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Abstract. Rule-based argumentation systems are developed for reasoning about
defeasible information. They take as input atheorymade of a set ofstrict rules,
which encode strict information, and a set ofdefeasible ruleswhich describe
general behaviour with exceptional cases. They buildargumentsby chaining such
rules, defineattacksbetween them, use asemanticsfor evaluating the arguments,
and finally identify theplausible conclusionsthat follow from the rules.
One of the main attack relations of such systems is the so-called undercutting
which blocks the application of defeasible rules in some contexts. In this paper,
we show that this relation is powerful enough to capture alone all the different
conflicts in a theory. We present the first argumentation system that uses only un-
dercutting and fully characterize both its extensions and its plausible conclusions
under various acceptability semantics.
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1 Introduction

Rule-based argumentation systems are developed for reasoning about defeasible infor-
mation. As a major feature, they take as input atheorymade of a set offacts, a set of
strict rules, which encode strict information, and a set ofdefeasible ruleswhich describe
general behaviour with exceptional cases. They buildargumentsby chaining such rules,
defineattacksbetween them, use asemanticsfor evaluating the arguments, and finally
identify theplausible conclusionsthat follow from the rules. Examples of such systems
are ASPIC [2], its extended version ASPIC+ [14], Delp [8] andthe system developed
in [11]. Some of these systems satisfy the rationality postulates proposed in [3]. How-
ever, the plausible conclusions of any of these systems havenever been characterized.

Besides that, systems like Delp userebuttalas attack relation between arguments.
Rebuttal captures the fact that the conclusions of two arguments are inconsistent. Sys-
tems like ASPIC [2] and Pollock’s system [13] use, in addition to rebuttal,undercut
which blocks the application of defeasible rules in particular contexts. Let us illustrate
this relation by an example borrowed from [13]. Consider thefollowing argumenta:

“The object is red(or) because it looks red(lr)”.

This argument uses of the defeasible rulelr ⇒ or (meaning that generally, if an object
looks red, then it is red). Assume now another argumentb which states the following:
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“The rulelr ⇒ or cannot be applied because the object is illuminated by a red
light”.

The argumentb undercutsa and the conclusion(or) of a is not drawn from the theory.
Undercut deals with theexceptionsof defeasible rules. Indeed, every exception of a
defeasible rule gives birth to an attack from any argument supporting the exception
toward any argument using the rule. In the example, being illuminated by a red light is
a specific case where the rulelr ⇒ or cannot be applied.

In this paper, we argue that undercut can do more than dealingwith exceptions
of defeasible rules. It can also perfectly play the role of rebuttal, and deal thus with
inconsistency. The basic idea is the following: if a theory contains a defeasible rule
x ⇒ y and¬y follows from the same theory, then the rule should be blocked. We
propose the first rule-based argumentation system that usesundercutting as its single
attack relation. We show that it satisfies the rationality postulates discussed in [3] under
naive, stable and preferred semantics. From a conceptual point of view, this system is
much simpler than existing ones that combine rebuttal and undercut. Indeed, the latter
require different variants of rebuttal for satisfying the basic postulates under different
semantics. Our system satisfies the postulates under all semantics. Moreover, restricted
rebut, one of the variants of rebuttal, is based on assumption which may appear not
intuitive. Indeed, this relation compares only the rules whose heads are inconsistent, and
neglects the remaining structures of the arguments. For instance, it considers that the
argument(x1, x1 ⇒ y1, y1 → z) attacks the argument(x2, x2 → y2, y2 ⇒ ¬z) sincez
follows from a strict rule while¬z follows from a defeasible one. Note that the converse
is not true even if the the first rule of the first argument is defeasible while that of the
second argument is strict. In our system, we do not make such assumptions. The second
main contribution of the paper consists of providing the first and full characterizations
of the extensions as well as the set of plausible conclusionsof our system under naive,
stable and preferred semantics proposed in [7].

The paper is organized as follows: The next section defines the rule-based system
we are interested in. Then, we analyse its properties and characterize its extensions and
set of plausible conclusions in subsequent sections.

2 Rule-based systems

As in [1], three kinds of information are distinguished:Factsrepresenting factual infor-
mation like ‘Tweety is a bird’,strict rulesrepresenting strict information like ‘Penguins
do not fly’ anddefeasible rulesdescribing general behavior with exceptional cases like
‘Birds fly’. In what follows,L is a set ofliterals, i.e. atoms or negation of atoms, rep-
resenting knowledge. The negation of an atomx from L is denoted¬x. L′ is a set of
atoms used for naming rules. The two sets satisfy the constraint L ∩ L′ = ∅. Every
rule has a single name and two rules cannot have the same name.Throughout the paper,
rules are namedr, r1, r2, . . . . The functionRule(ri) returns the rule whose name isri.

Facts are elements ofL.

Defeasible rules are of the formx1, . . . , xn ⇒ x andx, x1..., xn are literals inL.
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Strict rules are of the formx1, . . ., xn → x wherex1, . . ., xn are literals ofL and
{

x ∈ L or
x ∈ L′ andRule(x) is defeasible.

Note that the names of rules cannot appear in bodies of (strict or defeasible) rules.
This means that it is not possible to represent information of the form “if rule r is
applied (or is blocked), theny holds”. Moreover, strict rules cannot be blocked. By
default, any defeasible rule can be applied, unless explicitly mentioned in the language
by strict rulesx1, . . ., xn → x with x ∈ L′. Such a rule is read as follows: Ifx1, . . . , xn

hold, then the defeasible rulex is alwaysnot applicable.

Definition 1 (Theory). A theory is a triple T = (F ,S,D) whereF ⊆ L is a set of
facts andS ⊆ L′ (respectivelyD ⊆ L′) is a set of strict (respectively defeasible) rules.

Notations:For each rulex1, . . . , xn → x (as well asx1, . . . , xn ⇒ x) whose name isr,
theheadof the rule isHead(r) = x and thebodyof the rule isBody(r) = {x1, . . . , xn}.
Let T = (F ,S,D) andT ′ = (F ′,S ′,D′) be two theories. We say thatT is a sub-
theoryof T ′, written T v T ′, iff F ⊆ F ′ andS ⊆ S ′ andD ⊆ D′. The relation<
is the strict version ofv (i.e., it is the case that at least one of the three inclusionsis
strict). Finally,Defs(T ) = D.

Let us now show how new information is produced from a given theory. This is
generally the case when (strict and/or defeasible) rules are fired in aderivation schema.

Definition 2 (Derivation schema).LetT = (F ,S,D) be a theory andx ∈ L ∪ L′. A
derivation schemafor x fromT is a finite sequenced = 〈(x1, r1), . . . , (xn, rn)〉 s.t.

xn = x

for i = 1 . . . n,
xi ∈ F andri = ∅, or

ri ∈ S ∪ D andHead(ri) = xi andBody(ri) ⊆ {x1, .., xi−1}

Seq(d) = {x1, . . . , xn}.
Facts(d) = {xi | i ∈ {1, . . . , n}, ri = ∅}.
Strict(d) = {ri | i ∈ {1, . . . , n}, ri ∈ S}.
Def(d) = {ri | i ∈ {1, . . . , n}, ri ∈ D}.
CN(T ) denotes the set of all literals that have a derivation schemafromT .

It is clear from the definition thatCN is monotonic.

Example 1 LetT1 = (F1,S1,D1) be a theory such thatF1 = {p, b},S1 = {(r1) p →
¬f} andD1 = {(r2) b ⇒ f}. FromT1, we have the following minimal derivations:

d1 = 〈(p, ∅)〉

d2 = 〈(b, ∅)〉

d3 = 〈(p, ∅), (¬f, r1)〉

d4 = 〈(b, ∅), (f, r2)〉
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A notion of consistency and another of coherence are associated with this logical
language.

Definition 3 (Consistency–Coherence).A setX ⊆ L is consistentiff @x, y ∈ L such
thatx = ¬y. It is inconsistent otherwise.
A theoryT = (F ,S,D) is consistent iffCN(T ) is consistent. It iscoherentiff CN(T ) ∩
D = ∅.

The set of strict rules should be closed under transposition. This is required for
ensuring the rationality postulates proposed in [3].

Definition 4 (Closure under transposition).LetS be a set of strict rules. For all rule
r = x1, . . . , xn → x with x ∈ L, r′ is a transpositionof r iff r′ = x1, . . ., xi−1, ¬x,
xi+1, . . ., xn → ¬xi for some 1≤ i ≤ n.
We defineClt(S) as the minimal set such that:

S ⊆ Clt(S), and

If r ∈ Clt(S) andr′ is a transposition ofr thenr′ ∈ Clt(S).

We say thatS is closed under transpositioniff Clt(S) = S.

Throughout the paper, we will consider undercut for capturingall the possible con-
flicts between arguments. Thus, undercut will be used both for blocking general rules in
presence of exceptions of such rules, and also for handling inconsistency. For that pur-
pose, the theory should beclosed, that is for each defeasible ruler, the theory should
contain the strict rule¬Head(r) → r. This closure captures the fact thatHead(r) and
¬Head(r) cannot hold at the same time.

Definition 5 (Closed theory).A theoryT = (F ,S,D) is closediff

S is closed under transposition, and

for all r = x1, . . . , xn ⇒ x ∈ D, ¬x → r ∈ S.

Example 1 (Cont) The closed version ofT1 is T ′
1 = (F1,S ′

1,D1) such thatS ′
1 =

{(r1) p → ¬f, (r3) f → ¬p, (r4) ¬f → r2}.

The backbone of an argumentation system is naturally the notion of arguments.
They are built from a closed theory using the notion of derivation schema as follows.

Definition 6 (Argument). LetT = (F ,S,D) be a closed theory. Anargumentdefined
fromT is a pair (d, x) s.t.

x ∈ L ∪ L′

d is a derivation schema forx fromT

@T ′
< (Facts(d), Strict(d), Def(d)) s.t.x ∈ CN(T ′)

An argument(d, x) is strict iff Def(d) = ∅.
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Unlike ASPIC and ASPIC+ systems, arguments are minimal in our system. An
argument may have several sub-parts, each of which is calledsub-argument.

Definition 7 (Sub-argument). An argument(d, x) is a sub-argumentof (d′, x′) iff
(Facts(d), Strict(d), Def(d)) v (Facts(d′), Strict(d′), Def(d′)).

Notations: Arg(T ) denotes the set of all arguments built from theoryT in the sense
of Def. 6. If a = (d, x) is an argument,Conc(a) = x andSub(a) is the set of all its
sub-arguments. For a setE of arguments,Concs(E) = {x | (d, x) ∈ E} andTh(E) is a
theory such that:

Th(E) = (
⋃

(d,x)∈E

Facts(d),
⋃

(d,x)∈E

Strict(d),
⋃

(d,x)∈E

Def(d)).

The undercutting relation is defined as follows:

Definition 8 (Undercutting). LetT = (F ,S,D) be a closed theory and(d, x), (d′, x′) ∈
Arg(T ). (d, x) undercuts(d′, x′), denoted by(d, x) Ru (d′, x′), iff x ∈ Def(d′).

Let us illustrate this relation by some examples.

Example 1 (Cont)The setArg(T ′
1 ) contains:

a1 : (〈(b, ∅)〉, b) a2 : (〈(p, ∅)〉, p)

a3 : (〈(p, ∅), (¬f, r1)〉,¬f)

a4 : (〈(p, ∅), (¬f, r1), (r2, r4)〉, r2)

a5 : (〈(b, ∅), (f, r2)〉, f)

a6 : (〈(b, ∅), (f, r2), (¬p, r3)〉,¬p)

a4 undercutsa5, a6 sincer2 ∈ Def(d5), r2 ∈ Def(d6).

Strict arguments cannot be attacked using this relation.

Proposition 1. Let T = (F ,S,D) be a theory. For all argumenta ∈ Arg((F ,S, ∅)),
@b ∈ Arg(T ) s.t.bRua.

Throughout the paper, we study the following rule-based argumentation system.

Definition 9 (Argumentation system).An argumentation system(AS) defined over a
closed theoryT = (F ,S,D) is a pair H = (Arg(T ),Ru) whereRu ⊆ Arg(T ) ×
Arg(T ).

Arguments are evaluated using extension-based semantics [7]. These semantics are
based on two key notions:

Conflict-freeness: A setE of arguments is conflict-free iff@a, b ∈ E s.t.aRub.

Defence: A set E of arguments defends an argumenta iff for all argumentb s.t.
bRua, ∃c ∈ E s.t.cRub.

Definition 10 (Semantics).LetH = (Arg(T ),Ru) andE ⊆ Arg(T ).
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E is anaiveextension iff it is a maximal (w.r.t. set⊆) conflict-free set.

E is a preferredextension iff it is a maximal (w.r.t. set⊆) conflict-free set which
defends all its elements.

E is astableextension iffE is conflict-free and∀a ∈ Arg(T ) \ E , ∃b ∈ E such that
bRua.

Notations: Extx(H) denotes the set of all extensions of systemH under semanticsx
wherex ∈ {n, p, s}, n (resp.p, s) stands for naive (resp. preferred, stable). When we
do not need to refer to a particular semantics, we writeExt(H).

The extensions of a system are used for defining theplausible conclusionsto be
drawn from the theory over which the system is built. A literal is a plausible conclusion
of a system iff it is a common conclusion to all the extensions.

Definition 11 (Plausible conclusions).The set ofplausible conclusionsof an argu-
mentation systemH is Output(H) = ∅ if Ext(H) = ∅ and

Output(H) =
⋂

Ei ∈ Ext(H)

Concs(Ei) otherwise.

Example 1 (Cont)The argumentation systemH1 = (Arg(T ′
1 ),Ru) has a single stable

extension which is also preferred:E = {a1, a2, a3, a4} andOutput(H1) = {p, b,¬f, r2}.

3 Properties of the system

Let us now analyse the properties of the argumentation system defined in the previous
section. We show that it satisfies all the rationality postulates proposed in [3]. Indeed,
every extension (under any of the reviewed semantics) contains all the sub-arguments
of its arguments. The system is also coherent, that is it is not possible for an extension
to use a defeasible rule in one of its arguments, and at the same time to block that rule
by another argument. In addition, for preferred and stable semantics, every extension
returns a consistent set of conclusions (unless the strict part of the theory is inconsistent)
and the set of conclusions of every extension is closed understrict rules (under stable
and preferred semantics), that is it is not possible that an extension supports a conclusion
x and forgetsy if x → y ∈ S.

Theorem 1. Let H = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT = (F ,S,D) s.t.Ext(H) 6= ∅. For all E ∈ Ext(H), the following hold:

Th(E) is coherent,

for all a ∈ E , Sub(a) ⊆ E ,

Under stable and preferred semantics, consistency and closure under strict rules are
also satisfied.

Theorem 2. Let H = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT = (F ,S,D) s.t.Extx(H) 6= ∅ with x ∈ {s, p}. For all E ∈ Extx(H), the
following hold:
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Concs(E) is consistent iffCN((F ,S, ∅)) is consistent,

Concs(E) = CN((Concs(E),S, ∅)),

Output(H) = CN((Output(H),S, ∅)).

The following property follows from the previous theorem.

Corollary 1. LetH = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT = (F ,S,D) s.t.Extx(H) 6= ∅ with x ∈ {s, p}. Output(H) is consistent iff
CN((F ,S, ∅)) is consistent,

The previous results show that the outcomes of the argumentation system (its ex-
tensions and set of plausible conclusions) satisfy nice properties. However, they do not
say anything about the kind of conclusions the system draws from a theory. We answer
this question in the next section.

4 The outputs of the system

This section provides formal characterizations of the outputs of the system under the
three reviewed semantics. For each semantics, we characterize the extensions in terms
of sub-theories of the theory over which the system is built,delimit the number of
extensions, and fully characterize the set of plausible conclusions.

4.1 Naive semantics

A sub-theory that corresponds to a naive extension is calledoption and is defined as
follows:

Definition 12 (Option). An optionof a closed theoryT = (F ,S,D) is a sub-theory
(F ′,S ′,D′) such that

F ′ = F , S ′ ⊆ S andD′ ⊆ D

(F ′,S ′,D′) is coherent

∀r ∈ S ′ ∪D′, Body(r) ⊆ CN((F ′,S ′,D′))

@S ′′,D′′ such that(F ′,S ′,D′) < (F ′,S ′′,D′′) and (F ′,S ′′,D′′) satisfies the
previous conditions.

Opt(T ) denotes the set of options of the closed theoryT .

Thus, an option is obtained by taking all the facts and a maximal (w.r.t set inclusion)
subset of (strict and defeasible) rules so that the sub-theory remains coherent and all the
added rules are applicable. Notice that no priority is givento strict rules over defeasible
ones. This is explained by the fact that naive semantics doesnot distinguish between
attackers and attacked arguments.
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Example 2 Consider the closed theoryT3 = (F3,S3,D3):

F3

{

x
y

S3







t → r2 (r4)
u → r1 (r5)
s → r3 (r6)

D3







x ⇒ t (r1)
y ⇒ u (r2)
t ⇒ s (r3)

The theoryT3 has three options:

O1 = (F3, ∅, {r1, r2, r3}) CN(O1) = {x, y, t, u, s}

O2 = (F3, {r4}, {r1, r3}) CN(O2) = {x, y, t, s, r2}

O3 = (F3, {r5}, {r2}) CN(O3) = {x, y, u, r1}

Let us now establish the relationship between naive extensions of an argumentation
system and the options of the closed theory over which it is built. Each naive extension
returns one option and two naive extensions cannot return the same option.

Theorem 3. Let H = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT .

For all E ∈ Extn(H), there exists a single optionO ∈ Opt(T ) such thatTh(E) =

O andConcs(E) = CN(O). We put:Option(E)
def
= O.

For all E , E ′ ∈ Extn(H), if Option(E) = Option(E ′) thenE = E ′.

For all E ∈ Extn(H), E = Arg(Option(E)).

The following theorem shows that inversely, each option leads to one naive exten-
sion and two different options do not return the same naive extension.

Theorem 4. Let H = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT .

For all O ∈ Opt(T ), Arg(O) ∈ Extn(H).

For all O ∈ Opt(T ), O = Option(Arg(O)).

For all O1,O2 ∈ Opt(T ), if Arg(O1) = Arg(O2), O1 = O2.

Example 2 (Cont)The arguments built fromT3 are summarized below.

a1 : (〈(x, ∅)〉, x)

a2 : (〈(y, ∅)〉, y)

a3 : (〈(x, ∅), (t, r1)〉, t)

a4 : (〈(x, ∅), (t, r1), (r2, r4)〉, r2)

a5 : (〈(y, ∅), (u, r2)〉, u)

a6 : (〈(y, ∅), (u, r2), (r1, r5)〉, r1)

a7 : (〈(x, ∅), (t, r1), (s, r3)〉, s)

a8 : (〈(x, ∅), (t, r1), (s, r3), (r3, r6)〉, r3)
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Fig. 1. Graph of attacks built from the theoryT3

The graph of attacks is depicted in the figure 1 below:
The argumentation systemH3 = (Arg(T3),Ru) has three naive extensionsE1 =

{a1, a2, a3, a5, a7}, E2 = {a1, a2, a3, a4, a7} andE3 = {a1, a2, a5, a6} which capture
the optionsO1, O2 andO3 respectively. Indeed,Th(E1) = O1 (resp.Th(E2) = O2,
Th(E3) = O3) andConcs(E1) = CN(O1) (resp.Concs(E2) = CN(O2), Concs(E3) =
CN(O3)).

From the previous correspondence, the number of naive extensions is delimited as
follows:

Corollary 2. LetH = (Arg(T ),Ru) be an argumentation system. It holds that|Extn(H)| =
|Opt(T )|.

The plausible conclusions of the argumentation system under naive semantics are
exactly the literals that follow from all the options of the theory over which the system
is built.

Corollary 3. Let H = (Arg(T ),Ru) be an argumentation system.Output(H) =
⋂

O∈Opt(T ) CN(O).

Example 2 (Cont)Under naive semantics,Output(H) = CN(O1)∩CN(O2)∩CN(O3) =
{x, y}.

4.2 Stable semantics

The sub-theories of a closed theory that capture stable extensions are calledstrong
optionsand are defined as follows:

Definition 13 (Strong Option).A strong optionof a closed theoryT = (F ,S,D) is a
sub-theory(F ′,S ′,D′) s.t.

F ′ = F , S ′ = S andD′ ⊆ D

(F ′,S ′,D′) is coherent

∀r ∈ D′, Body(r) ⊆ CN((F ′,S ′,D′))

∀r /∈ D′ we have: eitherr ∈ CN(F ′,S ′,D′) or ∃x ∈ Body(r) such thatx /∈
CN(F ′,S ′,D′)
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SOpt(T ) denotes the set of strong options of theoryT .

In a strong optionO = (F ,S,D′) it is not necessary that all the strict rules of
S are applicable. LetS′′ be the subset of strict rules that are applicable inO, i.e.,
S ′′ = {r ∈ S | Body(r) ⊆ CN(O)}. Then, the sub-theoryO′ = (F ,S ′′,D′) is an
option ofT which clearly has the same conclusions asO (i.e.,CN(O) = CN(O′)). In
addition, every strict (resp. defeasible) ruler which is kept outsideO′ is not applicable
(resp. is not applicable or is such thatr ∈ CN(O′)). This latter constraint does not hold
necessarily for every option. Accordingly, every strong option corresponds to a single
option but the converse is not true.

Thus, in addition to an “internal condition” (coherence) satisfied by both options
and strong options, the latter require an additional “external condition” which consists
of justifyingeach rule kept outside. Notice, that this idea is not new in non-monotonic
reasoning. We find it namely in the distinction between Reiter’s extensions [15] and
Lukaszewicz’s extensions [12] in default logic as well as between answer sets [10]
andι-answer sets [9] in logic programming. Let us illustrate strong options and their
relationship with options in our running example.

Example 2 (Cont)The theoryT3 has one strong optionO = (F3,S3, {r2}). Note that
the only strict rule inS3 which is applicable forO is r5. If we discard fromO the
remaining non-applicable strict rules, we get exactly the optionO3 (CN(O) = CN(O3)).
Note also that each rule which is not included inO3 is justified. Namely, the strict
rulesr4 andr6 are note applicable (t ∈ Body(r4), t /∈ CN(O3), s ∈ Body(r6), and
s /∈ CN(O3)); the defeasible ruler1 is such thatr1 ∈ CN(O3) and the defeasible ruler3
is not applicable (t ∈ Body(r3) andt /∈ CN(O3)). SoO3 gives rise to a strong option
by adding all the non-applicable strict rules. This is not the case forO1 andO2. Indeed,
adding the missing strict rules to them leads to incoherent sub-theories.

It is worthy to say that a closed theory may not have strong options. This is not
surprising since as we will show, there is a bijection between the set of stable extensions
and the set of strong options. Indeed, every stable extension gives birth to a strong option
and two stable extensions cannot return the same strong option.

Theorem 5. Let H = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT s.t.Exts(H) 6= ∅.

For all E ∈ Exts(H), there exists a single strong optionO ∈ SOpt(T ) s.t.

Th(E) v O andConcs(E) = CN(O). We putSOption(E)
def
= O.

For all E , E ′ ∈ Exts(H), if SOption(E) = SOption(E ′) thenE = E ′.

For all E ∈ Exts(H), E = Arg(SOption(E)).

Inversely, every strong option leads to one stable extension and two strong options
cannot lead the same stable extension.

Theorem 6. Let H = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT s.t.Exts(H) 6= ∅.
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For all O ∈ SOpt(T ), Arg(O) ∈ Exts(H).

For all O ∈ SOpt(T ), O = SOption(Arg(O)).

For all O1,O2 ∈ SOpt(T ), if Arg(O1) = Arg(O2) thenO1 = O2.

Example 2 (Cont)Among the three naive extensions of the argumentation system H3

built from T3, the only stable extension isE3 which captures the strong optionsO.
Indeed,Th(E3) v O andConcs(E3) = CN(O).

We have seen so far that there is a one to one correspondence between naive (resp.
stable) extensions and options (resp. strong options). We have also shown that every
strong option is a sub-theory of one option. Thus, the numberof stable extensions of a
rule-based system is delimited as follows.

Corollary 4. LetH = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT . The following holds:0 ≤ |Exts(H)| = |SOpt(T )| ≤ |Opt(T )|.

Under stable semantics, the plausible conclusions of an argumentation system are
the literals that follow from all the strong options of the theory over which the system
is built.

Corollary 5. LetH = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT s.t.Exts(H) 6= ∅. Output(H) =

⋂

O∈SOpt(T ) CN(O).

Example 2 (Cont)O is the only strong option ofT3. Thus,Output(H) = CN(O) =
{x, y, u, r1}.

Let us summarize: rule-based argumentation systems may nothave stable exten-
sions in which case they miss intuitive conclusions like facts. Systems that do have
stable extensions return exactly the literals that follow from all the strong options of the
closed theory at hand.

4.3 Preferred semantics

We show next that the sub-theories that capture preferred extensions are the so-called
preferred options.

Definition 14 (Preferred Option).A preferred optionof a closed theoryT = (F ,S,D)
is a sub-theory(F ′,S ′,D′) s.t.

F ′ = F , S ′ = S andD′ ⊆ D

(F ′,S ′,D′) is coherent

∀r ∈ D′, Body(r) ⊆ CN((F ′,S ′,D′))

∀D′′ ⊆ D, if ∃r′ ∈ D′ such thatr′ ∈ CN(F ,S,D′′) then∃r′′ ∈ D′′ such that
r′′ ∈ CN(F ,S,D′)

@D′′ such thatD′ ⊂ D′′ and(F ′,S ′,D′′) satisfies the previous conditions.
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POpt(T ) denotes the set of preferred options of theoryT .

Preferred options are between options and strong options:

Every strong option of a theoryT is a preferred option ofT . The converse is not
true.

Every preferred option is a sub-part of an option. More precisely, for every preferred
optionO = (F ,S,D′), if S ′′ is the subset of strict rules that are applicable inO,
i.e.,S ′′ = {r ∈ S | Body(r) ⊆ CN(O)}, then there is a unique optionO′ such that
O′′ = (F ,S ′′,D′) v O′ andCN(O) = CN(O′′) ⊆ CN(O′).

Example 2 (Cont)Consider again the closed theoryT3. There are three sub-theories
that satisfy the four first conditions of definition 14:Op0 = (F3,S3, ∅),Op1 = (F3,S3, {r2})
andOp2 = (F3,S3, {r1}). The maximal ones (that satisfy also the last condition of
definition 14) areOp1 andOp2. Notice thatOp1 is exactly the unique strong op-
tion of T3. The other preferred optionOp2 captures a sub-part of the optionO2 =
(F3, {r4}, {r1, r3}). Indeed, by keeping inOp2 only the strict rues that are applicable
we obtain:Op′2 = (F3, {r4}, {r1}). We have :Op′2 v O2 andCN(Op2) = CN(Op′2) ⊆
CN(O2).

Now, we show that every preferred extension leads to a preferred option and two
preferred extensions cannot return the same preferred option.

Theorem 7. Let H = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT .

For all E ∈ Extp(H), there exists a single preferred optionO ∈ POpt(T ) s.t.

Th(E) v O andConcs(E) = CN(O). We put:POption(E)
def
= O.

For all E , E ′ ∈ Extp(H), if POption(E) = POption(E ′) thenE = E ′.

For all E ∈ Extp(H), E = Arg(POption(E)).

Inversely, every preferred option corresponds to a unique preferred extension and
two preferred options cannot return the same preferred extension.

Theorem 8. Let H = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT .

For all O ∈ POpt(T ), Arg(O) ∈ Extp(H).

For all O ∈ POpt(T ), O = POption(Arg(O)).

For all O1,O2 ∈ POpt(T ), if Arg(O1) = Arg(O2) thenO1 = O2.

Example 2 (Cont)The systemH3 constructed fromT3 has two preferred extensions
: Ep1 = {a1, a2, a5, a6} andEp2 = {a1, a2, a3, a4}. They capture the preferred op-
tionsOp1 andOp2 respectively. Indeed,Th(Ep1) v Op1 (resp.Th(Ep2) v Op2) and
Concs(Ep1) = CN(Op1) (resp.Concs(Ep2) = CN(Op2)).

The number of preferred extensions of an argumentation systemH is exactly the
number of preferred options of the theory over which the system is built.
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Corollary 6. LetH = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT . It holds that|Extp(H)| = |POpt(T )|.

The plausible conclusions of an argumentation system, under preferred semantics,
are the literals that follow from all the preferred options of the theory at hand.

Corollary 7. LetH = (Arg(T ),Ru) be an argumentation system built over a closed
theoryT . Output(H) =

⋂

O∈POpt(T ) CN(O).

Example 2 (Cont) Consider the theoryT3. Output(H) = CN(Op1) ∩ CN(Op2) =
{x, y}.

5 Related work

There are a couple of rule-based argumentation systems in the literature. Some of them
like ASPIC and its extended version ASPIC+ are shown to satisfy the rationality pos-
tulates defined in [3], namely the consistency and closure under strict rules of their sets
of plausible conclusions. While this is testimony to some strength of these formalisms,
it does not say anything about thekind of plausible conclusions they draw from a the-
ory. Surprisingly, the outputs of these systems (their extensions and their plausible con-
clusions) have never been characterized. The authors of those systems provide only
examples to show that the outputs are meaningful. This is certainly not sufficient. Our
paper is the first that attempts a systematic study of the outcomes of rule-based systems
under naive, stable and preferred semantics. There are two notable exceptions. The first
work, done in [1], considered afragmentof our logical language and rebuttal as at-
tack relation. Blocking rules was not allowed. Extensions were characterized in terms
of sub-theories. However, some sub-theories may not have corresponding extensions.
Thus, there is no bijection between the two. Our formalism isthus more general and
our characterisations of its outcomes are more accurate since they are one-to-one cor-
respondences. The second work, done in [4], investigated the link between the logic
programming semantics and argumentation ones. The theory over which an argumenta-
tion system is built is a logic program, that is, only one typeof rules is used. Thus, the
logical language is very different from ours.

In addition to the characterizations of the system’s outcomes, the other main novelty
of our paper is the exclusive use of undercut for encoding conflicts between arguments.
This relation is used in some existing systems but not alone.It is always coupled with
rebuttal which handles inconsistency. In our paper, we haveshown that undercut is
powerful enough to perfectly fulfil the role of rebuttal. Moreover, the system satisfies
all the rationality postulates under any semantics while inASPIC and ASPIC+, for
each semantics, one should use a different definition of rebuttal in order to satisfy the
postulates.

Regarding the definition of undercut, there are three proposals in the literature and
they are all equivalent. The first definition is the one followed in our paper and in [14].
The idea is to assign a name to every defeasible rule and to allow these names to be
in heads of other rules. Unlike in [14], in our paper, names ofrules may only be in
heads of strict rules. The reason is that undercut shows exceptions of defeasible rules,
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and exceptions are certain information. For instance, in case of penguin, the rule “birds
fly” is never applicable. The second definition, given in [13]and followed in [3], uses
an objectivation operator which transforms any defeasiblerule into a literal. The latter
plays the role of the name of the rule in our system. The last definition, proposed in
[5, 6], extends the logical language by a new form of rules with which one can block
defeasible rules. Whatever the definition is, none of these systems characterized its
outcomes.
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Appendix: Proofs

Proof. of Proposition 1. Follows immediately from the fact thatDef(d) = ∅ for all
(d, x) ∈ Arg((F ,S, ∅)).

Proof. of Theorem 1. LetH = (Arg(T ),Ru) be an argumentation system built over
theoryT = (F ,S,D).
Coherence:Assume thatExt(H) 6= ∅ and letE ∈ Ext(H). Assume that∃x ∈
Concs(E) ∩ Defs(Th(E)). Thus,x ∈ L′. Moreover,∃a, b ∈ E such thatConc(a) = x
andx ∈ Defs({b}). Then,aRub. This contradicts the fact thatE is conflict-free.
Closure under sub-arguments:Let E ∈ Ext(H), a = (d, x), b = (d′, x′) ∈ Arg(T )
such thata ∈ E , b /∈ E andb ∈ Sub(a).

Assume thatE ∈ Exts(H). There existsc ∈ E such thatcRub. Let c = (d′′, x′′).
Then,x′′ ∈ Def(d′) and thusx′′ ∈ Def(d) sinceDef(d′) ⊆ Def(d). Consequently,
cRua. This contradicts the fact thatE is conflict-free.

Assume now thatE ∈ Extn(H), thenE ∪ {b} is conflicting. Then, there exists
c ∈ E such thatcRub or bRuc. Assume thatbRuc. Thenx′ ∈ L′. Since elements of
L′ cannot be in the body of any rule thena = b, thusaRuc. This contradicts the fact
that it is conflict-free. Assume now thatcRub. As above, it follows thatcRua and this
contradicts the fact thatE is conflict-free.

Assume now thatE ∈ Extp(H). Sinceb /∈ E then there are two cases: i)E ∪ {b}
is conflicting, i.e., there existsc ∈ E such thatcRub or bRuc. As above, we get either
cRua or aRuc. In both cases,E is not conflict-free and this contradicts the fact that it is
a preferred extension. ii)E does not defendb. Thus, there existsc = (d′′, x′′) ∈ Arg(T )
such thatcRub. Then,x′′ ∈ Def(d′) and thusx′′ ∈ Def(d) meaning thatcRua. Since
E is a preferred extension∃d ∈ E such thatdRuc. Thus,E defendsb.

Proof. of Theorem 2. LetH = (Arg(T ),Ru) be an argumentation system built over
theoryT = (F ,S,D).
Closure under strict rules: Let E ∈ Extp(H). Assume thatx ∈ CN((Concs(E),S, ∅))
andx /∈ Concs(E). Let X = {x1, . . . , xn} be the minimal for set inclusion subset
of Concs(E) such thatx ∈ CN((X,S, ∅)). For eachxi, there existsai ∈ E such that
Conc(ai) = xi. There exists a minimal derivation schema forx usinga1, . . . , an and
additional strict rules. Letd be that derivation.(d, x) is an argument and(d, x) /∈ E .
There are two cases: i)E ∪ {(d, x)} is conflicting, i.e, there existsb = (d′, x′) ∈ E
such thatbRu(d, x) or (d, x)Rub. If bRu(d, x), thenConc(b) ∈ Def(d). However,
Def(d) = ∪Def(ai). Thus, there existsi ∈ {1, . . . , n} such thatConc(b) ∈ Def(ai),
i.e., bRuai. This contradicts the fact thatE is conflict-free. If(d, x)Rub, the sinceE
defends its elements,∃c ∈ E such thatcRu(d, x), i.e.,Conc(c) ∈ Def(d). Then,∃ai ∈
Sub((d, x)) such thatcRuai. But,ai ∈ E . ii) E does not defend(d, x). Let b ∈ Arg(T )
such thatbRu(d, x). Then,Conc(b) ∈ Def(d). Then,bRai for someai ∈ Sub((d, x))
andai ∈ E . SinceE defends its elements, thenE attacksb. The same reasoning holds
for stable semantics since any stable extension is also preferred.
Consistency:Let E ∈ Extx(H) with x ∈ {p, s} and assume thatConcs(E) is inconsis-
tent. Thus,∃a, b ∈ E such thata = (d, x), b = (d′,¬x), d = 〈(x1, r1), . . . , (xn, rn)〉,
d′ = 〈(x′

1), . . . , (x
′
m, rm)〉, xn = x and x′

m = ¬x. Moreover,x,¬x ∈ L. If a
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and b are both strict (i.e.,Def(d) = ∅ andDef(d′) = ∅), thenCN((F ,S, ∅)) is in-
consistent. Assume now thatCN((F ,S, ∅)) is consistent. It follows thata or/andb
is defeasible (i.e.,Def(d) 6= ∅ or/andDef(d) 6= ∅). Assume thata is defeasible.
If rn ∈ D, then¬x → rn ∈ S (sinceT is closed). SinceE is closed under strict
rules and¬x ∈ Concs(E), thenrn ∈ Concs(E). Thus,CN(Th(E)) ∩ Defs(Th(E)) 6=
∅. This contradicts the fact thatTh(E) is coherent. Assume now thatrn /∈ D. Let
ri ∈ Def(d) be such that for allj > i, rj is either a fact or a strict rule. By def-
inition of a derivation,rn ∈ S. Let rn = y1, . . . , yl → x. SinceS is closed un-
der contraposition, then for all1 ≤ j ≤ l, y1, . . . , yj−1, yj+1, . . . , yl → ¬yj ∈ S.
Moreover, there exists a minimal sub-derivationdj of d for eachyj. Thus,Xj =
〈d1, dj−1, dj+1, . . . , dl, d

′, (¬yj , y1, yj−1, yj+1, . . . , yl → ¬yj ,¬yj)〉 is a derivation
of ¬yj . Since arguments are minimal, then(Xj ,¬yj) ∈ Arg(T ). Note that(di, yi) ∈
Sub(a). SinceH is closed under sub-arguments, then(di, yi) ∈ E and thusyi ∈
Concs(E). SinceH is closed under strict rules,¬yj ∈ Concs(E) for all j = 1, . . . , l.

The same reasoning holds for each strict ruley1, . . . , yl → y betweenri andrn.
Indeed,¬yi ∈ Concs(E) for all i = 1, . . . , l. By definition of derivation, there exists
a strict ruler after ri such thatHead(ri) ∈ Body(r) thus¬Head(ri) ∈ Concs(E).
Thus,¬Head(ri) → ri ∈ S. SinceH is closed under strict rules,ri ∈ Concs(E). But,
ri ∈ Defs(E) (sinceri ∈ Def(d)). This contradicts the fact thatTh(E) is coherent.

Proof. of Corollary 1. LetH = (Arg(T ),Ru) be an argumentation system built over a
closed theoryT = (F ,S,D) s.t.Ext(H) 6= ∅. Assume thatOutput(H) is inconsistent
then∃x,¬x ∈ Output(H). Thus, for allE ∈ Ext(H), x,¬x ∈ Concs(E). From
Theorem 1, this is only possible ifCN((F ,S, ∅)) is inconsistent.

SinceCN is monotonic,Output(H) ⊆ CN(Output(H)). Let x ∈ CN(Output(H))
and assume thatx /∈ Output(H), thus, there existsE ∈ Ext(H) such thatx /∈
Concs(E). This contradicts Theorem 1.

Proof. of Theorem 3. LetH = (Arg(T ),Ru) be a system built over a theoryT .

Let E ∈ Extn(H) and letO = Th(E). It is clear thatO is uniquely deter-
mined fromE . Let us show thatO is an option.O = (F ′,S ′,D′) such that
F ′ =

⋃

(d,x)∈E
Facts(d), F ′ =

⋃

(d,x)∈E
Strict(d) andD′ =

⋃

(d,x)∈E
Def(d).

It is obvious thatS ′ ⊆ S andD′ ⊆ D. Now, for everyx ∈ F there is an
argument(〈(x, ∅)〉 , x) ∈ Arg(T ). By definiteion of undercutting, such argu-
ment has no conflict with any other argument. Thus, all arguments of this form
belong to every naive extension, i.e.,F ′ = F .

For the sake of contradiction, suppose that∃x ∈ CN(F ′,S ′,D′) s.t.x ∈ D′. Let
d be a minimal derivation ofx in O. Thus(d, x) is an argument ofE . sincex ∈
D′ then, from the definition ofTh(E), x must be used in at least an argument
of E , say(d′, x′), i.e.,x ∈ d′. Therefore,(d, x)Ru(d

′, x′). Contradiction with
conflict-freeness ofE .

Let r ∈ S ′ ∪D′. r is used in at least one argument, saya, of E . So,a has a sub-
argumentb=(〈(x1, r1), . . . (xn, rn)〉 , xn) with rn = r andxn = Head(r). By
closeness ander sub-arguments,b is also an argument ofE . From the definition
of derivation schema, for everyx ∈ Body(r), x = xi for somei s.t.1 ≤ i < n.
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Thus, there is a sub-argument ofb, and hence an argument inE and a derivation
in O, for everyx ∈ Body(r). This means that for everyx ∈ Body(r), x ∈
CN(O), i.e.,body(r) ⊆ CN(O).

Suppose that∃S ′′, D′′ s.t.(F ′,S ′,D′) < (F ′,S ′′,D′′) and(F ′,S ′′,D′′) sat-
isfies the previous conditions. Every ruler ∈ (S ′′ ∪ D′′) \ (S ′ ∪ D′), there is
at least an argumenta = (d, x) s.t.r ∈ Strict(d) ∪ Def(d). Clearly,a /∈ E .
But from the coherence of(F ′,S ′′,D′′) it must be the case that@b ∈ E s.t.
aRub or bRua. Indeed, suppose for example thataRub and thatb = (d′, x′),
thenx ∈ d′. That is,x ∈ CN(F ′,S ′′,D′′) andx ∈ D′′ which contradicts the
coherence of(F ′,S ′′,D′′). We can show in a similar way that it must not be
the case thatbRua. But, it this caseE ∪ a is conflict-free. Contradiction with
the fact thatE is a naive extension.

LetE , E ′ ∈ Extn(H) andOption(E) = Option(E ′). Let us show thatE ⊆ E ′. Let
a = (d, x) ∈ E . Then,d is a derivation forx in Option(E). Suppose thata /∈ E ′.
Thend is not a derivation forx in Option(E ′). Contradiction, sinceOption(E) =
Option(E ′). We show similarly thatE ′ ⊆ E .

Let E ∈ Extn(H). SinceOption(E) = Th(E) and from the definition of func-
tionsTh andArg it is obvious thatE ⊆ Arg(Option(E)). Now let a = (d, x) ∈
Arg(Option(E)). This means thata = (d, x) is constructed fromOption(E). So,
x ∈ CN(Option(E)) and Def(d) ⊆ Defs(Option(E)). Suppose thata /∈ E .
SinceE is a naive extension then there isb = (d′, x′) ∈ E such thataRub or
bRua. From b ∈ E we easily deduce thatx′ ∈ CN(Option(E)) andDef(d′) ⊆
Defs(Option(E)). But then, fromaRub or bRua, Option(E) must be incoherent.
Contradiction with the fact thatOption(E) is an option.

Proof. of Theorem 4. LetH = (Arg(T ),Ru) be a system built over a theoryT .

LetO = (F ,S ′,D′) ∈ Opt(T ) and letE = Arg(O). We prove thatE is a maximal
conflict-free set ofArg(T ).
Suppose that there is two argumentsa = (d, x) andb = (d′, x′) in E s.t.aRub, i.e.,
x ∈ Def(d′). But sinced andd′ are derivation schemas forx andx′ respectively
in O we have:x ∈ CN(O) andDef(d′) ⊆ D′, sox ∈ D′. Contradiction with the
coherence of optionO. E = Arg(O) is conflict-free.
Now, suppose thatE is not maximal. Thus there isE ′ ⊆ Arg(T ) s.t.E ⊂ E ′ and
E ′ is a naive extension ofH. From theorem 3Option(E ′) = Th(E ′) = O′ is an
option ofT . Let O′ = (F ,S ′′,D′′). Since all the arguments that uses exclusively
rules fromS ′ ∪ D′ belong toE , every argumentE ′ \ E uses at least a ruler which
is not in S ′ ∪ D′. So, either(S ′ ⊂ S ′′) or (D′ ⊂ D′′) or both, i.e,O < O′.
contradiction with the fact thatO is an option ofT .

Let O = (F ,S ′,D′) ∈ Opt(T ) and letOption(Arg(O)) = (F ′′,S ′′,D′′). F ′′ =
F follows from the fact thatArg(O) contains every argument(〈x, ∅〉 , x). Let x ∈
S ′′ (resp.x ∈ D′′). x is used in at least an argument ofArg(O), sox ∈ S ′ (resp.
x ∈ D′). Thus we have:S ′′ ⊆ S ′ andD′′ ⊆ D′. Inversely, letx ∈ S ′(resp.
x ∈ D′), sinceBody(x) ⊆ CN(O) (from the definition of an option),x must be
used in at least one argument ofArg(O). Thusx ∈ F ′′ (resp.x ∈ D′′). So,F ′ ⊆
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F ′′ andD′ ⊆ D′′. In summary,F = F ′′, S ′ = S ′′ andD′ = D′′, i.e.,O =
Option(Arg(O)).

Let O1 = (F ,S ′
1,D

′
1) andO2 = (F ,S ′

2,D
′
2) be two options. Suppose thatO1 6=

O2, i.e., eitherS′
1 6= S′

2 or D′
1 6= D′

2 or both. Suppose thatS′
1 6= S′

2. It means
that either there isx s.t.x ∈ S ′

1 andx /∈ S ′
2 or there isx s.t.x ∈ S ′

2 andx /∈ S ′
1.

Suppose the first case. Then,x is used in at least an argument ofArg(O1) and never
used inArg(O2). So,Arg(O1) 6= Arg(O2). By a similar reasoning, we obtain the
same conclusion for the other case (there isx s.t.x ∈ S ′

2 andx /∈ S ′
1) and for the

case of defeasible rules.

Proof. of Corollary 2. Follows immediately from the bijection between options and
naive extensions(theorems 3 - 4).

Proof. of Corollary 3. Follows immediately from the bijection between options and
naive extensions(theorems 3 - 4).

Proof. of Theorem 5. LetH = (Arg(T ),Ru) s.t.Exts(H) 6= ∅.

Let us show that for allE ∈ Exts(H), there is a uniqueO ∈ SOpt(T ) s.t.Th(E) v
O andConcs(E) = CN(O).
Let E ∈ Exts(H) and letTh(E) = (F ′,S ′,D′). We can show thatF ′ = F in a
similar way as in Theorem 3, first point. We takeO = (F ,S,D′) (we complete
S ′ by the remaining strict rules). Clearly,O is uniquely determined fromE . We
have thatConcs(E) = CN(Th(E)). Let us show that:CN((F ,S,D′)) = CN(Th(E)).
To do so, it suffices to show that every rule ofr ∈ S \ S ′ is not applicable in
(F ,S ′,D′). Suppose for the sake of contradiction that there isr ∈ S \ S ′ s.t. r
is applicable in(F ,S ′,D′). Thus, there is a minimal derivation in(F ,S ′,D′) for
Head(r)) usingr as a last rule:〈d, (x, r)〉 s.t. x = Head(r), Def(d) ⊆ D′ and
Strict(d) ⊆ S ′. Thus,a = (〈d, (x, r)〉 , x) is an argument outsideE but since
E is a stable extension, there isb ∈ E s.t. bRua. So, there is a sub-argument of
a: a′ = (〈d′, (x′, r′)〉 , x′) with x′ ∈ D′ andb = (d′′, x′). However sincea′ ∈ E
(because it uses only rules fromS′ ∪ D′), this means thatE is not conflict-free.
Contradiction. Now let us prove thatO = (F ,S,D′) is a strong option.

It is obvious thatD′ ⊆ D

Similar to the proof of point 2 in Theroem 3.

Similar to the proof of point 3 in Theroem 3.

Suppose that∃r /∈ D′ s.t.r /∈ CN(F ,S,D′) and∀x ∈ Body(r), x ∈ CN(F ,S,D′).
Let Body(r) = {x1, . . . , xk} and Head(r) = y. Since for1 ≤ i ≤ k,
xi ∈ CN(F ,S,D′), then there is an argumentai = (di, xi) ∈ E (1 ≤ i ≤ k)
for eachxi. Thus, we can construct an argumenta for y usingr as last rule,
i.e., a = (〈d, (y, r)〉 , y) whereFacts(d) =

⋃

i Facts(di), Strict(d) =
⋃

i Strict(di) andDef(d) =
⋃

i Def(di). Sincer /∈ D′, a /∈ E , so there
is b = (d′, x′) ∈ E s.t.bRua, i.e.,x′ ∈ Def(d) ∪ {r}. Sincdr /∈ CN(F ,S,D′),
it cannot be the case thatx′ = r, thusx′ ∈ Def(d), sox′ ∈ Def(di) for somei
s.t.1 ≤ i ≤ k. This means thatbRuai which contradicts the conflict-freeness
of E .
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Let E , E ′ ∈ Exts(H) andSOption(E) = SOption(E ′). Let us show thatE ⊆ E ′.
Let a = (d, x) ∈ E . Then,d is a derivation forx in SOption(E). Suppose that
a /∈ E ′. Thend is not a derivation forx in SOption(E ′). Contradiction, since
SOption(E) = SOption(E ′). We show similarly thatE ′ ⊆ E .

Let E ∈ Exts(H). SinceTh(E) v SOption(E) and from the definition of func-
tionsTh andArg it is obvious thatE ⊆ Arg(SOption(E)). Now leta = (d, x) ∈
Arg(SOption(E)). a = (d, x) is constructed fromSOption(E). So,Def(d) ⊆
Defs(SOption(E)). Suppose thata /∈ E . SinceE is a stable extension then there
is b = (d′, x′) ∈ E such thatbRua. From b ∈ E we easily deduce thatx′ ∈
CN(SOption(E)). But then, frombRua, SOption(E) must be incoherent. Contra-
diction with the fact thatSOption(E) is a strong option.

Proof. of Theorem 6. LetH = (Arg(T ),Ru) s.t.Exts(H) 6= ∅.

Let O = (F ,S,D′) ∈ SOpt(T ) and letE = Arg(O). We prove thatE is conflict-
free and∀b ∈ Arg(T ) \ E , ∃a ∈ E s.t.aRub.
Suppose that there is two argumenta = (d, x) andb = (d′, x′) in E s.t.aRub, i.e.,
x ∈ Def(d′). But sinced andd′ are derivation schemas forx andx′ respectively
in O we have:x ∈ CN(O) andDef(d′) ⊆ D′, sox ∈ D′. Contradiction with the
coherence of strong optionO. So,E is conflict-free.
Now, let us show that:∀b ∈ Arg(T ) \ E , ∃a ∈ E s.t.aRub. Let b = (d, x) /∈ E .
Clearly, d uses at least a defeasible ruler (r ∈ Def(d)) s.t. r /∈ D′. From the
definition of a strong option, we have two possible cases. Thefirst case is that
r ∈ CN(F ,S,D′), so there is a minimal derivationd′ for r in O, i.e.,a = (d′, r)
is an argument ofE . Clearly aRub sincer ∈ Def(d). The second case is that
∃x1 ∈ Body(r) s.t.x1 /∈ CN(O). Let b1 = (d1, x1) be a sub-argument ofb. Since
x1 /∈ CN(O), there is no derivation ofx1 in O, sob1 /∈ E . Thus,d1 uses at least
a defeasible ruler1 (r1 ∈ Def(d1)) s.t. r1 /∈ D′. Again, from the definition of a
strong option, we have two possible cases. The first case is thatr1 ∈ CN(F ,S,D′),
so there is a minimal derivationd′′ for r1 in O, i.e.,a = (d′′, r1) is an argument
of E . ClearlyaRub1 sincer ∈ Def(d1), hence , soaRub. The second case is that
∃x2 ∈ Body(r1) s.t.x2 /∈ CN(O). Let b2 = (d2, x2) be a sub-argument ofb1. Since
x2 /∈ CN(O), there is no derivation ofx2 in O, sob2 /∈ E . Thus,d2 uses at least a
defeasible ruler2 (r2 ∈ Def(d2)) s.t.r2 /∈ D′, an so one. Since the set of arguments
Arg(T )\E is finite, it must exist a sub-argumentbk of b such thataRubk and hence
aRU b for somea ∈ E .

Let O = (F ,S,D′) ∈ SOpt(T ) andSOption(Arg(O)) = (F ′′,S ′′,D′′). F ′′ =
F follows from the fact thatArg(O) contains every argument(〈x, ∅〉 , x). S ′′ = S
follows from the definition ofSOption. Let us show thatD′′ = D′. Let x ∈ D′′.
x is used in at least an argument ofArg(O), sox ∈ D′. Thus we have:D′′ ⊆ D′.
Inversely, letx ∈ D′, sinceBody(x) ⊆ CN(O) (from the definition of a strong
option),x must be used in at least one argument ofArg(O). Thusx ∈ D′′. So,D′ ⊆
D′′. In summary,F = F ′′, S = S ′′ andD′ = D′′, i.e.,O = SOption(Arg(O)).

Let O1 = (F ,S1,D′
1) andO2 = (F ,S2,D′

2) be two strong options. Suppose that
O1 6= O2, i.e.,D′

1 6= D′
2. It means that either there isx s.t.x ∈ D′

1 andx /∈ D′
2 or

there isx s.t.x ∈ D′
2 andx /∈ D′

1. Suppose the first case. Then,x is used in at least
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an argument ofArg(O1) and never used inArg(O2). So,Arg(O1) 6= Arg(O2). By
a similar reasoning, we obtain the same conclusion for the other case (there isx s.t.
x ∈ D′

2 andx /∈ D′
1).

Proof. of Corollary 4. Follows immediately from the bijection between strong options
and stable extensions(theorems 5 - 6).

Proof. of Corollary 5. Follows immediately from the bijection between strong options
and stable extensions(theorems 5 - 6).

Proof. of Theorem 7. LetH = (Arg(T ),Ru) s.t.Extp(H) 6= ∅.

Let us show that for allE ∈ Extp(H), there is a uniqueO ∈ POpt(T ) s.t.Th(E) v
O andConcs(E) = CN(O).
Let E ∈ Extp(H) and letTh(E) = (F ′,S ′,D′). We can show thatF ′ = F in a
similar way as in Theorem 3, first point. We takeO = (F ,S,D′) (we complete
S ′ by the remaining strict rules). Clearly,O is uniquely determined fromE . We
have thatConcs(E) = CN(Th(E)). Let us show that:CN((F ,S,D′)) = CN(Th(E)).
To do so, it suffices to show that every rule ofr ∈ S \ S ′ is not applicable in
(F ,S ′,D′). Suppose for the sake of contradiction that there isr ∈ S \ S ′ s.t. r
is applicable in(F ,S ′,D′). Thus, there is a minimal derivation in(F ,S ′,D′) for
Head(r)) usingr as a last rule:〈d, (x, r)〉 s.t. x = Head(r), Def(d) ⊆ D′ and
Strict(d) ⊆ S ′. Thus,a = (〈d, (x, r)〉 , x) is an argument outsideE . a does not
attack any argument ofE . Indeed, if we suppose the contrary then, sinceE is a
preferred extension, there isb ∈ E s.t. bRua. So, there is a sub-argument of a:
a′ = (〈d′, (x′, r′)〉 , x′) with x′ ∈ D′ andb = (d′′, x′). However sincea′ ∈ E
(because it uses only rules fromS′ ∪ D′), this means thatE is not conflict-free
which contradicts the fact thatE is a preferred extension. SoE ∪ {a} is conflict
free. Moreover, for everyc ∈ Arg(T ) \ (E ∪ {a}), if cRua then there is a sub-
argument of a:a′ = (〈d′, (x′, r′)〉 , x′) with x′ ∈ D′ andc = (d′′, x′). However
sincea′ ∈ E (because it uses only rules fromS′∪D′) andE is a preferred extension,
then there isa′ ∈ E such thata′Ruc. This means thatE ∪ {a} is conflict-free and
defends all its elements. Contradiction with the fact thatE is maximal. Now let us
prove thatO = (F ,S,D′) ∈ POpt(T ).

It is obvious thatD′ ⊆ D

Similar to the proof of point 2 in Theroem 3.

Similar to the proof of point 3 in Theroem 3.

∀D′′ ⊆ D, if ∃r′ ∈ D′ s.t.r′ ∈ CN(F ,S,D′′) then there is a minimal derivation
d′ for r′ in (F ,S,D′′), i.e.,(d′, r′) is an argument ofArg(T ). Sincer′ ∈ D′ ,
there in an argumenta = (d, x) ∈ E s.t.r′ ∈ Def(d) and we havebRaa. Since
E is a preferred extension, there is an argumentc = (d′′, x′′) ∈ E s.t. cRub,
i.e., there is a derivationd′′ for r′′ in (F ,S,D′) s.t.d′′ ∈ Def(d′). This means
thatr′′ ∈ CN(F ,S,D′) andr′′ ∈ D′′.

Suppose that there isD′′ s.t.D′ ⊂ D′′ andD′′ satisfies the previous condi-
tions. LetO′ = (F ,S,D′′) andE ′ = Arg(O′). The conflict-freeness ofE ′

follows from the fact thatO′ is coherent. Letb = (d, x) be an argument of
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Arg(T ) \ E ′ s.t. there is an argumenta = (d′, x′) ∈ E ′ and bRua. Thus,
x ∈ CN(F ,S, Def(d)) andx ∈ Def(d′), i.e. x ∈ D′′. But, from the fourth
condition of preferred options, there isr′′ ∈ Def(d) such thatr′′ ∈ CN(O). So,
there is an argumenta′ ∈ E ′ such thata′Rub. Consequently,E ′ is a preferred
extension andE ⊂ E ′ which contradicts the fact thatE is a preferred extension.

We show by a similar way as in the second point of Theorem 5 that: for all E , E ′ ∈
Extp(H) if POption(E) = POption(E ′), E = E ′.

Let E ∈ Extp(H). SinceTh(E) v POption(E) and from the definition of func-
tionsTh andArg it is obvious thatE ⊆ Arg(POption(E)). Now leta = (d, x) ∈
Arg(POption(E)). a = (d, x) is constructed fromPOption(E). So,Def(d) ⊆
Defs(POption(E)). Suppose thata /∈ E . SinceE is a preferred extension then we
have two cases. The first case is that there isb = (d′, x′) ∈ E such thatbRua.
From b ∈ E we easily deduce thatx′ ∈ CN(POption(E)). But then, frombRua,
POption(E) must be incoherent. Contradiction with the fact thatPOption(E) is a
preferred option. The second case is thatE does not attacka but it does not defend
it: there isb = (d′, x′) /∈ E such thatbRua andE does not attackb. FrombRua we
havex′ ∈ d. SinceDef(d) ⊆ Defs(POption(E)) thenx ⊆ Defs(POption(E)).
So,x is used in at least an argumentc = (d′′, x′′) of E i.e.,x ∈ d′′. Thus,c is at-
tacked byb. But sinceE is a preferred extension, then it must contain an argument
which attacksb. This contradict the hypothesis thatE does not attackb.

Proof. of Theorem 8. LetH = (Arg(T ),Ru) s.t.Exts(H) 6= ∅.

Let O = (F ,S,D′) ∈ POpt(T ) and letE = Arg(O). We prove thatE is conflict-
free,∀b ∈ Arg(T ) \ E , if ∃a ∈ E s.t. bRua then∃c ∈ E s.t. cRub andE is a
maximal subset ofArg(T ) satisfying the previous two conditions.
Suppose that there is two argumenta = (d, x) andb = (d′, x′) in E s.t.aRub, i.e.,
x ∈ Def(d′). But sinced andd′ are derivation schemas forx andx′ respectively
in O we have:x ∈ CN(O) andDef(d′) ⊆ D′, sox ∈ D′. Contradiction with the
coherence of preferred optionO. So,E is conflict-free.
Now, let us show that:∀b ∈ Arg(T ) \ E , if ∃a ∈ E s.t. bRua then∃c ∈ E s.t.
cRub. Let b = (d, x) ∈ Arg(T ) \ E and leta = (d′, x′) ∈ E s.t. bRua, i.e.,
x ∈ CN(F, S, Def(d)) andx ∈ Def(d′). From the fourth conditions of the definition
of a preferred option, there isr′′ ∈ Def(d) s.t.r′′ ∈ CN(F ,S,D′). So, there is an
argumentc = (d′′, r′′) with d′′ a minimal derivation ofr′′ in O. Clearly,cRub.
Finally, Suppose thatE is not maximal w.r.t. previous conditions. Thus, there isE ′

s.t.E ⊂ E ′ andE ′ is preferred, i.e.,E ′ is an maximal conflict-free set of arguments
that defends all its elements. LetO′(F ,S,D′′) = POption(E ′). Clearly,D′ 6= D,
because there every argument inE ′ \ E uses at least a rule which is not inD′. Since
O′ is a preferred option (Theorem 7),D′′ is maximal, soD′ ⊂ D′′. This contradicts
the fact thatO is a preferred option.

Similar to the proof of point 2 of Theorem 6.

Similar to the proof of point 3 of Theorem 6.

Proof. of Corollary 6. Follows immediately from the bijection between preferred op-
tions and preferred extensions(theorems 7 - 8).
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Proof. of Corollary 7. Follows immediately from the bijection between preferred op-
tions and preferred extensions(theorems 7 - 8).


