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ABSTRACT
The paper studies how to evaluate arguments in graphs where both

arguments and attacks are weighted. It proposes a broad family

of gradual semantics that assign to each argument a numerical

value representing its strength, i.e., how robust is the argument

against attacks. It shows that five existing gradual semantics are

instances of the family, and extends each of them in various ways

for accounting for weights of attacks. The extended versions of

each semantics differ in the way they deal with weights of attacks.

Furthermore, they are all instances of the family. The paper shows

also that the family captures additional semantics, like Euler-Max-

based that is investigated in the paper. The new semantics are

analyzed against properties from the literature and are compared

with existing semantics that deal with weighted attacks.
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1 INTRODUCTION
Argumentation is a reasoning approach that has been used for

solving numerous and varied Artificial Intelligence problems, like

making and explaining decisions (eg. [39]), nonmonotonic reason-

ing (eg. [22]), classification (eg. [7]), etc. These works have iden-

tified the potential benefits of using argumentation in multiagent

settings, as a way to implement the capabilities of agents (eg. rea-

soning, decision making, communication). Some fully integrated

argumentation-based agent architectures have even been proposed

(eg. [19, 30]). The basic idea behind argumentation is the justifica-

tion of claims by arguments. An argument is a reason for believing

or accepting a claim. It has generally a basic weight, which may

represent different issues like votes of users [32], certainty degree of

the argument’s premises [11], trustworthiness degree of its source

[20]. It may also be attacked by other arguments, and each attack

may have a weight that may represent votes of users [25], or a de-

gree of relevance [24], etc. Arguments and attacks are represented

in graphs, called weighted when both arguments and attacks are

weighted, semi-weighted when only arguments are weighted, and

flat when neither arguments nor attacks have weights.
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A crucial step in an argumentation process is evaluation of ar-

gument strength, i.e., how robust is an argument against attacks.

The strength of an argument determines the reliability status of its

claim. Indeed, the stronger an argument, the more reliable its claim.

Consequently, several semantics were proposed in the literature.

The first ones are the extension semantics introduced by Dung in

[22], which compute acceptable sets of arguments. Extensions are

then used in [18] for assigning a three-valued qualitative strength

(accepted, rejected, undecided) to each argument. Starting from the

observation that the qualitative scale of argument strength is too

coarse, in [18] the authors introduced gradual semantics that use a

richer scale. Another key difference with extension semantics lies

in the fact that gradual semantics do not compute extensions. They

rather compute directly the strength of each argument using an

evaluation method, which is a pair of aggregation functions: one for

aggregating the values of all direct attackers of an argument, and

the other for computing the effect of “direct attack” on its strength.

In that way, the strength of an argument depends on its attack

structure (direct and indirect attackers and defenders). The authors

in [18] introduced a general setting for defining gradual semantics.

Indeed, they proposed a general definition of gradual semantics,

which relates argument strength to an evaluation method, and

specifies some constraints on the latter. Examples of constraints

are properties (eg. continuity, monotony) of the two aggregation

functions. Furthermore, each evaluation method should uniquely

characterize a gradual semantics. This general setting deals with

flat graphs, but it was extended to semi-weighted graphs in [32],

and to weighted ones in [25].

These developments have led to the introduction of various

gradual semantics. Some of them like h-Categorizer [12] and Com-

pensation semantics [3] deal only with flat graphs, while others like

Weighted h-Categorizer [4], Weighted Max-Based [4], Weighted

Card-based [4], and Trust-based [20] are devoted to semi-weighted

graphs. Following the approach of [18], the authors in [25] proposed

an evaluation method, called Simple Product (SP), for defining a

semantics that deals with weighted graphs. However, unlike what

is conjectured in that paper, it was recently shown in [5] that (SP)

does not characterize a single semantics. Hence, there is no gradual

semantics dealing with weighted graphs that fits within the setting

of [18]. The aim of this paper is to bridge this gap.

The paper proposes five contributions: First, it defines the first

family S∗ of gradual semantics that take into account weights of

attacks. The family instantiates the general setting from [18]. Sec-

ond, it shows that any semantics of the family satisfies properties

identified in [4] for analyzing semantics. Furthermore, it shows how

to effectively calculate the values that a semantics from S∗ assigns
to arguments. Third, it shows that five existing gradual semantics,

namely those proposed in [3, 4, 12], are instances of S∗. Fourth, it
generalizes each of them in various ways for accounting for weights



of attacks. The extended versions of each semantics differ in the

way they deal with weights of attacks. Furthermore, they are all

instances of the family S∗. Fifth, it shows that S∗ encompasses addi-

tional gradual semantics that have no counterpart in the literature.

It presents one of them, called Euler-Max-based semantics (EMbs),

and shows that it satisfies the same properties and leads to the same

ordering of arguments as Weighted Max-based semantics from [4].

However, an attack is more harmful under EMbs as strengths of

arguments are lower with this semantics. All the above results

show that the family S∗ is very broad and encompasses semantics

that may make different design choices like privileging quality of

attackers over their quantity or vice versa.

The paper is organized as follows: Section 2 recalls the general

setting of gradual semantics. Section 3 introduces the novel family

S∗ and Section 4 studies its properties. Section 5 shows that S∗ is
very broad as it encompasses five existing semantics, their general

versions, as well as novel ones. Section 6 compares the new family

with other semantics from the literature.

2 BACKGROUND
In the paper, we are interested in weighted argumentation graphs.
Their nodes are arguments, each of which has a basic weight repre-
senting an aggregation of votes given by users [32], or a certainty

degree of the argument’s premises [11], or a trustworthiness de-

gree of its source [20], etc. Edges represent attacks (i.e., conflicts)
between arguments, each attack has a weight expressing an aggre-

gation of votes given by users [25], or a relevance degree [24], etc.

For the sake of simplicity, weights of both arguments and attacks

are elements of the unit interval [0, 1]. The greater the value, the

stronger the argument or the attack.

Definition 2.1 (Weighted Graph). Aweighted argumentation graph
is a tuple G = ⟨A,σ ,R,π ⟩, where A is a non-empty finite set of

arguments, R ⊆ A ×A, σ : A → [0, 1], and π : R → [0, 1]. Let AG
denote the set of all weighted graphs.

For a,b ∈ A, σ (a) is the basic weight of a, (a,b) ∈ R means a
attacks b, and π ((a,b)) is the weight of the attack.

Notations: Let G = ⟨A,σ ,R,π ⟩ ∈ AG and a ∈ A. We denote by

σ ≡ 1 (resp. π ≡ 1) the case where all arguments (resp. all attacks)

have a weight equal to 1. AttG (a) denotes the set {b ∈ A | (b,a) ∈
R} of direct attackers of a in G. When G is clear from the context,

we write Att(a) for short. Let G′ = ⟨A ′,σ ′,R ′,π ′⟩ ∈ AG such that

A ∩ A ′ = ∅. G ⊕ G′ = ⟨A ∪ A ′,σ ′′,R ∪ R ′,π ′′⟩ ∈ AG such that

∀x ∈ A (resp. x ∈ A ′), σ ′′(x ) = σ (x ) (resp. σ ′′(x ) = σ ′(x )), and
∀x ∈ R (resp. x ∈ R ′), π ′′(x ) = π (x ) (resp. π ′′(x ) = π ′(x )).

Cayrol and Lagasquie introduced in [18] an abstract setting

for defining gradual semantics in case of flat graphs. The setting

was later extended by Leite and Martins in [32] for semi-weighted

graphs, by Egilmez, Martins and Leite in [25] for weighted ones,

where weights of arguments and attacks are aggregations of votes

of users, and by Cayrol and Lagasquie in [17] for bipolar graphs. The

idea is to define a gradual semantics by an evaluation method, which
is a tuple of aggregation functions, each of which should satisfy

some properties (like continuity, monotony). Such approach offers

at least four advantages: First, it makes transparent the different op-

erations made by a semantics (eg., accruing strengths of attackers,

adjusting weights, . . .) and formalizes them through aggregation

functions. Second, it shows the main parameters to be tuned for

defining different semantics. Third, it facilitates the study of combi-

nations of functions that lead to reasonable semantics. Fourth, we

have shown recently in [6] that properties of aggregation functions

are closely related to principles defined in [4].

In what follows, we present a simplified version of this general

setting. Indeed, we consider the unit interval [0, 1] for all functions.

Furthermore, we do not use the exact definitions as given in the

original papers. We rather present its main ideas using two novel

concepts: determinative and well-behaved evaluation methods.

Definition 2.2 (Evaluation Method). An evaluation method (EM)

is a triple M = ⟨f ,д,h⟩ such that:

• h : [0, 1] × [0, 1]→ [0, 1]

• д :

⋃+∞
n=0[0, 1]

n → [0,+∞) such that д is symmetric

• f : [0, 1] × Range(д) → [0, 1]1

The function h calculates the strength of an attack by aggregat-

ing its weight with the strength of the attacker. The function д
evaluates how strongly an argument is attacked. It aggregates the

strengths of all attacks (obtained by h) received by the argument.

Since the ordering of attackers should not be important, we posed

the symmetry condition, i.e.,

д(x1, . . . ,xn ) = д(xρ (1) , . . . ,xρ (n) ),

for any permutation ρ of the set {1, . . . ,n}. The function f returns

the strength of an argument by combining its basic weight with

the value returned by д. Table 1 presents some possibilities for the

functions f , д and h, including well known T-norms [31] for h and

aggregation functions for д. We will see later that most of them are

already (implicitly) used in the literature.
2

Let us now define a gradual semantics. It is a function that assigns

a value from a given ordered scale to each argument. The greater

the value, the stronger the argument. Different scales can be used,

but for simplicity we use the unit interval of reals [0, 1].

Definition 2.3 (Gradual Semantics). A gradual semantics is a func-
tion S assigning to any G = ⟨A,σ ,R,π ⟩ ∈ AG a weighting DegSG on

A, i.e., DegSG : A → [0, 1]. For any a ∈ A, DegSG (a) represents the
strength of a.

A gradual semantics, as defined in [18, 32], should be based on

an evaluation method as shown next.

Definition 2.4. A gradual semantics S is based on an evaluation

methodM = ⟨f ,д,h⟩ iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG, ∀a ∈ A,

DegSG (a) = f (σ (a),д(h(π ((b1,a)), Deg
S
G (b1)),

. . . ,h(π ((bn ,a)), Deg
S
G (bn )))),

(1)

where {b1, . . . ,bn } = AttG (a).

Let us illustrate the definitions with the Trust-based (TB) seman-

tics proposed by da Costa et al. in [20]. This semantics deals with

semi-weighted graphs (i.e., π ≡ 1), where the basic weight of an

argument represents a degree of trust in the argument’s source.

1Range(д) denotes the co-domain of д.
2
In subscripts of the functions in Table 1, Ham stands for Hamacher product, psum
for probabilistic sum, comp for complement and f rac for fractions. The other sub-

scripts are self-explanatory.



fcomp (x1,x2) = x1 (1 − x2) дsum (x1, . . . ,xn ) =
n∑
i=1

xi hprod (x1,x2) = x1x2

fexp (x1,x2) = x1e
−x2 дsum,α (x1, . . . ,xn ) = (

n∑
i=1

(xi )
α )

1

α hprod,α (x1,x2) = xα
1
x2, α > 0

ff rac (x1,x2) =
x1

1+x2 дmax (x1, . . . ,xn ) = max{x1, . . . ,xn } hmin (x1,x2) = min{x1,x2}

fmin (x1,x2) = min{x1, 1 − x2}
дpsum (x1, . . . ,xn ) = x1 ⊕ · · · ⊕ xn ,
where x1 ⊕ x2 = x1 + x2 − x1x2

hHam (x1,x2) =
x1x2

x1+x2−x1x2 ;

hHam (x1,x2) = 0 if x1 = x2 = 0

Table 1: Examples of functions f , д and h.

Example 2.5. The TB semantics, that we will denote by fuzzy,
assigns to every argument a ∈ A in a graph G = ⟨A,σ ,R,π ≡ 1⟩

the limit of the sequence {αn (a)}
+∞
n=0, i.e.,

DegfuzzyG (a) = lim

n→+∞
αn (a),

where α0 (a) = σ (a) and

αn+1 (a) =
1

2

αn (a) +
1

2

min{σ (a), 1 − max

(b,a)∈R
αn (b)}. (2)

Consider the graph G depicted below and whose weights of argu-

ments and attacks are all equal to 1.

a b

It is easy to check that DegfuzzyG (a) = DegfuzzyG (b) = 1

2
.

Trust-based semantics is guided by two principles. First, the strength

α (a) of an argument a should not be greater than the degree to

which the arguments attacking it are unacceptable, second, its

strength cannot be greater than its basic weight. These intuitions

lead to the equation below:

α (a) = min{σ (a), 1 − max

(b,a)∈R
α (b)}. (3)

It was shown in [20] that Trust-based semantics satisfies equation

(3), i.e., DegfuzzyG is an instance ofα . Equation (3) can be decomposed

into an evaluation method, called fuzzy evaluation method: 3

MF = ⟨fmin ,дmax ,hprod ⟩.

So, the semantics DegfuzzyG is based on the evaluation methodMF .

Definition 2.4 shows that evaluating arguments with a seman-

tics amounts to solving a system of equations (one equation per

argument). Indeed, the solutionsva = v
∗
a of the system of equations

va = f (σ (a),д(h(π ((b1,a)),vb1 ), . . . ,h(π ((bn ,a)),vbn ))), (4)

for each argument a ∈ A with {b1, . . . ,bn } = AttG (a), correspond
to semantics S based onMwith DegSG (a) = v

∗
a . The following result

ensures that the above system has at least one solution when the

functions of the evaluation method are continuous. This result sim-

plifies a similar one from [25] that considered additional conditions

including monotonicity of the functions.

Theorem 2.6. If M = ⟨f ,д,h⟩ is an evaluation method such that
д is continuous, and f and h are continuous on the second variable,
then there exists a semantics based onM.

The system of equations (4) may thus have one or several solu-
tions. Consider the case of the fuzzy evaluation methodMF .

3
Note that we may consider another function h since Trust-based semantics does not

deal with weighted attacks.

Example 2.5 (Cont) Consider the fuzzy evaluation method MF =

⟨fmin ,дmax ,hprod ⟩ and the argumentation graph of Example 2.5.

Recall that DegfuzzyG (a) = DegfuzzyG (b) = 1

2
. This is a solution of the

system of equations (5) below.

va = 1 −vb , vb = 1 −va . (5)

However, this system has infinitelymany solutions including (va ,vb ) =
(0, 1). Then, the semantics S′ defined by:

• DegS
′

G (a) = 0, DegS
′

G (b) = 1,

• DegS
′

G′ ≡ DegfuzzyG′ for all graphs G′ , G,
is also based on MF . This means that MF does not characterize

Trust-based semantics.

In [18], a gradual semantics should be based on an evaluation

method which characterizes it. In what follows, we extend the

existing general setting by integrating this characterization condi-

tion. For that purpose, we introduce the concept of determinative
evaluation methods, i.e., methods that characterize semantics.

Definition 2.7 (Determinative EM). An evaluation methodM =
⟨f ,д,h⟩ is determinative iff there is a unique semantics S which is

based onM. We denote by S(M) the semantics characterized by a

determinative evaluation methodM.

Clearly, the fuzzy evaluation method is not determinative. How-

ever, any evaluation method is determinative on the class of acyclic

graphs, i.e., produces a unique semantics for such graphs.

So far, no constraints are imposed on the functions of an evalua-

tion method, except symmetry of д. In the following definition, we

introduce the notion of well-behaved evaluation methods, i.e., meth-

ods whose functions satisfy some specific properties. We consider a

subset of properties from [18, 25], broadening thus the setting. For

instance, the parametrized function hprod,α , which allows users

to give different importance to degrees of attackers and weights

of attacks,
4
is excluded from the previous proposals, while it is

allowed in our general setting.

Definition 2.8 (Well-Behaved EM). An evaluation method M =
⟨f ,д,h⟩ is well-behaved iff the following holds:

(1) f is increasing in the first variable, decreasing in the sec-

ond variable whenever the first variable is not equal to 0,

f (x , 0) = x , and f (0,x ) = 0.

(2) д() = 0, д(x ) = x , д(x1, . . . ,xn ) = д(x1, . . . ,xn , 0), and
д(x1, . . . ,xn ,y) ≤ д(x1, . . . ,xn , z) if y ≤ z.

(3) h(0,x ) = 0, h(1,x ) = x , h(x ,y) > 0 whenever xy > 0, and h
is non-decreasing in both components.

4
If α < β , then hα gives more importance to weights than hβ .



In [18, 25, 32], a gradual semantics should be based on a well-

behaved evaluation method.

3 NOVEL FAMILY OF GRADUAL SEMANTICS
In the literature, there are several works on semantics that deal with

weighted attacks [16, 23–25, 28, 29]. All of them are extension-based

and extend the semantics proposed by Dung in [22]. A notable ex-

ception is the gradual semantics proposed in [25], a generalization

of the semantics that deals with semi-weighted graphs in [32]. It

is based on the evaluation method Mp = ⟨fcomp ,дpsum ,hprod ⟩.
However, unlike what is conjectured in [25],Mp does not charac-

terize the semantics since the corresponding system of equations

may have several solutions. Hence, Mp is not determinative. Thus,

there is no specific gradual semantics in the literature that deals

with weighted graphs. In what follows, we propose the first broad

family of such semantics. It instantiates the general setting recalled

in Section 2. For that purpose, we define a large family of deter-

minative and well-behaved evaluation methods. The latter satisfy

additional constraints, namely continuity of their functions.

Definition 3.1 (M∗). We define M∗ as the set of all well-behaved
evaluation methods M = ⟨f ,д,h⟩ such that:

• lim

x2→x0
f (x1,x2) = f (x1,x0), ∀x0 , 0.

• lim

x→x0
д(x1, . . . ,xn ,x ) = д(x1, . . . ,xn ,x0), ∀x0 , 0.

• h is continuous on the second variable

• λf (x1, λx2) < f (x1,x2), ∀λ < 1, x1 , 0.

• д(h(y1, λx1), . . . ,h(yn , λxn )) ≥
λд(h(y1,x1), . . . ,h(yn ,xn )), ∀λ ∈ [0, 1].

Note that the first two conditions of M∗ relax the continuity

conditions from Theorem 2.6 by excluding the value 0; we weaken

them in order to capture semantics that are sensitive to the number

of attackers (like Weighted Card-based [4]), where even a weak

attacker can have a significant impact. The last two conditions

of M∗ are specific contraction conditions. It turned out that the

fifth condition is satisfied for most combinations of aggregation

functions (for д) and T−norms (for h).

We show that any evaluation method M ∈ M∗ characterizes a
semantics, ensuring thus a single solution for each weighted graph.

Theorem 3.2. Any evaluation methodM ∈ M∗ is determinative.

We are now ready to introduce the novel family of gradual se-

mantics. It contains semantics based on evaluation methods in M∗.

Definition 3.3 (S∗). We define by S∗ the set of all semantics which

are based on an evaluation method inM∗, i.e.,

S∗ = {S(M) | M ∈ M∗}.

Now we turn to the practical question: how to effectively cal-

culate the values that a semantics S ∈ S∗ assigns to arguments in

a given graph? In the case of acyclic graphs, they can be calcu-

lated directly, starting from non-attacked arguments. In the general

case, one needs to calculate the solution of the system of equations

(4), which is typically obtained by employing an iterative method.

In the following result, we propose an uniform iterative way of

calculating strengths of arguments, which can be applied to any

semantics from S∗. The idea is that at each step, a value is assigned

to each argument. In the initial step, the value of an argument is its

basic weight. Then, in each step, the value is recomputed on the

basis of the weights of arguments and attacks as well as the values

of the attackers of the argument at the previous step.

Theorem 3.4. Let M = ⟨f ,д,h⟩ ∈ M∗, S = S(M), and G =
⟨A,σ ,R,π ⟩ ∈ AG. For everya ∈ A, we define the sequence {s (a) (n) }+∞n=1
in the following way:

• s (a) (1) = σ (a),
• s (a) (n+1) = f (σ (a),д(h(π ((a1,a)), s (a1)

(n) ), . . . ,h(π ((ak ,a)),
s (ak )

(n) ))), where {a1, . . . ak } = Att(a).

Then, for every a ∈ A:

(1) {s (a) (n) }+∞n=1 converges, and
(2) lim

n→+∞
s (a) (n) = DegSG (a).

This result can be implemented for an arbitrary semantics from

S∗, as an algorithm that computes the approximations of strengths.

4 PROPERTIES OF THE NOVEL SEMANTICS
Recently, there is great interest in defining formal properties that

can be used for analyzing individual semantics, and comparing

distinct ones. Some properties were proposed for semantics that

evaluate arguments of flat graphs (eg. [2]) while others (eg. [4, 9])

were proposed for semantics that deal with semi-weighted graphs.

However, there are no such properties for analyzing semantics that

deal with weighted graphs. In what follows, we bridge this gap.

We consider some properties proposed in [4], and extend them

for accounting for weights of attacks. Those properties state that the

strength of an argument does not depend on its identity (Anonymity);
it depends only on arguments that are related to it with a path (In-
dependence); it does not depend on argument’s outgoing arrows

(Directionality ); it depends only on the argument’s basic strength,

the weights of its direct attacks and the strengths of its direct attack-

ers (Equivalence); it is equal to the argument’s basic weight if the

argument is not attacked (Maximality); it does not take into account
neither worthless attackers (those whose strength is equal to 0) nor

worthless attacks (Neutrality); it is less than the argument’s basic

weight if the argument has at least one serious attack from a serious

attacker (Weakening); it is sensitive to the argument’s basic weight

(Proportionality), to the quality of attackers (Reinforcement) and to

the number of non-worthless attacks and attackers (Counting). The
formal definitions are below. Let S be a gradual semantics.

Anonymity: S satisfies anonymity iff ∀G = ⟨A,σ ,R,π ⟩, G′ =
⟨A ′,σ ′,R ′,π ′⟩ ∈ AG, for any isomorphism f from G to G′, the
following holds: ∀ a ∈ A, DegSG (a) = DegSG′ ( f (a)).

Independence: S satisfies independence iff ∀G = ⟨A,σ ,R,π ⟩,G′ =
⟨A ′,σ ′,R ′,π ′⟩ ∈ AG s.t A ∩ A ′ = ∅, the following holds: ∀ a ∈
A, DegSG (a) = DegSG⊕G′ (a).

Directionality: S satisfies directionality iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG,
∀a,b ∈ A, ∀G′ = ⟨A ′,σ ′,R ′,π ′⟩ ∈ AG, s.t. A ′ = A, σ ′ = σ ,
R ′ = R ∪ {(a,b)}, ∀x ∈ R,π ′(x ) = π (x ), it holds that: ∀x ∈ A, if

there is no path from b to x , then DegSG (x ) = DegSG′ (x ).

Equivalence: S satisfies equivalence iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG,
∀a,b ∈ A, if i) σ (a) = σ (b), and ii) there exists a bijective function



f from Att(a) to Att(b) s.t. ∀x ∈ Att(a), DegSG (x ) = DegSG ( f (x ))

and π ((x ,a)) = π (( f (x ),b)), then DegSG (a) = DegSG (b).

Maximality: S satisfies maximality iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG, ∀a ∈
A, if Att(a) = ∅, then DegSG (a) = σ (a).

Neutrality: S satisfies neutrality iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG, ∀a,b ∈
A, if i) σ (a) = σ (b), and ii) Att(b) = Att(a)∪{x } s.t. x ∈ A\Att(a)
and (DegSG (x ) = 0 or π ((x ,b)) = 0), then DegSG (a) = DegSG (b).

Weakening: S satisfies weakening iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG, ∀a ∈
A, if σ (a) > 0, and ∃b ∈ Att(a) s.t. σ (b) > 0 and π ((a,b)) > 0,

then DegSG (a) < σ (a).

Proportionality: S satisfies proportionality iff ∀G = ⟨A,σ ,R,π ⟩ ∈
AG, ∀a,b ∈ A, if

• Att(a) = Att(b),
• ∀x ∈ Att(a), π ((x ,a)) = π ((x ,b)),
• σ (a) > σ (b),
• DegSG (a) > 0,

then DegSG (a) > DegSG (b).

Resilience: S satisfies resilience iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG, ∀a ∈ A,

DegSG (a) = 0 iff σ (a) = 0.

Reinforcement: S satisfies reinforcement iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG,
∀a,b ∈ A, if

• σ (a) = σ (b),
• DegSG (a) > 0,

• Att(a) \ Att(b) = {x }, Att(b) \ Att(a) = {y},
• DegSG (y) > DegSG (x ),
• π ((x ,a)) = π ((y,b)),

then DegSG (a) > DegSG (b).

Counting: S satisfies counting iff∀G = ⟨A,σ ,R,π ⟩ ∈ AG,∀a,b ∈ A,

if σ (a) = σ (b), Att(b) = Att(a) ∪ {x } with π ((x ,b)) > 0, and

DegSG (a) > 0, then DegSG (a) > DegSG (b).

Since graphs are semi-weighted in [4], there is no property that

deals with weights of attacks. We propose next Attack-Sensitivity,
which states that the stronger the weight of an attack, the greater

its impact on the targeted argument.

Attack-sensitivity: S is attack sensitive iff ∀G = ⟨A,σ ,R,π ⟩ ∈ AG,
∀a,b ∈ A, if

• σ (a) = σ (b),
• Att(a) \ Att(b) = {x }, Att(b) \ Att(a) = {y},
• DegSG (x ) = DegSG (y), and
• π ((y,b)) > π ((x ,a)),
• DegSG (a) > 0,

then DegSG (a) > DegSG (b).

The above properties are compatible, i.e., they can be satisfied

all together by a semantics.

Theorem 4.1. The twelve properties are compatible.

Let us now analyze semantics of S∗ with respect to the above

twelve properties. The next result shows that any semantics in S∗

satisfies all the first nine properties.

Theorem 4.2. For any gradual semantics S ∈ S∗, S satisfies
Anonymity, Independence, Directionality, Equivalence, Maximality,
Neutrality, Weakening, Proportionality, and Resilience.

Note that Reinforcement, Counting and Attack-sensitivity are

not guaranteed for the whole family of semantics (S∗). However, we
show that when the functions (д and h) of the evaluations methods

inM∗ satisfymonotony, then the semantics they characterize satisfy

the three properties.

Definition 4.3 (M∗e ). We define M∗e (e stands for extended) as the

set of all evaluation methodsM = ⟨f ,д,h⟩ such that:

• M ∈ M∗,
• д(x1, . . . ,xn ,y) < д(x1, . . . ,xn , z) whenever y < z,
• h(x1,y) > h(x2,y) whenever x1 > x2, y , 0.

Definition 4.4 (S∗e ). We define by S∗e the set of all semantics which

are based on an evaluation method inM∗e , i.e.,

S∗e = {S(M) | M ∈ M∗e }.

Proposition 4.5. The inclusionsM∗e ⊆ M∗ and S∗e ⊂ S∗ hold.

Any semantics in S∗e satisfies all the twelve properties.

Theorem 4.6. For any gradual semantics S ∈ S∗e , S satisfies all
the 12 properties.

Theorems 4.2 and 4.6 can be seen as big steps towards the ulti-

mate goals of fully characterizing the whole family of all gradual

semantics that satisfy the first nine properties and the whole fam-

ily of semantics that satisfy the twelve properties. By saying that,

we claim that S∗ is very broad and encompasses many semantics,

however we also recognize that S∗ does not cover all the possible
gradual semantics that can be defined for evaluating arguments in

weighted graphs.

5 SOME INSTANCES OF THE FAMILY S∗

The novel family of semantics is general in that it only specifies

constraints on the evaluation methods underlying its semantics.

The aim of this section is to provide examples of specific semantics

covered by S∗. We provide three groups of such semantics. The first

one contains five semantics that were proposed in the literature

and that deal with flat/semi-weighted argumentation graphs. The

second group contains generalizations of the five previous seman-

tics for accounting for weights of attacks. Indeed, we generalize

each of the five semantics in various ways, by considering different

possible functions h. The last group contains one semantics, which

has no counterpart in the literature.

5.1 Five existing semantics as instances of S∗

There are several gradual semantics in the literature. Some of them

like h-Categorizer (defined for acyclic graphs in [12] and for graphs

with cycles in [36]) and compensation-based semantics [3] deal with

flat graphs, while others like weighted h-Categorizer, Weighted

Max-based, Weighted Card-based [4], Trust-based [20] deal with

semi-weighted graphs (only arguments are weighted). Table 2 re-

calls the formal definitions of the first five semantics. In what fol-

lows, we show that those five semantics are instances of the new

family (S∗) while Trust-based (TB) is not. Indeed, we have seen

previously that (TB) is based on an evaluation method, the fuzzy

method MF , which is neither determinative nor well-behaved in

the sense of definitions 2.7 and 2.8.



Semantics Formal definition Type of graphs

h-Categorizer [12] DeghG (a) =
1

1+
∑
bRa

DeghG (b )
Flat

Compensation-based [3] sα−BBSG (a) = 1 +

( ∑
bRa

1

(s (b ))α

)
1/α

, α ∈ (0,+∞) Flat

Weighted h-Categorizer [4] DegHbsG (a) =
σ (a)

1+
∑
bRa

DegHbsG (b )
Semi-weighted

Weighted Max-based [4] DegMbsG (a) =
σ (a)

1+max

bRa
DegMbsG (b )

Semi-weighted

Weighted Card-based [4] DegCbsG (a) =
σ (a)

1+ |AttFG (a) |+

∑
b∈AttFG (a )

DegCbsG (b )

|AttFG (a ) |

Semi-weighted

Table 2: Existing Gradual Semantics.

Theorem 5.1. The Trust-based semantics is based on the evalu-
ation method MF = ⟨fmin ,дmax ,hprod ⟩. However, MF is neither
determinative nor well-behaved.

Weighted Max-based, denoted by Mbs in [4], is a semantics that

favors the quality of attackers over their quantity. The next result

shows that it is based on an evaluation method, which is both

determinative and well-behaved. This means that Mbs is an instance
of the general setting. Since Mbs does not deal with weighted attacks,
we use hprod for h in its evaluation method, however it may be any

function of those recalled in Table 1. This holds for the evaluation

methods that define the other semantics.

Theorem 5.2. Let MM = ⟨ff rac ,дmax ,hprod ⟩. For any G =
⟨A,σ ,R,π ⟩ ∈ AG such that π ≡ 1, the following properties hold.

• DegMbsG ≡ Deg
S(MM )
G .

• MM is both determinative and well-behaved.

Let us switch to the compensation-based semantics (α−BBS)
from [3], where α ∈ (0,+∞) is a parameter allowing compensation

between quality and quantity of attackers. With this semantics,

the stronger the argument, the smaller its value. Thus, the general

setting discussed in the paper cannot capture α−BBS in a direct

way. However, we define an evaluation method that defines a class

of semantics that is equivalent to α−BBS. Interestingly, the same

evaluation method defines also Weighted h−Categorizer [4] which
is denoted Hbs, and h−Categorizer [12], denoted by h−Cat. We

show that the evaluationmethod is determinative andwell-behaved,

meaning that the three semantics are also instances of S∗.

Theorem 5.3. Let Mα = ⟨ff rac ,дsum,α ,hprod ⟩. For any G =
⟨A,σ ,R,π ⟩ ∈ AG, the following properties hold:

(1) If σ ≡ 1 and π ≡ 1, then sα−BBSG ≡ 1

DegS(Mα )
G

.

(2) If σ ≡ 1, π ≡ 1, and α = 1, then Degh−CatG ≡ Deg
S(Mα )
G .

(3) If π ≡ 1, and α = 1, then DegHbsG ≡ Deg
S(Mα )
G .

(4) Mα is both determinative and well-behaved.

Weighted Card-Based semantics [4], denoted by Cbs, is a seman-

tics which favors the quantity of attackers over their quality. In its

formal definition in Table 2, AttFG (a) is the set of attackers of a
whose basic weight is strictly positive. We show that it is another

instance of the new family. Indeed, it is based on a determinative

and well-behaved evaluation method.

Definition 5.4 (MC ). The Card-based evaluation method is the

tuple MC = ⟨ff rac2,дcard ,hprod ⟩ such that

• ff rac2 (x1, 0) = 0,

• ff rac2 (x1,x2) =
x1

2+x2 for x2 > 0,

• дcard (0, . . . , 0) = 0,

• if there is xi , 0 for some i ≤ n,

дcard (x1, . . . ,xn ) = |{i |xi , 0}| − 1 +

∑
1≤i≤n

xi

| {i |xi,0} |
.

Theorem 5.5. The following properties hold:

• For all G = ⟨A,σ ,R,π ⟩ ∈ AG such that π ≡ 1,

DegCbsG ≡ Deg
S(MC )
G .

• MC is both determinative and well-behaved.

We have seen that the three evaluation methodsMα ,MC ,MM
are both determinative and well-behaved. In what follows, we show

that they are also instances ofM∗, and the semantics they charac-

terize are instances of S∗.

Theorem 5.6. The following inclusions hold:

• {Mα ,MC } ⊂ M∗e andMM ∈ M∗.
• {S(Mα ), S(MC )} ⊂ S∗e and S(MM ) ∈ S∗.

5.2 Generalizations of existing semantics
We have seen in the previous section that the five gradual seman-

tics recalled in Table 2 are instances of the new family. However,

those semantics deal only with flat or semi-weighted argumentation

graphs. In what follows, we show that S∗ encompasses several in-

stances that generalize the five semantics for accounting for weights

of attacks. Indeed, we generalize each of them in various ways by

considering different functions aggregating the weights of attacks

and degrees of attackers. For that purpose, we consider the follow-

ing broad class H of functions h.

Definition 5.7 (H). We define H as the set of all functions h :

[0, 1] × [0, 1]→ [0, 1] such that:

• h(0,x ) = 0, h(1,x ) = x ,
• ∀λ ∈ [0, 1],h(x , λy) ≥ λh(x ,y), and
• h is non-decreasing in both variables and continuous on the

second variable.



It is worth mentioning that the class H includes the functions

presented in Table 1 except hmin .

Let us now start by generalizing Weighted Max-based semantics

Mbs for dealing with weighted graphs. Recall that this semantics

is based on the evaluation method MM = ⟨ff rac ,дmax ,hprod ⟩,
where the choice of hprod was arbitrary as the semantics does

not consider weights of attacks. The idea of generalizing Mbs is to
allow in its evaluation method MM any h ∈ H. We show that each

Mh
M = ⟨ff rac ,дmax ,h⟩ is an element of M∗, hence it characterizes

a semantics of the set S∗. We provide thus as many semantics that

extend Mbs as elements in the H.

Theorem 5.8. For any h ∈ H, the following hold:
• Mh

M = ⟨ff rac ,дmax ,h⟩ ∈ M∗.
• S(Mh

M ) ∈ S∗.
• For any G = ⟨A,σ ,R,π ⟩ ∈ AG such that π ≡ 1,

DegMbsG ≡ Deg
S(Mh

M )

G .

From Theorem 4.2, it follows that any semantics generalizing

Mbs satisfies all the principles except Reinforcement, Counting and

Attack-Sensitivity. While the violation of Reinforcement and Count-

ing is due to the fact that these semantics use only one attacker,

Attack-Sensitivity can be ensured if the functionh of the underlying

evaluation method is strictly monotonic.

Theorem 5.9. For any h ∈ H such that

h(x1,y) > h(x2,y) whenever x1 > x2,y , 0

it holds that S(Mh
M ) satisfies Attack-Sensitivity.

Let us illustrate the family of extended Mbs semantics. For that

purpose, we consider h = hprod . Hence, the evaluation method

of the extended semantics is MM = ⟨ff rac ,дmax ,hprod ⟩ and the

corresponding semantics will be denoted by Mbsprod (Mbsprod is

S(M
hprod
M )). For any G = ⟨A,σ ,R,π ⟩ ∈ AG, for any a ∈ A,

Deg
Mbsprod
G (a) =

σ (a)

1 +max

bRa
(π ((b,a))Deg

Mbsprod
G (b))

. (6)

Example 5.10. Consider the weighted graph depicted below.

a

0.5

b

0.8

c

0.5

d

0.3

e

0.2
0.1 0.5 1.00.2

It is easy to check that Deg
Mbsprod
G (b) = σ (b) = 0.8 and Deg

Mbsprod
G (e ) =

σ (e ) = 0.2 sinceb and e are not attacked. Furthermore, Deg
Mbsprod
G (a) =

25

58
≈ 0.431, Deg

Mbsprod
G (c ) = 25

54
≈ 0.463, and Deg

Mbsprod
G (d ) = 0.24.

Let us now generalize h-Categorizer, Weighted h-Categorizer,
and compensation-based semantics for dealing with weighted at-

tacks. For that purpose, we will use the same broad set of functions

h, namely H. As for Mbs, each of the three semantics will be gener-

alized by several semantics.

Theorem 5.11. For any h ∈ H, ∀α ∈ (0,+∞), the following hold:
• Mh

α = ⟨ff rac ,дsum,α ,h⟩ ∈ M∗e .
• S(Mh

α ) ∈ S∗e .
• For any G = ⟨A,σ ,R,π ⟩ ∈ AG,

– If σ ≡ 1 and π ≡ 1, then sα−BBSG ≡ 1

Deg
S(Mhα )

G

.

– If π ≡ 1 and α = 1, then DegHbsG ≡ Deg
S(Mh

α )
G .

– If σ ≡ 1, π ≡ 1 and α = 1, then DeghG ≡ Deg
S(Mh

α )
G .

Let us illustrate the family of extended Weighted h−Categorizer

semantics. We consider the S(M
hprod
1

), denoted by Hbsprod in what

follows. For any G = ⟨A,σ ,R,π ⟩ ∈ AG, for any a ∈ A,

Deg
Hbsprod
G (a) =

σ (a)

1 +
∑
bRa

π ((b,a))Deg
Hbsprod
G (b)

. (7)

Example 5.10 (Cont) Deg
Hbsprod
G (a) ≈ 0.431, Deg

Hbsprod
G (b) = 0.8,

Deg
Hbsprod
G (c ) ≈ 0.463, Deg

Hbsprod
G (d ) ≈ 0.207 and Deg

Hbsprod
G (e ) =

0.2. Note that the degrees of the arguments a and c are the same

for both semantics, since they have only one attacker. On the other

hand, Deg
Hbsprod
G (d ) < Deg

Mbsprod
G (d ), since дc , unlike дm , also

takes into account the weaker attacker e of d .

We next extend Card-based semantics for considering weighted

attacks. As for the previous semantics, we consider any function

h ∈ H.

Theorem 5.12. For any h ∈ H, the following hold:
• Mh

C = ⟨ff rac2,дcard ,h⟩ ∈ M
∗
e .

• S(Mh
C ) ∈ S

∗
e .

• ∀G = ⟨A,σ ,R,π ⟩ ∈ AG s.t. π ≡ 1, DegCbsG ≡ Deg
S(Mh

c )
G .

5.3 Euler-Max-based semantics
We have seen in the previous section that all the semantics recalled

in Table 2 use a function of the form
x1

a+x2 for f . Interestingly

enough, our Theorem 3.2 offers more alternatives for f . As an
illustration, we use the function fexp (x1,x2) = x1e

−x2
.

Definition 5.13 (Euler-Max-based EM). The Euler-Max-based eval-

uation method is the tupleMe = ⟨fexp ,дmax ,hprod ⟩.

We show thatMe is determinative.

Theorem 5.14. Me ∈ M∗. Consequently, S(Me ) ∈ S∗.

Let us denote S(Me ) by EMbs (for Euler-Max-based semantics).

Definition 5.15 (Euler-Max-based Semantics). LetG = ⟨A,σ ,R,π ⟩
∈ AG. For any a ∈ A,

DegEMbsG (a) = σ (a) · e
−max

bRa
π ((b,a))DegEMbsG (b )

Example 5.10 (Cont) In graph G of the running example, we

obtain DegEMbsG (a) ≈ 0.426, DegEMbsG (b) = 0.8, DegEMbsG (c ) ≈ 0.462,

DegEMbsG (d ) ≈ 0.234 and DegEMbsG (e )) = 0.2.

EMbs is correctly defined (from Theorem 3.2) and satisfies all the

principles except Reinforcement and Counting.

Theorem 5.16. EMbs satisfies all the principles except Reinforce-
ment and Counting.

Note that, like Weighted Max-based semantics (Mbs) and its ex-

tended version Mbsprod , EMbs considers only the strongest attacker.
Indeed, it uses the function дmax as those semantics. We show that



for each attacked argument, the value given by EMbs is weaker than
the one assigned by Mbsprod to the same argument. Indeed, the

strongest attacker is more harmful with EMbs than with Mbsprod .

Theorem 5.17. For any G = ⟨A,σ ,R,π ⟩ ∈ AG, for any a ∈ A s.t.

there exists b ∈ Att(a) with σ (b) > 0, DegEMbsG (a) < Deg
Mbsprod
G (a).

EMbs compensates the small number of attackers that is consid-

ered for the evaluation of the strength of an argument. Indeed, since

it considers only one attacker (among maybe several ones), it gives

a lot of power to that chosen attacker. Mbs is less requiring.

6 RELATEDWORK
There are several semantics in the literature that deal with weighted

attacks, and all of them are extension-based [16, 23, 24, 28, 29]. They

extend Dung’s ([22]) semantics for accounting for varied-strengths

of attacks. When all attacks have the same weight, they coincide

with Dung’s ones in the corresponding flat graph. It was shown in

[4] that Dung’s semantics do not satisfy all the properties discussed

in this paper. Any property that is violated in case of flat/semi-

weighted graphs, it is also violated in case of weighted ones. Thus,

the existing semantics that deal with weighted graphs are different

from those of the family we proposed. This shows also that those

semantics are not instances of S∗. In what follows, we go further by

showing that extension semantics cannot be based on evaluation

methods. For that purpose, we consider complete, grounded, pre-

ferred, and stable semantics as proposed in [22]. Those semantics

were defined for flat graphs (i.e., G = ⟨A,σ ≡ 1,R,π ≡ 1⟩). They

start first by identifying subsets of arguments that are collectively

acceptable, called extensions. Let G ∈ AG be an arbitrary but fixed

flat graph, and let Extx (G) denote the set of all extensions of G
under semantics x ∈ {c,p, s,д}, where c , p, s , д stand respectively

for complete, preferred, stable, and grounded semantics.

Once extensions are computed, the second step consists of as-

signing a single overall strength to each argument by checking its

membership in extensions. In the argumentation literature (e.g.,

[8, 18, 27, 35]), three qualitative values are used: skeptically accepted
(the argument belongs to all extensions), credulously accepted (the

argument is in some but not all extensions), and rejected otherwise.

In what follows, we refine this definition by considering more val-

ues and numerical ones from the interval [0, 1]. Indeed, the overall

strength of an argument is the proportion of extensions contain-

ing it. In case there is no extension, the value of each argument is

0. Obviously, an skeptically accepted argument gets the maximal

value 1 and a rejected argument gets 0.

Definition 6.1 (Extension Semantics). Let x ∈ {c,p, s,д}, G =
⟨A,σ ,R,π ⟩ ∈ AG, and a ∈ A.

DegxG (a) =



0 if Extx (G) = ∅
|E∈Extx (G) | a∈E |

|Extx (G) | otherwise

Example 2.5 (Cont) The graph G has two stable/preferred exten-

sions (E1 = {a} and E2 = {b}) and three complete ones (E1, E2,

and E3 = ∅). Thus, Deg
x
G (a) = DegxG (b) =

1

2
, for x ∈ {p, s} and

DegcG (a) = DegcG (b) =
1

3
. Finally, Deg

д
G (a) = Deg

д
G (b) = 0.

The following result shows that there is no evaluation method

that can return the evaluations of (stable, complete, preferred,

grounded) semantics. This means that these semantics cannot be
expressed in the general setting of [18].

Theorem 6.2. Let S ∈ {s, p, c, g}. There is no evaluation method
M such that S is based on M.

Gabbay and Rodrigues ([26]) developed a method, called Iterative

Schema (IS), for evaluating arguments in semi-weighted graphs.

Like Trust-based, IS cannot be based on a well-behaved evaluation

method. Furthermore, it does not satisfy some properties including

Maximality. It is thus different from semantics of S∗.
The two gradual semantics (QuAD, DF-QuAD) were proposed

respectively in [10, 37] for dealing with acyclic bipolar graphs,

i.e., graphs where arguments may have basic weights and may be

attacked and supported. Both QuAD and DF-QuAD use evaluation

methods. However, those methods are not determinative (thus are

not in the class M∗) for the class of all possible graphs.
In [38], another gradual semantics was defined for bipolar graphs.

It uses an evaluation method, however the authors did not investi-

gate its properties, and more precisely whether it is determinative.

In [1], the family of ranking semantics was introduced. Unlike

gradual semantics, ranking semantics do not necessarily assign a

single value to each argument. They rather focus on defining a

total ordering on arguments. Examples of such semantics are those

defined in [1, 13–15, 21, 27].

In [33], evaluation of arguments in graphs whose topology is

uncertain (probabilities are assigned to arguments and attacks) is

studied. In our case, graphs are fixed. In [34] probabilities are as-

signed to attacks and express belief in attacks. Both approaches are

different from ours since they derive a probability of each argument

from probability distributions over sets of arguments.

7 CONCLUSION
The paper investigates semantics for argumentation graphs where

both arguments and attacks may have varied strengths. It proposes

a fine grained definition of gradual semantics using the evaluation

method approach. It defines the first family of gradual semantics in

the literature that deal with weighted attacks. The proposed family

is broad enough to encompass five semantics that were proposed in

the literature for dealing with flat or semi-weighted graphs. It also

generalizes in several ways each of those semantics for accounting

for weights of attacks, and covers a large class of other semantics

including Euler-Max-based. The new semantics are theoretically

analyzed against the set of principles that were proposed in [4].

For that purpose, those principles were first extended for weighted

graphs and a novel principle was proposed.

This work can be extended in several ways. First, we plan to char-

acterize the whole family of gradual semantics that satisfy (the first

nine, all the twelve) properties discussed in Section 4. Such results

would give a complete view on all the possible gradual semantics

that can be defined and that have the same behavior as those we

proposed. As existing gradual and ranking semantics share similar

properties, another line of research would consist of reformulating

ranking semantics in terms of determinative evaluation methods,

unifying thus their definitions with those of gradual semantics.
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