionally, map and comap are equal to those of PITit = PIT.
A lot more could be said but will be said or written elsewhere.
But now we come to some open problems:

• What are useful permutations of µ with µ?

• Do they strongly normalize?

• Are they confluent? (This is a problem of my current definition.)

• Do they help in analyzing the closed terms in normal form of type of a monotonicity
witness, namely ∀α∀β.(α → β) → ρ → ρ[α := β]?

• Is it at least possible to analyze the closed terms in normal form (after adding η-reduction)
of type ∀α∀β.(α → β) → ρ → ρ[α := β] in NIPIT without sum types? Are they the canon-
ical terms map, if one requires that they map the identity to the identity (also with η-rules
included)?

• What happens with sum types? How can one reduce the set NF to have xE+st~s ∈ NF only
if x /∈ FV(s) ∪ FV(t)? I propose some variable elimination reduction as follows:

xρ+σE+st 7→ xE+(λyρ.(sy)[x := INLσy])(λyσ.(ty)[x := INRρy])

provided that x ∈ FV(s) ∪ FV(t) and y is “new”. It will be wise to allow this reduction
also for any substitution instance. Does it preserve strong normalization? (It is correct in
the extensional equality theory.)

• How about the analogous rule for µ-types?

• Is it true that for non-positive µαρ, there is no closed monotonicity witness mapping the
identity to the identity? (After adding as much η-rules as possible.)

• What can be done with types such as bizarre(ρ) which are inhabited, monotone and not
positive and do not map the identity to the identity? Are there more interesting examples
of essentially monotone inductive types? Or do we first need to extend our framework to
cover dependent types?4

• Is there a proof of confluence for a class of orthogonal term rewrite systems which includes
every system of this thesis?

4After all, in mathematics there is a wealth of monotone functions not being positive although monotonicity
is often enforced by syntactic means (cf. the example of limit inferior in the introduction).

178 APPENDIX B. DIRECTIONS FOR FUTURE RESEARCH

• Is there anything to be gained by dualizing everything to coinductive types?

• Is there an embedding of SPIT into NISPIT or of NIPIT into SPIT?

• What are the differences in heights of reduction trees between PIT and NIPIT(for a term
and its code in the other system)?

• Do we always have µI(Φ) ⊆ µE(Φ) in the proofs of strong normalization for systems of
inductive types? Are there examples which show that µI(Φ) 6= µE(Φ)?

• One should work out modified realizability for monotone inductive definitions using the
term language of systems of monotone inductive types and prove soundness of this inter-
pretation. (For interleaving positive inductive definitions without “extended induction”
and without second-order universal quantification this is sketched in [Ber95].)

• Is there a meta-theorem stating that the encodings read off the normalization proofs in the
style of chapter 9 are always embeddings? It seems essential that in the presented proofs
all the definitions of saturated sets by comprehension are closed via the saturated closure.

Because issues of denotational semantics were never touched in this thesis I close by expressing
the hope that the methods of [Loa97] may be lifted from strictly positive types to the systems
of this thesis.

Index

bar induction, 20

complete lattice, 33
congruence rules for µ, 59
critical pair, 109
Curry-Howard isomorphism, 1, 11, 17, 19,

26, 28, 30, 54

extended induction, 51

fixed-point types, 176
framework, 35
functoriality, 66–68, 176, 177

Gödel’s T, 76

homomorphic µ-elimination rules, 60
homomorphic µ-elimination rule, 60
homomorphic µ-introduction rule, 70
homomorphic µ+-elimination rule, 60
homomorphic term rules for eF, 38
homomorphic term rules for F, 33
homomorphic type rules for eF, 37
homomorphic type rules for F, 32

inconsistency, 72
induction on r ∈ sn+, 31
interleaving, 49

local confluence, 103

meta-convention, 28, 122
metapredicativity, 46
monotonization, 6

lower, 83
upper, 83

näıve reduction-free normalization, 22
nesting, 49

ordinals, 60
orthogonality, 109

Peirce formula, 23

permutative conversions, 24, 38, 68, 177
predecessor, 175
predicativity, 46

quadratic reasoning, 28

saturated closure, 115
sn, 20
standardization theorem, 22
stratification, 58
strongly normalizing terms, 20

Tarski’s theorem, 43, 63, 176
trees, 46

uniformity, 58

well-founded, 58
well-parsed, 21
witness of monotonicity, 52

179

180 INDEX

Bibliography

[Acz77] Peter Aczel. An introduction to inductive definitions. In Barwise [Bar77], pages
739–782.

[Alt93a] Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh, 1993.

[Alt93b] Thorsten Altenkirch. A formalization of the strong normalization proof for system F
in LEGO. In Bezem and Groote [BG93], pages 13–28.

[Alt93c] Thorsten Altenkirch. Strong normalization for T+. ASCII note, 1993.

[Bar77] Jon Barwise, editor. Handbook of Mathematical Logic, volume 90 of Studies in logic
and the foundations of mathematics. North–Holland, Amsterdam, 1977.

[Bar84] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North–
Holland, Amsterdam, second revised edition, 1984.

[Bar93] Henk P. Barendregt. Lambda calculi with types. In Samson Abramsky, Dov M.
Gabbay, and Tom S. E. Maibaum, editors, Background: Computational Structures,
volume 2 of Handbook of Logic in Computer Science, pages 117–309. Oxford Univer-
sity Press, 1993.

[BB85] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed λ-programs
on term algebras. Theoretical Computer Science, 39:135–154, 1985.

[BBS+98] Holger Benl, Ulrich Berger, Helmut Schwichtenberg, Monika Seisenberger, and Wolf-
gang Zuber. Proof theory at work: Program development in the MINLOG system.
In Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction—A Basis for
Applications, Vol. II Systems and Implementation Techniques, volume 9 of Applied
Logic Series. Kluwer Academic Publishers, 1998.

[Ber93] Ulrich Berger. Program extraction from normalization proofs. In Bezem and Groote
[BG93], pages 91–106.

[Ber95] Ulrich Berger. A constructive interpretation of positive inductive definitions. Draft,
March 1995.

[BFPS81] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg. Iterated
Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies,
volume 897 of Lecture Notes in Mathematics. Springer Verlag, 1981.

[BG93] Marc Bezem and J.F. Groote, editors. Typed Lambda Calculi and Applications, volume
664 of Lecture Notes in Computer Science. Springer Verlag, 1993.

181

182 BIBLIOGRAPHY

[BTG91] Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting preserves algebraic
strong normalization. Theoretical Computer Science, 83(1):3–28, 1991.

[CV97] Venanzio Capretta and Silvio Valentini. A general method to prove the normalization
theorem for first and second order typed λ-calculi. To be published in Mathematical
Structures in Computer Science, 1997.

[Dav55] Anne C. Davis. A characterization of complete lattices. Pacific Journal of Mathe-
matics, 5:311–319, 1955.

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Inda-
gationes Mathematicae, 34:381–392, 1972.

[Fef77] Solomon Feferman. Theories of finite type related to mathematical practice. In
Barwise [Bar77], pages 913–971.

[Fef82] Solomon Feferman. Monotone inductive definitions. In Anne S. Troelstra and Dirk
van Dalen, editors, The L. E. J. Brouwer Centenary Symposium, pages 77–89. North–
Holland, Amsterdam, 1982.

[Gal90] Jean H. Gallier. On Girard’s “candidats de reductibilité”. In Odifreddi [Odi90], pages
123–203.

[Gal98] Jean Gallier. Typing untyped λ-terms, or reducibility strikes again! Annals of Pure
and Applied Logic, 91:231–270, 1998.

[Geu92] Herman Geuvers. Inductive and coinductive types with iteration and re-
cursion. In Bengt Nordström, Kent Pettersson, and Gordon Plotkin, edi-
tors, Proceedings of the 1992 Workshop on Types for Proofs and Programs,
B̊astad, Sweden, June 1992, pages 193–217, 1992. Electronically available via
ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/proc.dvi.Z.

[Geu93] Herman Geuvers. Logics and Type Systems. Proefschrift (PhD thesis), University of
Nijmegen, September 1993.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. Thèse de Doctorat d’État, Université de Paris VII,
1972.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
1989.

[Gog94] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis,
University of Edinburgh, August 1994. Available as LFCS Report ECS-LFCS-94-
304.

[Gog95] Healfdene Goguen. Typed operational semantics. In Mariangiola Dezani-Ciancaglini
and Gordon Plotkin, editors, Proceedings of the Second International Conference
on Typed Lambda Calculi and Applications (TLCA ’95), Edinburgh, United King-
dom, April 1995, volume 902 of Lecture Notes in Computer Science, pages 186–200.
Springer Verlag, 1995.

BIBLIOGRAPHY 183

[GRS97] Thomas Glass, Michael Rathjen, and Andreas Schlüter. On the proof-theoretic
strength of monotone induction in explicit mathematics. Annals of Pure and Ap-
plied Logic, 85:1–46, 1997.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479–490. Academic Press, 1980.

[How92] Brian Howard. Fixed Points and Extensionality in Typed Functional Programming
Languages. PhD thesis, Stanford University, 1992.

[JO97] Jean-Pierre Jouannaud and Mitsuhiro Okada. Abstract data type systems. Theoret-
ical Computer Science, 173:349–391, 1997.

[Joa97] Felix Joachimski. On η-expansion in Gödel’s T , pure type systems and calculi with
permutative conversions. Unpublished manuscript, September 1997.

[Kol85] George Koletsos. Church-Rosser theorem for typed functional systems. The Journal
of Symbolic Logic, 50(3):782–790, 1985.

[Lei75] Daniel Leivant. Strong normalization for arithmetic (variations on a theme of
Prawitz). In Justus Diller and G. H. Müller, editors, Proof Theory Symposion, Kiel,
Germany, 1974, volume 500 of Lecture Notes in Mathematics, pages 182–197. Springer
Verlag, 1975.

[Lei90] Daniel Leivant. Contracting proofs to programs. In Odifreddi [Odi90], pages 279–327.

[Loa95] Ralph Loader. Normalisation by translation. Unpublished note announced on the
“types” mailing list on April 6, 1995.

[Loa97] Ralph Loader. Equational theories for inductive types. Annals of Pure and Applied
Logic, 84:175–217, 1997.

[Men87a] Nax P. Mendler. Recursive types and type constraints in second-order lambda cal-
culus. In Proceedings of the Second Annual IEEE Symposium on Logic in Computer
Science, Ithaca, N.Y., pages 30–36. IEEE Computer Society Press, 1987. Forms a
part of [Men87b].

[Men87b] Paul F. Mendler. Inductive definition in type theory. Technical Report 87-870, Cornell
University, Ithaca, N.Y., September 1987. PhD Thesis (Paul F. Mendler = Nax P.
Mendler).

[Mit96] John C. Mitchell. Foundations for Programming Languages. Foundations of Com-
puting. The MIT Press, 1996.

[MKO95] David McAllester, Jakov Kučan, and Daniel Otth. A proof of strong normalization
for F2, Fω, and beyond. Information and Computation, 121(2):193–200, 1995.

[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[MN98] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192:3–29, 1998.

[Mos74] Yiannis N. Moschovakis. Elementary Induction on Abstract Structures, volume 77 of
Studies in Logic and the Foundations of Mathematics. North–Holland, Amsterdam,
1974.

184 BIBLIOGRAPHY

[Odi90] Piergiorgio Odifreddi, editor. Logic and Computer Science, volume 31 of APIC Studies
in Data Processing. Academic Press, 1990.

[Par92] Michel Parigot. Recursive programming with proofs. Theoretical Computer Science,
94:335–356, 1992.

[Pra71] Dag Prawitz. Ideas and results in proof theory. In Jens E. Fenstad, editor, Proceedings
of the Second Scandianvian Logic Symposium, volume 63 of Studies in Logic and the
Foundations of Mathematics, pages 235–307. North–Holland, Amsterdam, 1971.

[Rat96] Michael Rathjen. Monotone inductive definitions in explicit mathematics. The Jour-
nal of Symbolic Logic, 61:125–146, 1996.

[Rat98] Michael Rathjen. Explicit mathematics with the monotone fixed point principle. The
Journal of Symbolic Logic, 63:181–200, 1998.

[Rat99] Michael Rathjen. Explicit mathematics with the monotone fixed point principle. II:
Models. The Journal of Symbolic Logic, 1999? To appear.

[Rei96] Gunnar Reitel. Eine Realisierbarkeitsinterpretation der Arithmetik zweiter Stufe.
Diplomarbeit (Master’s thesis), Ludwig-Maximilians-Universität München, Septem-
ber 1996. In German.

[Rey74] John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor, Program-
ming Symposium, volume 19 of Lecture Notes in Computer Science, pages 408–425,
Berlin, 1974. Springer-Verlag.

[Sce89] Andre Scedrov. Normalization revisited. Contemporary Mathematics, 92:357–369,
1989.

[Str99] Thomas Strahm. First steps into metapredicativity in explicit mathematics. In
S. Barry Cooper and John K. Truss, editors, Sets and Proofs. Invited Papers from
the Logic Colloquium 97, University of Leeds, England, July 6–13, 1997. Cambridge
University Press, 1999? To appear.

[Tai67] William W. Tait. Intensional interpretations of functionals of finite type I. The
Journal of Symbolic Logic, 32(2):198–212, 1967.

[Tai75] William W. Tait. A realizability interpretation of the theory of species. In R. Parikh,
editor, Logic Colloquium Boston 1971/72, volume 453 of Lecture Notes in Mathemat-
ics, pages 240–251. Springer Verlag, 1975.

[Tak95] Masako Takahashi. Parallel reduction in λ-calculus. Information and Computation,
118(1):120–127, 1995.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

[Tat94] Makoto Tatsuta. Two realizability interpretations of monotone inductive definitions.
International Journal of Foundations of Computer Science, 5(1):1–21, 1994.

[UV97] Tarmo Uustalu and Varmo Vene. A cube of proof systems for the intuitionistic pred-
icate µ-, ν-logic. In Magne Haveraaen and Olaf Owe, editors, Selected Papers of the
8th Nordic Workshop on Programming Theory (NWPT ’96), Oslo, Norway, Decem-
ber 1996, volume 248 of Research Reports, Department of Informatics, University of
Oslo, pages 237–246, May 1997.

BIBLIOGRAPHY 185

[vdP96a] Jaco van de Pol. Termination of higher-order rewrite systems. Quaestiones Infinitae
XVI, Department of Philosophy, Utrecht University, 1996. Proefschrift (PhD thesis).

[vdP96b] Jaco van de Pol. Two different strong normalization proofs? In G. Dowek, J. Heering,
K. Meinke, and B. Möller, editors, Proceedings of the Second International Workshop
on Higher-Order Algebra, Logic and Term Rewriting (HOA ’95), Paderborn, Ger-
many, volume 1074 of Lecture Notes in Computer Science, pages 201–220. Springer
Verlag, 1996. Forms a part of [vdP96a].

[vR93] Femke van Raamsdonk. Confluence and superdevelopments. In Claude Kirchner,
editor, Proceedings of the 5th International Conference on Rewriting Techniques and
Applications (RTA ’93), Montreal, Canada, June 1993, volume 690 of Lecture Notes
in Computer Science, pages 168–182. Springer Verlag, 1993.

[vR96] Femke van Raamsdonk. Confluence and Normalisation for Higher-Order Rewriting.
Academisch Proefschrift (PhD thesis), Vrije Universiteit te Amsterdam, 1996.

[vRS95] Femke van Raamsdonk and Paula Severi. On normalisation. Technical Report CS-
R9545, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, June 1995.

