
1

The Ivy Java library guide
CENA NT02-819

Yannick Jestin <yannick.jestin@enac.fr>
Copyright © 2002, 2006-2011 CENA, DSNA/DTI, ENAC

June 24, 2011

Abstract

This document is a programmer's guide that describes how to use the Ivy Java library to connect applications to an
Ivy bus. This guide describes version 1.2.13 of the library. This document itself is part of the Java package, available
on the Ivy web site [http://www2.tls.cena.fr/products/ivy/], and on the maintainer's web page [http://www.lii-enac.fr/
~jestin/ivy-java/].

Table of Contents
Foreword ... 2
What is Ivy? .. 2
The Ivy Java library .. 2

What is it? ... 2
Getting and installing the Ivy Java library ... 2

Your first Ivy application ... 3
The code ... 3
Compiling it ... 4
Testing .. 4

Basic functions ... 5
Initialization an Ivy object and joining the bus ... 5
Emitting messages ... 6
Subscription to messages .. 6
Subscribing to application events ... 7

Advanced functions ... 7
Sending to self ... 7
Initializing a domain .. 7
Newline within messages ... 8
Sending direct messages ... 8
Ivy and swing GUI .. 8
Asynchronous Subscription to messages .. 8
Waiting for someone: waitForClient and waitForMsg .. 9
Subscribing to subscriptions .. 9
Monitoring the bus .. 9
Message classes .. 10

Utilities .. 10
jprobe .. 10
IvyDaemon ... 11
jafter ... 11

programmer's style guide .. 11
join the right bus ... 12
nice regular expressions .. 12
Something's not working ... 12
time consuming callbacks ... 12
how to perform requests ... 12

http://www2.tls.cena.fr/products/ivy/
http://www2.tls.cena.fr/products/ivy/
http://www.lii-enac.fr/~jestin/ivy-java/
http://www.lii-enac.fr/~jestin/ivy-java/
http://www.lii-enac.fr/~jestin/ivy-java/

NT02-819 (c) CENA

2

how to quit the application ? ... 13
Contacting the authors .. 14

Foreword
This document was written in SGML according to the DocBook DtD, so as to be able to generate PDF
and html output. However, the authors have not yet mastered the intricacies of SGML, the DocBook
DtD, the DocBook Stylesheets and the related tools, which have achieved the glorious feat of being far
more complex than LaTeX and Microsoft Word combined together. This explains why this document, in
addition to being incomplete, is quite ugly.

What is Ivy?
Ivy is a software bus initially initially designed at CENA [http://www.cena.fr/]. A software bus is a
system that allows software applications to exchange information with the illusion of broadcasting that
information, selection being performed by the receiving applications. Using a software bus is very similar
to dealing with events in a graphical toolkit: on one side, messages are emitted without caring about who
will handle them, and on the other side, one decide to handle the messages that have a certain type or
follow a certain pattern. Software buses are mainly aimed at facilitating the rapid development of new
agents, and at managing a dynamic collection of agents on the bus: agents show up, emit messages and
receive some, then leave the bus without blocking the others.

Ivy is implemented as a collection of libraries for several languages and platforms. If you want to read
more about the principles Ivy before reading this guide of the Java library, please refer to The Ivy software
bus: a white paper . If you want more details about the internals of Ivy, have a look at The Ivy architecture
and protocol . And finally, if you are more interested in other languages, refer to other guides such as
The Ivy Perl library guide (not yet written), or The Ivy C library guide . All those documents should be
available from the Ivy Web site [http://www2.tls.cena.fr/products/ivy/] .

The Ivy Java library

What is it?
The Ivy Java library (aka fr.dgac.ivy) is a Java package that allows you to connect applications to an Ivy
bus. You can also use it to connect any Java application to an Ivy bus. So far, this library has been tested and
used on a variety of Java virtual machines (from 1.1.7 to 1.6.0), a variety of vendors (kaffe+gcj, sun jdk,
blackdown) and on a variety of architectures (GNU/Linux, Solaris, Windows NT,XP,2000, MacOSX). It
used to be developped and maintained on a Debian GNU/Linux ox, but the maintainer got lazy, and enjoys
a MacOSX snow leopard powered macbook.

The Ivy Java library was originally developed by FranÃ§ois-RÃ©gis Colin and Yannick Jestin within a
group at CENA (Toulouse, France). It is now maintained by Yannick.

Getting and installing the Ivy Java library
You can get the latest versions of the Ivy Java library from the Ivy web site [http://www.tls.cena.fr/
products/ivy/]. It is packaged either as a jar file or as a debian package. We plan to package it according
to different distribution formats, such as .msi (Windows) .deb or .rpm package (Debian, Redhat and
Mandrake linux). Contributors are welcome for package management.

For most people, the simplest way is to install the ivy-java.jar jar file, containing both ivy java and its
gnu.getopt dependancy. There are many ways to use this file:

http://www.cena.fr/
http://www.cena.fr/
http://www2.tls.cena.fr/products/ivy/
http://www2.tls.cena.fr/products/ivy/
http://www.tls.cena.fr/products/ivy/
http://www.tls.cena.fr/products/ivy/
http://www.tls.cena.fr/products/ivy/

NT02-819 (c) CENA

3

• (preferred solution) put it in the command line each time you want to use it, as a -classpath ivy-java.jar
parametery

• add its location in your CLASSPATH environment variable,

• Linux: put the it in your $JAVA_HOME/jre/lib/ext/ directory,

• Windows: put it in the right place, perhaps C:\Program Files\JavaSoft\...,

• MacOSX: put it ~/Library/Java/Extensions , or system wide,

• Eclipse, Netbeans: add it to your project,

The numbered packages (ivy-1.2.14.jar ivy-1.2.14.tar.gz) also contain documentation, sources code
alongside with examples and a small set of tools (IvyDaemon, jprobe, jafter). You may need to install the
gnu getopt library [http://www.urbanophile.com/arenn/coding/download.html], included in the jar file but
not in the debian package.

In order to test the presence of Ivy jar on your system once installed, run the following command:

$ java fr.dgac.ivy.tools.Probe

If should display a line about broadcasting on a strange address, this is OK and means it is ready and
working. If it complains about a missing class (java.lang.NoClassDefFoundError), then you have not
pointed your virtual machine to the jar file or your installation is incomplete. Alternatively, you can use
the jprobe shell script.

$ jprobe

Your first Ivy application
We are going to write a "Hello world translater" for an Ivy bus. The application will subscribe to all
messages starting with the "Hello" string, and re-emit them on the bus having translated "Hello" into
"Bonjour" (Hello in french). In addition, the application will quit as soon as it receives a "Bye" message.

The code
Here is the code of "ivyTranslater.java":

import fr.dgac.ivy.* ;

class ivyTranslater implements IvyMessageListener {

 private Ivy bus;

 ivyTranslater() throws IvyException {
 // initialization, name and ready message
 bus = new Ivy("IvyTranslater","IvyTranslater Ready",null);
 // classical subscription
 bus.bindMsg("^Hello(.*)",this);
 // inner class subscription (think awt)
 bus.bindMsg("^Bye$",new IvyMessageListener() {

http://www.urbanophile.com/arenn/coding/download.html
http://www.urbanophile.com/arenn/coding/download.html

NT02-819 (c) CENA

4

 public void receive(IvyClient client, String[] args) {
 // leaves the bus, and as it is the only thread, quits
 bus.stop();
 }
 });
 bus.start(null); // starts the bus on the default domain
 }

 // callback associated to the "Hello" messages"
 public void receive(IvyClient client, String[] args) {
 try {
 bus.sendMsg("Bonjour"+((args.length>0)?args[0]:""));
 } catch (IvyException ie) {
 System.out.println("can't send my message on the bus");
 }
 }

 public static void main(String args[]) throws IvyException {
 new ivyTranslater();
 }
}

Compiling it
You should be able to compile the application with the following command (the classpath may vary):

$ javac -cp ivy-java.jar ivyTranslater.java

Testing
We are going to test our application with fr.dgac.ivy.tools.Probe. In a shell, launch ivyTranslater:

$ java -cp .:ivy-java.jar ivyTranslater

In another shell, launch java fr.dgac.ivy.tools.Probe '(.*)' . You can see that the IvyTranslater has joined
the bus, published its subscriptions, and sent the mandatory ready message. As your probe has subscribed
to the eager regexp .* and reports the matched string within the brackets (.*), the ready message is printed.

$ java fr.dgac.ivy.tools.Probe '(.*)'

you want to subscribe to (.*)
broadcasting on 127.255.255.255:2010
IvyTranslater connected
IvyTranslater subscribes to ^Bye$
IvyTranslater subscribes to ^Hello(.*)
IvyTranslater sent 'IvyTranslater Ready'

Probe is an interactive program. Type "Hello Paul", and you should receive "Bonjour Paul". Type "Bye",
and the ivyTranslater application should quit to the shell. Just quit Probe, issuing a Control-D (or .quit)
on a line, and Probe exists to the shell.

NT02-819 (c) CENA

5

 Hello Paul

-> Sent to 1 peers
IvyTranslater sent 'Bonjour Paul'
Bye

-> Sent to 1 peers
IvyTranslater disconnected
<Ctrl-D>

$

Basic functions
The javadoc generated files are available on line on the ivy web site, and should be included in your
ivy-1.2.14.jar java package (or in /usr/share/doc/libivy-java, alongside with this very manual, if you used
a debian package). Here are more details on those functions.

Initialization an Ivy object and joining the bus
Initializing a Java Ivy agent is a two step process. First of all, you must create an fr.dgac.ivy.Ivy
object. It will be the repository of your agent name, network state, subscriptions, etc. Once this object
is created, you can subscribe to the various Ivy events: text messages through Perl compatible regular
expressions, other agents' arrival, departure, subscription or unsubscription to regexps, direct messages or
die command issued by other agents.

At this point, your application is still not connected. In order to join the bus, call the start(string
domain) method on your Ivy object. This will spawn two threads that will remain active until you call
the stop() method on your Ivy object or until some other agent sends you a die message. Once this
start() method has been called, the network machinery is set up according to the ivy protocol, and
your agent is eventually ready to handle messages on the bus.

fr.dgac.ivy.Ivy(String name,String message, IvyApplicationListener appcb)

This constructor readies the structures for the software bus connexion. It is possible to have more than
one bus at the same time in an application, be it on the same ivy broadcast address or one different
ones. The name is the name of the application on the bus, and will by transmitted to other application,
and possibly be used by them (through String IvyClient.getApplicationName()). The
message is the first message that will be sent to other applications, when connected. This is a slightly
different broadcasting scheme than the normal one (see The Ivy architecture and protocol document for
more information. If message is null, nothing will be sent. Usually, other application subscribe to this
ready message to trigger actions depending on the presence of your agent on the bus. The appcb is an
object implementing the IvyApplicationListener interface. Its different methods are called upon arrival
or departure of other agents on the bus, or when your application itself leaves the bus, or when a direct
message is sent to your application. It is also possible to add or remove other application listeners using the
Ivy.AddApplicationListener() and Ivy.RemoveApplicationListener() functions.

public void start(String domainbus) throws IvyException

This method connects the Ivy bus to a domain or list of domains. This spawns network managing threads
that will be stropped with Ivy.stop() or when a die message is received. You're invited to let the

NT02-819 (c) CENA

6

domainbus set to null, and to use JVM parameters to choose the bus you will connect to. The rendezvous
point is the String parameter domainbus , an UDP broadcast address like "10.0.0:1234" (255 are
added at the end to become an IPv4 UDP broadcast address). This will determine the meeting point of
the different applications. For the gory details, this is done with an UDP broadcast or an IP Multicast,
so beware of routing problems ! You can also use a comma separated list of domains, for instance
"10.0.0.1234,192.168:3456". If the domain is null , the API will check for the property IVY_BUS (set
at the invocation of the JVM, e.g $ java -DIVY_BUS=10:4567 myApp, or via an environment variable on
older JVMs); if not present, it will use the default bus, which is 127.255.255.255:2010. The default address
requires a broadcast enabled loopback interface to be active on your system (CAUTION, on MacOSX and
some releases of SunOS, the default bus doesn't work ...). If an IvyException is thrown, your application
is not able to send or receive data on the specified domain.

public void stop()

This methods stops the threads, closes the sockets and performs some clean-up. If there is no other thread
running, the program quits. This is the preferred way to quit a program within a callback (please don't
use System.exit() before having stopped the bus, even if it works ...). Note that it is still possible to
reconnect to the bus by calling start() once again.

Emitting messages
Emitting a message is much like echoing a string on a output channel. Portion of the message will be sent
to the connected agent if the message matches their subscriptions.

public int sendMsg(String message)

Will send each remote agent the substrings in case there is a regexp matching. The default behaviour is not
to send the message to oneself ! The result is the number of messages actually sent. The main issue here is
that the sender ivy agent is the one who takes care of the regexp matching, so that only useful information
are conveyed on the network. Be sure that the message sent doesn't contains protocol characters: 0x01 to
0x08 and unfortunately 0x0D, the newline character. If you want to send newlines, see protectNewline,
in advanced functions.

Subscription to messages
Subscribing to messages consists in binding a callback function to a message pattern. Patterns are described
by regular expressions with captures. Since ivy-java 1.2.4, Perl Compatible Regular Expressions are used,
with the Apache Jakarta Project regexp library (see the jakarta regexp web site [http://jakarta.apache.org/
regexp/]). When a message matching the regular expression is detected on the bus (the matching is done
at the sender's side), the recipient's callback function is called. The captures (ie the bits of the message
that match the parts of regular expression delimited by brackets) are passed to the callback function much
like options are passed to main. Use the bindMsg() method to bind a callback to a pattern, and the
unbindMsg method to delete the binding.

public int bindMsg(String regexp, IvyMessageListener callback);
public void unBindMsg(int id);

The regexp follows the PCRE syntax (see the pcre web site [http://www.pcre.org/] or the
pcrepattern(3) man page), grouping is done with brackets. The callback is an object implementing the
IvyMessageListener interface, with the receive method. The thread listening on the connexion with the
sending agent will execute the callback.

http://jakarta.apache.org/regexp/
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/regexp/
http://www.pcre.org/
http://www.pcre.org/

NT02-819 (c) CENA

7

There are two ways of defining the callback: the first one is to make an object an implementation of the
IvyMessageListener interface, and to implement the public void receive(Ivyclient ic,
String[] args) method. But this is limited to one method per class, so the second method used is
the one of anonymous inner classes, introduced since Java 1.1 and widely used in swing programs, for
instance:

bindMsg("^a*(.*)c*$", new IvyMessageListener() {
 public void receive(IvyClient ic,String[] args) {
 ... // do some stuff
 }
});

The processing of the ivy protocol and the execution of the callback are performed within an unique thread
per remote client. Thus, the callback will be performed sequentially. If you want an asynchronous handling
of callbacks, see in the advanced functions.

Subscribing to application events
Either at the creation time of your Ivy object or later on with Ivy.addApplicationListener()
, you can add add some behaviour to perform callbacks upon different events:

• when an agent joins the bus

• when an agent leaves the bus

• when an agent sends you a direct message

• when an agent forces you to leave the bus

This can be handy if you design an agent requiring somme coordination with other dedicated agents to run
properly. To do so, the easiest way is to use the ready messages. You can find later a description of the
Ivy.waitForClient() method to implement a correct synchronization.

Advanced functions

Sending to self
By default, an application doesn't send the messages to itself. Usually, there are more efficient and
convenient ways to communicate withing a program. However, if you want to take benefit of the ease of
Ivy or to be as transparent as possible, you can set the Ivy object so that the pattern matching and message
sending will be done for the sender too.

public void sendToSelf(boolean b);
public boolean isSendToSelf();

Initializing a domain
The default behaviour of an Ivy agent is to accept a command line switch (-b 10:2010, e.g.), and if not
present, to use the IVYBUS property, (given by the -DIVYBUS=10:34567 parameter to the jvm), and,
if not present, to default to Ivy.DEFAULT_DOMAIN. This domain is given as a string ardument to the

NT02-819 (c) CENA

8

Ivy.start() function. To make this logic easier to follow, the Ivy class provides the programmer with two
useful function:

public static String getDomain(String arg);
public static String getDomainArgs(String progname,String[] args);

The Ivy.getDomain() function, if arg is non null, will return arg, otherwise it will return the
IVYBUS property, otherwise the DEFAULT_DOMAIN. A very simple way to start an Ivy agent is with
Ivy.start(getDomain(null)) . The getDomainArgs(name,args) will add very simple processing
of the args given to the main() function, and give higher priority to the command line argument.

Newline within messages
As we have seen in Ivy.sendMsg() , you can not have newline characters within the string you send
on the bus. If you still want to send messages with newline, you can encode and decode them at the emitter
and receiver's side. With Ivy.protectNewLine(boolean b) , you can set your Ivy object to ensure encoding
and decoding of newlines characters. This is tested and working between Java ivy applications, but not
yet implemented in other ivy libraries. The newlines are replaced by ESC characters (hex 0x1A). As the
encoding and decoding cost a little more CPU and is not yet standardised in the Ivy protocol, use it at your
own risk. We should of course protect the other protocol special characters.

Sending direct messages
Direct messages is an ivy feature allowing the exchange of information between two ivy clients. It overrides
the subscription mechanism, making the exchange faster (there is no regexp matching, etc). However,
this features breaks the software bus metaphor, and should be replaced with the relevant bounded. regexps,
at the cost of a small CPU overhead. The full direct message mechanism in Java has been made available
since the ivy-java-1.2.3, but it won't be much documented, in order to make it harder to use.

Ivy and swing GUI
Swing requires the code to run in the main swing thread. In order to avoid problems, be sure tu use
the SwingUtilities.invokeLater() or SwingUtilities.invokeAndWait() methods if you Ivy callbacks impact
swing components.

Asynchronous Subscription to messages
For each and every remote agent on the bus, a thread is in charge of handling the encoding and decoding
of the messages and of the execution of the callbacks. Thus, if a callback consumes much time, the rest
of the communication is put on hold and the processing is serialised, eventually leading to a stacking in
the socket buffer and to the blocking of the message sender. To alleviate this, we have set up (since 1.2.4)
an asynchronous subscription, where each and every time a callback is performed, it is done in a newly
created separate thread. As creating a thread is quite expensive, one should use this method for lengthy
callbacks only. Furthermore, to avoid concurrent access to the callback data, the String[] argument passed
on to the callbacks are cloned. This causes an extra overhead.

public int bindMsg(String regexp, IvyMessageListener callback,boolean async);
public int bindAsyncMsg(String regexp, IvyMessageListener callback);

If the async boolean parameter is set to true, a new thread will be created for each callback. The same
unBindMsg() can be called to cancel a subscription.

NT02-819 (c) CENA

9

Waiting for someone: waitForClient and waitForMsg
Very often, while developing an Ivy agent, you will be facing the need of the arrival of another agent on the
bus to perform your task correctly. For instance, for your spiffy application to run, a gesture recognition
engine will have to be on the bus, or another data sending application. The Ivy way to do this is to subscribe
to the known agent's ready message (be sure to subscribe before starting the bus), or to implement
an IvyApplicationListener and change of state in the connect() method. However, it is often useful to
stop and wait, and it is awkward to wait for a variable change.

IvyClient waitForClient(String name, int timeout)
IvyClient waitForMsg(String regexp, int timeout)

These two methods allow you to stop the flow of your main (or other) thread by waiting for the arrival
of an agent, or for the arrival of a message. If the agent is already here, waitForClient will return
immediately. If timeout is set to null, your thread can wait "forever", otherwise it will wait timeout
milliseconds. With waitForMsg , be aware that your subscription can be propagated to the remote
agents after that their message was sent, so that you'd wait for nothing. You had better be sure that the
waitForMsg method is called early enough.

Subscribing to subscriptions
A very common practice when beginning to play with ivy is to develop an ivy agent monitor (the good
practice is to use the excellent ivymon written in perl by Daniel Etienne). If you want to notity the user
that a remote agent has subscribed or unsubscribed to a regular expression after the protocol handshake,
then your monitor agent has to subscribe to subscriptions. To do so, use the following functions:

public int addBindListener(IvyBindListener callback);
public void removeBindListener(int id)

A IvyBindListener object must implement the following interface:

void bindPerformed(IvyClient client, int id, String regexp);
void unbindPerformed(IvyClient client, int id, String regexp);

For a code sample, see the Probe utility source code. Note that if you have enabled a filter (message classes),
you will be notified the subscriptions even if they are considered useless. If you want to check if the regexp
has a chance to match the message you're sending, use the boolean Ivy.CheckRegexp(String
regexp) .

Monitoring the bus
When in doubt, to check if the remote client is still responding, instead of relying on a callback, you can
test the response of the protocol parsing thread. Use following method:

Ivyclient.ping(PingCallback pc);

It will send a ping token that will (hopefully) be parsed by the remote agent, and will trigger the following
message with the elapsed time in milliseconds:

void PingCallback.pongReceived(IvyClient ic,int elapsedTime);

NT02-819 (c) CENA

10

An example is provided in fr.dgac.ivy.tools.Probe.

Message classes
When your Ivy bus is populated with many agents, the cost of pattern matching becomes painful. For
instance, a bus with 20+ agents, with 2000+ subscriptions, with hundreds of messages per second might
cause a high CPU load, thus leading to slow responsiveness in GUI animations. To limit this phenomenon,
use bounded regexp as much as possible like ^NAME VALUE=(.*) (see the programmer's style guide
later on). However, 2000+ subscription are still 2000+ tests of bounded regexp, even if is less costful. It
is possible not to do the tests provided some requirements are met:

• your agent knows exhaustively and exactly the prefixes of all the messages it will send

• your use the Ivy.setFilter() before starting the bus, with the list of prefixes (e.g.: { "TOTO1"
"PREFIX", "ETC" })

If you use the message classes, your Ivy agent will ignore the bounded subscriptions of other agents that
will never match any of your prefixes (e.g: ^COUCOU neither matches TOTO1, PREFIX, nor ETC).
The check is made this way:

• if the regexp is bounded, the filter extracts the first word according to this regexp: ^\\^([a-zA-
Z0-9_-]+).*

• the word is compared character to character to all the prefixes in the message class; if it is not present,
the subscription is discarded

When your agent sends a message, many pattern matching won't be made, and it might save some time.
Be sure to activate the setFilter() when you are sure that you know perfectly the message classes.
You can play with the message classes with jprobe and see the problems that can arise.

Utilities

jprobe
jprobe is your swiss army knife as an Ivy Java developer. Use it to try your regular expressions, to check
the installation of the system, to log the messages, etc. To use it, either run java fr.dgac.ivy.tools.Probe
, run the jar file directly with $ java -jar ivy.jar , or use the jprobe shell script.

The command line options (available with the -h command line switch) are the following:

• -b allows you to specify the ivy bus. This overrides the -DIVY_BUS Java property. The default value
is 127.255.255.255:2010.

• -n NAME allows you to specify the name of this probe agent on the bus. It defaults to JPROBE, but it
might be difficult to differentiate which jprobe sent which message with a handful of agents with the
same name

• -q allows you to spawn a silent jprobe, with no terminal output

• -s sends to self (default off), allows subscription to its own messages

• -n NEWNAME changes JPROBE default Ivy name to another one, which can prove to be useful when
running different probes

• -t add timestamps to messages

NT02-819 (c) CENA

11

• -d allows you to use JPROBE on debug mode. It is the same as setting the VY_DEBUG property (java
-DIVY_DEBUG fr.dgac.ivy.tools.Probe is the same as java fr.dgac.ivy.tools.Probe -d)

• -c MESSAGECLASS uses a message filter (see Ivy.setFilter()), for example
'Word1,Word2,Word3'

• -h dumps the command line options help.

The run time commands are preceded by a single dot (.) at the beginning of the line. Issue ".help" at the
prompt (without the double quotes) to have the list of available commands. If the lines does not begin
with a dot, jprobe tries to send the message to the other agents, if their subscriptions allows it. The dot
commands are the following

• .die CLIENTNAME issues an ivy die command, presumably forcing the first agent with this name to
leave the bus

• .bye (or .quit) forces the JPROBE application to exit. This is the same as inputting an end of file character
on a single input line (^D).

• .direct client id message sends the direct message to the remote client, using the numeric id

• .bind REGEXP and .unbind REGEXP will change Probe's subscription

• .list gives the list of clients seen on the ivy bus

• .bound AGENT lists the regexps the AGENT has subscribed to. You can use .bound * to get the whole
list.

• .time COUNT MSG sends the MSG COUNT times and displays the elapsed time

• .ping CLIENT measures the time it takes to reach a client

IvyDaemon
As the launching and quitting of an ivy bus is a bit slow, it is not convenient to spawn an Ivy client each
time we want to send a simple message. To do so, we can use the IvyDaemon, which is a TCP daemon
sitting and waiting on the port 3456, and also connected on the default bus. Each time a remote application
connects to this port, every line read until EOF will be forwarded on the bus. The standard port and bus
domain can be overridden by command line switches (use $ java fr.dgac.ivy.tools.IvyDaemon -h). First,
spawn an ivy Damon: $ java fr.dgac.ivy.tools.IvyDaemon then, within your shell scripts, use a short
TCP connexion (for instance netcat): $ echo "hello world" | nc -q 0 localhost 3456 The "hello world"
message will be sent on the default Ivy Bus to anyone having subscribe to a matching pattern

jafter
jafter (or fr.dgac.ivy.tools.JAfter) is a simple utility that can be used within shell script. The rationale
is to block the processing until a specific message is received, then continue. This can be used to wait
for a ready message before lauching another agent. The jafter program can wait forever or timeout. It the
timeout is triggered, a negative value is returned to the shell.

programmer's style guide
There are many specific programming patterns in Ivy. Some of them are Ivy related, some are java related.
See the jprobe source code to get an example of some programming patterns. Here are some of them, to
be completed later...

NT02-819 (c) CENA

12

join the right bus
To join the right bus, you have to honor the IVYBUS property. It is a good way to let the system get
it, and an ever better way to override it with command line options (e.g.: -b :3110). Here is a snippet to
perform this task:

import fr.dgac.ivy.* ;
import gnu.getopt.Getopt;

public static void main(String[] args) throws IvyException {
 Getopt opt = new Getopt("After",args,"b:"); // add more options ...
 String domain=Ivy.getDomain(null); // gets IVYDOMAIN from property
 // or, if none is set, defaults to Ivy.DEFAULT_DOMAIN
 while ((c = opt.getopt()) != -1) switch (c) {
 case 'b': domain=opt.getOptarg(); break; // overrides
 // and more options
 default: System.out.println(helpmsg); System.exit(0);
 }
 Ivy bus=new Ivy(name,name+" ready",null);
 bus.start(domain); // sets the properties for children processes ...
}

nice regular expressions
To avoid CPU consuming pattern matching operation, be sure to use bounded regexps as much as possible.
For instance, if we consider the regexp1 "^coord x=(\d+)", the regexp2 "x=(\d+)" and the message msg
"coord x=12 y=15". When another agent sends the message msg, both regexp will match and trigger the
callback with on argument, the string "12". However, when another message is sent, the regexp1 will fail as
soon as possible, probably the very first character, but the regexp2 will do some processing before failing.

Something's not working
To trace the behaviour of an heavily multithread application is quite tedious, especially when it's connected
to others. The easiest path is to use the built-in basic tracing mechanism provided by Ivy : run your jvm
with the -DIVY_DEBUG property set. Use jprobe to monitor what's going on with the greedy regexp '(.*)'
in a separate terminal. If in doubt, just join the Ivy mailing list.

time consuming callbacks
For each remote agent, the Ivy object has an IvyClient with a dedicated working thread. This thread deals
with the Ivy protocol coding and decoding, and performs the callbacks. If your agent has time consuming
callbacks, involving CPU, or long IO, or so, then it might be better to run each callback in a dedicated
thread. You can write this yourself, or just use the Ivy.bindAsyncMsg() function. The problem is
that there is a slight overhead in thread management.

how to perform requests
When agent A needs to make a request to another agent B, you can use the following pattern:

• B has subscribed to ^MyRequest ID=([^]+) QUERY=(.*)

• A subscribes to ^MyResult ID=someSpecificId RESULT=(.*)

NT02-819 (c) CENA

13

• A send to MyRequest ID=someSpecificId QUERY=2+2

• B receives, computes the results, then sends MyResult ID=someSpecificId RESULT=4

• A receives, and unsubscribes to his subscription

To program this, you have to get a gentle way of choosing the specificId, associate this to the subscription
number returned by Ivy.bindMsg(), and add code within the callback to perform the unsubscription.
Moreover, you have to be sure that there are not two "B type" agents on the bus, otherwise you'll eventually
perform your callback twice if the results are sent during the short lapse of time before unsubscription.

The preferred way is to to let the API provide this singleton mechanism with Ivy.getWBUID() function
returning an unique ID, and the Ivy.bindMsgOnce() that handles all the mechanisms ensuring that
the callback will be run on time only, and that the unsubscription will take place.

 String id = bus.getWBUID(); // a more or less unique ID
 bus.bindMsgOnce("MyResult ID="+id+" RESULT=(.*)",{
 public void receive(IvyClient ic,String[] args) {
 System.out.println("2+2="+args[0]);
 // the unsubscription is done for me
 }
 });
 bus.sendMsg("MyRequest ID="+id+" QUER=2+2");

how to quit the application ?
If your application decides to quit or leave the bus, the safest way is to invoque Ivy.stop() . This will
send a clean goodby message to the other agents, close the sockets, end the threads, etc. However, you can
en the JVM performing a System.exit(int) and let the other agents realize that you've gone.

If some other agents wants you to quit the bus, it will send you a die message. The protocol will first
run you IvyApplicationListener.die() , if any, then perform some socket/thread clean up, and
disconnect you from the bus. As a good citizen on the Ivy bus, you should take the appropriate measures
top stop your application within the IvyApplicationListener.die() method, for instance run
System.exit() or make all you thread stop, disposing your toplevel Swing Frames. Here is an example
of how to do it:

import fr.dgac.ivy.* ;
import javax.swing.*;

public class EndApp extends IvyApplicationAdapter {

 public static void main(String[] args) throws IvyException {
 Ivy bus=new Ivy("EndApp","EndApp ready",null);
 EndApp e = new EndApp(bus); // a frame is opened, and the Swing Thread is started
 bus.addApplicationListener(e);
 bus.start(Ivy.getDomain(null)); // Ivy threads are up and running
 // the control flow won't stop until the end of all above threads
 }

 private Ivy bus;
 JFrame f;

NT02-819 (c) CENA

14

 public EndApp(Ivy b) {
 this.bus=b;
 f=new JFrame("test");
 f.getContentPane().add(new JLabel("some label"),java.awt.BorderLayout.CENTER);
 f.pack();
 f.setVisible(true);
 }

 public void die(IvyClient client, int id,String msgarg) {
 System.out.println("received die msg from " + client.getApplicationName());
 f.dispose(); // closes the only window, thus quitting the swing thread
 } // end of die callback, the Ivy threads are stopped

}

Contacting the authors
For bug reports or comments on the library itself or about this document, please me an email at
<yannick.jestin@enac.fr> . For comments and ideas about Ivy itself (protocol, applications, etc),
please join and use the Ivy mailing list [http://www.tls.cena.fr/products/ivy/contact.html]

If you report a bug, try to identify the causal path leading to the bug, and submit a trace of the problem, if
possible, using the -DIVY_DEBUG property to produce a trace of the ivy execution.

http://www.tls.cena.fr/products/ivy/contact.html
http://www.tls.cena.fr/products/ivy/contact.html

