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Abstract 1. to propose a unified framework for reasoning about in-
N logics h b developed f consistency, in which existing approaches can be rein-
UMErous 10gics have been developed for reason- stated and retrieved. This allows a simple comparison

ing about inconsistency which differ in (i) the logic

to which they apply, and (ii) the criteria used to between these approaches.

draw inferences. In this paper, we propose a gen- 2. to apply the framework using any logimenotonicor

eral framework for reasoning about inconsistency nonmonotonif; even new ones (e.g. temporal, probab-

in a wide variety of logics including ones for which listic logics) for which no proposal for handling incon-

inconsistency resolution methods have not yet been sistency exist.

studied (e.g. various temporal and epistemic log- 3. to allow end-users to bring their domain knowledge to

ics). We start with Tarski and Scotts axiomatization bear, allowing them to voice an opinion erhat works

of logics, but drop their monotonicity requirements for them, not what a system manager decided was right

that we believe are too strong for Al. For such a for them, in other words, to take into account the pref-

logic L, we define the concept of an option. Op- erences of the end-user.

tions are sets of formulas in L that are closed and o . .

consistent according to the notion of consequence 4. to propose efficient algorithms for computing the pre-

and consistency in L. We show that by defining ferred options.

an appropriate preference relation on options, we We do this by building upon Dana Scott's celebrated no-

can capture several existing works such as Brewkas  tjons of an abstract logic.

subtheories. We also provide algorithms to com- We now turn to an example to illustrate why conflicts can

pute most preferred options. often end up being resolved in different ways by human be-
ings, and why it is important to allow end-users to bring their

1 Introduction knowledge to bear when a system resolves conflicts.

Inconsistency management has been intensely studied in vatxample 1 (Salary example)Suppose a university payroll
ous parts of Al, often in slightly disguised forfRoole, 1985;  system says that John’s salary is 50K, while the university
G. Pinkas, 1992; Rescher and Manor, 1970For exam-  personnel database says it is 60K. In addition, there may be
ple, default logicReiter, 1980 use syntax to distinguish an axiom that says that everyone has exactly one salary. One
between strict facts and default rules, and identify differenisimple way to model this is via the theory, denasaedf**®,
extensions of the default logic as potential ways of “mak-pe|ow.

ing sense” of seemingly conflicting information. Likewise,

inheritance network§Touretzkey, 198} define extensions salary(John,50K) (1)
based on analyzing paths in the network and using notions  sajary(John, 60K) 2)
of specificity to resolve conflicts. Argumentation frameworks S—S — salary(X,S) A salary(X,S).(3)

[Dung, 1995 study different ways in which an argument for
or against a proposition can be made, and then determirgealbase
which arguments defeat which other arguments in an effort t

decide what can be reasonably concluded. All these excellepf "4 may choose the 50K number to determine a max-

works provide ara priori conflict resolution mech_anlsm. A imal loan amount that John qualifies for. But a national tax
user who uses a system based on these papers is more or I%

. S ; B@ncy may use the 60K figure to send John a letter asking
committed to the semantics implemented in the system, ang: R
. . ' ) im why he underpaid his taxes.
has little say in the matter (besides which most users query-
ing KBs are unlikely to be experts in even classical logic, letNeither the bank manager nor the tax officer is making any
alone default logics and argumentation methods). attempt to find out the truth (thus far) - however, both of them
The aims of the paper are: are making different decisions based on the same facts.

is obviously inconsistent. Suppose 3 is definitely
own to be true. Then a bank manager considering John



The rest of this paper proceeds as follows. In Section 2, we 3. Applying classical entailment on a choice of the pre-
recall Scott’s notion of what a logic Scott, 1982 Then, ferred subbases.

in Section 3, we define our general framework for reasoningl'hroughout the rest of this paper, we assume that we have
about inconsistency for any Scott logic. Sec_t|on 4 shows hQV\ém arbitrary, but fixedronotonicor hon-monotonik logic

to adapt the general framework to the particular case of in L£,CN).

const;stent _baszs_. In section ?f we Sho"‘l’( hgw gmsténg WOrkS The hasic idea behind our framework is to construct what

can be retrieved in our general framework. Section 6 presentzq «5) options then to define a preference relation on these

some examples of how the general framework can be applie ptions. Thepreferred optionsare intended to support the

in other logics such as temporal and probabilistic logics. Ingoncjysions to be drawn from the inconsistent knowledge
Section 7, we develop algorithms to compute optimal optiong,qe -~ ntuitively, an option is a set of formulas that is both

based on various types of monotonicity assumptions about th@0 ; ; ;
o= . nsistent and closed w.r.t. the consequence in IgGIiEN).
objective function. Note that due to lack of space, the proofs q lagicN)

are not included, and will be available on a technical repor€finition 2 (Options) Anoptionis any setD of elements of

put online. L such that:
) ¢ O is consistent.
2 Scott’s Abstract Consequence Operation e Ois closed, i.eO = CN(O).

Dana Scot{Scott, 1982 defines an abstract logic to consist Let 0pt(£) be the set of all options that can be built from

of a setC (whose members are called well-formed formulas)(ﬁ Cﬁ)

and a consequence operafdt. CN is any function from2* ’ )

(the powerset of) to 2¢ (intuitively, CN(X) returns the set  Les us illustrate the above concept.

of form_ulas that are logical cpn_sequences’(oﬁccor(_jlng to Example 2 Let £ be a propositional language, and It C

the logic in question) that satisfies the following axioms: £ such thatk = {a,a — b, b} a knowledge base. The

Expansion X C CN(X). following options, for instance, can be built frofd: O,

Idempotence CN(CN(X)) = CN(X). = CN({a}), Oy = CN({=b}), O3 = CN({a — b}), O4 =
potence CN(CN(X)) = CN(X) CN({a,a — b)), Os = CN({a, ~b}), Og = CN({a, b}).

Monotonicity X CY = CN(X) C CN(Y). ) i )

Coh CN(0) = £ The framework for reasoning about inconsistency has three
9 erence CN(0) # L. _ _ components: a set of all options that can be built from the
Itis easy to see that most well known monotonic logics (sucttonsidered logic, a preference relation between the options,

as propositional logidShoenfield, 1967 first order logic  and an entailment mechanism.
[Shoenfield, 196i7 modal logic, temporal logic, fuzzy logic, Definition 3 (General framework) Let (£,CN) be a fixed

probabilistic logicBacchus, 199 etc.) can be viewed as a logic. Ageneral framework for reasoning about inconsistenc
special case of Scott’s notion of an abstract logic. The non- gic. A9 9 y

monotonic logics introduced in Al do not satisfy the mono- in the logic(£, CN) is a triple (Opt(£), =, p~) such that:
tonicity axiom, though Marek et. al[Marek et al, 1990 e Opt(L) is the set of options built frorfiZ, CN)

have defined the notion of non-monotone rule systems that  ~  gpt(£) x0pt(L). > is a partial (or total) preorder,
extend Scott's ideas to non-monotonic logics by dropping the  that s it is reflexive and transitive.

Monotonicity Axiom above. In all what follows, the mono-

. c i i i
tonicity axiom will be dropped. OnceZ, CN) are fixed, we o f :2%%5) — 0pt(L) is an entailment mechanism.

can define a notion of consistency as follows: The second important concept of the above general frame-
Definition 1 (Consistency)Let X C £. X is consistenin work is the preference relathn between options. Indeed,
logic (£, CN) iff CN(X) # L. 0O, = O, means that the optio®; is at least as preferred

. . . : : - as O,. This relation captures the idea that some options
In simple English, this says thal is consistent iff its Set 5.0 "hetter than others because, for instance, the user has
of consequences is not the set of all well formed formulasdecided that, or because those preferred options satisfy
Note that the coherence requirement characteriZidprces the requirem,ents imposed by the developer of a conflict
() to always be consistent - this is reasonable for pretty muc'fhanagement system. For instance, in most approaches for
any reasonable logic as saying nothing should intuitively b§,5pdjing inconsistency, maximal consistent subsets of the

consistent. inconsistent knowledge base are privileged.
3 A gene_ral framework for handling The third component of the framework is a mechanism
Inconsistency for selecting the inferences to be drawn from the knowledge

This section proposes a general framework for handling inbase. In our framework, the set of inferences is itself an

consistency under any logic. Reasoning with inconsistenPPtion. Thus, it should be consistent. This requirement is of

knowledge bases is a process which follows three steps: great importance, since it ensures that the framework delivers
safeconclusions.

1. Constructing consistent subbases, The set of inferences is generally computed from the dif-
2. Selecting among all the subbases the preferred onefgrent preferred options. L&~ be the set of all preferred
called preferred subbases, options, i.e.0= = {O; € 0pt(L) | 3O; € Opt(L) with O;



= O;}. Different entailment mechanisms can be defined foDefinition 6 Supposeg0pt(L), =, |~) is a general frame-
selecting the inferences to be drawn. Here are some examplesrk for reasoning about inconsistency in logdi€¢, CN) and
of such mechanisms. supposefC is an inconsistent knowledge base. éptimal

Definition 4 Let (0pt(£), >, ) be a framework, an=  OPtion forKCis any membe® € 0Opt(£) such that:
the set of its preferred options. Letbe an element of. e O handles and

Universal criterion: £ | v iff ¢ € O;, YO, € O=. 4 is e there is no other optio)’ € Opt(L) that handlesC
called auniversal consequenaé L. such that®’ = O.

Argumentative criterion: £ |~ 1 iff 30; € O such that What this definition says is that when reasoning about an in-
Y € O, andﬂ(’)j € OZF such that) € 0,.vyiscalled consistent knowledge bagé, we always look at the set of
anargumentative consequenaiL. optimal options that handl€.

We can show that the set of inferences made using the unExample 4 Let us return to Example 1. Suppose we use
versal criterion is itself an option of the langua@iethus itis  O1 = {(1),(2)}, 02 = {(1),(3)},03 = {(2),(3)}}. Of

an entailment mechanism. Moreover, it is included in everycourse, we assume all of these options are also closed under
preferred option. usual first order consequence. First, let us say that these three

Proposition 1 Let (Opt(£), =, [~ ) be a framework options are preferred to all other options in the language.

. . . e Suppose thecoresc(O;) of optionO; is the sum of the
¢ -(I)—Bt?oieé%;')tz&l? a universal consequence 6§ is an multiset{S|sal(John, S) € O;}. Inthis case, the score

. ) _ of O, is 50K, that of O, is 110K, and that ofD; =
e VO, € O=, {¢| ¥ is a universal consequence 6} C 60K. We could now say thaD; = O; if sc(O;) <

0;. sc¢(O;). In this case, the only option that handlEsis
Proof (Sketch) LetC = {¢| ¥ is a universal consequence of 07 which corresponds to the bank manager’s viewpoint.
L}. By definition, any element thbelongs to all the options e On the other hand, suppose we say tligt = O; iff
in O~. Consequently; C O;, YO; € O~. s¢(0;) > sc(O;). In this case, the only optimal option

Since any®; € OZ is an option, then?; is consistent.
Thus,C (which is a subset ab,) is also consistent. Similarly,
sinceC C 0;, thusCN(C) C O; as well,YO; € O~. Con-

that handlesC is O, — this corresponds to the view that
the rule saying everyone has only one salary is wrong
(perhaps the database has John being paid out of two

sequentlyCN(C) C C (according to the above definition of
universal consequences). Thdss closed, and consequently
it is an option. [ |

projects simultaneously and 50K of his salary is charged
to one project and 60K to another).

e Now consider the case where we change our scoring
Similarly, we can show that the set of argumentative conse- ~ method and say thai:(0;) = min{S | sal(John, S) €

quences is an option. Thus, it is a valid entailment mecha-  O;}. In this case, sc(O1) = 50K,sc(02) =
nism. 60K, sc(O3) = 50K. Let us suppose that the prefer-

ence relation says tha®; = O; iff sc(0;) > sc(O;).
Then the only optimal option i©®2 which corresponds
exactly to the tax agency'’s viewpoint.

Proposition 2 Let (0pt(£), =, |~ ) be a framework. The set
{¥| ¥ is an argumentative consequencedfis an option of

Opt(L).
However, the following criterion is not a valid entailment Thus, we see that our general framework for optimally han-
' 9 dling inconsistency is very powerful - it can be used to handle

mechanism since the set of consequences returned by it Mgy ;1\ icrencies in different ways based upon how the prefer-
be inconsistent, thus it is not an option.

ence relation between options is defined.
Example 3 £ | v iff 30, € O~ such that) € O;.
_ _ _ 5 Link with existing approaches
4 Optimal Options that Handle Inconsistency 1y kinds of approaches have been proposed in the literature

In the preceding section, we have developed the concepts ér solving the problem of inconsistency. The first one con-
an option and a preferred option for any logi&, CN). How-  sists of revising the knowledge base and restoring its consis-
ever, this has been defined in a way that is independent of t&ncy. The second approach accepts inconsistency and copes
knowledge basé. This section shows how to associate a setwith it. The first approach initiated ifRescher and Manor,

of preferred options with an inconsistent knowledge bdse 1970 proposes to give up some formulas of the knowledge
base in order to get one or several consistent subbases of the
original base. Then plausible conclusions may be obtained by
applying classical entailment on these subbases.

Definition 5 We say an optio handlesC iff there is a sub-
setK’ C K such thatD = CN(K'). LetBase be a function

that returns for any optiod, the subbasg”. Thus Base(0) In"what follows, we consider the case of propositional

—_ !

=K bases. When the knowledge baséas i.e. its formulas are
Intuitively, an option handle iff it is the closure of some not weightedmaximal consistent subbases are built.

subset offC. Clearly, such a subséf’ must be consistent Let K be a knowledge base that may be inconsistentSand
because is consistent (by virtue of being an option) and as= {51, ..., S} its set of maximal (for set inclusion) consis-

O = CN(K). tent subbases. We can show that these subbases correspond to



the preferred options of the above framework, when the pref- We may choose to consider just three optior®; =

erence relatiorr between options imonotonic Let us first
define that notion of monotonicity.

Definition 7 (Monotonic relation) The relation > is said
monotoniciff forany X, Y C £, if X C Y, thenY > X.
> is saidanti-monotonidff, if X C Y, thenX =Y.
Proposition 3 Let (Opt(L£), =, ) be a framework such

that = is monotonic. LefC be an inconsistent knowledge
base, and)= be the set of preferred/optimal options fiér

e VS;, 30 € 07, such that® = CN(S;).
e VO, € 0=, 3 S such thatO; = CN(S).

In the case of prioritized knowledge bases, Brewka has pr
posed in[Brewka, 1989 a definition of the preferred sub-

CN({ 4, 5}), 02 = CN({ 4, 6}),05 = CN({ 5, 6}). Sup-
pose now that we can associate a numeric score with each
formula, describing the weight of the source that provided
the formula. Let us say these scores are 3,1,2 respectively,
and the weight of an optio@; is the sum of the scores of the
formulas inT N O;. O; = O iff the score ofO; is greater
than or equal to the score @;. In this case, the best option

is Os.

Example 6 Consider the probabilistic logitBacchus, 1990
theory T' consisting of three formulag : [0.3,0.4], p :
[0.44,0.6], p : [0.41,0.43]. Suppose we only consider op-
tions that assign a single non-empty probability interval to

Op. For two atoms4; = p : [L,U] and Ay = p : [L', U],

let dlff(Al,Ag) = abs(L1 — Lg) + abs(U1 — Ug) Let

bases. The basic idea behind those bases is to take as mapy say that the score of an optigd = {A} is given by
important information into account as possible. In this con- ,,.dif f(A, A’). Suppose we say that optidh > O; iff

text, a knowledge bag€ is supposed to be stratified inkd
oL Ky (K=K U. . .UK,) such that the formulas in the same
strata are equally preferred, whereas formulas in a skata
are preferred to formulas iK; with ¢ < j.

Definition 8 Let £ = K4 U ... U K,, be a knowledge base.
S=51U...US, is apreferred subbasef K if and only if
Vi=1,...,n,8 U...US;isamaximal (for set-inclusion)
consistent subbase &f; U ... UK;.

INCL(K) denotes the set of preferred subbasek of

score(0;) < score(O;). Intuitively, this means that we are
preferring options that change the lower and upper bounds
in T as little as possible. In this cas,3, 0.6] is a preferred
option.

The reader may be tempted to think that givelt d@hat
is inconsistent, an optimal option may always exist because
in the worst caseCN(()) seems to be an option. However,
this is not correct because we do not require @(?) be in
Opt(L).

We show that in order to capture the results of the above ap- _ _ _
proach, one needs to define the appropriate preference reld- Algorithms to Compute Optimal Options

tion between options.

Definition 9 Let K be an inconsistent knowledge base, and
Ok be the set of all options that handié. LetO,, O; €
Ok. O1 = O, iff Base(O;) € INCL(K), andBase(O;) ¢
INCL(K).

Proposition 4 Let (Opt(L£), =, |~) be a framework such
that > is defined as in Definition 9. Léf be an inconsis-
tent knowledge base, arfd= be the set of preferred/optimal
options fork.

e VS, € INCL(K),3 O € O, such thatO = CN(S;).
e YO, € 0Z,3 S € INCL(K) such thatD; = CN(S).

6 New applications of the framework
In this section we show through the two following examples

that the above abstract framework can be used for reasonin
about inconsistency using temporal logic and even probabilisf - (X)

tic logic.

Example 5 Consider the temporal logic theoff). The()
operator denotes the “next time instant” operator. Thus, the
first rule says that if is true at timet, b is true at time(¢ +1).
Under standard temporal logic model theofly,is inconsis-
tent.

a — QOb. (4)
a (5)
O—b (6)

that Handle Inconsistency

In this section, we develop procedures to find optimal options
for any logic(£, CN) under a varying set of assumptions. We
first define what it means for a formula to be compatible with
a given set of formulas.

Definition 10 Given a consistent séf C £ and a formula
F € L, we say thatF' is compatiblewith X iff X U {F}is
consistent. We use the notaticlemp(X) to denote the set
of all formulas that are compatible with .

We now develop an iterative fixpoint computational proce-
dure to find an optimal option.

Definition 11 Suppos€ L, CN) is a logic, K is a subset of
L, and > is a preference relation on options. We define an
operator ' associated withiC that mapssets of options to
gets of optionss follows.

X U{CNY UA{F})|F € Comp(Y)Nn K A
Y e X}

In other wordsI'x (X)) works as follows:

o First, it picks a set” in X to expand.

e |tthen finds anF’ € Comp(Y) N K.

e Itthen closes” U {F} and adds this to the answer, i.e.
into T'ic (X).

Clearly, the operatoFx is monotone under inclusion —
moreover, the repeated applicationIgf yields a fixpoint.
This is defined as follows.



it finds all formulas compatible with it and for each such for-
mula, it finds the logical consequences. Whenever it finds

e = {0} an option that handlek, it adds it toSOL and deletes any
rjcﬂ = r;‘c U F/C(F?c) option in SQL tha}t is worse than it (according te). This
" i procedure is continued.
It = U Iy Pruning occurs in step (8) of the algorithm where the anti-

monotonicity of>- is exploited. Moreover, the algorithm pro-
Proposition 5 SupposéL, CN) is a logic andK is a subset ceeds in a greedy fashion, always choosing the best (or one

of £. Then: of the best) sets frorffO DO to expand in step (4).
_ ] The reader may think that the first solution found by this
1. T'x is monotonic. bottom up procedure is optimal. Unfortunately, this may
2. T% is a fixpoint ofy. not be the case because anti-monotonicity merely states that

. . . 01 C Oy — 01 = Os. ltis possible forO; = O, to hold
3. Bvery setil’g Is consistent. evlerTif(’)zl 4 (9; and r21ence, ?n the anti-monotonic case, one
It is important to note that the least fixpoint Bf, is the ~ has to generate all-minimal options before deciding which
empty set and ndf¢: because the latter starts its iteration notone is the best.
with the empty set, but with the set containing the empty setproposition 7 Supposé £, CN) is a logic, (Opt (L), =, )
Fortunately, we can make some concrete statements abogdty general framework for reasoning about inconsistency,

I'g. and K is a set of wffs. Further, suppogeis anti-monotonic.
Proposition 6 Suppos€ L, CN) is a logic, (Opt (L), =, ) 1. If there is an optimal option to handlE, then COO-
is a general frqmework_for handling inconsisten_cy, dbds Anti(L, CN, Opt(call), =, K) will return one.
a set of wifsQ is an optimal option that handlées iff: 2. 1f COO-Anti(£, CN, Opt(call), =, K) returns®, then®
1. O € 0pt(£) N T¥ and is an optimal option that handles.
2. thereis na@’ € Opt(L£) N I'¢ such that®’ = O. Just as in the case of anti-monotonicpreference rela-

tions, we can also improve on tHeOO-Naive algorithm
afYhen = is monotonic. This algorithm works in a similar
manner as foCOO-Anti but starts top down and eliminates

The above result suggests an immediate algorithm to find
optimal option fors.

procedure COO-Naive(L, CN, F, K, 0pt (L), =) members ofCN(K) instead of starting the iteration from the
1. X =T%; emptyset.

2. X =Xnopt(L); The Coo-Mon algorithm uses the notion ofdeletion can-
3. Return anyO € X such that there is n®’ € X didate

such that0’ = O. I . . .
o o Definition 12 Suppose& L, CN) is a logic andK is a set of
One reason for the inefficiency dEOO-Naive is that \ffs. A sety C K is adeletion candidate fof iff

it makes no assumptions about the preference relation.
However, if the preference relation is known, for example, to 1. CN(K —Y) c K and

be monotone or anti-monotone, then we can do better. 2. CN(K —Y) is consistent
3. andthereis no séf’ C Y that satisfies the previous two
procedure COO-Anti(£, CN, Opt(call), =, K) conditions.
1 TODO = {CN(@)} In other words, a deletion candidate #®is a wff F' whose
g' S(h)'IL ;O{%O 0d removal fromS causes at least one formula to no longer
a W IePiCkX E7£TOBO st AY € TODO st be inferrable fromS. We use the notatioelCand(X) to
CN(Y) = CN(X). denote the set of all deletion candidates of a)set

5. TODO = TODO — {X}

6. if X € Opt(call) then procedure COO-Mon(L, CN, 0pt (L), >, S, x)

7. SOL = (SOL — {Y € SOL| X = 1.  TODO = {CN(K)};

Y} U {X} 2. SOL = {0};

8. elseTODO =TODO U { 3. while TODO # ( do

9. CN(X U {F}) | F € 4. PickX € TODO s.t. BY e TODO'Y »

Comp(X) N K)}; X;

10.  end-while 5. TODO =TODO — {X};

11.return any>--preferred member 6O L. 6. If CN(X) € 0pt(£) A CN(X) # L then
7. SOL = (SOoL — ({ Y €

Intuitively procedure COO-Anti generatesC-inclusion gOL | CN();)SZ YH) UACNGOY
minimal closed and consistent subsets that atptr{L) us- 9. TODO = TODO U DelCand(X);

ing a bottom up procedure and then chooses the best ones. 10.  end while
It starts by checking iCN(() is in Opt(£) - if so, it can be 11.return =-preferred members fOL.
returned because of the anti-monotonicity-ef Otherwise,
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provided for computing most preferred options.

An extension of this work consists of studying the com-
plexity of the proposed algorithms. We are also planning to
study how the results of default logic can be captured in our
abstract framework. Another extension would be to study the
properties of the system when applied using temporal logic.

FTouretzkey, 198 D. S. Touretzkey. Implicit ordering of de-
k faults in inheritance systems. Mational Conference on
Artificial Intelligence, AAAI'84 pages 322 — 325, 1984.
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