
A General Framework for Reasoning about Inconsistency

V. S. Subrahmanian
Institute for Advances Computer Studies

University of Maryland
College Park, Maryland 20742

vs@cs.umd.edu

Leila Amgoud
IRIT - CNRS

118, route de Narbonne,
31062 Toulouse Cedex 9, France

amgoud@irit.fr

Abstract

Numerous logics have been developed for reason-
ing about inconsistency which differ in (i) the logic
to which they apply, and (ii) the criteria used to
draw inferences. In this paper, we propose a gen-
eral framework for reasoning about inconsistency
in a wide variety of logics including ones for which
inconsistency resolution methods have not yet been
studied (e.g. various temporal and epistemic log-
ics). We start with Tarski and Scotts axiomatization
of logics, but drop their monotonicity requirements
that we believe are too strong for AI. For such a
logic L, we define the concept of an option. Op-
tions are sets of formulas in L that are closed and
consistent according to the notion of consequence
and consistency in L. We show that by defining
an appropriate preference relation on options, we
can capture several existing works such as Brewkas
subtheories. We also provide algorithms to com-
pute most preferred options.

1 Introduction
Inconsistency management has been intensely studied in vari-
ous parts of AI, often in slightly disguised form[Poole, 1985;
G. Pinkas, 1992; Rescher and Manor, 1970]. For exam-
ple, default logics[Reiter, 1980] use syntax to distinguish
between strict facts and default rules, and identify different
extensions of the default logic as potential ways of “mak-
ing sense” of seemingly conflicting information. Likewise,
inheritance networks[Touretzkey, 1984] define extensions
based on analyzing paths in the network and using notions
of specificity to resolve conflicts. Argumentation frameworks
[Dung, 1995] study different ways in which an argument for
or against a proposition can be made, and then determine
which arguments defeat which other arguments in an effort to
decide what can be reasonably concluded. All these excellent
works provide ana priori conflict resolution mechanism. A
user who uses a system based on these papers is more or less
committed to the semantics implemented in the system, and
has little say in the matter (besides which most users query-
ing KBs are unlikely to be experts in even classical logic, let
alone default logics and argumentation methods).

The aims of the paper are:

1. to propose a unified framework for reasoning about in-
consistency, in which existing approaches can be rein-
stated and retrieved. This allows a simple comparison
between these approaches.

2. to apply the framework using any logic (monotonicor
nonmonotonic), even new ones (e.g. temporal, probab-
listic logics) for which no proposal for handling incon-
sistency exist.

3. to allow end-users to bring their domain knowledge to
bear, allowing them to voice an opinion onwhat works
for them, not what a system manager decided was right
for them., in other words, to take into account the pref-
erences of the end-user.

4. to propose efficient algorithms for computing the pre-
ferred options.

We do this by building upon Dana Scott’s celebrated no-
tions of an abstract logic.

We now turn to an example to illustrate why conflicts can
often end up being resolved in different ways by human be-
ings, and why it is important to allow end-users to bring their
knowledge to bear when a system resolves conflicts.

Example 1 (Salary example)Suppose a university payroll
system says that John’s salary is 50K, while the university
personnel database says it is 60K. In addition, there may be
an axiom that says that everyone has exactly one salary. One
simple way to model this is via the theory, denotedsalbase,
below.

salary(John, 50K) ← (1)

salary(John, 60K) ← (2)

S = S′ ← salary(X,S) ∧ salary(X,S′).(3)

salbase is obviously inconsistent. Suppose 3 is definitely
known to be true. Then a bank manager considering John
for a loan may choose the 50K number to determine a max-
imal loan amount that John qualifies for. But a national tax
agency may use the 60K figure to send John a letter asking
him why he underpaid his taxes.

Neither the bank manager nor the tax officer is making any
attempt to find out the truth (thus far) - however, both of them
are making different decisions based on the same facts.



The rest of this paper proceeds as follows. In Section 2, we
recall Scott’s notion of what a logic is[Scott, 1982]. Then,
in Section 3, we define our general framework for reasoning
about inconsistency for any Scott logic. Section 4 shows how
to adapt the general framework to the particular case of in-
consistent bases. In section 5, we show how existing works
can be retrieved in our general framework. Section 6 presents
some examples of how the general framework can be applied
in other logics such as temporal and probabilistic logics. In
Section 7, we develop algorithms to compute optimal options
based on various types of monotonicity assumptions about the
objective function. Note that due to lack of space, the proofs
are not included, and will be available on a technical report
put online.

2 Scott’s Abstract Consequence Operation
Dana Scott[Scott, 1982] defines an abstract logic to consist
of a setL (whose members are called well-formed formulas)
and a consequence operatorCN. CN is any function from2L
(the powerset ofL) to 2L (intuitively, CN(X) returns the set
of formulas that are logical consequences ofX according to
the logic in question) that satisfies the following axioms:

Expansion X ⊆ CN(X).
Idempotence CN(CN(X)) = CN(X).
Monotonicity X ⊆ Y ⇒ CN(X) ⊆ CN(Y ).
Coherence CN(∅) 6= L.

It is easy to see that most well known monotonic logics (such
as propositional logic[Shoenfield, 1967], first order logic
[Shoenfield, 1967], modal logic, temporal logic, fuzzy logic,
probabilistic logic[Bacchus, 1990], etc.) can be viewed as a
special case of Scott’s notion of an abstract logic. The non-
monotonic logics introduced in AI do not satisfy the mono-
tonicity axiom, though Marek et. al.[Marek et al., 1990]
have defined the notion of non-monotone rule systems that
extend Scott’s ideas to non-monotonic logics by dropping the
Monotonicity Axiom above. In all what follows, the mono-
tonicity axiom will be dropped. Once(L,CN) are fixed, we
can define a notion of consistency as follows:

Definition 1 (Consistency) LetX ⊆ L. X is consistentin
logic (L,CN) iff CN(X) 6= L.

In simple English, this says thatX is consistent iff its set
of consequences is not the set of all well formed formulas.
Note that the coherence requirement characterizingCN forces
∅ to always be consistent - this is reasonable for pretty much
any reasonable logic as saying nothing should intuitively be
consistent.

3 A general framework for handling
inconsistency

This section proposes a general framework for handling in-
consistency under any logic. Reasoning with inconsistent
knowledge bases is a process which follows three steps:

1. Constructing consistent subbases,

2. Selecting among all the subbases the preferred ones,
called preferred subbases,

3. Applying classical entailment on a choice of the pre-
ferred subbases.

Throughout the rest of this paper, we assume that we have
an arbitrary, but fixed (monotonicor non-monotonic) logic
(L,CN).

The basic idea behind our framework is to construct what
we calloptions, then to define a preference relation on these
options. Thepreferred optionsare intended to support the
conclusions to be drawn from the inconsistent knowledge
base. Intuitively, an option is a set of formulas that is both
consistent and closed w.r.t. the consequence in logic(L,CN).

Definition 2 (Options) Anoptionis any setO of elements of
L such that:

• O is consistent.

• O is closed, i.e.O = CN(O).
Let Opt(L) be the set of all options that can be built from
(L,CN).
Les us illustrate the above concept.

Example 2 LetL be a propositional language, and letK ⊆
L such thatK = {a, a → b,¬b} a knowledge base. The
following options, for instance, can be built fromK: O1

= CN({a}), O2 = CN({¬b}), O3 = CN({a → b}), O4 =
CN({a, a→ b}),O5 = CN({a,¬b}),O6 = CN({a, b}).
The framework for reasoning about inconsistency has three
components: a set of all options that can be built from the
considered logic, a preference relation between the options,
and an entailment mechanism.

Definition 3 (General framework) Let (L,CN) be a fixed
logic. Ageneral framework for reasoning about inconsistency
in the logic(L,CN) is a triple 〈Opt(L),�, |∼ 〉 such that:

• Opt(L) is the set of options built from(L,CN)
• �⊆ Opt(L)×Opt(L). � is a partial (or total) preorder,

that is, it is reflexive and transitive.

• |∼ : 2Opt(L) → Opt(L) is an entailment mechanism.

The second important concept of the above general frame-
work is the preference relation� between options. Indeed,
O1 � O2 means that the optionO1 is at least as preferred
asO2. This relation captures the idea that some options
are better than others because, for instance, the user has
decided that, or because those preferred options satisfy
the requirements imposed by the developer of a conflict
management system. For instance, in most approaches for
handling inconsistency, maximal consistent subsets of the
inconsistent knowledge base are privileged.

The third component of the framework is a mechanism
for selecting the inferences to be drawn from the knowledge
base. In our framework, the set of inferences is itself an
option. Thus, it should be consistent. This requirement is of
great importance, since it ensures that the framework delivers
safeconclusions.

The set of inferences is generally computed from the dif-
ferent preferred options. LetO� be the set of all preferred
options, i.e.O� = {Oi ∈ Opt(L) | @Oj ∈ Opt(L) with Oj



� Oi}. Different entailment mechanisms can be defined for
selecting the inferences to be drawn. Here are some examples
of such mechanisms.

Definition 4 Let 〈Opt(L),�, |∼ 〉 be a framework, andO�
the set of its preferred options. Letψ be an element ofL.

Universal criterion: L |∼ ψ iff ψ ∈ Oi, ∀Oi ∈ O�. ψ is
called auniversal consequenceofL.

Argumentative criterion: L |∼ ψ iff ∃Oi ∈ O� such that
ψ ∈ Oi, and@Oj ∈ O� such that¬ψ ∈ Oj . ψ is called
anargumentative consequenceofL.

We can show that the set of inferences made using the uni-
versal criterion is itself an option of the languageL, thus it is
an entailment mechanism. Moreover, it is included in every
preferred option.

Proposition 1 Let 〈Opt(L),�, |∼ 〉 be a framework.

• The set{ψ| ψ is a universal consequence ofL} is an
option ofOpt(L).
• ∀Oi ∈ O�, {ψ| ψ is a universal consequence ofL} ⊆
Oi.

Proof (Sketch) LetC = {ψ| ψ is a universal consequence of
L}. By definition, any element inC belongs to all the options
in O�. Consequently,C ⊆ Oi, ∀Oi ∈ O�.

Since anyOi ∈ O� is an option, thenOi is consistent.
Thus,C (which is a subset ofOi) is also consistent. Similarly,
sinceC ⊆ Oi, thusCN(C) ⊆ Oi as well,∀Oi ∈ O�. Con-
sequently,CN(C) ⊆ C (according to the above definition of
universal consequences). Thus,C is closed, and consequently
it is an option.

Similarly, we can show that the set of argumentative conse-
quences is an option. Thus, it is a valid entailment mecha-
nism.

Proposition 2 Let 〈Opt(L),�, |∼ 〉 be a framework. The set
{ψ| ψ is an argumentative consequence ofL} is an option of
Opt(L).
However, the following criterion is not a valid entailment
mechanism since the set of consequences returned by it may
be inconsistent, thus it is not an option.

Example 3 L |∼ ψ iff ∃Oi ∈ O� such thatψ ∈ Oi.

4 Optimal Options that Handle Inconsistency
In the preceding section, we have developed the concepts of
an option and a preferred option for any logic(L,CN). How-
ever, this has been defined in a way that is independent of a
knowledge baseK. This section shows how to associate a set
of preferred options with an inconsistent knowledge baseK.

Definition 5 We say an optionO handlesK iff there is a sub-
setK′ ⊆ K such thatO = CN(K′). LetBase be a function
that returns for any optionO, the subbaseK′. Thus,Base(O)
= K′.
Intuitively, an option handlesK iff it is the closure of some
subset ofK. Clearly, such a subsetK′ must be consistent
becauseO is consistent (by virtue of being an option) and as
O = CN(K′).

Definition 6 Suppose(Opt(L),�, |∼ ) is a general frame-
work for reasoning about inconsistency in logic(L,CN) and
supposeK is an inconsistent knowledge base. Anoptimal
option forK is any memberO ∈ Opt(L) such that:

• O handlesK and

• there is no other optionO′ ∈ Opt(L) that handlesK
such thatO′ � O.

What this definition says is that when reasoning about an in-
consistent knowledge baseK, we always look at the set of
optimal options that handleK.

Example 4 Let us return to Example 1. Suppose we use
O1 = {(1), (2)},O2 = {(1), (3)},O3 = {(2), (3)}}. Of
course, we assume all of these options are also closed under
usual first order consequence. First, let us say that these three
options are preferred to all other options in the language.

• Suppose thescoresc(Oi) of optionOi is the sum of the
multiset{S |sal(John, S) ∈ Oi}. In this case, the score
of O1 is 50K, that ofO2 is 110K, and that ofO3 =
60K. We could now say thatOi � Oj if sc(Oi) ≤
sc(Oj). In this case, the only option that handlesK is
O1 which corresponds to the bank manager’s viewpoint.

• On the other hand, suppose we say thatOi � Oj iff
sc(Oi) ≥ sc(Oj). In this case, the only optimal option
that handlesK isO2 — this corresponds to the view that
the rule saying everyone has only one salary is wrong
(perhaps the database has John being paid out of two
projects simultaneously and 50K of his salary is charged
to one project and 60K to another).

• Now consider the case where we change our scoring
method and say thatsc(Oi) = min{S | sal(John, S) ∈
Oi}. In this case, sc(O1) = 50K, sc(O2) =
60K, sc(O3) = 50K. Let us suppose that the prefer-
ence relation says thatOi � Oj iff sc(Oi) ≥ sc(Oj).
Then the only optimal option isO2 which corresponds
exactly to the tax agency’s viewpoint.

Thus, we see that our general framework for optimally han-
dling inconsistency is very powerful - it can be used to handle
inconsistencies in different ways based upon how the prefer-
ence relation between options is defined.

5 Link with existing approaches
Two kinds of approaches have been proposed in the literature
for solving the problem of inconsistency. The first one con-
sists of revising the knowledge base and restoring its consis-
tency. The second approach accepts inconsistency and copes
with it. The first approach initiated in[Rescher and Manor,
1970] proposes to give up some formulas of the knowledge
base in order to get one or several consistent subbases of the
original base. Then plausible conclusions may be obtained by
applying classical entailment on these subbases.

In what follows, we consider the case of propositional
bases. When the knowledge base isflat, i.e. its formulas are
not weighted, maximal consistent subbases are built.

LetK be a knowledge base that may be inconsistent, andS
= {S1, . . ., Sn} its set of maximal (for set inclusion) consis-
tent subbases. We can show that these subbases correspond to



the preferred options of the above framework, when the pref-
erence relation� between options ismonotonic. Let us first
define that notion of monotonicity.

Definition 7 (Monotonic relation) The relation� is said
monotoniciff for any X, Y ⊆ L, if X ⊆ Y , thenY � X.
� is saidanti-monotoniciff, if X ⊆ Y , thenX � Y .

Proposition 3 Let 〈Opt(L),�, |∼ 〉 be a framework such
that � is monotonic. LetK be an inconsistent knowledge
base, andO� be the set of preferred/optimal options forK.

• ∀Si, ∃ O ∈ O�, such thatO = CN(Si).

• ∀Oi ∈ O�, ∃ S such thatOi = CN(S).

In the case of prioritized knowledge bases, Brewka has pro-
posed in[Brewka, 1989] a definition of the preferred sub-
bases. The basic idea behind those bases is to take as many
important information into account as possible. In this con-
text, a knowledge baseK is supposed to be stratified intoK1,
. . .,Kn (K =K1∪. . .∪Kn) such that the formulas in the same
strata are equally preferred, whereas formulas in a strataKi

are preferred to formulas inKj with i < j.

Definition 8 LetK = K1 ∪ . . . ∪ Kn be a knowledge base.
S = S1 ∪ . . . ∪ Sn is a preferred subbaseof K if and only if
∀j = 1, . . . , n, S1 ∪ . . . ∪ Sj is a maximal (for set-inclusion)
consistent subbase ofK1 ∪ . . . ∪ Kj .
INCL(K) denotes the set of preferred subbases ofK.

We show that in order to capture the results of the above ap-
proach, one needs to define the appropriate preference rela-
tion between options.

Definition 9 LetK be an inconsistent knowledge base, and
OK be the set of all options that handleK. LetO1, O2 ∈
OK. O1 � O2 iff Base(O1) ∈ INCL(K), andBase(O2) /∈
INCL(K).

Proposition 4 Let 〈Opt(L),�, |∼ 〉 be a framework such
that � is defined as in Definition 9. LetK be an inconsis-
tent knowledge base, andO� be the set of preferred/optimal
options forK.

• ∀Si ∈ INCL(K), ∃ O ∈ O�, such thatO = CN(Si).

• ∀Oi ∈ O�, ∃ S ∈ INCL(K) such thatOi = CN(S).

6 New applications of the framework
In this section we show through the two following examples
that the above abstract framework can be used for reasoning
about inconsistency using temporal logic and even probabilis-
tic logic.

Example 5 Consider the temporal logic theoryT . The©
operator denotes the “next time instant” operator. Thus, the
first rule says that ifa is true at timet, b is true at time(t+1).
Under standard temporal logic model theory,T is inconsis-
tent.

a → ©b. (4)

a (5)

©¬b (6)

We may choose to consider just three options:O1 =
CN({ 4, 5}),O2 = CN({ 4, 6}),O3 = CN({ 5, 6}). Sup-
pose now that we can associate a numeric score with each
formula, describing the weight of the source that provided
the formula. Let us say these scores are 3,1,2 respectively,
and the weight of an optionOi is the sum of the scores of the
formulas inT ∩ Oi. Oi � Oj iff the score ofOi is greater
than or equal to the score ofOj . In this case, the best option
isO2.

Example 6 Consider the probabilistic logic[Bacchus, 1990]
theory T consisting of three formulasp : [0.3, 0.4], p :
[0.44, 0.6], p : [0.41, 0.43]. Suppose we only consider op-
tions that assign a single non-empty probability interval to
p. For two atomsA1 = p : [L,U ] andA2 = p : [L′, U ′],
let diff(A1, A2) = abs(L1 − L2) + abs(U1 − U2). Let
us say that the score of an optionO = {A} is given by
KA′∈T diff(A,A′). Suppose we say that optionOi � Oj iff
score(Oi) ≤ score(Oj). Intuitively, this means that we are
preferring options that change the lower and upper bounds
in T as little as possible. In this case,[0.3, 0.6] is a preferred
option.

The reader may be tempted to think that given aK that
is inconsistent, an optimal option may always exist because
in the worst case,CN(∅) seems to be an option. However,
this is not correct because we do not require thatCN(∅) be in
Opt(L).

7 Algorithms to Compute Optimal Options
that Handle Inconsistency

In this section, we develop procedures to find optimal options
for any logic(L,CN) under a varying set of assumptions. We
first define what it means for a formula to be compatible with
a given set of formulas.

Definition 10 Given a consistent setX ⊆ L and a formula
F ∈ L, we say thatF is compatiblewithX iff X ∪ {F} is
consistent. We use the notationComp(X) to denote the set
of all formulas that are compatible withX.

We now develop an iterative fixpoint computational proce-
dure to find an optimal option.

Definition 11 Suppose(L,CN) is a logic,K is a subset of
L, and� is a preference relation on options. We define an
operatorΓK associated withK that mapssets of options to
sets of optionsas follows.

ΓK(X) = X ∪ {CN(Y ∪ {F}) | F ∈ Comp(Y ) ∩ K ∧
Y ∈ X}.

In other words,ΓK(X) works as follows:

• First, it picks a setY in X to expand.

• It then finds anF ∈ Comp(Y ) ∩ K.

• It then closesY ∪ {F} and adds this to the answer, i.e.
into ΓK(X).

Clearly, the operatorΓK is monotone under inclusion —
moreover, the repeated application ofΓK yields a fixpoint.
This is defined as follows.



Γ0
K = {∅}.

Γi+1
K = Γi

K ∪ ΓK(Γi
K).

Γω
K =

⋃
i

Γi
K.

Proposition 5 Suppose(L,CN) is a logic andK is a subset
ofL. Then:

1. ΓK is monotonic.

2. Γω
K is a fixpoint ofγK.

3. Every set inΓω
K is consistent.

It is important to note that the least fixpoint ofΓk is the
empty set and notΓω

K because the latter starts its iteration not
with the empty set, but with the set containing the empty set!
Fortunately, we can make some concrete statements about
Γω
K.

Proposition 6 Suppose(L,CN) is a logic,(Opt(L),�, |∼ )
is a general framework for handling inconsistency, andK is
a set of wffs.O is an optimal option that handlesK iff:

1. O ∈ Opt(L) ∩ Γω
K and

2. there is noO′ ∈ Opt(L) ∩ Γω
K such thatO′ � O.

The above result suggests an immediate algorithm to find an
optimal option forS.

procedure COO-Naive(L, CN,F ,K, Opt(L),�)
1. X = Γω

K;
2. X = X ∩ Opt(L);
3. Return anyO ∈ X such that there is noO′ ∈ X
such thatO′ � O.

One reason for the inefficiency ofCOO-Naive is that
it makes no assumptions about the preference relation.
However, if the preference relation is known, for example, to
be monotone or anti-monotone, then we can do better.

procedure COO-Anti(L, CN, Opt(call),�,K)
1. TODO = {CN(∅)}
2. SOL = {};
3. while TODO 6= ∅ do
4. PickX ∈ TODO s.t. 6 ∃Y ∈ TODO s.t.
CN(Y ) � CN(X).
5. TODO = TODO − {X}
6. if X ∈ Opt(call) then
7. SOL = (SOL − {Y ∈ SOL | X �
Y }) ∪ {X};
8. elseTODO = TODO ∪ {
9. CN(X ∪ {F}) | F ∈

Comp(X) ∩ K)};
10. end-while
11. return any�-preferred member ofSOL.

Intuitively procedure COO-Anti generates⊆-inclusion
minimal closed and consistent subsets that are inOpt(L) us-
ing a bottom up procedure and then chooses the best ones.
It starts by checking ifCN(∅) is in Opt(L) - if so, it can be
returned because of the anti-monotonicity of�. Otherwise,

it finds all formulas compatible with it and for each such for-
mula, it finds the logical consequences. Whenever it finds
an option that handlesK, it adds it toSOL and deletes any
option inSOL that is worse than it (according to�). This
procedure is continued.

Pruning occurs in step (8) of the algorithm where the anti-
monotonicity of� is exploited. Moreover, the algorithm pro-
ceeds in a greedy fashion, always choosing the best (or one
of the best) sets fromTODO to expand in step (4).

The reader may think that the first solution found by this
bottom up procedure is optimal. Unfortunately, this may
not be the case because anti-monotonicity merely states that
O1 ⊆ O2 → O1 � O2. It is possible forO1 � O2 to hold
even ifO1 6⊆ O2 and hence, in the anti-monotonic case, one
has to generate all⊆-minimal options before deciding which
one is the best.

Proposition 7 Suppose(L,CN) is a logic,(Opt(L),�, |∼ )
is a general framework for reasoning about inconsistency,
andK is a set of wffs. Further, suppose� is anti-monotonic.

1. If there is an optimal option to handleK, thenCOO-
Anti(L,CN, Opt(call),�,K) will return one.

2. If COO-Anti(L,CN, Opt(call),�,K) returnsO, thenO
is an optimal option that handlesK.

Just as in the case of anti-monotonic� preference rela-
tions, we can also improve on theCOO-Naive algorithm
when� is monotonic. This algorithm works in a similar
manner as forCOO-Anti but starts top down and eliminates
members ofCN(K) instead of starting the iteration from the
emptyset.

TheCoo-Mon algorithm uses the notion of adeletion can-
didate.

Definition 12 Suppose(L,CN) is a logic andK is a set of
wffs. A setY ⊆ K is adeletion candidate forK iff

1. CN(K − Y ) ⊂ K and

2. CN(K − Y ) is consistent

3. and there is no setY ′ ⊂ Y that satisfies the previous two
conditions.

In other words, a deletion candidate forS is a wffF whose
removal fromS causes at least one formula to no longer
be inferrable fromS. We use the notationDelCand(X) to
denote the set of all deletion candidates of a setX.

procedure COO-Mon(L, CN, Opt(L),�,S, χ)
1. TODO = {CN(K)};
2. SOL = {∅};
3. while TODO 6= ∅ do
4. PickX ∈ TODO s.t. 6 ∃Y ∈ TODO Y �
X;
5. TODO = TODO − {X};
6. If CN(X) ∈ Opt(L) ∧ CN(X) 6= L then
7. SOL = (SOL − ({ Y ∈
SOL | CN(X) � Y })) ∪ {CN(X)};
8. else
9. TODO = TODO ∪ DelCand(X);
10. end while
11. return �-preferred members ofSOL.



TheCOO-Mon algorithm works as follows. It starts with
CN(K) and checks if it is consistent. If so, it adds it toSOL
and halts. Otherwise, it deletes every possible deletion can-
didate (minimal set of elements fromK that restore consis-
tency). If any of the resulting options are valid options, then
the best one according to� is returned. Otherwise, a set from
TODO is selected and further deletion candidates are found.
This is repeated until we either find an optimal option that
handlesK or there is none.

Proposition 8 Suppose(L,CN) is a logic,(Opt(L),�, |∼ )
is a general framework for reasoning about inconsistency,
andK is a set of wffs. Further, suppose� is monotonic.

1. If there is an optimal option to handleK, thenCOO-
Anti(L,CN, Opt(call),�,K) will return one.

2. If COO-Anti(L,CN, Opt(call),�,K) returnsO, thenO
is an optimal option that handlesK.

8 Conclusion
In the literature, there are several proposals for handling in-
consistency in knowledge bases. These proposals differ in i)
the logic to which they apply, and (ii) the criteria used to draw
inferences.

In this paper, we have proposed a general and unified
framework for reasoning about inconsistency in a wide va-
riety of logics. Indeed, the proposed framework is based on
an abstract logic as suggested by Scott in[Scott, 1982]. The
framework has three basic components: a set of options that
are consistent and closed subsets of well-founded formulas
of the logic, a preference relation between the options and en
entailment mechanism. The preference relation between op-
tions is a general notion. It may capture the requirements used
in the literature, such as the maximality, but also other criteria
maybe provided by the user for choosing among the options.
We have shown that by defining an appropriate preference re-
lation on options, we can capture several existing works such
as the subbases defined in[Rescher and Manor, 1970] and
Brewkas subtheories. The third component of the framework
consists of an entailment mechanism that allows the selection
of the inferences to be drawn from the knowledge base. Such
mechanism should return an option. This enforces the sys-
tem to make safe inferences. We have also shown through
examples how this abstract framework can be used in differ-
ent logics such as temporal and probabilistic logics. Another
important contribution of the paper is the set of algorithms
provided for computing most preferred options.

An extension of this work consists of studying the com-
plexity of the proposed algorithms. We are also planning to
study how the results of default logic can be captured in our
abstract framework. Another extension would be to study the
properties of the system when applied using temporal logic.

Acknowledgments
This work was partly supported by AFOSR grants
FA95500610405 and FA95500510298, ARO grant
DAAD190310202 and by the Joint Institute for Knowl-
edge Discovery.

References
[Bacchus, 1990] F. Bacchus. Representing and reasoning

with probabilistic knowledge. InMIT Press, Cambridge,
pages 268–271, 1990.

[Brewka, 1989] G. Brewka. Preferred subtheories: An ex-
tended logical framework for default reasoning. pages
1043–1048. Morgan-Kaufmann, 1989.

[Dung, 1995] P. M. Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming andn-person games.Artificial Intelligence,
77:321–357, 1995.

[G. Pinkas, 1992] R. P. Loui G. Pinkas. Reasoning from in-
consistency: a taxonomy of principles for resolving con-
flicts. In 3rd International Conference on Principles of
Knowledge Representation and Reasoning, KR’92, pages
709 –719, 1992.

[Mareket al., 1990] V. Wiktor Marek, A. Nerode, and J. B.
Remmel. A theory of nonmonotonic rule systems.LICS
1990, pages 79–94, 1990.

[Poole, 1985] D. Poole. On the comparison of theories:
preferring the most specific explanation. In9th Inter-
national Joint Conference on Artificial Intelligence, IJ-
CAI’85, pages 144–147, 1985.

[Reiter, 1980] R. Reiter. A logic for default reasoning.Arti-
ficial Intelligence, 13:81–132, 1980.

[Rescher and Manor, 1970] N. Rescher and R. Manor. On in-
ference from inconsistent premises.Theory and decision,
1:179–219, 1970.

[Scott, 1982] D. S. Scott. Lectures on a mathematical theory
of computation.Theoretical Foundations of Programming
Methodology, . Reidel Publ., pages 145–292, 1982.

[Shoenfield, 1967] J. Shoenfield. Mathematical logic.AK
Peters Ltd, 1967.

[Touretzkey, 1984] D. S. Touretzkey. Implicit ordering of de-
faults in inheritance systems. InNational Conference on
Artificial Intelligence, AAAI’84, pages 322 – 325, 1984.


