Extensions of System F by Iteration and Primitive Recursion on

Monotone Inductive Types

Dissertation
an der Fakultat fur Mathematik und Informatik

der Ludwig-Maximilians-Universitat Miinchen

vorgelegt von

Ralph Matthes

eingereicht am 20. Mai 1998

1. Berichterstatter: Prof. Dr. H. Schwichtenberg
2. Berichterstatter: Prof. Dr. W. Buchholz
Tag der miindlichen Priifung: 2. Februar 1999

Chapter 1

Introduction

We study systems of typed terms extending system F [Gir72, Rey74] with notions of S-reduction
for every type construction. We focus on types of the form pap whose intended interpretation is
least pre-fixed-points of monotone operators. There are always two associated S-rules: The rule
modelling iteration and the rule which models primitive recursion on the data structure. It is
well known that data types such as the natural numbers may be represented in system F. This
works very well for the definition of functions by iteration. But even the defined predecessor on
natural numbers inside system F does not behave very well: The predecessor of the successor
of n can be reduced to n only for numerals n and this process needs O(n) steps. I do not
know whether there is a proof that no reduction preserving embedding of primitive recursion on
positive inductive types into system F is possible. But nobody seems to know such an embedding.
Therefore, I decided to compare extensions of F allowing for primitive recursion on inductive

types.

1.1 Motivation

This work is in some sense a chapter of the theory of complete lattices. But without the
magnifying glasses of proof theory it would be quite short a chapter and moreover it would not
contain any new result—new relative to Tarski’s fixed-point theorem [Tar55]!.

First we use the magnifier of intuitionism to explore whether the classical results may also be
proved constructively or whether they may be turned into statements (“constructivizations”)
permitting a constructive proof. Along this line we may define the term systems which are typed
lambda calculi and also the encodings between them.

But this thesis is dominated by the question of the behaviour of term rewrite rules? of the systems
and of their relation between systems. And this question may be turned into a problem of proof
theory by using the Curry-Howard isomorphism [How80] in its most trivial reading®: The types
of the extensions of system F are the formulas of an intuitionistic second-order propositional
logic and the typed terms are simply proof terms in a natural deduction formulation of this
intuitionistic logic. A term proves its type and its free typed term variables are the assumptions
used in the proof. The term rewrite rules become proof transformations and they are justified
if they do not change the type (formula) of the term (proof) and have as free term variables
(assumptions) at most those which were present in the original term (proof).

We continue by adopting the proof-theoretic language. The analysis of proofs is greatly simplified

"'We read: “Most of the results contained in this paper were obtained in 1939.”
%We only consider S-rules for all the type constructs.
$Many subtleties concerning Curry-Howard isomorphisms may be found in [Geu93].

2 CHAPTER 1. INTRODUCTION

if the proof transformation system is normalizing and confluent because then one may only
consider proofs in normal form. The comparison of the head forms of proofs (e.g. Lemma 2.24)
and the set of normal forms (e. g. the inductively defined set NF on p. 18) shows what is gained
by normalization. Consistency is a typical problem which is solved by studying the normal
forms.

Since [Tai75] it has been common to establish strong normalization if possible. Although already
normalization furnishes consistency and hence needs means of proof going beyond the logical
system (which is an extension of pure second-order propositional logic) it is a challenge also to
prove strong normalization. There are numerous published variations on that proof. Neverthe-
less I present another proof of strong normalization for system F which in my view separates the
difficulties even more—most prominently the absence of reduct analysis in any reasoning with
saturated sets which are a variant of the reducibility candidates (see e.g. [GLT89)).

Up to now I only spoke about system F. Although I present it in great detail it is only the basis
on which to build the extensions by inductive types. Proof theorists might lose their interest
in this work because system F is already fully impredicative and an extension by inductive
types seems to give only “sugar” to the system. This would in fact be true if we only studied
iteration on these inductive types. But we also study (full) primitive recursion. This time it is
an algorithmic motivation: Functions defined by primitive recursion may be more efficient than
functions defined by iteration. I alluded to it at the very beginning of this chapter by giving the
example of the predecessor on the naturals (which in that encoding works iteratively).

This algorithmic motivation is intimately connected to a proof-theoretic question: What is
the appropriate logical system allowing to extract efficient programs out of existence proofs?
Extraction of typed lambda terms® (viewed as programs) from intuitionistic proofs may be done
via the modified realizability interpretation (due to G. Kreisel; see the citations in [Ber95]). I
mention two examples where modified realizability is used for the extraction of programs out of
normalization proofs: In [Ber93] a normalization algorithm is extracted from a proof of strong
normalization of simply typed lambda calculus following Tait’s computability predicate method
[Tai67]. [vdP96b] builds on [Ber93] and extracts bounds on reduction lengths for Gédel’s T from
a variant of the normalization proof by the Tait method.

In [Ber95] a modified realizability interpretation is given for a system of interleaving positive
inductive types with iteration only. The main insight I got from it was the motivation of the
reduction rules for positive inductive types from it: The soundness of modified realizability only
holds up to some equational theory on the terms and the attempt to prove soundness shows
which equational axioms have to be postulated. All these efforts are in vain if the resulting
equality theory is not effective but fortunately the axioms may be turned into term rewrite rules
which form a strongly normalizing and confluent term rewrite system having hence decidable
intensional equality. Hence, we may indeed interpret the extracted terms as programs.
Although I believe that a modified realizability interpretation could be given for the systems
presented in this thesis I decided to be very informal about program extraction. But one should
see the study of the term systems as the first part of a project aiming at the constructive
interpretation of monotone inductive definitions. And it is a big part because the proof of
soundness of the realizability interpretation is not so much different from the proof of strong
normalization. Most of the difference is the extension from propositional logic (the term system)
to full predicate logic. And this extension is quite easy: As long as there are no dependent types
in the framework one can only use the objects in a uniform way in the proofs.

4More precisely: Proofs of II3-formulas.

In [Par92] (system TTR) untyped lambda terms are extracted and only the reduction of untyped lambda
calculus exhibits the algorithmic content. Correctness is expressed by typing rules which also include positive
recursive types. In contrast to that I add reduction rules for every new type construct.

1.1. MOTIVATION 3

Perhaps the second part would become big if not only soundness (which guarantees that the
extracted program meets the specification expressed in the existential statement) were the goal.
A project going beyond the soundness theorem for modified realizability would be to formalize
the normalization proofs and not only extract embeddings between systems out of them but also
have a meta-theorem assuring that these encodings are always respecting S-reduction, hence that
the extracted encodings are indeed embeddings (cf. section 9.3).

What are monotone inductive types? They are motivated by Tarski’s theorem from which I only
use the following: Let (U, <) be a complete lattice and ® : U — U be monotone. Then ® has a
least fixed point® Ifp(®) which is given by

Ifp(®) = \{M € Ul2(M) < M}.
The minimality of Ifp(®) gives a principle of induction:
(Ifp-E) ®(M) < M = Ifp(®) < M.
This will motivate iteration. As a derived rule we get
(Ifp-ET) ®(Ifp(®) A M) < M = Ifp(®) < M.

I call this rule the principle of extended induction”. It motivates primitive recursion.

The idea is as follows: We depart from the explicit representation of Ifp(®) as an infimum (which
for pedagogic reasons is studied in a system of infimum types) because its reduction behaviour
is not satisfactory. Instead we directly represent Ifp(®) by a type pap in a system with iteration
and primitive recursion.

We may now give an answer to the question on an appropriate logical system allowing to extract
“efficient” programs out of existence proofs: It has extended induction as a primitive notion.
Monotone inductive definitions also draw attention in classical proof theory. The content of
[Fef82, Rat96, GRS97, Rat98, Rat99] is orthogonal to the topics of this thesis, though. Their
results are mainly based on classical logic, and they are very much concerned about measuring
the strength of the theories at hand which clearly forbids the use of full impredicativity as
expressed by system F. In this thesis, we exclusively study intuitionistic systems extending
system F. The problems solved all have to do with reduction behaviour which does not play a
role in the cited papers. Due to the different positions concerning impredicativity they focus
on the possibility of getting least fixed points via transfinite iteration of a monotone operator
starting with the empty set (hence being an approach from below) whereas we build on Tarski’s
theorem guaranteeing that the impredicatively justified infimum of the pre-fixed-points (hence
being an approach from above) is also a pre-fixed-point and hence that a least pre-fixed-point
exists.

Even the focus on primitive recursion instead of iteration (especially in the case of non-strictly
positive inductive types) itself seems to be a quest for more impredicativity because the step term
in the recursive definition may refer to the inductively defined set (modelled by the inductive
type) in its entirety.

How do we model monotone inductive types? We allow pap to be a type for any type p
and any type variable a but we only may form terms of this type if we know monotonic-
ity. How do we know that Aap is monotone? By having already constructed a term of type

5In fact we only use that we have a least pre-fixed-point. The fact that this least pre-fixed-point is also a fixed
point is never used in the systems of this thesis because it does not fit with g-reduction.

"In mathematical practice it is quite common to make unconcious use of “extended induction” instead of the
original induction principle. Take e. g. the squaring function on the reals and try to prove that it has only natural
numbers as values for natural number arguments. (One may already assume that addition does not leave N.)

4 CHAPTER 1. INTRODUCTION

VaVp.(a —) — p — pla:= (]. This term is called monotonicity witness and may arbitrarily
use term formation rules for inductive types, hence permitting any interleaving of inductive
types.

Interleaving inductive types are those where a free parameter of a subexpression of the type of
the form pap is bound by p. Nesting would only mean that a type of the form pap may be
a subexpression of a type pa’p’ with o not free in pap. One could also call the interleaving
inductive types inductive types with essential use of parameters.

Most presentations (for me important are [Lei90, Geu92]) restrict to positive inductive types,
hence to a restriction already enforcing monotonicity on the level of types®. Mendler’s type-
theoretic system (with dependent types and subset types) in [Men87b] has the notion of mono-
tone inductive types, i.e., u-types are introduced under the assumption that the monotonicity
statement (expressed via subset types) has already been derived. Surprisingly, the monotonicity
proof is not used in the reduction rule. But this becomes clear when recognizing that the elimi-
nation rule does not express definition by primitive recursion. It corresponds to a definition by
primitive recursion on a set inductively defined via a “positivization” of the monotone operator
expressed by the monotone inductive type. And this positivization even works for non-monotone
operators explaining why the monotonicity proof could be left out.

Why monotone inductive types?

e We try to prove as general results as possible.

e Monotone inductive types have a meta-theory where proofs may be done by structural
recursion. In the case of positive inductive types we have the phenomenon that syntactic
material pertaining to the canonical monotonicity witnesses necessary for formulating the
rules of iteration and primitive recursion “pops up” during reduction. Therefore e.g. in
the final soundness theorem in the proof of strong normalization one has to use quite
complicated measures of induction. Compare [JO97] in the case of “abstract data type
systems” where on p. 380 we find a tremendously complicated induction measure which is
needed because the syntactic material is not carried around?.

e It is nice to have an apparatus with expressive means which allow to formulate theorems
which are only true after imposing some restrictions. In section 4.7.1 I present a slight
variation of a very reasonable system for which normalization fails.

e And there is a nice inductive type which is monotone but not positive (due to U. Berger).

However, a large part of this thesis is concerned with showing how to embed systems of mono-
tone inductive types into systems of non-interleaving positive inductive types while preserving
reduction.'® The main idea is to define “positivizations” of an arbitrary operator. Let us give
an example: In calculus the limit inferior lim inf of a sequence (ay)ken of real numbers is formed
by setting

liminf a; := lim inf{ag|k > n}.

k—o0 n—00

The limit to the right always exists (it may be infinite) because the sequence (inf{ax|k > n})nen
is monotonically increasing. And for this work it is most important that the monotonicity may
be read off syntactically: The argument n occurs positively in the expression inf{ay|k > n}.

8Those systems nicely embed into the proposed systems of monotone inductive types.

9No doubt, this is more user-friendly but the user interface may be built up after having shown normalization
and confluence.

10T et henceforth an embedding be an encoding which preserves reduction, i.e., for any reduction step in the
source system one can do at least one reduction step in the target system to get from the encoding of a term to
the encoding of its reduct.

1.2. OUTLINE OF RESULTS)

In a similar fashion we get the lower and the upper monotonization of any operator. The upper
monotonization gives rise to an embedding of monotone inductive types into non-interleaving
strictly positive inductive types including the existential quantifier. The lower monotoniza-
tion motivates embeddings into non-interleaving positive inductive types without the existential
quantifier.

The embeddings work because the monotonization of a monotone operator is the operator it-
self, but the reflection of this fact joins the monotonicity via a monotonicity witness to the
monotonicity via positivity.

Two other notions of monotonicity enter the proofs of strong normalization. They are the
semantic requirement that a monotonicity witness is element of the saturated set

VPYQ.(P — Q) — B(P) — &(Q)

for @ a family of operators on saturated sets which is a strong monotonicity requirement for ®
and finally the standard notion of monotonicity for such a family of operators. Unfortunately,
I have no intuition how to reason by mere monotonicity of such operators in order to establish
strong normalization. The good news is: I never had to reason in this way because always
monotonizations could be found which were syntactically monotone (i.e., positive) and had
properties good enough to let the proofs of strong normalization go through.

1.2 Outline of results

Most of the work is done in order to establish the following

Theorem Define four classes of systems as follows.
I Systems without primitive recursion.

e F: the basic impredicative system with — and V.
e eF: F extended by 0, 1, x and +.

e IT: eF extended by infimum types iap.

e eF+ex: eF extended by 4.

e varEMIT-rec: the variant of the system of elimination-based (elimination rules with-
out monotonicity witness) monotone inductive types with no primitive recursion but
iteration.

e IMIT-rec: the system of introduction-based (introduction rule without monotonicity
witness) monotone inductive types with no primitive recursion but iteration.

e MelT-rec: the system in the spirit of Mendler with no primitive recursion but itera-
tion.

e coMelT—rec: the dual to MelT—rec.

e Any other system of inductive types with iteration but no primitive recursion.
IT The systems in Ila and in IIb to be defined next.
ITa Strictly positive systems without 3.

e SPIT: the system of (interleaving) strictly positive inductive types (with iteration and
primitive recursion and map terms built without primitive recursion but iteration).

CHAPTER 1. INTRODUCTION

NISPIT: the system of non-interleaving strictly positive inductive types (with iteration
and primitive recursion and map terms built with neither iteration nor recursion).

ITb Classes of systems with selected monotone inductive types.

ESMIT: systems of elimination-based (unrestricted use of p(H-elimination in map
terms) selected monotone inductive types.

ESMITit: those of ESMIT without primitive recursion in the definitions of map terms.
ESMITrec: those of ESMIT without iteration in the definitions of map terms.
ESMIT+ex: systems like ESMIT but including 3.

ISMIT: systems of introduction-based (unrestricted use of p-introduction in map
terms) selected monotone inductive types.

ISMIT+-ex: systems like ISMIT but including 3.

IIT 20 other systems of inductive types.

PIT=PITit: the system of positive inductive types with iteration and primitive recur-
sion where interleaving and non-strict positivity are allowed and the map terms do
not use primitive recursion but only iteration.

PlTrec: like PITit but the map terms use primitive recursion and no iteration.
PIT+ex: PIT extended by 3.
SPIT+ex: SPIT extended by 3.

NIPIT: the system of non-interleaving (but including non-strictly) positive inductive
types with iteration and primitive recursion and map terms built with neither iteration
nor recursion.

NISPIT+ex: NISPIT extended by 3.

EMIT: the system of elimination-based (elimination rules without monotonicity wit-
ness) monotone inductive types with primitive recursion and iteration.

EMIT=it: EMIT without iteration.

varEMIT: a variant of EMIT with a slightly weaker requirement of monotonicity for
the monotonicity witnesses.

IMIT: the system of introduction-based (introduction rule without monotonicity wit-
ness) monotone inductive types with primitive recursion and iteration.

IMIT=it: IMIT without iteration.

varlMIT: a variant of IMIT with a slightly weaker requirement of monotonicity for the
monotonicity witnesses.

IMIT+ex: IMIT extended by 3.

MelT: the system in the spirit of Mendler (“Mendler’s Inductive Types”) with itera-
tion and primitive recursion.

MelT—it: MelT without iteration (nearer to Mendler’s [Men87a] system).

coMelT: the dual (the explanation via “monotonizations” of operators is dual) to
MelT.

coMelT—it: coMelT without iteration.

1.2. OUTLINE OF RESULTS 7

e UVIT: “Uustalu’s and Vene’s Inductive Types”, a slight generalization of MelT (which
serves for clarifying the embedding of MelT into NISPIT+ex) also with iteration and
primitive recursion.

e MePIT: the subsystem of NISPIT+4ex which is actually needed for embedding MelT
into NISPIT+ex. It also has iteration and primitive recursion.

e coMePIT: the subsystem of NIPIT which is actually needed for embedding coMelT
into NIPIT; with iteration and primitive recursion.

Let an embedding be an encoding which preserves reduction, i.e., for any reduction step in
the source system one can do at least one reduction step in the target system to get from the
encoding of a term to the encoding of its reduct.

Then the following holds: There are embeddings of each system in I into any other. There are
embeddings of each system in II into any of III and each system of III embeds into any other
system of III. Hence, the systems in I are embedding equivalent to each other, and the same
holds for the systems in III.

Every system in I, IT and III is strongly normalizing and confluent.

All of the above systems are motivated and defined carefully. Examples are given and a lot of
additional information is taken out of the proofs, among them naive reduction-free normalization,
consistency, the impossibility of proving the Peirce formula, an insight how much easier weak
normalization is than strong normalization and even embeddings into systems of fixed-point

types.

In chapter 2 the systems without inductive types are formulated and analyzed very carefully.
Starting from system F with arrow types and universal types only, we subsequently add 0, 1,
product types, sum types, existential types and infimum types.

Chapter 3 shows the different notions of inductive types (including strictly positive and positive
and non-interleaving positive inductive types) and measures for them. Examples are considered.
Term systems for monotone inductive types are studied in chapter 4. The two possibilities of
fixing a monotonicity witness to the term rules are presented. There is a non-trivial example
of monotonicity which does not come from positivity. Also the systems with selected monotone
inductive types having a specified monotonicity witness for every inductive type are defined and
embedded into the systems with monotone inductive types by using a notion of stratified term.
An elaborate discussion on the relation of iteration and recursion is included. The iterative
fragment of varEMIT is embedded into the system of infimum types by simply reflecting the
proof of Tarski’s theorem.

In chapter 5 systems with positive inductive types are defined which means to define the canon-
ical monotonicity witnesses whose stratification and uniformity alone guarantee strong normal-
ization. It is presented how much easier the definitions are for subsystems like that of strictly
positive inductive types or of non-interleaving positive inductive types. Very special instances
are MePIT and coMePIT which may be seen as examples for the calculation of canonical mono-
tonicity witnesses.

Chapter 6 is the heart of this thesis: The junction between monotone inductive types and non-
interleaving positive inductive is introduced in form of MelT and coMelT the first of which is a
variant of Mendler’s [Men87a] system and the second a dual to it. The introductory sections to
that chapter are essential for understanding why the embeddings work.

In chapter 7 we collect the embeddings established so far and prove the statements on embeddings
in the theorem above.

Confluence is proved by a variant to Takahashi’s [Tak95] method in chapter 8.

CHAPTER 1. INTRODUCTION

Chapter 9 and appendix A contain the most technical part: The proofs of strong normalization
for several systems. Again much effort has been invested to make the proofs as clear and as
modular as possible. The variations on the proof for EMIT are put in the appendix although
they show a wealth of subtleties. A final discussion explains how the embeddings of monotone
inductive types into MePIT and coMePIT could have been found.

Appendix B discusses possible extensions which came to my mind during the writing of this thesis
mostly concerning fixed-point types, n-reduction, functoriality of the monotonicity witnesses and
permutative conversions for inductive types. A list of open problems is given.

As central points of this thesis I consider:

Monotone inductive types formulated!'! and proved to be strongly normalizing and con-
fluent.

Selected monotone inductive types formulated (as abstraction from the canonical mono-
tonicity witnesses for positive inductive types) and embedded into monotone inductive
types via an inductively defined set of stratified terms.

Mendler’s system proved to be strongly normalizing without any restriction to forming
inductive types.

Formulation of a dual (coMelT) to Mendler’s system.

Embedding of monotone inductive types into non-interleaving positive inductive types.
The main step: varEMIT embeds into coMel T and varlMIT embeds into MelT. Explanation
why such easy embeddings exist.

Reduction of iteration to primitive recursion even for introduction-based monotone induc-
tive types.

A measure of height (h) for abstracted types which allows to define the canonical mono-
tonicity witnesses for interleaving positive inductive types.

A technical device: The vector notation for multiple eliminations.
The separation of reduct analysis from any reasoning on saturated sets.

The definition of infimum types to clarify the encoding of iteration on elimination-based
monotone inductive types inside system F.

The organization of the proof of strong normalization such that always an introduction-
based and an elimination-based definition of computability predicates is possible and that
embeddings may be read off the proof.

The equivalence with respect to embeddings of the 20 systems of class III in the above
theorem.

"The very idea of considering primitive recursion in the presence of some arbitrary term of “functorial strength”
already occurs in [Alt93c] together with a sketch of an elimination-based normalization proof.

