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Abstract. Rule-based argumentation systems are developed for iagsamout
defeasible information. They take as inpuhaorymade of a set aoftrict rules
which encode strict information, and a setd#feasible rulesvhich describe
general behaviour with exceptional cases. They kanjgimentsy chaining such
rules, definattacksbetween them, usesemanticgor evaluating the arguments,
and finally identify theplausible conclusionthat follow from the rules.

One of the main attack relations of such systems is the dedcahdercutting
which blocks the application of defeasible rules in someeds. In this paper,
we show that this relation is powerful enough to capture alalhthe different
conflicts in a theory. We present the first argumentatioresyshat uses only un-
dercutting and fully characterize both its extensions émglausible conclusions
under various acceptability semantics.

Keywords: Rule-based argumentation, Undercutting, Acceptabiétyantics.

1 Introduction

Rule-based argumentation systems are developed for iegsatrout defeasible infor-
mation. As a major feature, they take as inpthe@orymade of a set ofacts a set of
strict rules which encode strictinformation, and a setlefeasible rulegrhich describe
general behaviour with exceptional cases. They kaitgimentdy chaining such rules,
defineattacksbetween them, usesemanticgor evaluating the arguments, and finally
identify theplausible conclusionthat follow from the rules. Examples of such systems
are ASPIC [2], its extended version ASPIC+ [14], Delp [8] dhd system developed
in [11]. Some of these systems satisfy the rationality dagts proposed in [3]. How-
ever, the plausible conclusions of any of these systemstexer been characterized.

Besides that, systems like Delp usbuttal as attack relation between arguments.
Rebuttal captures the fact that the conclusions of two aggusnare inconsistent. Sys-
tems like ASPIC [2] and Pollock’s system [13] use, in additio rebuttal,undercut
which blocks the application of defeasible rules in paticeontexts. Let us illustrate
this relation by an example borrowed from [13]. Considerfthi®ewing argument::

“The object is redor) because it looks re@dr)".

This argument uses of the defeasible rizles or (meaning that generally, if an object
looks red, then itis red). Assume now another argurhevtiich states the following:
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“The rulelr = or cannot be applied because the object is illuminated by a red
light”.

The argument undercuts: and the conclusiofor) of a is not drawn from the theory.
Undercut deals with thexceptionf defeasible rules. Indeed, every exception of a
defeasible rule gives birth to an attack from any argumeppstting the exception
toward any argument using the rule. In the example, beingilhated by a red light is
a specific case where the rule= or cannot be applied.

In this paper, we argue that undercut can do more than dewldithgexceptions
of defeasible rules. It can also perfectly play the role dfutéal, and deal thus with
inconsistency. The basic idea is the following: if a theooptains a defeasible rule
x = y and —y follows from the same theory, then the rule should be blockée
propose the first rule-based argumentation system thatwmskscutting as its single
attack relation. We show that it satisfies the rationalitgtptates discussed in [3] under
naive, stable and preferred semantics. From a conceptirglgfoview, this system is
much simpler than existing ones that combine rebuttal amigrout. Indeed, the latter
require different variants of rebuttal for satisfying thaskc postulates under different
semantics. Our system satisfies the postulates under aindim®1 Moreover, restricted
rebut, one of the variants of rebuttal, is based on assumptltich may appear not
intuitive. Indeed, this relation compares only the rulesasheads are inconsistent, and
neglects the remaining structures of the arguments. Ftarins, it considers that the
argumen{zy, 21 = y1,y1 — z) attacks the argumelits, x2 — Yo, y2 = —z) sincez
follows from a strict rule while-z follows from a defeasible one. Note that the converse
is not true even if the the first rule of the first argument isedsible while that of the
second argument is strict. In our system, we do not make sstingtions. The second
main contribution of the paper consists of providing thet firsd full characterizations
of the extensions as well as the set of plausible conclugiboar system under naive,
stable and preferred semantics proposed in [7].

The paper is organized as follows: The next section defiresule-based system
we are interested in. Then, we analyse its properties arrdctagize its extensions and
set of plausible conclusions in subsequent sections.

2 Rule-based systems

As in [1], three kinds of information are distinguishéw@ictsrepresenting factual infor-
mation like ‘Tweety is a bird’strict rulesrepresenting strict information like ‘Penguins
do not fly’ anddefeasible ruleslescribing general behavior with exceptional cases like
‘Birds fly’. In what follows, L is a set ofliterals, i.e. atoms or negation of atoms, rep-
resenting knowledge. The negation of an aternom £ is denoted-z. £’ is a set of
atoms used for naming rules. The two sets satisfy the constfan £ = (. Every
rule has a single name and two rules cannot have the same Tiarneghout the paper,
rules are named r1, 79, .. .. The functionrRule(r;) returns the rule whose nameris

» Facts are elements df.
» Defeasible rules are of the form, ..., x, = x andx, x;..., x,, are literals in_.
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» Strict rules are of the formy, ..., z,, — = wherez, ..., z,, are literals ofC and
re Ll or
x € L andRule(z) is defeasible.

Note that the names of rules cannot appear in bodies oft(etritefeasible) rules.
This means that it is not possible to represent informatibthe form “if rule r is
applied (or is blocked), thep holds”. Moreover, strict rules cannot be blocked. By
default, any defeasible rule can be applied, unless exglimientioned in the language
by strict rulesr, . . ., z,, — z withz € £’. Such aruleis read as follows:#, .. ., z,
hold, then the defeasible ruteis alwaysnot applicable

Definition 1 (Theory). A theoryis a triple 7 = (F,S,D) whereF C L is a set of
facts andS C £’ (respectivelyD C £’) is a set of strict (respectively defeasible) rules.

Notations: Foreachrulery, ..., x, — x (aswellase, ..., z, = x) whose name is,
theheadof the rule isHead(r) = x and thebodyof the rule isBody(r) = {x1,...,2n}.
Let7T = (F,S8,D) andT’ = (F',8',D’) be two theories. We say that is a sub-
theoryof 77, written 7 C 77, iff F C 7 andS C &' andD C D’. The relation—
is the strict version of (i.e., it is the case that at least one of the three inclusi®ns
strict). Finally,Defs(7) =D.

Let us now show how new information is produced from a givesotly. This is
generally the case when (strict and/or defeasible) rukefird in aderivation schema

Definition 2 (Derivation schema).LetT = (F,S,D) beatheoryand: € LU L. A
derivation scheméor = from 7 is a finite sequencé = ((z1,71), ..., (@n, 7)) S.t.

", =2
sfori=1...n
» z; € Fandr; =0, or
* r; € SUD andHead(r;) = z; andBody(r;) C {z1,..,zi—1}

Seq(d) = {z1,...,xn}.

Facts(d) = {x; | i € {1,...,n},r; = 0}.

Strict(d) ={r;|i e {1,...,n},r €S}

Def(d) ={r;|i€{1,...,n},r; € D}.

CN(T) denotes the set of all literals that have a derivation schéora 7.

It is clear from the definition thalN is monotonic

Example 1 Let7; = (F1,S1,D;) be atheory such thaky = {p,b},S1 = {(r1) p —
-f}andD; = {(r2) b = f}. From Ty, we have the following minimal derivations:

*di = ((p,0))

* dy = ((b,0))

*ds = ((p,0), (=f,m1))
v dy = ((0,0), (f,m2))
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A notion of consistency and another of coherence are asedardth this logical
language.

Definition 3 (Consistency—Coherencel setX C L is consistentff Az, y € £ such
thatz = —y. Itis inconsistent otherwise.

AtheoryT = (F,S, D) is consistent ifEN(T) is consistent. It i€oherentiff CN(T) N
D = 0.

The set of strict rules should be closed under transposifibis is required for
ensuring the rationality postulates proposed in [3].

Definition 4 (Closure under transposition).LetS be a set of strict rules. For all rule
r=uwx,...,0, = xWithx € L, v is atranspositiorof r iff v’ = x1, ..., 2;_1, —,
Tit1y - Ty — i fOr some 1< i < n.
We defing’l,(S) as the minimal set such that:

» S C ClL(S), and

v If r € Cl(S) andr’ is a transposition of thenr’ € Cl,(S).

We say thasS is closed under transpositidgifi Cl,(S) = S.

Throughout the paper, we will consider undercut for capiyail the possible con-
flicts between arguments. Thus, undercut will be used bathiéeking general rules in
presence of exceptions of such rules, and also for handicansistency. For that pur-
pose, the theory should lmdosed that is for each defeasible rute the theory should
contain the strict rule-Head(r) — r. This closure captures the fact tttatad(r) and
—Head(r) cannot hold at the same time.

Definition 5 (Closed theory).A theoryT = (F, S, D) is closediff
» Sis closed under transposition, and

wforallr =z4,....,2, =2 €D, ~x >res.

Example 1 (Cont) The closed version of; is 7/ = (F1,S87,D1) such thatS; =
{(r))p = =f,(r3) f = —p, (ra) =f = r2}.

The backbone of an argumentation system is naturally themaif arguments
They are built from a closed theory using the notion of deéidraschema as follows.

Definition 6 (Argument). Let7 = (F, S, D) be a closed theory. Aargumentlefined
fromT is a pair (d, x) s.t.

sxcLUL
» dis a derivation schema far from 7
» AT C (Facts(d), Strict(d),Def(d)) s.t.x € CN(T)

An argumentd, ) is strictiff Def(d) = ().
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Unlike ASPIC and ASPIC+ systems, arguments are minimal insystem. An
argument may have several sub-parts, each of which is calledrgument

Definition 7 (Sub-argument). An argument(d, z) is a sub-argumenbof (d’,z’) iff
(Facts(d), Strict(d), Def(d)) C (Facts(d’), Strict(d'), Def(d')).

Notations: Arg(7) denotes the set of all arguments built from the@ryn the sense
of Def. 6. If a = (d, z) is an argumeniConc(a) = = andSub(a) is the set of all its
sub-arguments. For a sétof argumentsConcs(€) = {z | (d,z) € £} andTh(&) is a

theory such that:

=( |J Facts(d), |J strict(d), |J Def(d)).

(d,x)e& (d,x)e& (d,x)e&

The undercutting relation is defined as follows:

Definition 8 (Undercutting). Let7 = (F, S, D) be aclosed theory and, z), (d',z') €
Arg(T). (d, z) undercut{d’, '), denoted byd, ) R, (d',z’), iff x € Def(d’).

Let us illustrate this relation by some examples.

Example 1 (Cont)The setArg(7;) contains:

a1 : (((6,0)),0) az : (((p,0)),p)
*az: (((p,0), (=f, 1)), ~f)

v as: (((p,0), (=fir1), (r2,74)),72)

* a5 : (((0,0), (f,72)), f)

*ag : (((b,0), (f,72), (-p,73)), —p)

a4 undercutsis, ag sincers € Def(ds), 12 € Def(dg).
Strict arguments cannot be attacked using this relation.

Proposition 1. Let 7T = (F, S, D) be a theory. For all argument € Arg((F,S,0)),
b € Arg(T) s.t.bR,a.

Throughout the paper, we study the following rule-basedm@ntation system.

Definition 9 (Argumentation system).An argumentation syste\S) defined over a
closed theoryl = (F,S,D) is a pairH = (Arg(T), R.) whereR, C Arg(T) x
Arg(T).

Arguments are evaluated using extension-based semaritiddhse semantics are
based on two key notions:

» Conflict-freenessA set€ of arguments is conflict-free iffa, b € £ s.t.aR,b.

» Defence A set& of arguments defends an argumeritf for all argumentd s.t.
bRya,dc € £ s.t.cR,b.

Definition 10 (Semantics)Let? = (Arg(7),R.) and€ C Arg(T).
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= £ is anaiveextension iff it is a maximal (w.r.t. s&t) conflict-free set.

s £ is apreferredextension iff it is a maximal (w.r.t. s€t) conflict-free set which
defends all its elements.

» £ is astableextension iff is conflict-free antVa € Arg(T) \ £, 3b € € such that
bRya.

Notations: Ext, () denotes the set of all extensions of systdhunder semantics
wherez € {n,p, s}, n (resp.p, s) stands for naive (resp. preferred, stable). When we
do not need to refer to a particular semantics, we viite(H).

The extensions of a system are used for definingpfhesible conclusions be
drawn from the theory over which the system is built. A litesaa plausible conclusion
of a system iff it is a common conclusion to all the extensions

Definition 11 (Plausible conclusions)The set ofplausible conclusionsf an argu-
mentation systeri is Output(H) = 0 if Ext(#) = () and

Output(H) = m Concs(&;) otherwise
E; € Ext(H)

Example 1 (Cont) The argumentation systef, = (Arg(7/), R.) has a single stable
extension which is also preferrefl= {a1, as, a3, a4} andoutput(H,) = {p, b, ~f,r2}.

3 Properties of the system

Let us now analyse the properties of the argumentationmsydedined in the previous
section. We show that it satisfies all the rationality pcstes proposed in [3]. Indeed,
every extension (under any of the reviewed semantics) sen#dl the sub-arguments
of its arguments. The system is also coherent, that is itipassible for an extension
to use a defeasible rule in one of its arguments, and at the sara to block that rule
by another argument. In addition, for preferred and stabieastics, every extension
returns a consistent set of conclusions (unless the saitopthe theory is inconsistent)
and the set of conclusions of every extension is closed wstdet rules (under stable
and preferred semantics), that is itis not possible thaktemsion supports a conclusion
x and forgetg) if z — y € S.

Theorem 1. LetH = (Arg(T), R.) be an argumentation system built over a closed
theory7T = (F,S, D) s.t.Ext(H) # 0. For all £ € Ext(#), the following hold:

» Th(E) is coherent,
» forall a € €, Sub(a) C €&,

Under stable and preferred semantics, consistency anarelasder strict rules are
also satisfied.

Theorem 2. Let’H = (Arg(T), R.) be an argumentation system built over a closed
theoryT = (F,S,D) s.t.Ext,(H) # 0 with z € {s,p}. For all £ € Ext,(H), the
following hold:
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* Concs(&) is consistent ifEN((F, S, 1)) is consistent,
* Concs(&) = CN((Concs(€), S, 1)),
* Output(H) = CN((Output(H), S, 0)).

The following property follows from the previous theorem.

Corollary 1. LetH = (Arg(7),R.) be an argumentation system built over a closed
theoryT = (F,S,D) s.t.Ext,(H) # 0 withz € {s,p}. Output(H) is consistent iff
CN((F,S,0)) is consistent,

The previous results show that the outcomes of the argutiemtsystem (its ex-
tensions and set of plausible conclusions) satisfy nicpgnteées. However, they do not
say anything about the kind of conclusions the system dreavs & theory. We answer
this question in the next section.

4 The outputs of the system

This section provides formal characterizations of the otgwf the system under the
three reviewed semantics. For each semantics, we charadiee extensions in terms
of sub-theories of the theory over which the system is bd#ijmit the number of
extensions, and fully characterize the set of plausibleksions.

4.1 Naive semantics

A sub-theory that corresponds to a naive extension is calition and is defined as
follows:

Definition 12 (Option). An optionof a closed theory = (F,S, D) is a sub-theory
(F',8’, D) such that
s FF=F, 8 CSandD’' CD
» (F',8',D') is coherent
» Vr € 8’ UD', Body(r) C CN((F',S', D))
» 48", D" such that(F', S, D) C (F,S”,D") and (F',S",D") satisfies the
previous conditions.

Opt(7) denotes the set of options of the closed th&bry

Thus, an option is obtained by taking all the facts and a makfmr.t set inclusion)
subset of (strict and defeasible) rules so that the subrglremains coherent and all the
added rules are applicable. Notice that no priority is giteestrict rules over defeasible
ones. This is explained by the fact that naive semantics doedistinguish between
attackers and attacked arguments.
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Example 2 Consider the closed theoff = (F3, S35, D3):
. t = 1o (ry) r=t (r)
Fs3 { Ssu—r (rs) Dssy=u (r2)
Y s =13 (rg) t =s (r3)
The theoryTs has three options:
» O = (F3,0,{r1,ra,r3}) CN(O1) = {=z,y,t,u, s}
" Dy = (.7:37 {7“4}7 {7“177‘3}) CN(OQ) = {x,y7t7s,7"2}
* O3 = (F3,{rs}, {r=2}) CN(O3) = {z,y,u, 71}

Let us now establish the relationship between naive extessif an argumentation
system and the options of the closed theory over which itii. lEach naive extension
returns one option and two naive extensions cannot reteradme option.

Theorem 3. LetH = (Arg(T), R,) be an argumentation system built over a closed
theoryT.
» Forall £ € Ext,(H), there exists a single optia@ € 0pt(7) such thaTh(&) =
O andConcs(€) = CN(O). We put:Option(E) Lo,
» Forall £,&" € Ext,(H), if Option(£) = Option(E’) thené = &'.
» Forall £ € Ext,, (H), £ = Arg(Option(&)).

The following theorem shows that inversely, each optionl$e® one naive exten-
sion and two different options do not return the same naiterson.

Theorem 4. LetH = (Arg(T), R.) be an argumentation system built over a closed
theoryT.

» Forall O € 0pt(T), Arg(O) € Ext,(H).
» Forall O € 0pt(T), O = Option(Arg(O)).
= Forall 01, O, € Dpt(T), if Arg((’)l) = Arg(OQ), 01 = 0.

Example 2 (Cont) The arguments built frorfi3 are summarized below.

" ar: (((2,0)),2)

*az: (((y,0)),v)

a3 : (((2,0), (1)), 1)

v ag: (((2,0), (t,r1), (r2,74)),72)

* a5 (((y,0), (u,72)),u)

= ag: (((v,0), (u,2), (r1,75)),71)

* a7 (((2,0), (1), (s,73)), )

" as: (((2,0), (t,r1), (s,73), (13, 76)), 73)
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Fig. 1. Graph of attacks built from the theoff

The graph of attacks is depicted in the figure 1 below:

The argumentation systefid; = (Arg(73), R.) has three naive extensiofis =
{al, az, az, as, CL7}, 52 = {CLl, az, az, a4, CL7} andgg = {al, az, as, CL6} which Capture
the options®;, O, and O3 respectively. Indeedh(&;) = O; (resp.Th(&2) = O,
Th(&3) = O3) andConcs(&;) = CN(O;) (resp.Concs(E2) = CN(O3), Concs(&3) =
CN(O3)).

From the previous correspondence, the number of naive ErtEhis delimited as
follows:

Corollary 2. LetH = (Arg(T), R.) be an argumentation system. It holds tj®it,, (H)| =
10pt(7)].

The plausible conclusions of the argumentation systemumaige semantics are
exactly the literals that follow from all the options of theebry over which the system
is built.

Corollary 3. Let’H = (Arg(T),R.) be an argumentation systemutput(H) =
ﬂOEDpt(T) CN(O)'

Example 2 (Cont)Under naive semantic8utput(#) = CN(O;)NCN(O2)NCN(O3) =

{z,y}.

4.2 Stable semantics

The sub-theories of a closed theory that capture stablengixies are calledtrong
optionsand are defined as follows:

Definition 13 (Strong Option). A strong optiorof a closed theory” = (F,S,D) isa
sub-theory 7', S, D’) s.t.

c F=F8=8andD' CD

» (F',8', D) is coherent

* Vr € D', Body(r) C CN((F',S’', D))

» Vr ¢ D' we have: eitherr € CN(F’,S’,D’) or 3z € Body(r) such thatr ¢
CN(F', S, D)
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S0pt(7) denotes the set of strong options of the@ry

In a strong option® = (F,S,D’) it is not necessary that all the strict rules of
S are applicable. Let” be the subset of strict rules that are applicableini.e.,
§" = {r € §|Body(r) C CN(O)}. Then, the sub-theor§y’ = (F,S"”,D’) is an
option of 7 which clearly has the same conclusiongtagi.e., CN(O) = CN(O’)). In
addition, every strict (resp. defeasible) ruleshich is kept outsid€’ is not applicable
(resp. is not applicable or is such that CN(Q")). This latter constraint does not hold
necessarily for every option. Accordingly, every strondiap corresponds to a single
option but the converse is not true.

Thus, in addition to an “internal condition” (coherencedisfaed by both options
and strong options, the latter require an additional “exdkcondition” which consists
of justifyingeach rule kept outside. Notice, that this idea is hot new immonotonic
reasoning. We find it namely in the distinction between Risitextensions [15] and
Lukaszewicz’s extensions [12] in default logic as well asneen answer sets [10]
and-answer sets [9] in logic programming. Let us illustrat@st options and their
relationship with options in our running example.

Example 2 (Cont) The theoryT; has one strong optio® = (F3, Ss, {r2}). Note that
the only strict rule inSs which is applicable foiO is r5. If we discard fromO the
remaining non-applicable strict rules, we get exactly thigam O3 (CN(O) = CN(O3)).
Note also that each rule which is not included(@s is justified. Namely, the strict
rulesry andrg are note applicablel (€ Body(ry), t ¢ CN(O3), s € Body(rs), and
s ¢ CN(Os3)); the defeasible rule; is such that; € CN(O3) and the defeasible rulg

is not applicable# € Body(rs) andt¢ ¢ CN(Os)). SoO5 gives rise to a strong option
by adding all the non-applicable strict rules. This is netthse fo); andO-. Indeed,
adding the missing strict rules to them leads to incohengmitkeories.

It is worthy to say that a closed theory may not have strongpopt This is not
surprising since as we will show, there is a bijection betwthe set of stable extensions
and the set of strong options. Indeed, every stable extegsies birth to a strong option
and two stable extensions cannot return the same stromgnopti

Theorem 5. Let H = (Arg(T), R.) be an argumentation system built over a closed
theoryT s.t.Ext(H) # 0.
» For all £ € Ext(H), there exists a single strong optid® € S0pt(7) s.t.
Th(£) T O andConcs(€) = CN(O). We putsOption(€) % 0.
» Forall £,&" € Exts(H), if SOption(£) = SOption(E’) thenE = &'.
» Forall £ € Exty(H), £ = Arg(SOption(£)).

Inversely, every strong option leads to one stable exteraial two strong options
cannot lead the same stable extension.

Theorem 6. Let H = (Arg(T), R.) be an argumentation system built over a closed
theory7T s.t.Exts(H) # 0
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» Forall O € sopt(T), Arg(O) € Exts(H).
» Forall O € SOpt(T), O = SOption(Arg(O)).
» Forall Oy, 05 € S0pt(T), if Arg(O1) = Arg(Os) thenO; = Os.

Example 2 (Cont) Among the three naive extensions of the argumentationrsyate
built from 73, the only stable extension & which captures the strong optioKs
IndeedTh(&5) C O andConcs(€3) = CN(O).

We have seen so far that there is a one to one correspondean@ehenaive (resp.
stable) extensions and options (resp. strong options). &/e hlso shown that every
strong option is a sub-theory of one option. Thus, the nurobstable extensions of a
rule-based system is delimited as follows.

Corollary 4. LetH = (Arg(T),R.) be an argumentation system built over a closed
theory7 . The following holdst) < [Exts(H)| = [S0pt(T)| < |0pt(T)|.

Under stable semantics, the plausible conclusions of amaggtation system are
the literals that follow from all the strong options of thestity over which the system
is built.

Corollary 5. LetH = (Arg(T ), R.) be an argumentation system built over a closed
theoryT s.t.Ext,(H) # 0. Output(H) = Npegops(r) CN(O).

Example 2 (Cont) O is the only strong option of3. Thus,Output(#) = CN(O) =
{ZC, Yy, u,T1 }

Let us summarize: rule-based argumentation systems malyavet stable exten-
sions in which case they miss intuitive conclusions liketdaSystems that do have

stable extensions return exactly the literals that followwf all the strong options of the
closed theory at hand.

4.3 Preferred semantics

We show next that the sub-theories that capture preferreshsions are the so-called
preferred options

Definition 14 (Preferred Option). A preferred optiomf a closed theory” = (F,S, D)
is a sub-theory 7", S’, D) s.t.

s F=F, 8 =8SandD’' C D

» (F',8',D') is coherent

* Vr € D/, Body(r) C CN((F',S’, D))

» VD" C D, if 3’ € D' such that’ € CN(F,S,D”) then3r” € D” such that
' € CN(F,S,D’)

» D" such thatD’ ¢ D” and(F’, S', D") satisfies the previous conditions.
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POpt(7) denotes the set of preferred options of thepry
Preferred options are between options and strong options:

» Every strong option of a theory is a preferred option of . The converse is not
true.

» Every preferred option is a sub-part of an option. More welgi for every preferred
option©O = (F,S,D’), if S” is the subset of strict rules that are applicabl&in
i.e.,8"” = {r € §|Body(r) C CN(O)}, then there is a unique opti@¥ such that
0" = (F,8",D') C O andCN(O) = CN(O") C CN(O").

Example 2 (Cont) Consider again the closed thecfy. There are three sub-theories
that satisfy the four first conditions of definition 1@p, = (F3, S3,0), Op1 = (F3,Ss, {r2})
andOpy = (F3,8s,{r1}). The maximal ones (that satisfy also the last condition of
definition 14) areOp; and Op,. Notice thatOp, is exactly the unique strong op-
tion of 73. The other preferred optio®p, captures a sub-part of the optidh, =
(F3,{ra},{r1,73}). Indeed, by keeping idp, only the strict rues that are applicable
we obtain:Op,, = (F3,{ra},{r1}). We have Op,, C Oz andCN(Opz) = CN(Op}) C
CN(O2).

Now, we show that every preferred extension leads to a pesfeyption and two
preferred extensions cannot return the same preferredropti

Theorem 7. LetH = (Arg(T), R.) be an argumentation system built over a closed
theoryT.

» For all £ € Ext,(H), there exists a single preferred optidh € POpt(7) s.t.
Th(E) C O andConcs(£) = CN(O). We putPOption(€) & 0.
» Forall £,&" € Ext,(H), if POption(€) = POption(E’) thenE = &'.
» Forall £ € Ext,(H), £ = Arg(POption(£)).
Inversely, every preferred option corresponds to a uniqeéeped extension and
two preferred options cannot return the same preferrechsiie.

Theorem 8. LetH = (Arg(T), R,) be an argumentation system built over a closed
theoryT.

» Forall O € POpt(T), Arg(O) € Ext,(H).

» Forall O € POpt(7), O = POption(Arg(O)).

» For all 01,05 € POpt(T), if Arg(Ol) = Arg(Og) thenO; = Os.
Example 2 (Cont) The systentHs constructed fron¥; has two preferred extensions
2 Ep1 = {a1,a2,a5,a6} andEps = {a1, a2, as,as}. They capture the preferred op-

tions Op; andOp, respectively. Indeedh(Ep1) C Op; (resp.Th(Ep2) C Op2) and
Concs(Epy) = CN(Opy) (resp.Concs(Epa) = CN(Ops)).

The number of preferred extensions of an argumentatioesyat is exactly the
number of preferred options of the theory over which theesysi built.
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Corollary 6. LetH = (Arg(T)

, R..) be an argumentation system built over a closed
theory7. It holds that|Ext, (H)| =

[POpt(T)|-

The plausible conclusions of an argumentation system,npreééerred semantics,
are the literals that follow from all the preferred optiorishe theory at hand.

Corollary 7. LetH = (Arg(7),R.) be an argumentation system built over a closed
theoryT". Output(H) = (o epope(7) CN(O).

Example 2 (Cont) Consider the theor{s. Output(H) = CN(Op1) N CN(Ops) =
{z,y}.

5 Related work

There are a couple of rule-based argumentation systems Iite¢rature. Some of them
like ASPIC and its extended version ASPIC+ are shown tofgatie rationality pos-
tulates defined in [3], namely the consistency and closudewustrict rules of their sets
of plausible conclusions. While this is testimony to sonterggth of these formalisms,
it does not say anything about tkimd of plausible conclusions they draw from a the-
ory. Surprisingly, the outputs of these systems (theirresitens and their plausible con-
clusions) have never been characterized. The authors eé thystems provide only
examples to show that the outputs are meaningful. This isiody not sufficient. Our
paper is the first that attempts a systematic study of theoogs of rule-based systems
under naive, stable and preferred semantics. There aredtable exceptions. The first
work, done in [1], considered flagmentof our logical language and rebuttal as at-
tack relation. Blocking rules was not allowed. Extensiomsewharacterized in terms
of sub-theories. However, some sub-theories may not havesmonding extensions.
Thus, there is no bijection between the two. Our formalisrthiss more general and
our characterisations of its outcomes are more accurate #irey are one-to-one cor-
respondences. The second work, done in [4], investigatedink between the logic
programming semantics and argumentation ones. The theeryich an argumenta-
tion system is built is a logic program, that is, only one tgbeules is used. Thus, the
logical language is very different from ours.

In addition to the characterizations of the system’s outesrthe other main novelty
of our paper is the exclusive use of undercut for encodindlictmbetween arguments.
This relation is used in some existing systems but not albi®always coupled with
rebuttal which handles inconsistency. In our paper, we tsn@vn that undercut is
powerful enough to perfectly fulfil the role of rebuttal. Maver, the system satisfies
all the rationality postulates under any semantics whil&8PIC and ASPIC+, for
each semantics, one should use a different definition ofttalbn order to satisfy the
postulates.

Regarding the definition of undercut, there are three pralgas the literature and
they are all equivalent. The first definition is the one fokmlnin our paper and in [14].
The idea is to assign a name to every defeasible rule anddw #tlese names to be
in heads of other rules. Unlike in [14], in our paper, namesubés may only be in
heads of strict rules. The reason is that undercut showsptgos of defeasible rules,
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and exceptions are certain information. For instance, $& cd penguin, the rule “birds
fly” is never applicable. The second definition, given in [8BH followed in [3], uses

an objectivation operator which transforms any defeasildkeinto a literal. The latter
plays the role of the name of the rule in our system. The lafhitien, proposed in

[5, 6], extends the logical language by a new form of ruledhywihich one can block
defeasible rules. Whatever the definition is, none of thgstems characterized its
outcomes.
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Appendix: Proofs

Proof. of Proposition 1. Follows immediately from the fact tiatf(d) =  for all
(d, z) € Arg((F, S, 0)).

Proof. of Theorem 1. Letd = (Arg(T),R.) be an argumentation system built over
theory7T = (F,S, D).

Coherence: Assume thaExt(H) # () and let€ € Ext(H). Assume thatz €
Concs(€) N Defs(Th(E)). Thus,x € L. Moreoverda, b € £ such thaConc(a) = x
andxz € Defs({b}). Then,aR,b. This contradicts the fact th&tis conflict-free.
Closure under sub-arguments:Let & € Ext(H), a = (d,z),b = (d',2') € Arg(T)
such that € £, b ¢ £ andb € Sub(a).

Assume thatt € Ext,(H). There existe € £ such thatR,b. Letc = (d”,2").
Then,z” € Def(d’) and thusx” € Def(d) sinceDef(d’) C Def(d). Consequently,
cRa. This contradicts the fact th&tis conflict-free.

Assume now that € Ext,(H), then& U {b} is conflicting. Then, there exists
¢ € £ such thatcR,b or bR,c. Assume thabR,c. Thenz’ € L. Since elements of
L' cannot be in the body of any rule then= b, thusaR,c. This contradicts the fact
that it is conflict-free. Assume now thek ,b. As above, it follows thatR ,,a and this
contradicts the fact thét is conflict-free.

Assume now thaf € Ext,(#). Sinceb ¢ £ then there are two cases:d)U {b}
is conflicting, i.e., there existse £ such thatR b or bR, c. As above, we get either
cR,aoraR,c. In both cases; is not conflict-free and this contradicts the fact that it is
a preferred extension. if) does not defendl Thus, there exists= (d”,z") € Arg(T)
such thatR,b. Then,z” € Def(d') and thust” € Def(d) meaning thatR,a. Since
& is a preferred extensiafd € £ such thatiR, c. Thus,£ defend9.

Proof. of Theorem 2. Letd = (Arg(T),R.) be an argumentation system built over
theory7T = (F,S, D).

Closure under strict rules: Let€ € Ext,(H). Assume that € CN((Concs(€), S, 0))
andz ¢ Concs(&). Let X = {z1,...,x,} be the minimal for set inclusion subset
of Concs(&) such thatr € CN((X,S,0)). For eachr;, there exists;; € £ such that
Conc(a;) = z;. There exists a minimal derivation schema fousinga,, . .., a, and
additional strict rules. Let be that derivation(d, x) is an argument an@l, z) ¢ £.
There are two cases: § U {(d, z)} is conflicting, i.e, there exists = (d',2') € &
such thathR,(d, x) or (d,z)R,b. If bR, (d, z), thenConc(b) € Def(d). However,
Def(d) = UDef(a;). Thus, there exists € {1,...,n} such thaConc(b) € Def(a;),
i.e., bR,a;. This contradicts the fact that is conflict-free. If(d, 2)R.b, the sincef
defends its elements¢ € £ such thatR,,(d, x), i.e.,Conc(c) € Def(d). Then,3a; €
Sub((d, x)) such thatR,a;. But,a; € £.ii) £ does not defenfl, ). Letb € Arg(T)
such thabR,(d, ). Then,Conc(b) € Def(d). Then,bRa; for somea,; € Sub((d,x))
anda; € £. Since€ defends its elements, theéhattacksh. The same reasoning holds
for stable semantics since any stable extension is alserpeef

Consistency:Let€ € Ext,(H) with x € {p, s} and assume th@bncs(&) is inconsis-
tent. Thus3a,b € £ suchthatw = (d,z), b = (d',~x), d = ((z1,71), .-, (Tn,Tn)),

d = ((«}),...,(@,,rm)), tn = x andz), = —x. Moreover,z,—x € L. If a
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andb are both strict (i.e.pef(d) = () andDef(d’) = 0), thenCN((F,S,0)) is in-
consistent. Assume now thaN((F,S,0)) is consistent. It follows that or/andb
is defeasible (i.e.Def(d) # @ or/andDef(d) # (). Assume that is defeasible.
If r, € D, then-z — r, € S (sinceT is closed). Sinc& is closed under strict
rules and-x € Concs(€), thenr,, € Concs(€). Thus,CN(Th(E)) N Defs(Th(E)) #
(. This contradicts the fact thah(€) is coherent. Assume now thaj, ¢ D. Let
r; € Def(d) be such that for alj > 1, r; is either a fact or a strict rule. By def-
inition of a derivation,r,, € S. Letr, = vy1,...,y1 — «. SinceS is closed un-
der contraposition, then for all < j < [, y1,...,9j—1,Yj+1,-- -,y = "y; € S.
Moreover, there exists a minimal sub-derivatién of d for eachy;. Thus, X; =
<d1,dj_1,dj+1, e, dy, dl, (ﬁyj, Y1,Y5-1,Yj+1,-- - Y — Y5, ﬁylj» is a derivation
of —y;. Since arguments are minimal, thek;, —y;) € Arg(T). Note that(d;, y;) €
Sub(a). SinceH is closed under sub-arguments, thegh,y;) € £ and thusy; €
Concs(€). SinceH is closed under strict rulesy; € Concs(&) forall j =1,...,1.

The same reasoning holds for each strict mle. . .,y; — y betweenr; andr,,.
Indeed,—y; € Concs(€) forall ¢ = 1,...,1. By definition of derivation, there exists
a strict ruler afterr; such thatiead(r;) € Body(r) thus—Head(r;) € Concs(€).
Thus,—Head(r;) — r; € S. SinceH is closed under strict rules; € Concs(£). But,
r; € Defs(&) (sincer; € Def(d)). This contradicts the fact tha@h(&) is coherent.

Proof. of Corollary 1. LetH = (Arg(7), R.) be an argumentation system built over a
closed theoryy = (F, S, D) s.t.Ext(H) # 0. Assume thaButput(H) is inconsistent
then3z, -z € Output(#). Thus, for all€ € Ext(H), ,—z € Concs(£). From
Theorem 1, this is only possibledfi((F, S, 1)) is inconsistent.

SinceCN is monotonicPutput(H) C CN(Output(H)). Letz € CN(Output(H))
and assume that ¢ Output(H), thus, there exist§€ < Ext(H) such thatz ¢
Concs(&). This contradicts Theorem 1.

Proof. of Theorem 3. Le#{ = (Arg(7), R.) be a system built over a theofy.

* Let £ € Ext,(H) and letO = Th(E). It is clear thatO is uniquely deter-
mined from¢&. Let us show thaD is an option.O = (F',S8',D’) such that
F'=U(an)ee Facts(d), F' = U g4 ce Strict(d) andD’ = {J, e Def(d).

* |t is obvious thatS’ C S andD’ C D. Now, for everyz € F there is an
argument((x,?)),z) € Arg(T). By definiteion of undercutting, such argu-
ment has no conflict with any other argument. Thus, all argusef this form
belong to every naive extension, i.&7, = F.

» For the sake of contradiction, suppose thatc CN(F',S’,D’) s.t.z € D'. Let
d be aminimal derivation of in O. Thus(d, z) is an argument of . sincez €
D' then, from the definition ofh(€),  must be used in at least an argument
of &, say(d',z'), i.e.,z € d'. Therefore(d, )R, (d’,z"). Contradiction with
conflict-freeness of.

» Letr € S’UD’. risused in at least one argument, sapf £. So,a has a sub-
argumend=({(z1,7r1),...(zn,rs)), xs) With r,, = r andz,, = Head(r). By
closeness ander sub-argumehis,also an argument @f. From the definition
of derivation schema, for evemye Body(r), z = z; forsomeis.t.1 <i < n.
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Thus, there is a sub-argumentoaind hence an argumentirand a derivation
in O, for everyx € Body(r). This means that for every € Body(r), z €
CN(O), i.e.,body(r) C CN(O).

» Suppose thalS”, D" s.t.(F',8',D') C (F',8",D") and(F',S",D") sat-
isfies the previous conditions. Every rules (S” UD") \ (8’ UD’), thereis
at least an argument= (d, z) s.t.r € Strict(d) UDef(d). Clearly,a ¢ .
But from the coherence dfF’,S”,D") it must be the case thdb < £ s.t.
aR,b or bR,a. Indeed, suppose for example tha& b and thath = (d’, 2'),
thenz € d'. Thatis,x € CN(F',S"”,D”) andx € D" which contradicts the
coherence of 7/, 8", D"). We can show in a similar way that it must not be
the case thaiR,a. But, it this case€ U a is conflict-free. Contradiction with
the fact that is a naive extension.

» Leté, & € Ext,(H)andOption(€) = Option(£’). Letus showthaf C &', Let
a = (d,z) € £. Then,d is a derivation forr in Option(€). Suppose that ¢ £'.
Thend is not a derivation fot: in Option(£’). Contradiction, sinc@ption(€) =
Option(&’). We show similarly that’ C £.

» Let £ € Ext,(H). SinceOption(€) = Th(E) and from the definition of func-
tions Th andArg it is obvious thatf C Arg(Option(£)). Now leta = (d,z) €
Arg(Option(£)). This means that = (d, x) is constructed fron@ption(£). So,
x € CN(Option(£)) andDef(d) C Defs(Option(£)). Suppose that ¢ &.
Since& is a naive extension then therelis= (d’,z’) € £ such thataR,b or
bRya. Fromb € £ we easily deduce that' € CN(Option(£)) andDef(d') C
Defs(Option(€)). Butthen, fromuR b or bR,a, Option(E) must be incoherent.

Contradiction with the fact thatption(£) is an option.

Proof. of Theorem 4. Le#{ = (Arg(7), R.) be a system built over a theofy.

v LetO = (F,S', D) € 0pt(T) and let€ = Arg(O). We prove thaf is a maximal
conflict-free set ohrg(T).
Suppose that there is two argumedts (d, x) andb = (d',2’) in £ s.t.aR b, i.e.,
x € Def(d’). But sinced andd’ are derivation schemas farandz’ respectively
in O we havex € CN(O) andDef(d') C D', sox € D'. Contradiction with the
coherence of optiod. £ = Arg(O) is conflict-free.
Now, suppose thaf is not maximal. Thus there & C Arg(7) s.t.£ C £ and
&' is a naive extension of{. From theorem Bption(&’) = Th(&') = O is an
option of 7. Let O’ = (F,S”,D"). Since all the arguments that uses exclusively
rules fromS’ U D’ belong to&, every argumenf’ \ £ uses at least a ruklewhich
is not inS’ U D'. So, either(S’ ¢ §”) or (D' ¢ D”) or both, i.e,0 C O'.
contradiction with the fact thad is an option of7".

» LetO = (F,S',D') € 0pt(T) and letOption(Arg(0)) = (F", 8", D"). F' =
F follows from the fact thatirg(©) contains every argumefitz, ) , z). Letz €
S” (resp.x € D”). x is used in at least an argumentiafg(O), sox € S’ (resp.
x € D'). Thus we haveS” C & andD” C D'. Inversely, letx € S'(resp.
x € D'), sinceBody(z) C CN(O) (from the definition of an option)y must be
used in at least one argumentiafg(O). Thusxz € F” (resp.x € D”). So,F' C
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F’"andD’ C D”. In summary,F = F’, 8§ = 8" andD’ = D", ie., 0 =
Option(Arg(O)).

» Let Oy = (F, 81, Dy) andO, = (F, S5, DS) be two options. Suppose th@t #
0, i.e., eitherS] # S} or D} # D) or both. Suppose thaf; # S5. It means
that either there ig s.t.z € S] andz ¢ S or there isz s.t.z € S} andx ¢ S7.
Suppose the first case. Theris used in at least an argumentafg(O, ) and never
used inArg(O-). So,Arg(0;) # Arg(Os). By a similar reasoning, we obtain the
same conclusion for the other case (there &t.« € S} andz ¢ S;) and for the
case of defeasible rules.

Proof. of Corollary 2. Follows immediately from the bijection beten options and
naive extensions(theorems 3 - 4).

Proof. of Corollary 3. Follows immediately from the bijection beten options and
naive extensions(theorems 3 - 4).

Proof. of Theorem 5. Le#{ = (Arg(7T), Ry) S.t.Ext (H) # 0.

* Letus showthat for alf € Exts(#), thereis auniqu® € S0pt(7) s.t.Th(E) C
O andConcs(&) = CN(O).
Let & € Exty(H) and letTh(&) = (F/, S, D). We can show thaF’ = F in a
similar way as in Theorem 3, first point. We take= (F,S,D’) (we complete
S’ by the remaining strict rules). Clearl§? is uniquely determined frord. We
have thatConcs(£) = CN(Th(E)). Let us show thattN((F, S, D)) = CN(Th(E)).
To do so, it suffices to show that every rulesofe S\ &’ is not applicable in
(F,S', D). Suppose for the sake of contradiction that there s S \ &’ s.t.r
is applicable in(F,S’,D’). Thus, there is a minimal derivation {tF, S, D’) for
Head(r)) usingr as a last ruleid, (z,r)) s.t. 2 = Head(r), Def(d) C D’ and
Strict(d) € &'. Thus,a = ({d, (z,r)),z) is an argument outsid€ but since
£ is a stable extension, theretise £ s.t. bR,a. So, there is a sub-argument of
aa = ((d,(z,r)),2") with ' € D' andb = (d”,2"). However since/’ € &
(because it uses only rules frofff U D’), this means thaf is not conflict-free.
Contradiction. Now let us prove thét = (F, S, D’) is a strong option.

» |tis obviousthatD’ C D

= Similar to the proof of point 2 in Theroem 3.
= Similar to the proof of point 3 in Theroem 3.

» Suppose thalr ¢ D’ s.t.r ¢ CN(F,S,D’) andvz € Body(r),x € CN(F,S,D’).
Let Body(r) = {z1,...,2zr} andHead(r) = y. Since forl < i < k,
x; € CN(F,S,D’), then there is an argumeant = (d;,zi) € £ (1 < i < k)
for eachz;. Thus, we can construct an argumerfor y usingr as last rule,
i.e,a = ((d,(y,7)),y) whereFacts(d) = |J,Facts(d;), Strict(d) =
U, Strict(d;) andDef(d) = J,Def(d;). Sincer ¢ D', a ¢ &, so there
isb=(d,z') € £s.t.bRya,i.e.,a’ € Def(d)U{r}. Sincdr ¢ CN(F,S,D’),
it cannot be the case that = r, thusz’ € Def(d), sox’ € Def(d;) for some:
s.t.1 < i < k. This means thaiR ,a; which contradicts the conflict-freeness
of £.



Undercutting in argumentation systems 19

» Let&, & € Exty(H) andSOption(E) = SOption(E’). Let us show that C £'.
Leta = (d,z) € €. Then,d is a derivation forz in SOption(£). Suppose that
a ¢ &'. Thend is not a derivation forr in SOption(€’). Contradiction, since
SOption(£) = SOption(&’). We show similarly thaE’ C £.

» Let £ € Exts(H). SinceTh(E) C SOption(E) and from the definition of func-
tionsTh andArg it is obvious thatf C Arg(SOption(£)). Now leta = (d,x) €
Arg(SOption(€)). a = (d,x) is constructed frons0ption(E). So,Def(d) C
Defs(SOption(£)). Suppose that ¢ £. Sincef is a stable extension then there
isb = (d',2') € £ such thathR,a. Fromb € & we easily deduce that’ €
CN(SOption(&)). But then, frombR,a, SOption(E) must be incoherent. Contra-
diction with the fact thag0ption(£) is a strong option.

Proof. of Theorem 6. Le# = (Arg(T), Ru) S.t.Ext (H) # 0.

" LetO = (F,S,D’) € S0pt(T) and let€ = Arg(O). We prove that is conflict-
free andvb € Arg(7T) \ €, Ja € £ s.t.aR,b.
Suppose that there is two argument (d, z) andb = (d’,2’) in £ s.t.aR,b, i.e.,
x € Def(d’). But sinced andd’ are derivation schemas farandz’ respectively
in O we havex € CN(O) andDef(d') C D', sox € D'. Contradiction with the
coherence of strong optiafl. So,£ is conflict-free.
Now, let us show thatvb € Arg(7) \ &, Ja € € s.t.aR,b. Lethb = (d,x) ¢ €.
Clearly, d uses at least a defeasible ruldr € Def(d)) s.t.» ¢ D’. From the
definition of a strong option, we have two possible cases. firkecase is that
r € CN(F,S, D), so there is a minimal derivatiaff for r in O, i.e.,a = (d',r)
is an argument of. Clearly aR,b sincer € Def(d). The second case is that
Jzy € Body(r) s.t.zy ¢ CN(O). Letby = (d1,z1) be a sub-argument éf Since
x1 ¢ CN(O), there is no derivation of; in O, sob; ¢ £. Thus,d; uses at least
a defeasible rule; (r; € Def(d;)) s.t.r1 ¢ D’. Again, from the definition of a
strong option, we have two possible cases. The first casatis,tie CN(F, S, D),
so there is a minimal derivatiadl’ for r; in O, i.e.,a = (d”,r1) is an argument
of £. ClearlyaR b, sincer € Def(d;), hence, saR,b. The second case is that
x5 € Body(r1) S.t.za ¢ CN(O). Letby = (da, z2) be a sub-argument éf. Since
x2 ¢ CN(O), there is no derivation afs in O, soby ¢ £. Thus,ds uses at least a
defeasible rule, (2 € Def(dy)) s.t.ro ¢ D’, an so one. Since the set of arguments
Arg(T)\ € is finite, it must exist a sub-arguméntof b such thatR b, and hence
aRyb for somea € £.

LetO = (F,S,D') € s0pt(T) andSOption(Arg(0)) = (F',8",D"). F' =
F follows from the fact thatrg(O) contains every argumeftz, §) ,z). S” = S
follows from the definition o80ption. Let us show thaD” = D’. Leta € D”.
x is used in at least an argumentiafg(O), sox € D'. Thus we haveD” C D’.
Inversely, letx € D', sinceBody(z) C CN(O) (from the definition of a strong
option),x must be used in at least one argumentf(O). Thusx € D”. So,D’ C
D”.Insummary,F = F"’,S§ = S8” andD’ = D", i.e.,O = SOption(Arg(O)).

* Let Oy = (F, 81, D)) andO, = (F, S, DS) be two strong options. Suppose that
01 # Oy, i.e., D] # Dj. It means that either thereiss.t.x € D} andz ¢ D}, or
there isz s.t.z € D} andz ¢ Dj. Suppose the first case. Thens used in at least
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an argument ofrg(O,) and never used ifirg(Os). S0,Arg(O,) # Arg(O2). By
a similar reasoning, we obtain the same conclusion for theratase (there is s.t.
x € Dy andz ¢ D).

Proof. of Corollary 4. Follows immediately from the bijection befan strong options
and stable extensions(theorems 5 - 6).

Proof. of Corollary 5. Follows immediately from the bijection befan strong options
and stable extensions(theorems 5 - 6).

Proof. of Theorem 7. Le#{ = (Arg(7), Ru) S-.t.Ext,(H) # 0.

* Letus show that for alf € Ext, (%), thereis a uniqué e POpt(7)s.t.Th(E) C
O andConcs(€) = CN(O).
Let & € Ext,(H) and letTh(E) = (F',S’,D’). We can show thaF’ = F in a
similar way as in Theorem 3, first point. We take= (F,S,D’) (we complete
S’ by the remaining strict rules). Clearl§? is uniquely determined frord. We
have thatoncs(€) = CN(Th(E)). Let us show thateN((F, S, D’)) = CN(Th(E)).
To do so, it suffices to show that every rulesofe S\ &’ is not applicable in
(F,S', D). Suppose for the sake of contradiction that there s S\ S’ s.t.r
is applicable in(F,S’,D’). Thus, there is a minimal derivation {tF, S, D’) for
Head(r)) usingr as a last ruleid, (z,r)) s.t. 2 = Head(r), Def(d) C D’ and
Strict(d) C &'. Thus,a = ({d, (z,r)),x) is an argument outside. « does not
attack any argument &f. Indeed, if we suppose the contrary then, siécis a
preferred extension, there ise £ s.t. bR a. So, there is a sub-argument of a:
a = ((d,(«,r")),2") with 2’ € D' andb = (d”,z'). However sincer’ € &
(because it uses only rules froft U D’), this means thaf is not conflict-free
which contradicts the fact that is a preferred extension. SbU {a} is conflict
free. Moreover, for every € Arg(7) \ (£ U {a}), if cR,a then there is a sub-
argument of au’ = ((d, (2',7)),2") with 2/ € D" andc = (d”, z’). However
sincea’ € £ (because it uses only rules frashu D’) and€ is a preferred extension,
then there is’ € £ such thatw’R,c. This means thaf U {a} is conflict-free and
defends all its elements. Contradiction with the fact hét maximal. Now let us
prove thatO = (F,S,D’) € POpt(T).

» |t is obvious thatD’ C D

= Similar to the proof of point 2 in Theroem 3.
= Similar to the proof of point 3 in Theroem 3.

» VD" CD,if I’ € D' s.tr’ € CN(F, S, D”) then there is a minimal derivation
d' forr’in (F,S,D"),i.e.,(d,r")is an argument ofrg(7). Sincer’ € D',
there in an argument= (d, z) € £ s.t.r’ € Def(d) and we havéR ,a. Since
& is a preferred extension, there is an argument (d”,2") € £ s.t.cR,b,
i.e., there is a derivatiod’ for v in (F,S,D’) s.t.d” € Def(d'). This means
thatr” € CN(F,S,D’) andr” € D”.

» Suppose that there iIB” s.t. D’ ¢ D" andD” satisfies the previous condi-
tions. Let®’ = (F,S,D") and&’ = Arg(O’). The conflict-freeness &’
follows from the fact thatD’ is coherent. Leb = (d, z) be an argument of
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Arg(T) \ &' s.t. there is an argument = (d',2') € £ andbR,a. Thus,
x € CN(F,S,Def(d)) andz € Def(d'), i.e.x € D”. But, from the fourth
condition of preferred options, therer$ € Def(d) such that” € CN(O). So,
there is an argument € £’ such that’R,b. Consequenthg”’ is a preferred
extension and C &’ which contradicts the fact théatis a preferred extension.

* We show by a similar way as in the second point of Theorem 5tball £, &’ €
Ext,(#) if POption(£) = POption(&’), £ =& .

» Let& € Ext,(H). SinceTh(€) T POption(£) and from the definition of func-
tionsTh andArg it is obvious thatf C Arg(POption(£)). Now leta = (d,x) €
Arg(POption(€)). a = (d,x) is constructed fronPOption(E). So,Def(d) C
Defs(POption(€)). Suppose that ¢ £. Sincef is a preferred extension then we
have two cases. The first case is that there is (d',2') € £ such thathR,a.
Fromb € £ we easily deduce that € CN(POption(€)). But then, frombR,a,
POption(£) must be incoherent. Contradiction with the fact th@ption(£) is a
preferred option. The second case is thalbes not attack but it does not defend
it: there isb = (d’, 2’) ¢ £ such thabR,a and€ does not attack. FrombR ,a we
havez’ € d. SinceDef(d) C Defs(POption(€)) thenz C Defs(POption(£)).
So,z is used in at least an argument (d”,z") of £ i.e.,x € d”. Thus,cis at-
tacked byb. But sincef is a preferred extension, then it must contain an argument
which attacks. This contradict the hypothesis thadoes not attack.

Proof. of Theorem 8. Le# = (Arg(T), Ru) S.t.Ext (H) # 0.

» LetO = (F,S,D’) € POpt(T) and let€ = Arg(O). We prove that is conflict-
free,vb € Arg(T)\ &, if Ja € € s.t.bRya thende € € s.t.¢R,b and€ is a
maximal subset ofrg(7) satisfying the previous two conditions.

Suppose that there is two argument (d, z) andb = (d’,2’) in £ s.t.aR,b, i.e.,

x € Def(d’). But sinced andd’ are derivation schemas farandz’ respectively
in O we havex € CN(O) andDef(d') C D', sox € D'. Contradiction with the
coherence of preferred optid@h. So,€ is conflict-free.

Now, let us show thatvb € Arg(7) \ &, if Ja € € s.t.bR,a thende € € s.t.
c¢R,b. Letd = (d,x) € Arg(T) \ € and leta = (d',2') € € s.t. bRyaq, i.e.,
x € CN(F, S,Def(d)) andz € Def(d’). From the fourth conditions of the definition
of a preferred option, there i8' € Def(d) s.t.»” € CN(F,S,D’). So, there is an
argument = (d”, ") with d” a minimal derivation of” in O. Clearly,cR ,b.
Finally, Suppose thaf is not maximal w.r.t. previous conditions. Thus, theré'is
s.t.& C & and&’ is preferred, i.e.£” is an maximal conflict-free set of arguments
that defends all its elements. L&t(F, S, D) = POption(&’). Clearly,D’ # D,
because there every argumenéin, £ uses at least a rule which is not#i. Since
Q' is a preferred option (Theorem 7)/” is maximal, saD’ C D”. This contradicts
the fact thatO is a preferred option.

= Similar to the proof of point 2 of Theorem 6.
= Similar to the proof of point 3 of Theorem 6.

Proof. of Corollary 6. Follows immediately from the bijection beten preferred op-
tions and preferred extensions(theorems 7 - 8).
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Proof. of Corollary 7. Follows immediately from the bijection beten preferred op-
tions and preferred extensions(theorems 7 - 8).



