
Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

crsx.sourceforge.net
An Open Source Platform

for Experiments with Higher Order Rewriting

Kristoffer H. Rose

http://www.research.ibm.com/people/k/krisrose

mailto:krisrose@us.ibm.com

IBM Thomas J. Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598, USA

Workshop on Higher Order Rewriting
June 25, 2007, Paris, France

With apologies for my absence!

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 1

http://www.research.ibm.com/people/k/krisrose
mailto:krisrose@us.ibm.com

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

crsx.sourceforge.net
An Open Source Platform

for Experiments with Higher Order Rewriting

Kristoffer H. Rose

http://www.research.ibm.com/people/k/krisrose

mailto:krisrose@us.ibm.com

IBM Thomas J. Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598, USA

Workshop on Higher Order Rewriting
June 25, 2007, Paris, France

With apologies for my absence!

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 2

http://www.research.ibm.com/people/k/krisrose
mailto:krisrose@us.ibm.com

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

1 Introduction

2 CRS as generic rewrite formalism
Definition
Tricks

3 Virtualization for Java

4 Conclusion

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 3

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

What?

crsx.sourceforge.net
1 implements CRS in Java
2 is open source (CPL)

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 4

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Why?

crsx.sourceforge.net hopes to
1 provide a generic higher order rewrite engine that
2 is easy to embed in other projects such as compiler optimizers,
3 is simple to extend with experimental features, and
4 runs on a universally available open source platform.

. . . so far – depends on who joins!

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 5

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Why?

crsx.sourceforge.net hopes to
1 provide a generic higher order rewrite engine that
2 is easy to embed in other projects such as compiler optimizers,
3 is simple to extend with experimental features, and
4 runs on a universally available open source platform.

. . . so far – depends on who joins!

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 6

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

How?

crsx.sourceforge.net needs everyone’s specialized help. . .

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 7

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Plan

What I did so far with crsx.sourceforge.net:
CRS for everything (the CRS *tricks+).
Retrofitting CRS+*tricks+ onto Java terms.
XQuery compilation examples.

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 8

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

1 Introduction

2 CRS as generic rewrite formalism
Definition
Tricks

3 Virtualization for Java

4 Conclusion

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 9

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Rewriting as usual. . .

Definition (CRS/Combinatory Reduction System)

Terms restrict binders to occur in constructions:
t ::= v | f(b1, . . . , bn) | z(t1, . . . , tn)

b ::= v . b | t

Rules tL → tR (as usual) define rewrite relation R
// of all pairs

C[σ(tL)] R
// C[σ(tR)] for some context C[] and valuation map

σ : Z K (V∗ × T)⊥ where each σ(z) = 〈〈v1, . . . , vn〉, t〉 with distinct
v1 . . . vn and fv(t) ⊆ {v1, . . . , vn} means that σ(t) is the
homomorphic extension to terms of the substitution

σ(z(t1, . . . , tn)) = t[v1 := σ(t1), . . . , vn := σ(tn)]

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 10

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

CRS *tricks+

CRS can encode many things by term transformation, such as
1 annotations,
2 context tricks for propagation, and
3 static reduction;

as follows. . .

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 11

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Annotations

Definition (Annotated CRS)

Add annotation layer for k annotations around original unannotated
terms:

t ::= v | !(f(b1, . . . , bn) , a1, . . . , ak) | z(t1..tn)

b ::= !(v . b , a1, . . . , ak) | t

a ::= ? | . . .

Variables do not have properties, only binders.

Theorem
For every CRS there is an equivalent k-annotated CRS.

Easy proof by populating with dummy annotations.

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 12

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Annotations

Definition (Annotated CRS)

Add annotation layer for k annotations around original unannotated
terms:

t ::= v | !(f(b1, . . . , bn) , a1, . . . , ak) | z(t1..tn)

b ::= !(v . b , a1, . . . , ak) | t

a ::= ? | . . .

Variables do not have properties, only binders.

Theorem
For every CRS there is an equivalent k-annotated CRS.

Easy proof by populating with dummy annotations.

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 13

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Annotations

Definition (Annotated CRS)

Add annotation layer for k annotations around original unannotated
terms:

t ::= v | !(f(b1, . . . , bn) , a1, . . . , ak) | z(t1..tn)

b ::= !(v . b , a1, . . . , ak) | t

a ::= ? | . . .

Variables do not have properties, only binders.

Theorem
For every CRS there is an equivalent k-annotated CRS.

Easy proof by populating with dummy annotations.

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 14

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Annotations

Definition (Annotated CRS)

Add annotation layer for k annotations around original unannotated
terms:

t ::= v | !(f(b1, . . . , bn) , a1, . . . , ak) | z(t1..tn)

b ::= !(v . b , a1, . . . , ak) | t

a ::= ? | . . .

Variables do not have properties, only binders.

Theorem
For every CRS there is an equivalent k-annotated CRS.

Easy proof by populating with dummy annotations.

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 15

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Example XQuery annotation rules

R:without(
R:alias(fs:distinct-doc-order-or-atomic-sequence(R:_()), R:Expr()),
’ord’)
→
R:with(R:Expr(), ’ord’)

R:without(
R:alias(fs:distinct-doc-order-or-atomic-sequence(R:_()), R:Expr()),
’nodup’)
→
R:with(R:Expr(), ’nodup’)

fs:distinct-doc-order(R:with(R:with(R:Seq(), ’ord’), ’nodup’))
→
R:Seq()

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 16

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Example XQuery type annotation rules

Types are seen as an annotation.

let $v := R:type(R:Expr1() instance of R:Type1)
return R:Expr2($v)
→
let $v as R:Type1 := R:Expr1() return R:Expr2($v)

R:without(R:alias(
let $v as R:Type1 := R:Expr1()
return R:type(R:Expr2($v) instance of R:Type2),

R:Expr()), ’type’)
→
R:type(R:Expr() instance of R:Type2)

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 17

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Example XQuery type annotation rules

Types are seen as an annotation.

let $v := R:type(R:Expr1() instance of R:Type1)
return R:Expr2($v)
→
let $v as R:Type1 := R:Expr1() return R:Expr2($v)

R:without(R:alias(
let $v as R:Type1 := R:Expr1()
return R:type(R:Expr2($v) instance of R:Type2),

R:Expr()), ’type’)
→
R:type(R:Expr() instance of R:Type2)

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 18

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Hack alert I
Free variables are allowed in patterns!

→ realized by considering free variables in patterns as
metaapplication patterns of a special sort that only match
variables. . .

Hack alert II
The annotation mechanism is not integrated with binding!

→ implementation cheats by allowing annotations on variable
binders to be matched against variable occurrences. . .

Are these safe?

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 19

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Hack alert I
Free variables are allowed in patterns!

→ realized by considering free variables in patterns as
metaapplication patterns of a special sort that only match
variables. . .

Hack alert II
The annotation mechanism is not integrated with binding!

→ implementation cheats by allowing annotations on variable
binders to be matched against variable occurrences. . .

Are these safe?

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 20

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Hack alert I
Free variables are allowed in patterns!

→ realized by considering free variables in patterns as
metaapplication patterns of a special sort that only match
variables. . .

Hack alert II
The annotation mechanism is not integrated with binding!

→ implementation cheats by allowing annotations on variable
binders to be matched against variable occurrences. . .

Are these safe?

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 21

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Hack alert I
Free variables are allowed in patterns!

→ realized by considering free variables in patterns as
metaapplication patterns of a special sort that only match
variables. . .

Hack alert II
The annotation mechanism is not integrated with binding!

→ implementation cheats by allowing annotations on variable
binders to be matched against variable occurrences. . .

Are these safe?

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 22

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Hack alert I
Free variables are allowed in patterns!

→ realized by considering free variables in patterns as
metaapplication patterns of a special sort that only match
variables. . .

Hack alert II
The annotation mechanism is not integrated with binding!

→ implementation cheats by allowing annotations on variable
binders to be matched against variable occurrences. . .

Are these safe?

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 23

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Definition
Tricks

Propagation

Annotations (with variable hacks) can be used to implement attribute
grammars and deterministic inference rules:

a1 ` b1 K c1 · · · an ` bn K cn

a ` B[b1, . . . ,bn] K c

encoded by initialization

B[b1, . . . ,bn](context:a,state:•) → B[b
(context:a1)
1 , . . . ,bn](context:a,state:1)

transfer for i ∈ 1..n − 1:

B[c
(state:X)
1 , . . . , c(state:X)

i ,bi+1, . . . ,bn](context:a,state:i)

→ B[c
(state:X)
1 , . . . , c(state:X)

i ,b(context:ai+1)
i+1 , . . . ,bn](context:a,state:i+1)

conclusion

B[c
(state:X)
1 , . . . , c(state:X)

n](context:a,state:n) → c(state:X)

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 24

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

1 Introduction

2 CRS as generic rewrite formalism
Definition
Tricks

3 Virtualization for Java

4 Conclusion

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 25

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Virtualization

Assume terms T , variables V , and metavariables Z, describe CRS as
collection of operations:

: T K N with N the natural numbers from 0 (arity)
v : T K V⊥ (variable occurrence check)
z : T K Z⊥ (metavariable check)
b : T ×N K (V∗)⊥ (binders)
s : T ×N K T⊥ (subterms)

m : T × T × Σ⊥ K Σ⊥ (match)
cc : T × B∗ K T where B = V∗ × T (copy constructor)
cv : V K T (copy variable occurrence)

with an appropriate redefinition of rewriting. . .

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 26

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Hack alert III
All rewrites are destructive updates.

→ contexts are preserved

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 27

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Hack alert III
All rewrites are destructive updates.

→ contexts are preserved

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 28

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Realization in Java

interface CRSTerm {
enum CRSKind {CONSTRUCTOR, VARIABLE_OCCURRENCE, META_APPLICATION};
public CRSKind crsKind();

int crsArity(); // #
CRSVariable crsVariable(); // v
String crsMetaVariable(); // z
CRSVariable[] crsBinders(int i); // b
CRSTerm crsSub(int i); // s
boolean crsPreMatch(CRSTerm other, CRS crs); // m (1 of 2)
boolean crsPostMatch(CRSTerm other, CRSMatching m); // m (2 of 2)
CRSTerm crsCopyConstructor(CRSVariable[][] bs, CRSTerm[] ts); // cc
CRSTerm crsCopyVariableOccurrence(CRSVariable v); // cv

void crsReplaceSub(int i, CRSTerm t); C[] (1 of 2)

CRSTerm crsMetaApplicationSubstitution(CRSValuation sigma, int sequenceno,
CRSRenaming renaming, CRSTerm copy); C[] (1 of 2)

}

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 29

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

XQuery encoding

1 Original abstract syntax terms extended to implement
CRSTerm.
→ can also use delegation.

2 Types and analysis properties are encoded with annotations as
discussed previously.

3 Type rules and sorting elimination rules are encoded using the
inference system encoding.

4 With the current CRSX interpreter it is slow but not
unreasonably so (compiles about 1000 queries/minute on
laptop).

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 30

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

1 Introduction

2 CRS as generic rewrite formalism
Definition
Tricks

3 Virtualization for Java

4 Conclusion

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 31

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Achieved

1 Prototype quality CRS engine over abstract Java terms:
Untyped.
Interpreted.

2 Reasonable fixed normalization heuristics.
3 Bag of tricks for analysis and structured rewriting.
4 Proven with XQuery analysis and optimization.

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 32

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

Future work

1 Compile CRS rules directly into Java.
2 Pluggable (compiled) rewrite strategies.
3 Types?
4 Termination (and other CRS analysis)?

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 33

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

How?

crsx.sourceforge.net needs everyone’s specialized help. . .

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 34

Introduction
CRS as generic rewrite formalism

Virtualization for Java
Conclusion

The End

Id: hor2007-slides.tex,v 1.1 2007/06/25 06:21:15 krisrose Exp krisrose

Kris Rose, HOR 2007 in Paris, June 25, 2007 crsx.sourceforge.net 35

	Introduction
	CRS as generic rewrite formalism
	Definition
	Tricks

	Virtualization for Java
	Conclusion

