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Abstract. Dung’s abstract argumentation model consists of a set of
arguments and a binary relation encoding attacks among arguments.
Different acceptability semantics have been defined for evaluating the
arguments. What is worth noticing is that the model completely ab-
stracts from the applications to which it can be applied. Thus, it is not
clear what are the results that can be returned in a given application by
each semantics. This paper answers this question. For that purpose, we
start by plunging the model in a real application. That is, we assume
that we have an inconsistent knowledge base (KB) containing formulas
of an abstract monotonic logic. From this base, we show how to define
arguments. Then, we characterize the different semantics in terms of
the subsets of the KB that are returned by each extension. We show a
full correspondence between maximal consistent subbases of a KB and
maximal conflict-free sets of arguments. We show also that stable and
preferred extensions choose randomly some consistent subbases of a base.
Finally, we investigate the results of three argumentation systems that
use well-known attack relations.

1 Introduction

Argumentation has become an Artificial Intelligence keyword for the last fifteen
years, especially for handling inconsistency in knowledge bases (e.g. [2, 6, 16]), for
decision making under uncertainty (e.g. [4, 7, 13]), and for modeling interactions
between agents (e.g. [3, 14, 15]).
One of the most abstract argumentation systems was proposed in [12]. This
system consists of a set of arguments and a binary relation encoding attacks
among arguments. Different acceptability semantics were also defined for evalu-
ating the arguments. A semantics defines the conditions under which a given set
of arguments is declared acceptable. What is worth noticing is that the system
completely abstracts from the applications to which it can be applied. Thus:

1. The origin and the structure of both arguments and the attack relation are
not specified. This is seen in the literature as an advantage of this model.
However, some of its instantiations lead to undesirable results. This is due to
a lack of methodology for defining these two main components of the system.



2. The different acceptability semantics capture mainly different properties of
the graph associated to the system. While it is clear that those properties
are nice and meaningful, it is not clear whether they really make sense in
concrete applications. It is not even clear what are the results that can be
returned, in a given application, by each semantics.

In [1], we proposed an extension that fills in the gap between Dung’s system
and the applications. The idea was to consider all the ingredients involved in
an argumentation problem. We started with an abstract monotonic logic which
consists of a set of formulas and a consequence operator. We have shown how to
build arguments from a knowledge base using the consequence operator of the
logic, and how to choose an appropriate attack relation.

Starting from this class of logic-based argumentation systems, this paper
characterizes the different semantics in terms of subsets of the knowledge base
that are returned by each extension. The results we got show that there is a
full correspondence between maximal consistent subbases of a KB and maxi-
mal conflict-free sets of arguments. They also show that stable and preferred
extensions choose randomly some consistent subbases of a base, which are not
necessarily maximal in case of preferred extensions. Finally, the paper studies
the properties of three well-known argumentation systems, namely the ones that
use resp. rebut, strong rebut and undercut as attack relations. We show that
the system that is based on undercut returns sound results at the cost of redun-
dancy: duplicating many arguments with exactly the same support.

The paper is organized as follows: Section 2 recalls our extension of Dung’s
system. Section 3 presents an analysis of acceptability semantics. Section 4 in-
vestigates the properties of particular systems.

2 An extension of Dung’s abstract system

In [1], we proposed an extension of Dung’s abstract argumentation system. That
extension defines all the ingredients involved in argumentation ranging from the
logic used to define arguments to the set of conclusions to be inferred from a
given knowledge base. A great advantage of this extension is that it is abstract
since it is grounded on an abstract monotonic logic. According to [17], such logic
is defined as a pair (L,CN) where members of L are called well-formed formulas,
and CN is a consequence operator. CN is any function from 2L to 2L that satisfies
the following axioms:

1. X ⊆ CN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) =

⋃
Y⊆fX

CN(Y ) (Finiteness)

4. CN({x}) = L for some x ∈ L (Absurdity)
5. CN(∅) 6= L (Coherence)



Y ⊆f X means that Y is a finite subset of X . Intuitively, CN(X) returns
the set of formulas that are logical consequences of X according to the logic
in question. It can easily be shown from the above axioms that CN is a closure
operator, and satisfiesmonotonicity (i.e. forX,X ′ ⊆ L, ifX ⊆ X ′ then CN(X) ⊆
CN(X ′)). Note that a wide variety of logics can be viewed as special cases of
Tarski’s notion of an abstract logic (classical logic, intuitionistic logic, modal
logic, temporal logic, ...). Formulas of L encode both defeasible and undefeasible
information while the consequence operator CN is used for defining arguments.

Definition 1 (Consistency) Let X ⊆ L. X is consistent in logic (L,CN) iff
CN(X) 6= L. It is inconsistent otherwise.

In simple English, this says that X is consistent iff its set of consequences
is not the set of all formulas. The coherence requirement (absent from Tarski’s
original proposal but added here to avoid considering trivial systems) forces ∅
to always be consistent - this makes sense for any reasonable logic as saying
emptiness should intuitively be consistent.

We start with an abstract logic (L,CN) from which the notions of argument
and attacks between arguments are defined. More precisely, arguments are built
from a knowledge base, say Σ, containing formulas of the language L.

Definition 2 (Argument) Let Σ be a knowledge base. An argument is a pair
(X, x) such that:

1. X ⊆ Σ

2. X is consistent
3. x ∈ CN(X)
4. ∄X ′ ⊂ X s.t. X ′ satisfies the three above conditions

Notation: Supp and Conc denote respectively the support X and the conclusion
x of an argument (X, x). For S ⊆ Σ, Arg(S) denotes the set of all arguments
that can be built from S by means of Definition 2.

Since CN is monotonic, argument construction is a monotonic process (i.e.
Arg(Σ) ⊆ Arg(Σ′) whenever Σ ⊆ Σ′ ⊆ L).

We have shown in [1] that in order to satisfy the consistency rationality pos-
tulate proposed in [9], the attack relation should be chosen in an appropriate
way. Otherwise, unintended results may be returned by the argumentation sys-
tem. An appropriate relation, called valid, should ensure that the set of formulas
used in arguments of any non-conflicting (called also conflict-free) set of argu-
ments is consistent.

Notation: Let B ⊆ Arg(Σ). Base(B) =
⋃

a∈B Supp(a).

Definition 3 (Valid attack relation) Let Arg(Σ) be a set of arguments built
from a knowledge base Σ. An attack relation R ⊆ Arg(Σ)× Arg(Σ) is valid iff
∀B ⊆ Arg(Σ), if B is conflict-free, then Base(B) is consistent.



In [1], we have investigated the properties of a valid attack relation. Namely,
we have shown that it should depend on the minimal conflicts contained in Σ,
and also sensitive to them.

Definition 4 Let Arg(Σ) be the set of arguments built from Σ, and R ⊆ Arg(Σ)×
Arg(Σ).

– C ⊆ Σ is a minimal conflict iff i) C is inconsistent, and ii) ∀x ∈ C, C\{x}
is consistent.

– R is conflict-dependent iff ∀a, b ∈ Arg(Σ), (a, b) ∈ R implies that there
exists a minimal conflict C ∈ CΣ1 s.t. C ⊆ Supp(a) ∪ Supp(b).

– R is conflict-sensitive iff ∀a, b ∈ Arg(Σ) s.t. there exists a minimal conflict
C ∈ CΣ with C ⊆ Supp(a) ∪ Supp(b), then either (a, b) ∈ R or (b, a) ∈ R.

In [1], we have shown that when the attack relation is conflict-dependent,
from any consistent subset Σ, a conflict-free set of arguments is built.

Dung’s abstract system is refined as follows.

Definition 5 (Argumentation system) Given a knowledge base Σ, an argu-
mentation system over Σ is a pair (Arg(Σ),R) s.t. R ⊆ Arg(Σ) × Arg(Σ) is a
valid attack relation.

Among all the arguments, it is important to know which arguments to rely on
for inferring conclusions from a base Σ. In [12], different acceptability semantics
have been proposed. The basic idea behind these semantics is the following:
for a rational agent, an argument is acceptable if he can defend this argument
against all attacks on it. All the arguments acceptable for a rational agent will
be gathered in a so-called extension. An extension must satisfy a consistency
requirement (i.e. conflict-free) and must defend all its elements. Recall that a
set B ⊆ Arg(Σ) defends an argument a iff ∀b ∈ Arg(Σ), if (b, a) ∈ R, then ∃c ∈
B such that (c, b) ∈ R. The different acceptability semantics defined in [12] are
recalled below. Let B be a conflict-free set of arguments:

– B is an admissible extension iff B defends all its elements.
– B is a preferred extension iff it is a maximal (for set inclusion) admissible

extension.
– B is a stable extension iff it is a preferred extension that attacks any argument

in Arg(Σ) \ B.

3 Relating acceptability semantics to the knowledge base

The aim of this section is to understand the underpinnings of the different accept-
ability semantics introduced in [12]. The idea is to analyze the results returned
by each semantics in terms of subsets of the knowledge base at hand.

1 Let CΣ denote the set of all minimal conflicts of Σ.



The first result shows that when the attack relation is conflict-dependent and
conflict-sensitive, then from a maximal consistent subbase of Σ, it is possible to
build a unique maximal (wrt set inclusion) conflict-free set of arguments.

Proposition 1 Let Σ be a knowledge base, and (Si)i∈I be its maximal consistent
subsets. If R is conflict-dependent and conflict-sensitive, then:

1. For all i ∈ I, Arg(Si) is a maximal (wrt set ⊆) conflict-free subset of Arg(Σ).
2. For all i, j ∈ I, if Arg(Si) = Arg(Sj) then Si = Sj .
3. For all i ∈ I, Si = Base(Arg(Si)).

Similarly, we show that each maximal conflict-free subset of Arg(Σ) is built
from a unique maximal consistent subbase of Σ. However, this result is only true
when the attack relation is chosen in an “appropriate” way, i.e., when it is valid.

Proposition 2 Let (Arg(Σ),R) be an argumentation system over Σ, and (Ei)i∈I

be the maximal (wrt set ⊆) conflict-free subsets of Arg(Σ). If R is conflict-
dependent and valid, then:

1. For all i ∈ I, Base(Ei) is a maximal (wrt set ⊆) consistent subbase of Σ.
2. For all i, j ∈ I, if Base(Ei) = Base(Ej) then Ei = Ej.
3. For all i ∈ I, Ei = Arg(Base(Ei)).

Propositions 1 and 2 provide a full correspondence between maximal consis-
tent subbases of Σ and maximal conflict-free subsets of Arg(Σ).

Corollary 1. Let (Arg(Σ),R) be an argumentation system over Σ. If R is
conflict-dependent and valid, then the maximal conflict-free subsets of Arg(Σ)
are exactly the Arg(S) where S ranges over the maximal (wrt set inclusion)
consistent subbases of Σ.

This result is very surprising since, apart from stable semantics, all the other
acceptability semantics (e.g. preferred and admissible) are not about maximal
conflict-free sets of arguments, but rather subsets of them. This means that those
semantics do not necessarily yield maximal subsets of the knowledge base Σ.

3.1 Stable semantics

The idea behind stable semantics is that a set of arguments is “acceptable” if
it attacks any argument that is outside the set. This condition makes stable
semantics very strong and the existence of stable extensions not guaranteed for
every argumentation system. From the results obtained in the previous subsec-
tion on the link between maximal conflict-free subsets of Arg(Σ) and maximal
consistent subbases of Σ, it seems that stable semantics is not adequate. Let us
illustrate this issue on the following example.

Example 1 Let Σ be such that Arg(Σ) = {a, b, c}. Also, let the attack rela-
tion be as depicted in the figure below. This relation is assumed to be conflict-
dependent and valid.



a

b c

There are three maximal conflict-free sets of arguments. From Corollary 1, there
is a full correspondence between the maximal (wrt set ⊆) consistent subsets of
Σ and the maximal (wrt set ⊆) conflict-free sets of Arg(Σ).

1. E1 = {a} S1 = Base(E1)
2. E2 = {b} S2 = Base(E2)
3. E3 = {c} S3 = Base(E3)

Indeed, the base Σ has “stable sets of formulas” S1,S2 and S3 while these are
not captured by the stable semantics since the argumentation system (Arg(Σ),R)
has no stable extension. To make the example more illustrative, let us mention
that an instance of the example arises from a logic of set-theoretic difference.

The above example shows that stable semantics can miss “stable sets of for-
mulas”, i.e. maximal consistent subsets of the knowledge base at hand. However,
we show that when an argumentation system (Arg(Σ),R) has stable extensions,
those extensions capture maximal consistent subsets of Σ.

Proposition 3 If R is conflict-dependent and valid, then any stable extension
E of (Arg(Σ),R), Base(E) is a maximal (wrt set ⊆) consistent subset of Σ.

The fact that stable extensions “return” maximal consistent subsets ofΣ does
not mean that all of them are returned. The following example illustrates this
issue, and shows that Dung’s system somehow picks some maximal consistent
subbases of Σ.

Example 2 Let Σ be such that Arg(Σ) = {a, b, c, d, e, f, g} and the attack re-
lation is as depicted in the figure below. Assume also that this relation is both
conflict-dependent and valid.

d a f g

c

e b

There are 5 maximal conflict-free subsets of Arg(Σ):

1. E1 = {d, e, f} S1 = Base(E1)
2. E2 = {b, d, f} S2 = Base(E2)
3. E3 = {a, c, g} S3 = Base(E3)
4. E4 = {a, e, g} S4 = Base(E4)
5. E5 = {a, b, g} S5 = Base(E5)



Since the attack relation is both conflict-dependent and valid, then each set Ei
returns a maximal consistent subbase Si of Σ. From Corollary 1, it is clear that
the maximal consistent subbases of Σ are exactly the five Base(Ei). The argu-
mentation system (Arg(Σ),R) has only one stable extension which is E2. Thus,
Dung’s approach picks only one maximal subbase, i.e., S2 among the five. Such
a choice is clearly counter-intuitive since there is no additional information that
allows us to elicit S2 against the others. There is a huge literature on handling
inconsistency in knowledge bases. None of the approaches can make a choice
between the above five subbases Si if no additional information is available, like
priorities between formulas of Σ.

The above result shows that from a maximal consistent subbase of Σ, it is
not always the case that a stable extension exists as its counterpart in the argu-
mentation framework. For instance, S1 is a maximal consistent subbase of Σ, but
its corresponding set of arguments, E1, is not a stable extension. This depends
broadly on the attack relation that is considered in the argumentation system.
The above example shows that when the attack relation is asymmetric then a
full correspondence between stable extensions and maximal consistent subbases
of Σ is not guaranteed.

Let us now analyze the case of a symmetric attack relation. The follow-
ing result shows that each maximal consistent subbase of Σ “returns” a stable
extension, provided that the attack relation is conflict-dependent and conflict-
sensitive.

Proposition 4 Let S be a maximal (wrt set inclusion) subset of Σ. If R is
conflict-dependent, conflict-sensitive and symmetric, then Arg(S) is a stable ex-
tension of (Arg(Σ),R).

From the above result, it follows that an argumentation system based on
a knowledge base Σ always has stable extensions unless the knowledge base
contains only inconsistent formulas.

Corollary 2. Let (Arg(Σ),R) be an argumentation system based on a knowl-
edge base Σ such that R is symmetric, conflict-dependent and conflict-sensitive.
If there exists x ∈ Σ s.t. {x} is consistent, then (Arg(Σ),R) has at least one
stable extension.

In order to have a full correspondence between the stable extensions of
(Arg(Σ),R) and the maximal consistent subsets of Σ, the attack relation should
be symmetric, conflict-dependent and valid.

Corollary 3. Let (Arg(Σ),R) be an argumentation system based on a knowl-
edge base Σ such that R is symmetric, conflict-dependent and valid. Each max-
imal conflict-free subset of Arg(Σ) is exactly Arg(S) where S ranges over the
maximal (wrt set inclusion) consistent subsets of Σ.



However, in [1], we have shown that when the attack relation is symmetric, it
is not valid in general. Namely, when the knowledge base contains n-ary (other
then binary) minimal conflicts, then the rationality postulate on consistency
[9] is violated due to symmetric relations, that are thereby ruled out. What
happens in this case is that the argumentation system not only “returns” stable
extensions that capture all the maximal consistent subsets of Σ but also other
stable extensions corresponding to inconsistent subsets of Σ.

3.2 Other acceptability semantics

Preferred semantics has been introduced in order to palliate the limits of the
stable semantics. Indeed, in [12], it has been shown that each argumentation
system has at least one preferred extension. Preferred extensions are maximal
sets of arguments that defend themselves against all attacks. The following ex-
ample shows that preferred semantics may fail to capture consistent subbases of
a knowledge base.

Example 3 (Example 1 cont.) The argumentation system (Arg(Σ),R) of Ex-
ample 1 has one preferred extension which is the empty set. The corresponding
base is thus the empty set. However, the knowledge base Σ has three maximal
consistent subbases.

Let us now analyze the case where the argumentation system (Arg(Σ),R) has
non-empty preferred extensions. When the attack relation is valid, each preferred
extension of (Arg(Σ),R) “returns” a consistent subbase of Σ. However, this does
not mean that these subbases are maximal wrt set inclusion as shown in the
following example.

Example 4 (Example 2 cont.) The argumentation system of Example 2 has
two preferred extensions: E2 = {b, d, z} and E6 = {a, y}. The set E6 is a subset
of E3, E4 and E5 whose bases are maximal for set inclusion. Therefore, Base(E6)
is not maximal, whereas Base(E2) is maximal.

As for stable extensions, preferred extensions rely on a seemingly random
pick. In the above example, it is unclear why Base(E6) is picked instead of
another consistent subset of Σ. Similarly, why is Base(E2) picked instead of
Base(S1) for instance?

It is worth mentioning that the remaining acceptability semantics (i.e. ad-
missible, grounded and complete) also “return” somehow randomly some (but
not necessarily all) consistent subbases of Σ even when the attack relation is
defined carefully. Let us consider the following simple example.

Example 5 Let Σ be such that Arg(Σ) = {a, b, c}. Also, let the attack rela-
tion be as depicted in the figure below. This relation is assumed to be conflict-
dependent and valid.



a b c

There are two maximal conflict-free sets of arguments: E1 and E2.

1. E1 = {a, c} S1 = Base(E1)
2. E2 = {b} S2 = Base(E2)

From Corollary 1, there is a full correspondence between the maximal (wrt set
inclusion) consistent subbases of Σ and the maximal (wrt set inclusion) conflict-
free sets of Arg(Σ). Thus, the knowledge base Σ has exactly two maximal con-
sistent subbases S1 and S2. The argumentation system (Arg(Σ),R) has one
grounded extension which is E1. Thus, conclusions supported by a and c will
be inferred from Σ. Here again it is not clear why the base S2 is discarded.

Recently, several new acceptability semantics have been introduced in the
literature. In [8], a weaker version of stable semantics has been defined. The new
semantics, called semi-stable, is between stable and preferred semantics. It has
been shown that each stable extension is a semi-stable one, and each semi-stable
extension is a preferred one. When the attack relation has desirable features then,
semi-stable extensions return “some” consistent bases which are not necessarily
maximal wrt set inclusion. Example 1 has been handled in [8]. It has been shown
that the empty set is the only semi-stable extension of the system. However, we
have shown that the knowledge base has three maximal consistent subsets.

Corollary 4. For any semi-stable extension E of (Arg(Σ),R), where R is valid,
Base(E) is consistent.

In [5], six new acceptability semantics have been proposed. That work was
merely motivated by the fact that Dung’s semantics treat differently odd-length
cycles and even-length cycles. Thus, they suggested semantics that handle the
two cases in a similar way. Those semantics yield extensions that are not neces-
sarily maximal conflict-free subsets of the original set of arguments. This means
that their corresponding bases are not maximal for set inclusion.

The very last acceptability semantics that has been proposed in the literature
is the so-called ideal semantics [11]. This semantics always gives a single exten-
sion. The latter is an admissible extension that is contained in every preferred
extension. To show that this semantics suffers from the problems discussed here,
it is sufficient to consider Example 5. Indeed, in that example, there is one ideal
extension which is {a, c}. We have shown that this result is ad hoc since it al-
lows to infer formulas from a seemingly randomly chosen consistent subset of
the knowledge base Σ.

4 Particular argumentation systems

In this section we will study three argumentation systems. These systems use
the three attack relations that are commonly used in the literature: rebut, strong



rebut and assumption attack (called here “undercut”). Although these relations
have originally been defined in a propositional logic context, we will generalize
them to any logic in the sense of Tarski.

The rebut relation captures the idea that two arguments with contradictory
conclusions are conflicting. This relation is thus defined as follows:

Definition 6 (Rebut) Let a, b ∈ Arg(Σ). The argument a rebuts b iff the set
{Conc(a), Conc(b)} is inconsistent.

It is easy to show that this relation is conflict-dependent.

Property 1. The relation “Rebut” is conflict-dependent.

It can be checked that this relation is not conflict-sensitive. Let us, for in-
stance, consider the following two arguments built from a propositional base:
({x∧ y}, x) and ({¬y ∧ z}, z). It is clear that the set {x∧ y,¬y ∧ z} is a minimal
conflict, but none of the two arguments is rebutting the other. Note also that the
rebut relation violates most of the properties studied in [1]. In particular, it is
not homogeneous. Since the rebut relation is symmetric, it is not valid in the case
that the knowledge base contains n-ary (other than binary) minimal conflicts.
Worse yet, this relation is not valid even in the binary case. This can be seen from
the following conflict-free set of arguments, {({x, x → y}, y), ({¬x,¬x → z}, z)},
whose corresponding base is inconsistent. This means that the argumentation
system (Arg(Σ),Rebut) violates consistency. Consequently, this system is not
recommended for inferring conclusions from a knowledge base Σ.

Property 2. If Σ is such that ∃C = {x1, . . . , xn} ⊆ CΣ where either n > 2 or
n = 2 and ∃x′

1
∈ CN({x1}, ∃x′

2
∈ CN({x2} s.t. {x′

1
, x′

2
} is inconsistent then

(Arg(Σ),Rebut) violates extension consistency.

Let us now consider the second symmetric relation, called “Strong Rebut”.
This relation is defined as follows:

Definition 7 (Strong Rebut) Let a, b ∈ Arg(Σ). The argument a strongly
rebuts b iff ∃x ∈ CN(Supp(a)) and ∃y ∈ CN(Supp(b)) such that the set {x, y} is
inconsistent.

The following result shows that “Strong Rebut” satisfies interesting proper-
ties.

Property 3. “Strong Rebut” is conflict-dependent and conflict-sensitive.

Unfortunately, since this relation is symmetric, then it is not valid in the
general case, i.e. when n-ary (other than binary) minimal conflicts occur in the
knowledge base Σ.

Property 4. Let Σ be such that ∃C ∈ CΣ such that |C| > 2. An argumentation
system (Arg(Σ), Strong Rebut) violates consistency.



In the particular case where all the minimal conflicts of the knowledge base
base Σ are binary, we have shown in [1] that conflict-sensitive attack relations
are valid. Since “Strong Rebut” is conflict-sensitive, then it is a valid relation.

Property 5. Let Σ be such that all the minimal conflicts in CΣ are binary. Any
argumentation system (Arg(Σ), Strong Rebut) satisfies consistency.

Finally, we show that when all the minimal conflicts of the knowledge base Σ
are binary, then there is a full correspondence between the maximal consistent
subsets of Σ and the stable extensions of (Arg(Σ), Strong Rebut). Remember
that, since “Strong Rebut” is symmetric, then all the semantics coincide as they
all give the maximal conflict-free subsets of Arg(Σ).

Property 6. Let (Arg(Σ), Strong Rebut) be an argumentation system over a
knowledge base Σ whose minimal conflicts are all binary. For any stable ex-
tension E of (Arg(Σ), Strong Rebut), Base(E) is a maximal consistent subset of
Σ. For any maximal consistent subset S of Σ, Arg(S) is a stable extension of
(Arg(Σ), Strong Rebut).

Let us now investigate the results of an argumentation system that is built
upon the attack relation “Undercut”. Recall that the idea behind this relation
is that an argument may undermine a premise of another argument. Formally:

Definition 8 (Undercut) Let a, b ∈ Arg(Σ). The argument a undercuts b iff
∃x ∈ Supp(b) such that the set {Conc(a), x} is inconsistent.

The next property shows the main feature of this attack relation.

Property 7. The relation “Undercut” is conflict-dependent.

It can be checked that this relation is unfortunately not conflict-sensitive. For
instance, neither the argument ({x∧y}, x) undercuts the argument ({¬y∧z}, z)
nor ({¬y∧z}, z) undercuts ({x∧y}, x). However, the set {x∧y,¬y∧z} is clearly
a minimal conflict. Due to this limitation, undercut is not valid.

Property 8. The relation “Undercut” is not valid.

Somewhat surprisingly, the argumentation system (Arg(Σ), Undercut) sat-
isfies extension consistency. Indeed, the base of any admissible extension of this
argumentation system is consistent. The reason is that the arguments that do
not behave correctly w.r.t. Undercut, are defended by other arguments.

Property 9. If E is an admissible extension of an argumentation system (Arg(Σ),
Undercut), then Base(E) is consistent.

Unfortunately, the fact that the extensions (under a given acceptability se-
mantics) of (Arg(Σ), Undercut) satisfy consistency does not mean that “Under-
cut” is a good attack relation. This relation works only when “all” the arguments
that can be built from a knowledge base are extracted and taken into account. In



many applications, like dialogue between two or more agents, this is inadequate.
Indeed, in a dialogue, agents seldom utter all the possible arguments.

In [10], it has been shown that when the knowledge base Σ is encoded in
propositional logic, that is, (L,CN) is propositional logic, there is a correspon-
dence between the stable extensions of the argumentation system (Arg(Σ),Undercut)
based on Σ and the maximal consistent subsets of Σ. The following result shows
that this property holds for any logic in the sense of Tarski.

Proposition 5 Let (Arg(Σ),Undercut) be an argumentation system over a knowl-
edge base Σ.

1. For all stable extension E of (Arg(Σ),Undercut), Base(E) is a maximal (wrt
set inclusion) consistent subset of Σ.

2. For all stable extension E of (Arg(Σ),Undercut), E = Arg(Base(E)).

The following result shows that each maximal (wrt set inclusion) consistent
subset of Σ “returns” exactly one stable extension of (Arg(Σ),Undercut).

Proposition 6 Let (Arg(Σ),Undercut) be an argumentation system over a knowl-
edge base Σ.

1. For all maximal (wrt set inclusion) consistent subset S of Σ, Arg(S) is a
stable extension of (Arg(Σ), Undercut).

2. For all maximal (wrt set inclusion) consistent subset S of Σ, S = Base(Arg(S)).

From the above results, a full correspondence between the stable extensions
of (Arg(Σ),Undercut) and the maximal consistent subsets of Σ is established.

Corollary 5. Let (Arg(Σ),Undercut) be an argumentation system over a knowl-
edge base Σ. The stable extensions of (Arg(Σ),Undercut) are exactly Arg(S)
where S ranges over the maximal (wrt set inclusion) consistent subsets of Σ.

Since each maximal consistent subset of Σ “returns” a stable extension of
the argumentation system (Arg(Σ),Undercut), then the latter always has stable
extensions unless the knowledge base Σ contains only inconsistent formulas.

Corollary 6. Let (Arg(Σ),Undercut) be an argumentation system over a knowl-
edge base Σ. If there exists x ∈ Σ s.t. {x} is consistent, then (Arg(Σ),Undercut)
has at least one stable extension.

The results presented in this section are disappointing. They show that the
three classes of argumentation systems that are that have been given exten-
sive attention in the literature suffer from collapse. The argumentation system
(Arg(Σ),Rebut) should not be used since it violates the postulate on consistency,
while the system (Arg(Σ), Strong Rebut) should only be used in the particular
case that all minimal conflicts of Σ are binary. The third argumentation system
(Arg(Σ),Undercut) is misleading inasmuch as it satisfies extension consistency



while the “Undercut” relation is not valid. However, its stable extensions “re-
turn” all and only maximal consistent subbases of the knowledge base at hand.
Thus, it can be used specifically under the stable semantics. Anyway, we should
keep in mind that the “Undercut” relation satisfies extension consistency at the
cost of needing to take into account arguments that have different conclusions
but the same support: so much redundancy! The results show that the system
based on the “Undercut” relation guarantees extension consistency (at a pro-
hibitive cost) but “Undercut” does not enjoy nice properties.

5 Conclusion

The paper has analyzed the different acceptability semantics introduced in [12]
in terms of the subbases that are returned by each extension. The results of the
analysis show that there is a complete correspondence between maximal consis-
tent subbases of a KB and maximal conflict-free sets of arguments. Regarding
stable extensions, we have shown that, when the attack relation is chosen in an
appropriate way, then they return maximal consistent subbases of KB. How-
ever, they don’t return all of them. A choice is made in an unclear way. The
case of preferred extensions is worse since they compute consistent subbases but
not necessarily maximal ones. When the attack relation is considered symmet-
ric, inconsistent subbases are returned by conflict-free sets of arguments when
ternary or more minimal conflicts are available in a KB. This is due to the binary
character of the attack relation.

The paper studies three argumentation systems that rely on well-known at-
tack relations. The results show that the system based on the “Undercut” re-
lation guarantees extension consistency (at a prohibitive cost) but “Undercut”
does not enjoy nice properties.
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