Coassociativity of deconcatenation: a diagrammatic proof

RANNOU Pierre

September 30, 2009

1 Introduction

This paper is inspired by [Lod08]. In this book, Loday uses a diagramatic representation of operations and co-operations in bialgebras. We use this diagramatic syntax and rewriting techniques, especially confluence, to prove identities in algebras generated by a free semi-group or a free monoid.

2 Deconcatenation

Let A be an alphabet. The elements of A are called letters.
Definition $1: A^{+}$is the free semi-group generated by A. Its elements are nonempty lists of letters. They are called (nonempty) words.

For instance, if our alphabet is $A=\{a, b\}$, then aabba is a nonempty word in A^{+}.
Definition 2 Concatenation \cdot is the operation which, to each pair $(u, v) \in\left(A^{+}\right)^{2}$, associates the word formed by the letters of u followed by the letters of v.

For instance, $a b b a \cdot b b a=a b b a b b a$.
Remark 1 Concatenation is associative.
For instance, $(a b \cdot b) \cdot a=a b b \cdot a=a b b a=a b \cdot b a=a b \cdot(b \cdot a)$.
A \mathbb{Z}-module is an (additive) Abelian group.
Definition 3 The free \mathbb{Z}-module generated by a set X is the set $\mathbb{Z X}$ whose elements are formal sums of elements of X with coefficients in \mathbb{Z}.

For instance, if $X=\{x, y\}$, we have $x+y-x+y+y=y+y+y=3 y$ in $\mathbb{Z} X$.

Remark 2 : If X is a finite set, $\mathbb{Z} X$ is isomorphic to $\mathbb{Z}^{|X|}$.
For instance, $\mathbb{Z} X$ is isomorphic to \mathbb{Z}^{2} in the above example.
Definition 4 The nonunital algebra $\mathbb{Z} S$ generated by a semi-group S is the free \mathbb{Z}-module generated by S equipped with a multiplication \cdot extending the multiplication of S and distributive over the sum.

For instance, if $S=A^{+}$with $A=\{a, b\}$, we have $(2 a b b-3 b a) \cdot a a=2 a b b a a-$ 3baaa in $\mathbb{Z} S$.

Definition 5 If P and Q are \mathbb{Z}-modules, the tensor product $P \otimes Q$ is the free \mathbb{Z} module generated by elements of the form $p \otimes q$ with $p \in P$ and $q \in Q$, quotiented by the following equalities:

- $\left(p+p^{\prime}\right) \otimes q=(p \otimes q)+\left(p^{\prime} \otimes q\right) ;$
- $p \otimes\left(q+q^{\prime}\right)=(p \otimes q)+\left(p \otimes q^{\prime}\right)$;
- $0 \otimes q=0=p \otimes 0$.

We write $P^{\otimes n}$ for the \mathbb{Z}-module $P \otimes \cdots \otimes P$ (n times).
Remark $3(\mathbb{Z} X)^{\otimes n}=\mathbb{Z} X^{n}$.
Hence, we get $p_{1} \otimes \cdots \otimes p_{n} \in \mathbb{Z} X^{n}$ for any $p_{1}, \cdots, p_{n} \in \mathbb{Z} X$
We extend the multiplication of $\mathbb{Z} S$ to $\mathbb{Z} S^{2}$ as follows:

$$
(u \otimes v) \cdot w=u \otimes(v \cdot w), \quad u \cdot(v \otimes w)=(u \cdot v) \otimes w
$$

Definition 6 Let A be an alphabet and let $S=A^{+}$. Deconcatenation is the cooperation $\delta: \mathbb{Z} S \rightarrow \mathbb{Z} S^{2}$ defined as follows:

$$
\delta(w)=\sum_{w=u \cdot v} u \otimes v \text { for any } w \in S
$$

For instance, $\delta(a b a a)=a \otimes b a a+a b \otimes a a+a b a \otimes a$.
Alternatively, δ is recursively defined as follows:

- $\delta(a)=0$ for any $a \in A ;$
- $\delta(u \cdot v)=u \cdot \delta(v)+\delta(u) \cdot v+u \otimes v$ for any $u, v \in S$.

Remark $4 \delta(u) \cdot v$ consists of all terms of $\delta(u \cdot v)$ whose first component is a prefix of u and similarly, $u \cdot \delta(v)$ consists of all terms of $\delta(u \cdot v)$ whose second component is a postfix of v.

Theorem 1 Deconcatenation is coassociative:

$$
\begin{gathered}
\text { If } \delta(w)=\sum_{w=u_{i} \cdot v_{i}} u_{i} \otimes v_{i}, \text { then } \\
\sum_{w=u_{i} \cdot v_{i}} \delta\left(u_{i}\right) \otimes v_{i}=\sum_{w=u_{i} \cdot v_{i}} u_{i} \otimes \delta\left(v_{i}\right) .
\end{gathered}
$$

3 -diagrams

For any $m, n \in \mathbb{N}$, a diagram $\phi: m \rightarrow n$ is pictured as follows:

It is interpreted as a map $f: X^{m} \rightarrow X^{n}$ where X is some fixed set.
There are two operations on diagrams:

They are interpretated as follows:

- if $f: X^{m} \rightarrow X^{n}$ is the interpretation of $\phi: m \rightarrow n$ and if $f^{\prime}: X^{m^{\prime}} \rightarrow X^{n^{\prime}}$ is the interpretation of $\phi^{\prime}: m^{\prime} \rightarrow n^{\prime}$, then $f \times f^{\prime}: X^{m+m^{\prime}} \rightarrow X^{n+n^{\prime}}$ is the interpretation of the parallel composition of ϕ with ϕ^{\prime};
- if $f: X^{l} \rightarrow X^{m}$ is the interpretation of $\phi: l \rightarrow m$ and if $g: X^{m} \rightarrow X^{n}$ is the interpretation of $\psi: m \rightarrow n$, then $g \circ f: X^{l} \rightarrow X^{n}$ is the interpretation of sequential composition of ϕ with ψ.

For more details on diagrams, see [Laf03].
Definition 7 A Σ-diagram $\Phi: m \rightarrow n$ is a (finite) formal sum $\Sigma k_{i} \phi_{i}$ where the $K_{i} \in \mathbb{Z}$ and the $\phi_{i}: m \rightarrow n$ are diagrams with the same number of inputs and the same number of outputs.

On Σ-diagrams, there is also a sum, which is pictured as follows:

Note that the Σ-diagrams Φ, Ψ have the same number of inputs and the same number of outputs. Similarly, we define the opposite $-\Phi: m \rightarrow n$ and the null Σ-diagram 0:m $\rightarrow n$.
A Σ-diagram $\Phi: m \rightarrow n$ is interpreted as a \mathbb{Z}-linear map $f:(\mathbb{Z} X)^{\otimes m} \rightarrow(\mathbb{Z} X)^{\otimes n}$. The interpretation of the operations is similar to the case of diagrams, except for parallel composition, which is interpreted by \otimes instead of \times. The intrepretation of + is straightforward.

Diagrams are built from atomic ones, called gates, using parallel and sequential composition. In particular, the identity diagram is picture as parallel wires. Σ diagrams are built in the same way except that there are sums with coefficients.

Definition 8 A rewrite rule is of the form $\phi \rightarrow \Psi$ where $\phi: m \rightarrow n$ is a diagram and $\Psi: m \rightarrow n$ is a Σ-diagram.

Now we asssume that X is the semi-group A^{+}where A is an alphabet. The gates are:

From the recursive definition of deconcatenation, we deduce the following interaction rule:

Similar kinds of rules are introduced in [Laf97] (interactions for diagrams) and [ER06] (interactions for Σ-diagrams).

4 Diagramatic proof of the theorem

We introduce the coassociativity rule:

The theorem is proved by induction on length of words. The structure of the proof is described by a confluence diagram:

There are two kinds of arrow:

- broken arrow for coassociativity;
- solid arrow for interaction.

We want to prove that coassociativity holds for composed words. This means that the rule $\phi \rightarrow \psi$ holds. First, we apply interaction to ϕ to move deconcatenation gates above, and we get a Σ-diagram Φ. Then, by induction hypothesis, we apply coassociativity to Φ to get another Σ-diagram Ψ. Finally, we check that ψ reduces to Ψ by interaction. Consequently the four Σ-diagrams ϕ, Φ, Ψ, and ψ have the same interpretation and the rule $\phi \rightarrow \psi$ holds.

Coassociativity holds obviously for letters, since $\delta(a)=0$ for any $a \in A$. Now, let u and v be two words in A^{+}for which deconcatenation is coassociative. We want to prove that deconcatenation is coassociative for $w=u \cdot v$. In other words, the following reduction holds:

We apply interaction to the left and right members:

The two results differ only on two terms:

By induction hypothesis, we can apply coassociativity to the left Σ-diagram, and we get the right one.

5 Deconcatenation for monoids

Let A be an alphabet
Definition $9 A^{*}$ is the free monoid generated by A. Its elements are those of A^{+} and the empty word ε.

Remark 5ε is the unit for concatenation.
Definition 10 The unital Z-algebra (or ring) $\mathbb{Z M}$, is the free \mathbb{Z}-module generated by the module M equipped with a multiplication \cdot extending the multiplication of M and distributive over the sum.

We write $M=A^{*}$, and $S=A^{+}$.
Definition 11 Full deconcatenation $\Delta: \mathbb{Z} M \rightarrow \mathbb{Z} M^{2}$, is defined as follows:

$$
\Delta(w)=\sum_{w=u \cdot v} u \otimes v
$$

Definition 12 Primitive deconcatenation $\delta: \mathbb{Z} M \rightarrow \mathbb{Z} M^{2}$ extanding $\delta: \mathbb{Z} S \rightarrow \mathbb{Z} S^{2}$, is defined as follows:

- $\delta(w)=\sum_{\substack{w=u \cdot v \\ u, v \neq \varepsilon}} u \otimes w$
- $\delta(\varepsilon)=-\varepsilon \otimes \varepsilon$

Remark 6 The relation between the two deconcatenations is

$$
\operatorname{Delta}(u)=\delta(u)+u \otimes \varepsilon+\varepsilon \otimes u
$$

This remark explains why $\delta(\varepsilon)=-(\varepsilon \otimes \varepsilon)$:

$$
\Delta(\varepsilon)=\delta(\varepsilon)+\varepsilon \otimes \varepsilon+\varepsilon \otimes \varepsilon=-\varepsilon \otimes \varepsilon+2 \varepsilon \otimes \varepsilon=\varepsilon \otimes \varepsilon
$$

Theorem 2 Full deconcatenation is coassociative.

We have two new gates, one for full deconcatenation, and one for constant ε :

We have two new rules:

Coassociativity of full deconcatenation is pictured as follows:

Reducing those diagrams by the new rules gives:

Hence, it remains to show the following equality for $u \in A^{*}$:

We have two cases:

- if $u=\varepsilon$, we get $\varepsilon \otimes \varepsilon \otimes \varepsilon$ in both cases;
- if $u \in A^{+}$, we apply theorem 1 .

References

[ER06] T. Ehrhard and L. Regnier. Differential interaction nets. TCS, 364:166195, 2006.
[Laf97] Y. Lafont. Interaction combinators. Information and Computation, 137:69-101, 1997.
[Laf03] Y. Lafont. Towards an algebraic theory of boolean circuits. Pure and Applied Algebra, 184:257-310, 2003.
[Lod08] J. L. Loday. Generalized bialgebras and triples of operads. Astérisque 320, 2008.

