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What?

crsx.sourceforge.net
1 implements CRS in Java
2 is open source (CPL)
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Why?

crsx.sourceforge.net hopes to
1 provide a generic higher order rewrite engine that
2 is easy to embed in other projects such as compiler optimizers,
3 is simple to extend with experimental features, and
4 runs on a universally available open source platform.

. . . so far – depends on who joins!
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How?

crsx.sourceforge.net needs everyone’s specialized help. . .
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Plan

What I did so far with crsx.sourceforge.net:
CRS for everything (the CRS *tricks+).
Retrofitting CRS+*tricks+ onto Java terms.
XQuery compilation examples.
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Rewriting as usual. . .

Definition (CRS/Combinatory Reduction System)

Terms restrict binders to occur in constructions:
t ::= v | f(b1, . . . , bn) | z(t1, . . . , tn)

b ::= v . b | t

Rules tL → tR (as usual) define rewrite relation R
// of all pairs

C[σ(tL)] R
// C[σ(tR)] for some context C[ ] and valuation map

σ : Z K (V∗ × T)⊥ where each σ(z) = 〈〈v1, . . . , vn〉, t〉 with distinct
v1 . . . vn and fv(t) ⊆ {v1, . . . , vn} means that σ(t) is the
homomorphic extension to terms of the substitution

σ(z(t1, . . . , tn)) = t[v1 := σ(t1), . . . , vn := σ(tn)]
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CRS *tricks+

CRS can encode many things by term transformation, such as
1 annotations,
2 context tricks for propagation, and
3 static reduction;

as follows. . .
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Annotations

Definition (Annotated CRS)

Add annotation layer for k annotations around original unannotated
terms:

t ::= v | !( f(b1, . . . , bn) , a1, . . . , ak) | z(t1..tn)

b ::= !( v . b , a1, . . . , ak) | t

a ::= ? | . . .

Variables do not have properties, only binders.

Theorem
For every CRS there is an equivalent k-annotated CRS.

Easy proof by populating with dummy annotations.
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Example XQuery annotation rules

R:without(
R:alias(fs:distinct-doc-order-or-atomic-sequence(R:_()), R:Expr()),
’ord’)
→
R:with(R:Expr(), ’ord’)

R:without(
R:alias(fs:distinct-doc-order-or-atomic-sequence(R:_()), R:Expr()),
’nodup’)
→
R:with(R:Expr(), ’nodup’)

fs:distinct-doc-order(R:with(R:with(R:Seq(), ’ord’), ’nodup’))
→
R:Seq()
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Example XQuery type annotation rules

Types are seen as an annotation.

let $v := R:type(R:Expr1() instance of R:Type1)
return R:Expr2($v)
→
let $v as R:Type1 := R:Expr1() return R:Expr2($v)

R:without(R:alias(
let $v as R:Type1 := R:Expr1()
return R:type(R:Expr2($v) instance of R:Type2),

R:Expr()), ’type’)
→
R:type(R:Expr() instance of R:Type2)
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Hack alert I
Free variables are allowed in patterns!

→ realized by considering free variables in patterns as
metaapplication patterns of a special sort that only match
variables. . .

Hack alert II
The annotation mechanism is not integrated with binding!

→ implementation cheats by allowing annotations on variable
binders to be matched against variable occurrences. . .

Are these safe?
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Propagation

Annotations (with variable hacks) can be used to implement attribute
grammars and deterministic inference rules:

a1 ` b1 K c1 · · · an ` bn K cn

a ` B[b1, . . . ,bn] K c

encoded by initialization

B[b1, . . . ,bn](context:a,state:•) → B[b
(context:a1)
1 , . . . ,bn](context:a,state:1)

transfer for i ∈ 1..n − 1:

B[c
(state:X)
1 , . . . , c(state:X)

i ,bi+1, . . . ,bn](context:a,state:i)

→ B[c
(state:X)
1 , . . . , c(state:X)

i ,b(context:ai+1)
i+1 , . . . ,bn](context:a,state:i+1)

conclusion

B[c
(state:X)
1 , . . . , c(state:X)

n ](context:a,state:n) → c(state:X)
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Virtualization

Assume terms T , variables V , and metavariables Z, describe CRS as
collection of operations:

# : T K N with N the natural numbers from 0 (arity)
v : T K V⊥ (variable occurrence check)
z : T K Z⊥ (metavariable check)
b : T ×N K (V∗)⊥ (binders)
s : T ×N K T⊥ (subterms)

m : T × T × Σ⊥ K Σ⊥ (match)
cc : T × B∗ K T where B = V∗ × T (copy constructor)
cv : V K T (copy variable occurrence)

with an appropriate redefinition of rewriting. . .
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Hack alert III
All rewrites are destructive updates.

→ contexts are preserved
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Realization in Java

interface CRSTerm {
enum CRSKind {CONSTRUCTOR, VARIABLE_OCCURRENCE, META_APPLICATION};
public CRSKind crsKind();

int crsArity(); // #
CRSVariable crsVariable(); // v
String crsMetaVariable(); // z
CRSVariable[] crsBinders(int i); // b
CRSTerm crsSub(int i); // s
boolean crsPreMatch(CRSTerm other, CRS crs); // m (1 of 2)
boolean crsPostMatch(CRSTerm other, CRSMatching m); // m (2 of 2)
CRSTerm crsCopyConstructor(CRSVariable[][] bs, CRSTerm[] ts); // cc
CRSTerm crsCopyVariableOccurrence(CRSVariable v); // cv

void crsReplaceSub(int i, CRSTerm t); C[ ] (1 of 2)

CRSTerm crsMetaApplicationSubstitution(CRSValuation sigma, int sequenceno,
CRSRenaming renaming, CRSTerm copy); C[ ] (1 of 2)

}
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XQuery encoding

1 Original abstract syntax terms extended to implement
CRSTerm.
→ can also use delegation.

2 Types and analysis properties are encoded with annotations as
discussed previously.

3 Type rules and sorting elimination rules are encoded using the
inference system encoding.

4 With the current CRSX interpreter it is slow but not
unreasonably so (compiles about 1000 queries/minute on
laptop).
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Achieved

1 Prototype quality CRS engine over abstract Java terms:
Untyped.
Interpreted.

2 Reasonable fixed normalization heuristics.
3 Bag of tricks for analysis and structured rewriting.
4 Proven with XQuery analysis and optimization.
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Future work

1 Compile CRS rules directly into Java.
2 Pluggable (compiled) rewrite strategies.
3 Types?
4 Termination (and other CRS analysis)?
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How?

crsx.sourceforge.net needs everyone’s specialized help. . .
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The End
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