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During a dialog, agents exchange information with each other and need thus to deal with
incoming information. For that purpose, they should be able to reason effectively about trust-
worthiness of information sources. This paper proposes an argument-based system that al-
lows an agent to reason about its own beliefs and information received from other sources.
An agent’s beliefs are of two kinds: beliefs about the environment (like the window is closed)
and beliefs about trusting sources (like agent i trusts agent j). Six basic forms of trust are
discussed in the paper including the most common one on sincerity. Starting with a base
which contains such information, the system builds two types of arguments: arguments in
favor of trusting a given source of information and arguments in favor of believing statements
which may be received from other agents. We discuss how the different arguments interact
and how an agent may decide to trust another source and thus to accept information coming
from that source. The system is then extended in order to deal with graded trust (like agent
i trusts to some extent agent j).

Keywords: Trust, Argumentation, Modal Logic.

1. Introduction

An increasing number of software applications are being conceived, designed, and
implemented using the notion of autonomous agents. These applications vary from
email filtering Maes (1996), through electronic commerce Rodriguez et al. (1997),
Wellman (1993), to large industrial applications Jennings et al. (1996). In all of
these disparate cases, the agents are autonomous in the sense that they have the
ability to decide for themselves which goals they should adopt and how these goals
should be achieved Wooldridge and Jennings (1995). In most such applications, the
autonomous components need to interact with one another because of the inherent
interdependencies which exist between them. They need to communicate in order
to resolve differences of opinion and conflicts of interest that result from differences
in preferences, work together to find solutions to dilemmas and to construct proofs
that they cannot manage alone, or simply to inform each other of pertinent facts.
In other words they need the ability to engage in dialogs. Consequently, agents
should be able to manage and deal with trust in information sources. In negotiation
dialogs, for instance, one makes contracts with trustworthy agents. More generally,
agents consider information coming from other sources only if these latter are
trustworthy. As a result of this requirement on providing agents with the ability to
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deal with trust, an important amount of work has been done. Two main categories
of works can be distinguished:

• Works on understanding and formalizing the notion of trust in information
sources. Such works try to answer the question: what does the sentence “agent
x trusts agent y” mean? Examples of answers can be found in Castelfranchi
(2011), Castelfranchi and Falcone (2000), Falcone et al. (2013), Marsh (1994).
In Demolombe (1998, 1999), it is argued that trust is generally not absolute
but rather concerns some properties of an agent like his competence, sincerity,
cooperativity, . . ..

• Works on reasoning about trust. The idea is to decide whether to trust or not a
given source of information. Two categories of models are particularly proposed:
i) statistics-based models (e.g., Matt et al. (2010), Shi et al. (2005)) which rely
on past behavior of a source in order to predict its future behavior. ii) logical
models (e.g., Demolombe (2004), Demolombe and Lorini (2008)) which infer
trust in some properties from trust in other properties.

Besides, since the seminal book by Walton and Krabbe (1995) in which they
distinguished between six types of dialogs, there has been much work on providing
agents with the ability to engage in such dialogs. Typically, these focus on
one type of dialog like persuasion (e.g. Amgoud et al. (2000)), inquiry (e.g.
Black and Hunter (2009)), negotiation (e.g. Sycara (1990)) and deliberation
(e.g. McBurney et al. (2007)). Furthermore, Walton and Krabbe emphasized the
need to argue in dialogs in order to convince other parties to accept opinions
or offers. Consequently, in most works on modeling dialogs, agents are equipped
with argumentation systems for reasoning about their own beliefs, building
arguments and evaluating arguments received from other sources. While this
use of argumentation is a common theme in all work mentioned above, none
of those proposals consider trust in information sources when dealing with
incoming information or when making deals with other agents. They rather
assume that agents are trustworthy and accept any information (respectively
offer) sent by any agent as soon as it does not contradict their own beliefs
(respectively, it satisfies their goals). However, agents are not necessarily neither
sincere nor reliable as argued in the huge literature about trust in information
sources. This would mean that in existing works, agents may accept claims even if
their sources are not trustworthy. They may also make deals with unreliable agents.

This paper fills the gap by proposing an argumentation system that agents may
use in dialogs for reasoning about different kinds of beliefs including beliefs about
trust in information sources. The system fulfills thus three tasks. It states whether:

• to believe in a given statement,

• to trust or not a given source,

• to accept or not an information/offer received from a source.

We consider a fine-grained notion of trust as opposed to absolute trust. Indeed,
an agent trusts (or distrusts) another agent in a given property and not in
absolute way. For instance, one may trust someone is his sincerity but not in his
competence. In this paper, we focus on the six properties identified by Demolombe
(1998, 2004), namely validity, completeness, sincerity, cooperativity, competence

and vigilance. In the first part of the paper, trust is considered as a binary notion,
i.e., an agent either trusts in a given property of an entity or not. The system



starts with a belief base which is encoded in modal logic and which contains
formulas expressing information about the environment (e.g., my car is red) and
information about trust (e.g., agent i trusts in the sincerity of agent j). It builds
arguments in favor of statements and establishes the attacks between them. The
arguments are evaluated using Dung’s semantics (Dung (1995)), and finally the
inferences to be drawn from the base are identified. We show that the system
satisfies nice properties, namely the rationality postulates defined in Amgoud
(2013) about consistency and closure under consequence operator. In the second
part of the paper, the system is extended in order to deal with graded trust
as developed in Demolombe (2009) and in Demolombe and Liau (2001). The
logical language that is used for representing beliefs is extended in such a way to
encode certainty degrees of beliefs (like, agent i has some doubts about climate
change) and regularities degrees of relationships between facts (like, if we are
in London, it is raining almost every day). From these two kinds of degrees,
each argument is assigned an importance level which may not be the same for
all arguments. Finally, arguments are evaluated using not only the attack re-
lation but also a preference relation issued from the importance levels of arguments.

The paper is structured as follows: Section 2 introduces the logical formalism
that will be used for representing and reasoning about agent’s beliefs. Section 3
defines the six forms of trust that were initially introduced in Demolombe (2004),
Lorini and Demolombe (2008) in case of binary trust. Section 4 presents the ar-
gumentation system as well as it properties. Section 5 presents the graded version
of trust as proposed in Demolombe (2009), Demolombe and Liau (2001), and an
argumentation system that can take into account varying degrees of trust and be-
liefs. Section 6 compares our model with existing works on argumentation-based
trust. The last section concludes.

2. Logical formalism

This section introduces the logical framework (i.e., the logical language L and its
axiomatics) that will be used for representing and reasoning about beliefs and trust
in information sources. The syntactic primitives of L are the following:

• ATOM: set of atomic propositions denoted by p, q, r, . . .

• AGENT: a non-empty set of agents denoted by i, j, k, . . .

The language L is the set of formulas defined by the following BNF:

φ ::= p | ¬φ | φ ∨ φ | Beliφ | Infj,iφ

where p ranges over ATOM and i and j range over AGENT. The other logical
connectives are defined as usual. The intuitive meaning of the modal operators is:

• Beliφ
1: agent i believes that φ holds

• Infj,iφ: agent j has informed agent i that φ holds

1Sometimes we abuse notation and write Beli(φ) instead of Beliφ.



The axiomatics of the logic is the axiomatics of a Propositional multi Modal Logic
(Chellas (1980)). Indeed, in addition to the axiomatics of Classical Propositional
Calculus we have the following axiom schemas and inference rules.

(K) Beli(φ→ ψ) → (Beliφ→ Beliψ)
(D) ¬(Beliφ ∧ Beli¬φ)
(Nec) If ` φ, then ` Beliφ

Roughly speaking the intuitive meaning of (K) is that agent i can apply the
modus ponens rule to derive consequences, (D) means that i’s beliefs are not in-
consistent and (Nec) means that i is not ignorant of the logical truths.

The modal operator Infj,i obeys the following axiom schemas:

(EQV) If ` φ↔ ψ, then ` Infj,iφ↔ Infj,iψ
(CONJ) Infj,iφ ∧ Infj,iψ → Infj,i(φ ∧ ψ)
(OBS) Infj,iφ→ BeliInfj,iφ
(OBS’) ¬Infj,iφ→ Beli¬Infj,iφ

The intuitive meaning of (EQV) is that informing actions about two logically
equivalent formulas have the same effects. For instance, to inform about the fact
John is at home and John is working has the same effects as to inform about the
fact that John is working and John is at home. The meaning of (CONJ) is that
to inform about the fact John is at home and to inform about the fact John is
working has the same effects as to inform about the fact John is working at home.
The justification of this axiom schema is that informing actions are considered
at an abstract level and two distinct concrete actions may be considered as the
”same” action if they produce the same effect on the receiver’s beliefs. The axiom
schemas (OBS) and (OBS’) assume that if an agent j informs (respectively does
not inform) an agent i about φ, then i is aware of this fact. This would mean that
the communication channels are assumed to be perfect.

According to Chellas’s terminology, modalities such as Beli obey a normal system
KD and modalities of the kind Infj,i obey a particular kind of classical system.
Axiom schemas (OBS) and (OBS’) show how these two kinds of modalities interact.

In the sequel, the symbol ` refers to the consequence operator that is based on
the previous axiom schemas. Besides, a belief base is a subset of L which contains
the beliefs of a given agent i ∈ AGENT.

3. Binary trust in information sources

Throughout this section, we consider two interacting agents i and j and assume
that i receives a piece of information φ ∈ L from agent j. An important question is
then what is the effect of this action on what the receiver believes? In Demolombe
(1998, 2004), it was argued that this depends on the sender’s properties the
receiver trusts in. Six properties were particularly distinguished and investigated:

Trust in sincerity : sincerity is the relationship between what the trustee says
and what he believes. For instance, the fact that Juliet trusts Romeo in his sincerity
about the fact Juliet is beautiful means that Juliet believes that if Romeo says to
Juliet that she is beautiful, then Romeo believes that she is beautiful. The general



definition is: the truster believes that if he is informed by the trustee about some
proposition, then the trustee believes that this proposition is true. Formally:

TrustSinc(i, j, φ)
def
= Beli(Infj,iφ→ Beljφ)

It is worth mentioning that the fact that an agent i believes in the sincerity
of another agent j regarding proposition φ does not mean that i believes φ. The
claim may be false and j is not aware about that. A strong version of sincerity is
the property of validity.

Trust in validity : validity is the relationship between what the trustee says and
what is true. For instance, the fact that Romeo trusts Juliet in her validity about
the fact that Juliet loves Romeo means that Romeo believes that if Juliet says to
Romeo that she loves him, then it is true that she loves him. The general definition
is: the truster (i) believes that if he is informed by the trustee (j) about some
proposition, then this proposition is true.

TrustVal(i, j, φ)
def
= Beli(Infj,iφ→ φ)

Trust in completeness: completeness is the relationship between what is true
and what the trustee says; it is the dual of validity. For instance the fact that
Romeo trusts Juliet in her completeness about the fact that Juliet loves Romeo
means that Romeo believes that if it is true that Juliet loves him, then Juliet will
tell Romeo that she loves him. The general definition is: the truster believes that if
some proposition is true, then he is informed by the trustee about this proposition.

TrustCmp(i, j, φ)
def
= Beli(φ→ Infj,iφ)

Trust in cooperativity : cooperativity is the relationship between what the trustee
believes and what he says; it is the dual of sincerity. For instance, the fact that
Juliet trusts Romeo in his cooperativity about the fact Juliet is beautiful means
that Juliet believes that if Romeo believes that she is beautiful, then Romeo says
to her that she is beautiful. The general definition is: the truster believes that if the
trustee believes that some proposition is true, then he is informed by the trustee
about this proposition.

TrustCoop(i, j, φ)
def
= Beli(Beljφ→ Infj,iφ)

Trust in competence: competence is the relationship between what the trustee
believes and what is true. For instance, the fact that Juliet trusts Romeo in his
competence about the fact that the door of her house is closed means that Juliet
believes that if Romeo believes that the door of her house is closed, then it is true
that the door is closed. The general definition is: the truster believes that if the
trustee believes that some proposition is true, then this proposition is true.

TrustComp(i, j, φ)
def
= Beli(Beljφ→ φ)

Trust in vigilance: vigilance is the relationship between what is true and what
the trustee believes; it is the dual of competence. For instance, the fact that Juliet
trusts Romeo in his vigilance about the fact that the door of her house is closed



means that Juliet believes that if it is true that the door of her house is closed,
then Romeo believes that the door of her house is closed. The general definition is:
the truster believes that if some proposition is true, then the trustee believes that
this proposition is true.

TrustVigi(i, j, φ)
def
= Beli(φ→ Beljφ)

VIGILANCE

j Informs i about p

j Believes pp is true

VALIDITY COMPLETENESS

SINCERITYCOOPERATIVITY

COMPETENCE

Figure 1. Relationships between believing, informing and truth.

In Parsons et al. (2012) other properties, called argument schemes, are discussed
like trust in agent’s reputation or trust in agent’s character. For the purpose of the
paper, we only focus on the six above properties and propose a formal framework
for reasoning with and about them.

Remarks: It is worth mentioning that the presented definitions of trust are
specific to particular propositions. For instance, a patient (p) may trust in the
competence of his doctor (d) regarding diagnosis g1. This is represented by
the formula Belp(Beldg1 → g1). This does not mean that the patient trusts also
his doctor on another diagnosis g2. Note also that the six formulas are elements of L.

As said before, completeness is the dual of validity, cooperativity is the dual
of sincerity and vigilance is the dual of competence (see Figure 1). The dual
properties play a significant role. Let us consider the case where the trustee is
a guard in charge of informing people living in a building if the elevator fails. If
these people trust the guard in his completeness, they infer that the elevator is
working from the fact they have not received a warning from the guard.

It is also easy to show that the six properties are not independent. Indeed, trust
in validity follows from trust in sincerity and trust in competence. Similarly, trust
in completeness follows from trust in vigilance and trust in cooperativity. In formal
terms we have:

(V) ` TrustSinc(i, j, φ) ∧ TrustComp(i, j, φ) → TrustVal(i, j, φ)
(C) ` TrustVigi(i, j, φ) ∧ TrustCoop(i, j, φ) → TrustCmp(i, j, φ)

The effects of informing actions depending on the different kinds of trust are
summarized below:

(E1) ` TrustSinc(i, j, φ) → (Infj,iφ→ BeliBeljφ)
(E2) ` TrustVal(i, j, φ) → (Infj,iφ→ Beliφ)



(E3) ` TrustCoop(i, j, φ) → (¬Infj,iφ→ Beli¬Beljφ)
(E4) ` TrustCmp(i, j, φ) → (¬Infj,iφ→ Beli¬φ)

Property (E2) (resp. (E4)) shows sufficient conditions about trust that guarantee
that performing (resp. not performing) the action Infj,iφ has the effect that i be-
lieves that φ is true (resp. false). Notice that from i’s trust in j competence (resp.
trust vigilance) performing (resp. not performing) the action Infj,iφ does not allow
i to infer that φ is true (resp. false). For instance, even if i trusts the doctor j about
his competence about cancer diagnosis, i may not trust him about his sincerity,
and if the doctor tells him that he has no cancer, i will not believe that he has not
a cancer. The reason why i does not trust the doctor about his sincerity may be
that i believes that the doctor wants to protect i from bad news.

The effects of informing actions can be derived from the different kinds of assump-
tions about the trust relationships between agents. For instance, if the truster i
trusts j in his sincerity about the proposition φ and j informs i about φ, the truster
can infer that the trustee believes what he has transmitted to him (i). If, in addi-
tion, the truster trusts j in his competence (i.e., the formula Beli(Beljφ→ φ) is in
the beliefs base of agent i), then the truster can infer that φ is true. Notice that
this consequence is in the scope of what the truster believes (i.e., what is inferred is
Beliφ and not φ). Let us assume, for instance, that the truster i has some disease,
j is a doctor and j tells to i that i has a flu. If i trusts his doctor in his sincerity
about this diagnosis, i can infer that the doctor does believe that i has a flu. If i
also trusts his doctor about his competence, i can infer that he has a flu. Then, the
final effects of what the doctor said is that i believes that the doctor believes that i
has a flu and also that i believes that he has a flu. Notice that, if i trusts the doctor
only in his validity, the effect of what the doctor said is that i believes that he has
a flu but it is not necessarily the case that i believes that the doctor believes that i
has a flu (seeDemolombe (2011)). Indeed, it could be the case that i believes that
the doctor just transmits a diagnosis that has been made by an assistant who is
trusted to be sincere and competent, while the doctor is not. From a formal point
of view, it is not necessarily the case that contraposition of property (V) holds.

4. Argumentation-based reasoning system

Argumentation is seen as a reasoning process in which arguments are built and
evaluated in order to increase or decrease the acceptability of a given standpoint.
The latter may be a belief, an action, a goal, etc. Argumentation has become an Ar-
tificial Intelligence keyword for the last twenty years. In its essence, argumentation
can be seen as a particularly useful and intuitive paradigm for doing nonmono-
tonic reasoning. The advantage of argumentation is that the reasoning process is
composed of modular and quite intuitive steps, and thus avoids the monolithic
approach of many traditional logics for defeasible reasoning. An argumentation
process starts with the construction of a set of arguments from a given knowledge
base. As some of these arguments may attack each other, one needs to apply a
criterion for determining the sets of arguments that can be regarded as acceptable:
the so-called extensions.

In what follows, we propose an argumentation system for reasoning about the
different kinds of beliefs an agent i may have, in particular beliefs about trust in in-
formation sources. The system instantiates the abstract framework of Dung (1995)
and uses one of its semantics in order to evaluate arguments. Before presenting



the system, we start by recalling briefly Dung’s framework and then show how
arguments in favor of beliefs can be built and how these arguments may interact
with each other.

4.1. Dung’s abstract argumentation framework

The most abstract argumentation framework in the literature was proposed by
Dung (1995). It consists of a set of arguments and a binary relation expressing
attacks between the arguments. Both notions (i.e., arguments and attacks) are
abstract entities and thus, their origin and structure are left unspecified.

Definition 4.1 An argumentation framework is a pair (A,R) where A is a set of
arguments and R ⊆ A×A is an attack relation.

A pair (a, b) ∈ R means that a attacks b. A set E ⊆ A attacks an argument b iff
∃a ∈ E such that (a, b) ∈ R. We sometimes use the infix notation aRb to denote
(a, b) ∈ R.

An argumentation framework (A,R) is seen as a graph whose nodes are the
arguments of A and its edges are the attacks in R. The arguments are evaluated
using a semantics. In Dung (1995), different semantics were proposed, and some
of them were refined, for instance in Baroni et al. (2005), Dung et al. (2007). For
the purpose of the paper, we only recall stable semantics since our aim is not to
discuss the outcomes of our system under all semantics, but rather to show how
to build arguments in favor of trust in information sources and how to decide to
accept information coming from sources. Thus, we only need one semantics for
illustration purposes.

Definition 4.2 Let T = (A,R) be an argumentation framework and E ⊆ A. E is a
stable extension iff:

• @a, b ∈ E such that (a, b) ∈ R
• E attacks any argument in A \ E

Ext(T ) denotes the set of all stable extensions of T .

It is worth recalling that stable extensions are maximal (for set inclusion) non-
conflicting sets of arguments.

Example 4.3 Let us consider the argumentation framework T = (A,R) such that:

• A = {a, b, c, d, e, f, g}
• R = {(c, b), (b, e), (e, c), (d, c), (a, d), (d, a), (a, f), (f, g)}

This framework has five maximal (for set inclusion) non-conflicting sets of argu-
ments:

• E1 = {a, c, g},
• E2 = {d, e, f},
• E3 = {b, d, f},
• E4 = {a, e, g}, and
• E5 = {a, b, g}.



It has one stable extension E3, i.e., Ext(T ) = {E3}.

An argumentation framework may be infinite, i.e., its set of arguments may be
infinite. Consequently, it may have an infinite number of extensions (under a given
semantics).

4.2. Binary trust supported by arguments

This section introduces an argumentation system for reasoning about the different
kinds of beliefs an agent i may have. As already said, argumentation is an alter-
native approach for reasoning with inconsistent information. It follows three main
steps: i) constructing arguments and counterarguments from a logical belief base,
ii) defining the status of each argument, and iii) specifying the conclusions to be
drawn from the base. In what follows, we focus on a given agent i and propose a
model for reasoning about his beliefs. The model instantiates Dung’s framework
by defining all the above items.

Starting from the logic (L,`) described in Section 2 and a possibly inconsistent
beliefs base Ki ⊆ L, the system computes a consistent set of beliefs the agent should
rely on. The base Ki can be seen as the i’s ”candidate” beliefs. It may contain trust
information as defined in the previous section (e.g., Beli(φ→ Beljφ)), beliefs about
the environment (e.g., Beliφ where φ stands for ‘the window is closed’) and beliefs
about informing actions received from other agents (e.g., BeliInfj,iφ). Note that
the base Ki = {BeliInfj,iφ,BeliInfj,i¬φ} is not inconsistent. Here agent i believes
that he was informed by j that both formulas φ and ¬φ hold. However, the base
Ki = {Beliφ,Beli¬φ} is inconsistent.

The system is a logical instantiation of the abstract framework proposed by Dung
in his seminal paper Dung (1995). It consists thus of a set of arguments, an attack
relation between the arguments and a semantics for evaluating the arguments. The
arguments are built from the base Ki. They are logical proofs for formulas in L
that satisfy two requirements: consistency and minimality.

Definition 4.4 An argument built from a belief base Ki is a pair (H,h) where:

• H ⊆ Ki and h ∈ L
• H is consistent

• H ` h
• @H ′ ⊂ H such that H ′ ` h

H is called the support of the argument and h its conclusion. Arg(Ki) is the set of
all arguments that can be built from Ki.

Let us illustrate this notion of argument with an example.

Example 4.5 Assume the following belief base of agent i:

Ki =























Beli(δ)
Beli(Infj,iφ)
Beli(¬Infk,iϕ)
Beli(Infj,iφ→ Beljφ)
Beli(ϕ→ Infk,iϕ)

From Ki, an infinite number of arguments are built including the following ones:



(1) ({Beli(δ)},Beli(δ))
(2) ({Beli(Infj,iφ)},Beli(Infj,iφ))
(3) ({Beli(¬Infk,iϕ)},Beli(¬Infk,iϕ))
(4) ({Beli(Infj,iφ→ Beljφ),Beli(Infj,iφ)},Beli(Beljφ))
(5) ({Beli(ϕ→ Infk,iϕ),Beli(¬Infk,iϕ)},Beli¬ϕ)

The previous arguments support various beliefs of agent i. Some of them, like (4)
and (5), make use of beliefs on trust in information sources. To put it differently,
they rely on agent’s trust in order to make inferences. Such arguments are very
useful in dialog systems where agents may receive new information from other
entities and should thus decide whether to accept it or not.

Arguments may also support the six forms of trust we discussed in Section 3.
They show whether agent i should or not trust another agent in one of the proper-
ties (sincerity, validity, cooperativity, completeness and competence). Let us con-
sider the following example.

Example 4.6 Assume the following base:

Ki =







Beli(ϕ) → TrustSinc(i, j, φ)
TrustVal(i, k, ϕ)
Beli(Infk,iϕ)

where i is the program chair of a conference, k is an area chair member of the
program committee and j is a reviewer. Assume that ϕ stands for ”j makes fair
reviews” and φ for ”j makes a fair review for paper ID x”. Examples of arguments
that are built from this base are the following ones:

(1) ({Beli(Infk,iϕ)},Beli(Infk,iϕ))
(2) ({Beli(Infk,iϕ),TrustVal(i, k, ϕ)},Beliϕ)
(3) ({Beli(Infk,iϕ), TrustVal(i, k, ϕ),

Beliϕ→ TrustSinc(i, j, φ)}, TrustSinc(i, j, φ))

Note that the argument (3) is in favor of trusting in the sincerity of agent j re-
garding proposition φ.

The second component of an argumentation framework is its attack relation
which expresses conflicts that may raise between arguments. In argumentation
literature, several relations were proposed (see Gorogiannis and Hunter (2011) for
a summary of relations proposed for propositional frameworks). Some of them,
like the well-known rebutting, are symmetric. However, it was shown in Amgoud
and Besnard (2009) that any argumentation framework which is grounded on a
Tarskian logic (Tarski (1956)) and uses a symmetric attack relation may violate the
rationality postulates proposed in Caminada and Amgoud (2007), namely the one
on consistency. Indeed, such a framework may have an extension which supports
inconsistent conclusions. Since modal logic is a particular case of Tarski’s logics,
then the argumentation system we propose here will suffer from the same problem
as shown in the following example.

Example 4.7 Let us consider the following belief base:

Ki =







Beli(φ)
Beli(¬ϕ)
Beli(φ→ ϕ)



Let us consider the following arguments:

• a1 = ({Beli(φ)},Beli(φ))
• a2 = ({Beli(¬ϕ)},Beli(¬ϕ))
• a3 = ({Beli(φ→ ϕ)},Beli(φ→ ϕ))

• a4 = ({Beli(φ),Beli(φ→ ϕ)},Beli(ϕ))
• a5 = ({Beli(¬ϕ),Beli(φ→ ϕ)},Beli(¬φ))
• a6 = ({Beli(φ),Beli(¬ϕ)},Beli(φ ∧ ¬ϕ))

a2

a4

a5 a6

a1 a3

Let R be the rebutting relation defined as follows: (H,h) rebuts (H ′, h′) iff
h = Beliφ, h

′ = Beliϕ and φ ≡ ¬ϕ. Note that this relation is symmetric. The
attacks among arguments are as depicted in figure above. The set {a1, a2, a3} is
a stable extension of (Arg(Ki),R). However, {Beli(φ),Beli(¬ϕ),Beli(φ → ϕ)} is
inconsistent. This means that the extension supports contradictory conclusions!

In what follows we avoid thus symmetric relations. We discuss next various forms
of attacks. The first one is the so-called assumption-attack proposed in Elvang-
Gøransson et al. (1993). It consists of weakening an argument by undermining one
of its premises (i.e., an element of its support).

Definition 4.8 Let (H,h), (H ′, h′) be two arguments of Arg(Ki). (H,h) assumption-

attacks (H ′, h′) iff there exists h′′ ∈ H ′ such that h = Beliφ and h′′ = Beli¬φ.

Let us illustrate this relation on the following example.

Example 4.9 Let us consider the following base:

Ki =















Beli(Infj,iφ→ Beljφ)
Beli(Infj,iφ→ φ)
Beli(Infj,iφ)
Beli(¬φ)

The argument ({Beli(Infj,iφ → φ),Beli(¬φ)},Beli(¬Infj,iφ)) assumption attacks
the argument ({Beli(Infj,iφ→ Beljφ), Beli(Infj,iφ)}, Beli(Beljφ)).

It is worth mentioning that this attack relation concerns all types of arguments
that may be built from a beliefs base (i.e., arguments supporting ordinary beliefs
and those supporting trust in information sources). The following definition intro-
duces another way for attacking arguments in favor of trust in an agent’s sincerity.
The basic idea is to show a case where the trusted agent sent an information that
he does not believe. To put it differently, the attack consists of proving that the
trustee may lie.

Definition 4.10 Let (H,h), (H ′, h′) be two arguments of Arg(Ki). (H,h) sinc-

attacks (H ′, h′) iff h = Beli(Infj,iϕ ∧ ¬Beljϕ) and TrustSinc(i, j, φ) ∈ H ′.

An argument in favor of trust in validity may also be undermined by an argument
whose conclusion is a formula which is sent by the trusted agent and which is invalid
(i.e., it does not hold).

Definition 4.11 Let (H,h), (H ′, h′) be two arguments of Arg(Ki). (H,h) val-attacks
(H ′, h′) iff h = Beli(Infj,iϕ ∧ ¬ϕ) and TrustVal(i, j, φ) ∈ H ′.

Similarly, an argument in favor of trust in completeness may be attacked. Recall
that such an argument provides a reason for believing that if a given formula



holds, then the truster agent will be informed about it by the trustee. An attacker
highlights a formula which holds and for which the trustee does not send any
message.

Definition 4.12 Let (H,h), (H ′, h′) be two arguments of Arg(Ki). (H,h) com-

attacks (H ′, h′) iff h = Beli(ϕ ∧ ¬Infj,iϕ) and TrustCmp(i, j, φ) ∈ H ′.

Recall that trust in the cooperativity of an agent means that if he believes a
statement, then he will inform the truster about it. An attack against an argument
supporting such information consists of presenting a case where the trustee was
not cooperative.

Definition 4.13 Let (H,h), (H ′, h′) be two arguments of Arg(Ki). (H,h) coop-

attacks (H ′, h′) iff h = Beli(Beljϕ ∧ ¬Infj,iϕ) and TrustCoop(i, j, φ) ∈ H ′.

An argument in favor of trust in the competence of an agent may be attacked
by an argument supporting a statement that is believed by this agent but which is
not true.

Definition 4.14 Let (H,h), (H ′, h′) be two arguments of Arg(Ki). (H,h) comp-

attacks (H ′, h′) iff h = Beli(Beljϕ ∧ ¬ϕ) and TrustComp(i, j, φ) ∈ H ′.

Trust in an agent’s vigilance may be attacked by exhibiting a claim which holds
but is ignored by the agent.

Definition 4.15 Let (H,h), (H ′, h′) be two arguments of Arg(Ki). (H,h) vigi-attacks
(H ′, h′) iff h = Beli(ϕ ∧ ¬Beljϕ) and TrustVigi(i, j, φ) ∈ H ′.

Remark: It is worth mentioning that assumption-attack relation is conflict-

dependent, i.e., if (H,h) attacks (H ′, h′) then H ∪ H ′ is necessarily inconsistent.
This is not the case for the six other relations as shown in the following example.

Example 4.16 Let us consider the following base:

Ki =







Beli(Infj,iφ→ Beljφ)
Beli(Infj,iϕ)
Beli(¬Beljϕ)

Assume that φ stands for ‘The weather is cloudy’ and ϕ stands for ‘People
pay few taxes’. Note that the base Ki is consistent. However, the argument
({Beli(Infj,iϕ),Beli(¬Beljϕ)},Beli(Infj,iϕ ∧ ¬Beljϕ)) sinc-attacks the argument
({Beli(Infj,iφ→ Beljφ)},Beli(Infj,iφ→ Beljφ)).

The seven forms of attacks are captured by a binary relation on the set of argu-
ments which is denoted by <.

Definition 4.17 Let (H,h) and (H ′, h′) be two arguments of Arg(Ki). (H,h) <
(H ′, h′) iff:

• (H,h) assumption-attacks (H ′, h′), or

• (H,h) sinc-attacks (H ′, h′), or

• (H,h) val-attacks (H ′, h′), or

• (H,h) com-attacks (H ′, h′), or

• (H,h) coop-attacks (H ′, h′), or
• (H,h) comp-attacks (H ′, h′), or



• (H,h) vigi-attacks (H ′, h′).

The following example shows that the attack relation < is not symmetric.

Example 4.16 (Cont) It is easy to check that there is only one attack between
arguments of Arg(Ki): ({Beli(Infj,iϕ), Beli(¬Beljϕ)}, Beli(Infj,iϕ ∧ ¬Beljϕ)) <
({Beli(Infj,iφ→ Beljφ)}, Beli(Infj,iφ→ Beljφ). Thus, < is not symmetric.

Next we show that the relation < may admit self-attacking arguments.

Example 4.18 Let us consider the following base:

Ki =







TrustSinc(i, j, φ)
Beli((Infj,iφ→ Beljφ) → Beli(¬Beljϕ))
Beli(Infj,iϕ)

The argument ({TrustSinc(i, j, φ), Beli(Infj,iϕ), Beli((Infj,iφ → Beljφ) →
Beli(¬Beljϕ))}, Beli(Infj,iϕ ∧ ¬Beljϕ)) sinc-attacks itself.

An argumentation system for reasoning about the beliefs of an agent is defined
as follows.

Definition 4.19 An argumentation system built over a belief base Ki is a pair
T = (Arg(Ki),<) where < ⊆ Arg(Ki)×Arg(Ki) is as given in Definition 4.17.

Since arguments may be conflicting, it is important to define the acceptable
ones. For that purpose, we use the stable semantics proposed in Dung (1995). This
semantics allows to partition the powerset of the set of arguments into two sets:
stable extensions and non-extensions. The extensions are used in order to define
the inferences to be drawn from the belief base Ki of agent i. These inferences
represent what agent i should believe according to the available information. The
idea is that a formula is inferred if it is supported by at least one argument in every
extension. Note that the argument needs not to be the same in all the extensions.

Definition 4.20 Let T = (Arg(Ki),<) be an argumentation system built over a
beliefs base Ki and Ext(T ) its set of stable extensions. A formula φ ∈ L is inferred
from Ki iff for all E ∈ Ext(T ), there exists (H,φ) ∈ E .
Output(T ) denotes the set of all beliefs inferred from Ki using system T .

Example 4.9 (Cont) Let us consider the belief base Ki of agent i. The set Arg(Ki)
of arguments is infinite. It contains among others the following arguments:

a1 : ({Beli¬φ},Beli¬φ)
a2 : ({Beli(Infj,iφ→ φ)},Beli(Infj,iφ→ φ))
a3 : ({Beli(Infj,iφ)},Beli(Infj,iφ))
a4 : ({Beli(Infj,iφ→ Beljφ)},Beli(Infj,iφ→ Beljφ))
a5 : ({Beli(Infj,iφ),Beli(Infj,iφ→ Beljφ)},Beli(Beljφ))
a6 : ({Beli(Infj,iφ),Beli(Infj,iφ→ φ)},Beliφ)
a7 : ({Beli¬φ,Beli(Infj,iφ→ φ)}, {Beli(¬Infj,iφ))
a8 : ({Beli¬φ,Beli(Infj,iφ)},Beli¬(Infj,iφ→ φ))

The following figure summarizes the attacks between the eight arguments:



a5 a6 a1 a4

a3 a7 a8 a2

It can be checked that the argumentation system T = (Arg(Ki),<) has three
stable extensions. Note that we do not provide the complete result since Arg(Ki) is
infinite, but give some insights on the arguments that are included in the extensions.
Below, if an argument ai (i = 1 . . . 8) does not appear in an extension, then it does
not belong to that extension. For instance, a1 /∈ E1.

• E1 = {a2, a3, a4, a5, a6, . . .}
• E2 = {a1, a2, a4, a7, . . .}
• E3 = {a1, a3, a4, a5, a8, . . .}.

It is worth noticing that the argument a4 belongs to the three extensions.
Thus, Beli(Infj,iφ → Beljφ) ∈ Output(T ) meaning that according to the avail-
able information, agent i believes in the sincerity of agent j regarding φ. However,
Beli¬φ and Beliφ are supported by arguments only in some extensions. Then,
Beli¬φ /∈ Output(T ) and Beliφ /∈ Output(T ) meaning that agent i ignores φ’s
truth value.

Example 4.16 (Cont)

The table below shows some arguments that may be built from Ki.

a1 : ({Beli(Infj,iφ→ Beljφ)},Beli(Infj,iφ→ Beljφ))
a2 : ({Beli(Infj,iϕ)},Beli(Infj,iϕ))
a3 : ({Beli(¬Beljϕ)},Beli(¬Beljϕ))
a4 : ({Beli(Infj,iϕ),Beli(¬Beljϕ)},Beli(Infj,iϕ ∧ ¬Beljϕ))

The following figure summarizes the attacks between the four arguments:

a2 a3 a4 a1

It can be checked that the argumentation system T = (Arg(Ki), <) has one stable
extension: E = {a2, a3, a4, . . .}. Thus, Beli(Infj,iϕ) ∈ Output(T ), Beli(¬Beljϕ) ∈
Output(T ) but Beli(Infj,iφ → Beljφ) /∈ Output(T ). This means that agent i will
no longer believe in the sincerity of agent j about φ.

4.3. Properties of the system

Remember that a belief base of an agent may be inconsistent. We show that the set
of inferences drawn from that base using the argumentation system is consistent.
Before giving the formal result, we start by another property which shows that
every stable extension of the system supports a consistent set of beliefs. Note
that this property corresponds exactly to the rationality postulate on consistency
that was proposed in Caminada and Amgoud (2007) for rule-based logics and
generalized later in Amgoud (2013) for Tarskian logics.



Proposition 4.21 Let T = (Arg(Ki),<) be an argumentation system built over a
beliefs base Ki and Ext(T ) its set of stable extensions. For all E ∈ Ext(T ), the
following properties hold:

• The set
⋃

(Hk,hk)∈E
Hk is consistent.

• The set {h | ∃(H,h) ∈ E} is consistent.

Proof : Let E be a stable extension of T = (Arg(Ki),<). Assume that the set
⋃

(Hk,hk)∈E
Hk is inconsistent. Thus, ∃X ⊆

⋃

(Hk,hk)∈E
Hk such that X is a mini-

mal (wrt set inclusion) inconsistent set. Since each Hk is consistent, then |X| > 1.
Thus, for all Bel(x) ∈ X, X \ {Bel(x)} is a minimal set such that X \ {Bel(x)} `
Bel(¬x). Then, (X \ {Bel(x)},Bel(¬x)) and ({Bel(x)},Bel(x)) are both argu-
ments. Moreover, (X \ {Bel(x)},Bel(¬x)) assumption-attacks ({Bel(x)},Bel(x)).
Besides, ∃(H,h) ∈ E such that Bel(x) ∈ H. Thus, (X \ {Bel(x)},Bel(¬x))
assumption-attacks (H,h). Since E is conflict-free, then (X\{Bel(x)}, Bel(¬x)) /∈ E
and ∃(H ′, h′) ∈ E such that (H ′, h′)<(X \ {Bel(x)},Bel(¬x)). 1) Assume that
(H ′, h′) assumption-attacks (X \ {Bel(x)},Bel(¬x)). Thus, ∃Belx′ ∈ X \ {Bel(x)}
such that H ′ ` Bel¬x′. However, Belx′ ∈ H” for some (H”, h”) ∈ E . Thus,
(H ′, h′) assumption-attacks (H”, h”). This contradicts the fact that E is conflict-
free. 2) Assume now that (H ′, h′) sinc-attacks (X \ {Bel(x)},Bel(¬x)). Then,
h′ = Bel(Infi,j,ϕ ∧ ¬Beljϕ) and TrustSinc(i, j, φ) ∈ X \ {Bel(x). So, ∃(H”, h”) ∈ E
such that TrustSinc(i, j, φ) ∈ H”. Thus, (H ′, h′) assumption-attacks (H”, h”). This
contradicts the fact that E is conflict-free. The same reasoning holds for the re-
maining forms of attacks. Then,

⋃

(Hk,hk)∈E
Hk is consistent. From the previous

result, it follows that the set {h | ∃(H,h) ∈ E} is consistent as well. �

It is worth mentioning that the set of formulas used in the arguments of a
stable extension is a consistent subbase of the beliefs base Ki but not necessarily
maximal for set inclusion. This is mainly due to the six attack relations which
are not based on inconsistency. Example 4.16 shows a case of a system built
over a consistent beliefs base. The system has one stable extension E , and it
can be checked that its corresponding base, i.e.,

⋃

(Hk,hk)∈E
Hk, is different from Ki.

From this property of the system, it follows that the set Output(T ) is also con-
sistent.

Proposition 4.22 Let T = (Arg(Ki),<) be an argumentation system built over a
beliefs base Ki. The set Output(T ) is consistent.

Proof : From Definition 4.20, it follows that Output(T ) ⊆ {h | ∃(H,h) ∈ E} for
any E ∈ Ext(T ). Since {h | ∃(H,h) ∈ E} is consistent then so is Output(T ). �

The next property concerns another rationality postulate in Amgoud (2013)
which claims that the extensions should be closed under sub-arguments. The idea is
that accepting an argument in a given extension implies accepting all its sub-parts
in that extension.

Proposition 4.23 Let T = (Arg(Ki),<) be an argumentation system built over a
beliefs base Ki. For all E ∈ Ext(T ), if (H,h) ∈ E then for all (H ′, h′) ∈ Arg(Ki)
such that H ′ ⊆ H, it holds that (H ′, h′) ∈ E .

Proof : Let E be a stable extension of T = (Arg(Ki),<). Let (H,h) ∈ E and
(H ′, h′) ∈ Arg(Ki) such that H ′ ⊆ H and (H ′, h′) /∈ E . Then, ∃(H”, h”) ∈ E



such that (H”, h”)<(H ′, h′). 1) Assume that (H”, h”) assumption-attacks (H ′, h′).
Then, ∃Belx ∈ H ′ such that h” = Bel¬x. But Belx ∈ H since H ′ ⊆ H. So
(H”, h”) assumption-attacks (H,h). This contradicts the fact that E is conflict-
free. 2) Assume now that (H”, h”) sinc-attacks (H ′, h′). Then, h” = Bel(Infi,j,ϕ ∧
¬Beljϕ) and TrustSinc(i, j, φ) ∈ H ′. Then TrustSinc(i, j, φ) ∈ H. Consequently,
(H”, h”) sinc-attacks (H,h). This contradicts the fact that E is conflict-free. The
same reasoning holds for the remaining forms of attacks. �

The next property concerns the third rationality postulate in Amgoud (2013)
which claims that the extensions should be closed under the consequence operator,
` in our case. This property guarantees that the system does not forget intuitive
conclusions. Before presenting the formal result, let us first introduce a useful
notation.

Notation: For X ⊆ L, CN(X) = {φ ∈ L | X ` φ}.

Proposition 4.24 Let T = (Arg(Ki),<) be an argumentation system built over
a beliefs base Ki and Ext(T ) its set of stable extensions. For all E ∈ Ext(T ),
{h | ∃(H,h) ∈ E} = CN({h | ∃(H,h) ∈ E}).

Proof : Let E be a stable extension of the system T = (Arg(Ki),<). Let
X = {h | ∃(H,h) ∈ E}. Assume that X 6= CN(X). Thus, ∃h ∈ CN(X) and
h /∈ X. Besides, X ⊆

⋃

(Hk,hk)∈E
CN(Hk) ⊆ CN(

⋃

(Hk,hk)∈E
Hk). It follows also

that CN(X) ⊆ CN(
⋃

(Hk,hk)∈E
Hk) and thus

h ∈ CN(
⋃

(Hk,hk)∈E
Hk). Two possible cases:

1) h ∈ CN(∅), (∅, h) ∈ Arg(Ki) but (∅, h) /∈ E . This means that ∃(H ′, h′)<(∅, h).
But the seven attack relations ensure h′ ∈ ∅ or h′ = Belx ∈ ∅ and h = Belx. This
is impossible.

2) h /∈ CN(∅) and ∃S ⊆
⋃

(Hk,hk)∈E
Hk such that (S, h) ∈ Arg(Ki) since

⋃

(Hk,hk)∈E
Hk is consistent (see Proposition 4.21). Moreover, (S, h) /∈ E . Hence,

∃(H ′, h′) ∈ E such that (H ′, h′)<(S, h). Assume that < is assumption attack. Then,
h′ = Bel¬x ∈ S. But, this implies that ∃(H ′′, h′′) ∈ E such that Bel¬x ∈ H ′′ mean-
ing that (H ′, h′)<(H ′′, h′′). This contradicts the fact that E is conflict-free. The
same reasoning applies for the six remaining relations since they are all based on
attacking the support. �

We show next that the set Output(T ) is closed under `.

Proposition 4.25 Let T = (Arg(Ki),<) be an argumentation system built over a
beliefs base Ki such that Ext(T ) 6= ∅. It holds that Output(T ) = CN(Output(T )).

Proof : Let T = (Arg(Ki),<) be a system built over a beliefs base Ki such that
Ext(T ) 6= ∅. It is clear that Output(T ) ⊆ CN(Output(T )).

Assume now that h ∈ CN(Output(T )) and h /∈ Output(T ). Then, ∃h1, . . . , hn ∈
Output(T ) such that h ∈ CN({h1, . . . , hn}). Besides, h1, . . ., hn ∈

⋂

Ek∈Ext(T )

{φ | ∃(H,φ) ∈ Ek}. From monotonicity of CN, it follows that: CN({h1, . . . , hn}) ⊆
CN(

⋂

Ek∈Ext(T ) {φ | ∃(H,φ) ∈ Ek}). It holds also that h ∈ CN({φ | ∃(H,φ) ∈ E1})

∩ . . .∩ CN({φ | ∃(H,φ) ∈ En}). From Proposition 4.24, h ∈ {φ | ∃(H,φ) ∈ E1}
∩ . . .∩ {φ | ∃(H,φ) ∈ En}. Consequently, h ∈ Output(T ). �

This means, for instance, that if TrustSinc(i, j, φ) ∈ Output(T ) and



Beli(Infj,iφ) ∈ Output(T ), then Beli(Beljφ) ∈ Output(T ).

5. Graded trust in information sources

In most situations it is an over simplification to say that an agent i trusts (or does
not trust) another agent j. Rather, in informal terms, we may say that i has a
limited trust in j, or i’s trust in j is high. We are thus faced with the question:
“what is the meaning of graded trust?”.

Demolombe (2009) proposed two different answers to this question. The first
answer, when trust is represented by a formula of the form Beli(φj ⇒ ψj), is that
i is uncertain to be in a world where the set of φj worlds (i.e., the set of worlds
where φj is true) is included in the set of ψj worlds (the set of worlds where ψj is
true). For example, agent i may be uncertain about the fact that agent j is sincere
about p, that is, about the fact that in every circumstance where j informs i about
p, it is the case that j believes p. Here, graded trust can be defined by the strength
level of i’s belief about j’s sincerity. Notice that this uncertainty level refers to i’s
beliefs and not to the fact that j is more or less sincere. In more formal terms,
according to this interpretation, graded trust can be represented by a formula

Belgi (φj ⇒ ψj)

which is read as follows: the strength level of i’s belief about the fact that “φj ⇒ ψj

is true” is g. In the sequel, Belgi denotes a ”graded belief” of agent i.

The second answer by Demolombe (2009) is: “i believes that the set of φj worlds
is partially included in the set of ψj worlds”. In such a case, the fact that i’s trust in
j’s sincerity is high can be interpreted as: i believes that in almost all circumstances,
if j informs i about p, then j believes p. According to this interpretation trust level
refers to the regularity level of the relationship between the fact that φj is true and
the fact that ψj is true. Graded trust is thus formally represented by the formula:

Beli(φj ⇒
h ψj)

where h may be a numerical value which represents graded regularity.

For the purpose of our proposal, graded trust may refer to both kinds of levels
(uncertainty and regularity). It is thus represented by formulas of the form:

Belgi (φj ⇒
h ψj)

whose intended meaning is that the strength level of i’s belief about the fact that
φj entails ψj with a regularity level h is g. It is worth pointing out that in general
these two levels are independent. It may be the case, for example, that i strongly
believes that j’s sincerity is low or that i strongly believes that j’s sincerity is high
and it may also be the case that i has a low level of belief about the fact that j’s
sincerity is low.

5.1. Extended logic

In what follows, we extend the logical language of Section 2 for reasoning about
graded trust. Let us first recall the intuitive meaning of the new operators:



• Belgiφ: the strength level of i’s belief about the fact that φ is true is (exactly) g.

• φ⇒h ψ: φ entails ψ at level h.

• 2φ: φ holds in all the situations.

The operator 2 is introduced for formal purposes that are explained below. We
also assume two additional sets that contain levels of beliefs and regularity:

• GRB: finite set of belief levels.

• GRR: finite set of regularity levels.

Notice that no particular assumption is made on the nature of the elements
of these sets. However, we assume that they are both equipped with a pre-
ordering ≤ (i.e., a reflexive and transitive binary relation). For x, y ∈ GRB
(respectively in x, y ∈ GRR), x ≤ y means that y is at least as strong as x.
The strict relation associated with ≤ is denoted by < and defined as follows:

x < y
def
= (x ≤ y) ∧ not(y ≤ x). Moreover, both sets has a lower and an upper

bounds denoted respectively min and max1. For every x in GRB or in GRR,
min ≤ x ≤ max.

Notations: Forall(g, cond)F (g)
def
=

∧

g∈G,cond(g) F (g),

Exist(g, cond)F (g)
def
=

∨

g∈G,cond(g)F (g), and ψ
h def

= > ⇒h ψ.

The logic associated with the extended language is based on the following infer-
ence rules and axiom schemas.

(SubstBel) If ` φ↔ ψ then ` Belgi (φ) ↔ Belgi (ψ)

(Weak) If ` φ→ ψ then ` Belgi (φ) → ¬Exist(g′, g′ < g)Belg
′

i ψ
(ClosDisj) If g3 =Max{g1, g2} then ` Belg1i (φ1) ∧ Belg2i (φ2) → Belg3i (φ1 ∨ φ2)
(ClosConj) If g3 =Min{g1, g2} then ` Belg1i (φ1) ∧ Belg2i (φ2) → Belg3i (φ1 ∧ φ2)
(UnicBel) ` Forall(g1, g2, g1 6= g2) ¬(Bel

g1
i (φ) ∧ Belg2i (φ))

(Consist) ` Belgiφ→ Beliφ
(MinBel) ` (Belmin

i φ ∧ Belgiψ) → 2(φ→ ψ)
(MaxBel) ` (Belmax

i φ ∧ Belgiψ) → 2(ψ → φ)
(MaxTau) If ` φ then ` Belmax

i φ
(PosInt) ` Belgi (φ) → BeliBel

g
i (φ)

(NegInt) ` ¬Belgi (φ) → Beli¬Bel
g
i (φ)

(SubstReg) If ` φ↔ φ′ and ` ψ ↔ ψ′ then ` (φ⇒h ψ) → (φ′ ⇒h ψ′)
(Detach) ` (φ⇒h ψ) → (φ→ ψh)
(Trans) If n =Max{Min{h1, k1},Min{h2, k2}}, then

` ((φ⇒h1 ψ) ∧ (φ ∧ ψ ⇒k1 θ)∧
(φ⇒h2 ¬ψ) ∧ (φ ∧ ¬ψ ⇒k2 θ)) →
(φ⇒n θ)

(UnicReg) ` Forall(h1, h2, h1 6= h2) ¬((φ⇒h1 ψ) ∧ (φ⇒h2 ψ))
(MinReg) ` (φ⇒min ψ) ↔ 2(φ→ ¬ψ)
(MaxReg) ` (φ⇒max ψ) ↔ 2(φ→ ψ)2

(DetachBel) If Belgi φ and ` φ→ ψ, then ¬Exist(g′, g′ < g)Belg
′

i ψ.

The first rule, (SubstBel), states that in Belgi (φ), φ can be substituted by any
logically equivalent formula. (Weak) says that if ψ is a logical consequence of φ (i.e.
` φ → ψ), then, if i has ascribed a strength level to his belief about φ and to his

1We use the same notations for the minimal element and for the maximal element in GRB and in GRR
while they are not necessarily identical. The context allows us to avoid ambiguities.



belief about ψ, then the level of ψ cannot be lower than the level of φ. (ClosDisj)
says that if the levels of beliefs of two formulas φ1 and φ2 are fixed, then the level
of their disjunction is the maximum of these two levels. With (ClosConj) schema,
if the levels of beliefs of two formulas φ1 and φ2 are fixed, then the level of their
conjunction is the minimum of these two levels. (UnicBel) states that the strength
level of i’s belief is unique for every sentence. According to (Consist) schema,
graded beliefs are considered as standard beliefs to which an agent i has assigned
a strength level. It may be that i has not assigned a strength level to some belief,
for instance, because he has no argument to assign it such or such level. According
to this axiom schema Belgi (φ) can be rephrased as: i believes φ and the strength
level of this belief is g. The axiom schema (MinBel) states that if φ represents the
formula which is believed at the minimum level and ψ is believed at some belief
level, then φ implies ψ. It is worth noticing that this axiom is consistent with
(ClosConj). From an intuitive point of view a formula which is believed at the
minimal level is a formula which denotes a proposition which is more specific than
any other formula which is believed at any other level. That means that the set of
φ worlds is included into the set of ψ worlds. (MaxBel) says that if φ represents
the formula which is believed at the maximum level and ψ is believed at some
belief level, then ψ implies φ. This axiom schema is consistent with (ClosDisj).
From an intuitive point of view a formula which is believed at the maximal level is
a formula which denotes a proposition which is less specific than any other formula
which is believed at any other level. This means that the set of φ worlds contains
the set of ψ worlds. The schema (MaxTau) states that if φ is a theorem of the
logic, then the belief level of φ is max. According to schema (PosInt), if a formula
φ is believed at level g, then i believes, in the standard sense, that φ is believed at
level g. This positive introspection axiom schema means that no level is ascribed
by i to his evaluation of the level of a belief. If such a level would be ascribed, one
could ask the question: what is i’s evaluation of this ”second” order level?, and
we would be led to an infinite number of introspection levels, which is far to be
intuitive. (NegInt) says that if formula φ is not believed at level g, then i believes,
in the standard sense, that φ is not believed at level g. Note that the justification
of (NegInt) is similar to the justification of (PosInt). The axiom (SubstReg)
concerns the conditional connective ⇒h; it says that in the formula φ⇒h ψ, both
φ and ψ can be substituted by logically equivalent formulas. (Detach) states that
if φ entails ψ at level h, then if φ holds, ψ holds at level h. Note that “ψ holds at
level h” is an abbreviation for “True ⇒h φ”. The axiom (Trans) says that there
exists a function F such that if n = F (h1, k1, h2, k2), then if φ entails ψ at level
h1, φ ∧ ψ entails θ at level k1, φ entails ¬ψ at the level h2 and φ ∧ ¬ψ entails θ
at level k2, then φ entails θ at level n. This axiom seems quite complex but it is
mandatory since, in general, from (φ⇒h1 ψ)∧ (φ∧ψ ⇒k1 θ), we cannot infer what
is the value of n such that: φ ⇒n θ, because there may be φ worlds that are θ
worlds and which are not ψ worlds. Notice that axiom schema (Trans) is perfectly
compatible with conditional probabilities if we accept some uniform distribution
assumptions. In this case, the form of F is n = (h1 × k1) + (h2 × k2). Even if
this is not a sufficient justification, by analogy with conditional probabilities we
have adopted the following function F : n = Max{Min{h1, k1}, Min{h2, k2}}.
The axiom (UnicReg) states that the regularity level of φ entails ψ is unique
whereas (MinReg) ensures that φ entails ψ at the minimum level iff φ implies ¬ψ.
The intuitive idea is that φ ⇒min ψ holds iff the set of φ worlds and the set of
ψ worlds are disjoint. The sentence φ ⇒min ψ can be interpreted in the context
of conditional probabilities as 0 = Pr(ψ|φ). According to axiom (MaxReg), a
formula φ entails ψ at the maximum level iff φ implies ψ. The intuitive idea is



that φ ⇒max ψ holds iff the set of φ worlds is included into the set of ψ worlds.
Note that the sentence φ⇒max ψ can be interpreted in the context of conditional
probabilities as 1 = Pr(ψ|φ). The last axiom (DetachBel) follows from the axioms
(MaxTau), (ClosConj), (SubstBel) and (Weak).

In the sequel, L′ will denote the extended language and `∗ the extended logic,
i.e., the logic ` extended with the previous axioms.

5.2. Preference-based argumentation for graded trust

There is a clear consensus in the literature that arguments do not necessarily have
the same strength. It may be the case that an argument relies on certain information
while another argument is built from less certain ones, or that an argument pro-
motes an important value while another promotes a weaker one. In both cases, the
former argument is clearly stronger than the latter. These differences in arguments’
strengths make it possible to compare them. Consequently, several preference rela-
tions between arguments have been defined in the literature (e.g. Amgoud (1999),
Benferhat et al. (1993), Cayrol et al. (1993), Simari and Loui (1992)). There is also
a consensus on the fact that preferences should be taken into account in the evalu-
ation of arguments (see Amgoud and Cayrol (2002), Bench-Capon (2003), Modgil
(2009), Prakken and Sartor (1997), Simari and Loui (1992)).

In Amgoud and Cayrol (2002), a first abstract preference-based argumentation
framework was proposed. It takes as input a set of arguments, an attack relation,
and a preference relation � between arguments. For two arguments a and b, a � b
means that the argument a is at least as strong as b. The relation � is abstract
and can be instantiated in different ways. However, it is assumed to be a (total or
partial) pre-ordering (i.e., reflexive and transitive). The strict version associated
with � is denoted by � and is defined as follows: a � b iff a � b and not b � a.
Whatever the source of this preference relation is, the idea is to ignore an attack if
the attacked argument is stronger than its attacker. Dung’s semantics are applied
on the remaining attacks. This approach is particularly interesting when the attack
relation is symmetric. However, when the attack relation is not symmetric like the
relation given in Definition 4.17, the extensions of the argumentation framework
may be conflicting leading thus to counter-intuitive results. Consequently, Amgoud
and Vesic (2009) proposed a new approach which consists of inverting the direction
of an attack whenever the attacker is weaker than its target as follows:

Definition 5.1 Let (A,R,�) be an argumentation framework. For two arguments
a, b ∈ A, a defeats b iff

• aRb and not b � a or

• bRa and a � b

Dung’s semantics are then applied to the new framework (A,defeats) for evalu-
ating the arguments. In what follows, we propose an instantiation of this abstract
framework for reasoning about graded trust. As in the binary case, we assume a
knowledge base Ki containing the beliefs of an agent i. Formulas of Ki are elements
of the extended language L′. Arguments are built from Ki following Definition 4.4,
however by replacing the relation ` by `∗.

Definition 5.2 Let Ki be a beliefs base of agent i. An argument is a pair (H,h)



where:

• H ⊆ Ki and h ∈ L′

• H is consistent

• H `∗ h

• @H ′ ⊂ H such that H ′ `∗ h

Arguments attack each other as shown in Definition 4.17, i.e., the relation used in
the binary case. However, they may have different strength levels. It is the strength
level of the weakest (or the less certain) formula used in its support.

Definition 5.3 Let (H,h) be an argument such that H = {Belg1i φ1, . . . ,Bel
gn
i φn}.

The strength level of (H,h), denoted Level(H,h), is Min{g1, . . . , gn}.

These strengths are used in order to compare arguments. The idea is to prefer
the one with the greatest strength level, i.e., the one whose support is based on
more certain information.

Definition 5.4 Let (H,h), (H ′, h′) be two arguments. (H,h) � (H ′, h′) iff
Level(H,h) ≥ Level(H ′, h′).

The argumentation framework (Arg(Ki),<,�) is used for reasoning about the
beliefs base Ki of agent i. Let us illustrate this framework on a simple example.

Example 5.5 Let us consider the following base:

Ki =















Belg4i (parking)
Belg2i (parking → office)
Belg3i (meeting)
Belg4i (meeting → ¬office)

where it is assumed that the set of strengths of beliefs is {g1, g2, g3, g4, g5} and this
set has the structure of a total order. Moreover, the following abbreviations have
been adopted: parking: Luis’s car is at the parking, office: Luis is at his office,
meeting: Luis is attending a meeting, and teaching: Luis is teaching.

The intuitive justifications of the beliefs strength levels are that agent i has
observed that Luis’s car is at the parking and i is not strongly convinced that this
fact guarantees that Luis is at his office. Moreover, i has been informed that Luis
is attending a meeting and i knows that a meeting cannot happens at Luis’s office.

From Ki, an infinite number of arguments can be built including the following
ones:

a1 = (H1, h1), where H1 is {Belg4i (parking), Belg2i (parking → office)} and
h1 = Belg2i (parking ∧ office).

From Level(a) definition we have: Level(a1) = min{g2, g4} = g2.

From the inference rules (SubstBel) and (Weak), we also have the argument:

a2 = (H1, h2), where h2 = Belgi (office) and g is greater or equal to g2. We
also have: Level(a2) = g2. Notice that the strength of the consequence h2 is not
necessarily the same as the strength of its support H1.

We also have the arguments:

a3 = (H3, h3), where H3 is {Belg3i (meeting), Belg4i (meeting → ¬office)} and
h3 = Belg3i (meeting ∧ ¬office). We have Level(a3) = g3.



a4 = (H3, h4), where h4 = Belg
′

i (¬office) and g
′ is greater or equal to g3.

In the logic presented in section 5 graded beliefs are assumed to be standard
beliefs (see schema (Consist)) and standard beliefs must be consistent in the sense
of schema (D). According to this logic arguments a2 and a4 lead to an inconsistency.
This kind of inconsistency can be removed if it is accepted that Belgi φ means
that the strength level of the fact i believes that φ may be true is g (instead
of i believes that φ is true is g). This interpretation of Belgi φ can be formally
represented replacing the schema (Consist) by: (Consist’) ` Belgi φ→ ¬Beli¬φ.

In the same context we could have the following knowledge base K′
i where agent

i trusts agent j in his validity about meeting and j has informed i about meeting.

K′
i = {Belg4i (parking), Belg2i (parking → office), Belg4i (Infj,imeeting),

Belg2i (Infj,imeeting → meeting), Belg4i (meeting → ¬office)}

In K′
i we have the argument a5.

a5 = (H5, h5), where H5 is {Belg4i (Infj,imeeting), Bel
g2
i (Infj,imeeting →

meeting), Belg4i (meeting → ¬office)} and h5 = Belg2i (Infj,imeeting ∧meeting ∧
¬office) and Level(a5) = g2.

We may have a more complex knowledge base K′′
i where is represented the fact

that if Luis is teaching, he cannot be attending a meeting.

K′′
i = {Belg4i (parking), Belg2i (parking → office), Belg4i (Infj,imeeting),

Belg2i (Infj,imeeting → meeting), Belg4i (meeting →
¬office), Belg4i (teaching), Belg4i (teaching → ¬meeting)}

Now, we have the argument a6:

a6 = (H6, h6) where H6 is {Belg4i (teaching), Belg4i (teaching → ¬meeting)} and
h6 = Belg4i (teaching ∧ ¬meeting) and Level(a6) = g4.

Since the consequence h6 of a6 is Bel
g4(teaching∧¬meeting) and in the support

H3 of a3 we have Belg3i (meeting), we can accept, thanks to a limited change in the
attack definition, that a6 attacks a3. Moreover, we have Level(a6) > Level(a3),
then we can infer that a6 defeats a3.

6. Related work

Trust modeling has become a hot topic during the last ten years. More than twenty
definitions were proposed for this complex concept. Among others the following one
was proposed by Falcone and Castelfranchi (2001):

Trust is a mental state, a complex attitude of an agent i towards another agent j
about the behavior/action a relevant for the goal g.

Gambetta (1990) defines trust as a subjective probability by which an agent i
expects that another agent j performs a given action on which its welfare depends.
In Liau (2003), trust is represented as agent’s beliefs and the author focused on
trust in validity and its impact on the assimilation of information received from
the trustee. The basic idea is the following: if agent i believes that agent j has told
him the truth of φ and i trusts the judgment of j on φ, then he will also believe
φ. Our formalism follows this line of research and considers six forms of trust
including validity, sincerity, and competence. It shows how to build arguments in
favor (respectively against) each form of trust, and how to use beliefs concerning



the trustworthiness of the other agents in order to infer new beliefs.

Some attempts on combining argumentation theory and trust have been made in
the literature. Based on the representation proposed in Liau (2003), Villata et al.
(2011) presented an instantiation of the meta-argumentation model (Boella et al.
(2009)) for reasoning about trust in validity. The technique of meta-argumentation
applies Dung’s theory of abstract argumentation to itself. The instantiation con-
tains arguments built from beliefs and meta-arguments. An example of a meta
argument is of the form Trust i meaning that ”agent i is trustable”. Our formal-
ism is more general since it reasons about more forms of trust. Moreover, it is
much more simple since it instantiates directly Dung’s framework with a clear and
intuitive logical language in which various kinds of beliefs are represented.

An argumentation-based model for reasoning about inconsistent and uncertain
information was proposed in Tang et al. (2012). It is as an instantiation of the
preference-based argumentation framework proposed in Amgoud and Cayrol (2002)
where arguments do not necessarily have the same strengths and are thus compared
using a binary relation expressing preferences. The arguments are built from a base
which contains beliefs pervaded with degrees of certainty. These degrees are then
combined for computing the certainty levels of the supports of arguments which in
turn are used for comparing arguments. The particularity of the model is the use
of trusted information in order to assign degrees for inferred beliefs. Indeed, the
model takes as input a simple network whose nodes are agents and edges represent
trust relationships between nodes. For instance, an arc from agent i towards agent
j means that agent i trusts agent j. Weights are associated with edges and express
degrees of trust. Our formalism is based on a richer model of trust. It distinguishes
between six forms of trusts instead of an absolute trust in Tang et al. (2012).
Moreover, our formalism not only uses trusted information in order to infer new
beliefs but also reasons about trust itself and infers beliefs about trust.

More recently, in Parsons et al. (2012) the authors focused on identifying ten
sources of trust and presented them in terms of argument schemes, i.e., syllogisms
justifying trustworthiness in an agent. Examples of sources are authority, repu-
tation and expert opinion which is called in our formalism competence. Critical
questions showing how each argument scheme can be attacked were also proposed.
While some of the proposed sources make sense, others are debatable. For instance,
trust because of pragmatism says that an agent i may decide to trust another agent
j because it serves i’s interests to do so. There is a form of wishful thinking which
is not compatible with the fact that trust is a belief.

Another interesting contribution on the combination of argumentation theory
and trust was done in Stranders et al. (2007). The focus is on computing to what
extent agent i trusts agent j. This is done from statistical data and arguments.
The model is an instantiation of the abstract decision model proposed in Amgoud
and Prade (2009). Our formalism does not use statistical data. Moreover, it is an
inference model and not a decision making one.

Finally, in Matt et al. (2010) the authors proposed a model for evaluating the
trust an agent may have in another. For that purpose, arguments in favor of trust
are built. They are mainly grounded on statistical data which makes this approach
different from the one we followed in the present paper.



7. Conclusion

This paper tackled the important questions of formalizing and reasoning about
trust in information sources. It proposed a formal model based on the construction
and evaluation of arguments. The model presents several advantages: first, it is
grounded on an accurate and simple logical language for representing trust in
information sources. Indeed, modal logic is used for distinguishing between what is
true (respectively false) and what is believed by an agent. Second, unlike existing
works that define absolute trust in an agent, our model uses a fine-grained notion
of trust. It distinguishes between six forms of trust including trust in the sincerity
of an agent and trust in his competence. The third feature of our model is that it
plays two distinct roles: i) it shows how to take into account trust in information
sources in order to deal and reason about information coming from those sources,
ii) it shows whether to trust or not a given source of information on the basis of
available beliefs. This makes our model a good candidate for dialog systems.

There are a number of ways to extend this work. Our future direction consists of
investigating the properties of the model under other semantics, namely preferred
semantics. We have shown that the attack relations we have defined are very special
since they are not grounded on inconsistency. Consequently, despite the fact that
arguments are consistent, self-attacking arguments may exist preventing thus the
existence of stable extensions.

Another interesting future direction consists of refining the logical language by
considering the notion of topic. The basic idea is to represent information such as:
Agent i trusts the competence of agent j in psychology but not in philosophy. Our
formal definitions can be extended in this direction thanks to the logic of aboutness
developed by Demolombe and Jones (1995). The logical language of this logic
contains a predicate A(t, φ) whose intuitive meaning is that formula φ is about topic
t. This predicate can be used, for instance, for expressing the fact that i trusts j in
his validity for any sentence about a given topic t: ∀x(A(t, x) → TrustVal(i, j, x).
Another direction consists of handling graded trust. In the proposed model, trust
is a binary notion: an agent either fully trusts another agent or fully distrust the
agent. However, in everyday life one may have a limited trust in a person. It is
thus important to define to what extent an agent trusts another.
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