Coassociativity of deconcatenation: a diagrammatic proof

RANNOU Pierre

September 30, 2009

1 Introduction

This paper is inspired by [Lod08]. In this book, Loday uses a diagramatic representation of operations and co-operations in bialgebras. We use this diagramatic syntax and rewriting techniques, especially confluence, to prove identities in algebras generated by a free semi-group or a free monoid.

2 Deconcatenation

Let *A* be an alphabet. The elements of *A* are called *letters*.

Definition 1 : A^+ is the free semi-group generated by A. Its elements are nonempty lists of letters. They are called (nonempty) words.

For instance, if our alphabet is $A = \{a, b\}$, then *aabba* is a nonempty word in A^+ .

Definition 2 Concatenation \cdot is the operation which, to each pair $(u, v) \in (A^+)^2$, associates the word formed by the letters of u followed by the letters of v.

For instance, $abba \cdot bba = abbabba$.

Remark 1 Concatenation is associative.

For instance, $(ab \cdot b) \cdot a = abb \cdot a = abba = ab \cdot ba = ab \cdot (b \cdot a)$.

A \mathbb{Z} -module is an (additive) Abelian group.

Definition 3 The free \mathbb{Z} -module generated by a set X is the set $\mathbb{Z}X$ whose elements are formal sums of elements of X with coefficients in \mathbb{Z} .

For instance, if $X = \{x, y\}$, we have x + y - x + y + y = y + y + y = 3y in $\mathbb{Z}X$.

Remark 2 : If X is a finite set, $\mathbb{Z}X$ is isomorphic to $\mathbb{Z}^{|X|}$.

For instance, $\mathbb{Z}X$ is isomorphic to \mathbb{Z}^2 in the above example.

Definition 4 *The* nonunital algebra $\mathbb{Z}S$ generated by a semi-group S is the free \mathbb{Z} -module generated by S equipped with a multiplication \cdot extending the multiplication of S and distributive over the sum.

For instance, if $S = A^+$ with $A = \{a, b\}$, we have $(2abb - 3ba) \cdot aa = 2abbaa - 3baaa$ in $\mathbb{Z}S$.

Definition 5 If *P* and *Q* are \mathbb{Z} -modules, the tensor product $P \otimes Q$ is the free \mathbb{Z} -module generated by elements of the form $p \otimes q$ with $p \in P$ and $q \in Q$, quotiented by the following equalities:

- $(p+p')\otimes q = (p\otimes q) + (p'\otimes q);$
- $p \otimes (q+q') = (p \otimes q) + (p \otimes q');$
- $0 \otimes q = 0 = p \otimes 0$.

We write $P^{\otimes n}$ for the \mathbb{Z} -module $P \otimes \cdots \otimes P$ (*n* times).

Remark 3 $(\mathbb{Z}X)^{\otimes n} = \mathbb{Z}X^n$.

Hence, we get $p_1 \otimes \cdots \otimes p_n \in \mathbb{Z}X^n$ for any $p_1, \cdots, p_n \in \mathbb{Z}X$

We extend the multiplication of $\mathbb{Z}S$ to $\mathbb{Z}S^2$ as follows:

$$(u \otimes v) \cdot w = u \otimes (v \cdot w), \quad u \cdot (v \otimes w) = (u \cdot v) \otimes w.$$

Definition 6 Let A be an alphabet and let $S = A^+$. Deconcatenation is the cooperation $\delta : \mathbb{Z}S \to \mathbb{Z}S^2$ defined as follows:

$$\delta(w) = \sum_{w=u \cdot v} u \otimes v \text{ for any } w \in S.$$

For instance, $\delta(abaa) = a \otimes baa + ab \otimes aa + aba \otimes a$.

Alternatively, δ is recursively defined as follows:

- $\delta(a) = 0$ for any $a \in A$;
- $\delta(u \cdot v) = u \cdot \delta(v) + \delta(u) \cdot v + u \otimes v$ for any $u, v \in S$.

Remark 4 $\delta(u) \cdot v$ consists of all terms of $\delta(u \cdot v)$ whose first component is a prefix of *u* and similarly, $u \cdot \delta(v)$ consists of all terms of $\delta(u \cdot v)$ whose second component is a postfix of *v*.

Theorem 1 Deconcatenation is coassociative:

v

If
$$\delta(w) = \sum_{w=u_i \cdot v_i} u_i \otimes v_i$$
, then
 $\sum_{v=u_i \cdot v_i} \delta(u_i) \otimes v_i = \sum_{w=u_i \cdot v_i} u_i \otimes \delta(v_i).$

3 Σ-diagrams

For any $m, n \in \mathbb{N}$, a diagram $\phi : m \to n$ is pictured as follows:

It is interpreted as a map $f : X^m \to X^n$ where X is some fixed set. There are two operations on diagrams:

They are interpretated as follows:

- if *f* : X^m → Xⁿ is the interpretation of φ : *m* → *n* and if *f*' : X^{m'} → X^{n'} is the interpretation of φ' : *m*' → *n*', then *f* × *f*' : X^{m+m'} → X^{n+n'} is the interpretation of the parallel composition of φ with φ';
- if *f*: X^l → X^m is the interpretation of φ : *l* → *m* and if *g* : X^m → Xⁿ is the interpretation of ψ : *m* → *n*, then *g* ∘ *f* : X^l → Xⁿ is the interpretation of sequential composition of φ with ψ.

For more details on diagrams, see [Laf03].

Definition 7 A Σ -diagram $\Phi: m \to n$ is a (finite) formal sum $\Sigma k_i \phi_i$ where the $K_i \in \mathbb{Z}$ and the $\phi_i: m \to n$ are diagrams with the same number of inputs and the same number of outputs.

On Σ -diagrams, there is also a sum, which is pictured as follows:

Note that the Σ -diagrams Φ , Ψ have the same number of inputs and the same number of outputs. Similarly, we define the opposite $-\Phi : m \to n$ and the *null* Σ -diagram $0 : m \to n$.

A Σ -diagram $\Phi: m \to n$ is interpreted as a \mathbb{Z} -linear map $f: (\mathbb{Z}X)^{\otimes m} \to (\mathbb{Z}X)^{\otimes n}$. The interpretation of the operations is similar to the case of diagrams, except for parallel composition, which is interpreted by \otimes instead of \times . The interpretation of + is straightforward.

Diagrams are built from atomic ones, called *gates*, using parallel and sequential composition. In particular, the identity diagram is picture as parallel wires. Σ -diagrams are built in the same way except that there are sums with coefficients.

Definition 8 A rewrite rule *is of the form* $\phi \rightarrow \Psi$ *where* $\phi : m \rightarrow n$ *is a diagram and* $\Psi : m \rightarrow n$ *is a* Σ *-diagram.*

Now we assume that X is the semi-group A^+ where A is an alphabet. The gates are:

From the recursive definition of deconcatenation, we deduce the following *inter-action* rule:

Similar kinds of rules are introduced in [Laf97] (interactions for diagrams) and [ER06] (interactions for Σ -diagrams).

4 Diagramatic proof of the theorem

We introduce the *coassociativity* rule:

The theorem is proved by induction on length of words. The structure of the proof is described by a confluence diagram:

There are two kinds of arrow:

- broken arrow for coassociativity;
- solid arrow for interaction.

We want to prove that coassociativity holds for composed words. This means that the rule $\phi \rightarrow \psi$ holds. First, we apply interaction to ϕ to move deconcatenation gates above, and we get a Σ -diagram Φ . Then, by induction hypothesis, we apply coassociativity to Φ to get another Σ -diagram Ψ . Finally, we check that ψ reduces to Ψ by interaction. Consequently the four Σ -diagrams ϕ , Φ , Ψ , and ψ have the same interpretation and the rule $\phi \rightarrow \psi$ holds.

Coassociativity holds obviously for letters, since $\delta(a) = 0$ for any $a \in A$. Now, let u and v be two words in A^+ for which deconcatenation is coassociative. We want to prove that deconcatenation is coassociative for $w = u \cdot v$. In other words, the following reduction holds:

We apply interaction to the left and right members:

The two results differ only on two terms:

By induction hypothesis, we can apply coassociativity to the left Σ -diagram, and we get the right one.

5 Deconcatenation for monoids

Let *A* be an alphabet

Definition 9 A^* *is the* free monoid generated by A. Its elements are those of A^+ *and the* empty word ε .

Remark 5 ϵ is the unit for concatenation.

Definition 10 The unital Z-algebra (or ring) $\mathbb{Z}M$, is the free \mathbb{Z} -module generated by the module M equipped with a multiplication \cdot extending the multiplication of M and distributive over the sum.

We write $M = A^*$, and $S = A^+$.

Definition 11 Full deconcatenation $\Delta : \mathbb{Z}M \to \mathbb{Z}M^2$, is defined as follows:

$$\Delta(w) = \sum_{w=u \cdot v} u \otimes v$$

Definition 12 Primitive deconcatenation $\delta : \mathbb{Z}M \to \mathbb{Z}M^2$ extanding $\delta : \mathbb{Z}S \to \mathbb{Z}S^2$, *is defined as follows:*

•
$$\delta(w) = \sum_{\substack{w = u \cdot v \\ u, v \neq \varepsilon}} u \otimes w$$

•
$$\delta(\varepsilon) = -\varepsilon \otimes \varepsilon$$

Remark 6 The relation between the two deconcatenations is

$$Delta(u) = \delta(u) + u \otimes \varepsilon + \varepsilon \otimes u.$$

This remark explains why $\delta(\varepsilon) = -(\varepsilon \otimes \varepsilon)$ *:*

$$\Delta(\varepsilon) = \delta(\varepsilon) + \varepsilon \otimes \varepsilon + \varepsilon \otimes \varepsilon = -\varepsilon \otimes \varepsilon + 2\varepsilon \otimes \varepsilon = \varepsilon \otimes \varepsilon$$

Theorem 2 Full deconcatenation is coassociative.

We have two new gates, one for full deconcatenation, and one for constant ε :

We have two new rules:

Coassociativity of full deconcatenation is pictured as follows:

Reducing those diagrams by the new rules gives:

Hence, it remains to show the following equality for $u \in A^*$:

We have two cases:

- if $u = \varepsilon$, we get $\varepsilon \otimes \varepsilon \otimes \varepsilon$ in both cases;
- if $u \in A^+$, we apply theorem 1.

References

- [ER06] T. Ehrhard and L. Regnier. Differential interaction nets. *TCS*, 364:166–195, 2006.
- [Laf97] Y. Lafont. Interaction combinators. *Information and Computation*, 137:69–101, 1997.
- [Laf03] Y. Lafont. Towards an algebraic theory of boolean circuits. *Pure and Applied Algebra*, 184:257–310, 2003.
- [Lod08] J. L. Loday. *Generalized bialgebras and triples of operads*. Astérisque 320, 2008.