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Abstract. An argumentation framework consists of a set of interacting argu-
ments and a semantics for evaluating them. This paper proposes a new family
of semantics which rank-orders arguments from the most acceptable to the weak-
est one(s). The new semantics enjoy two other main features: i) an attack weakens
its target but does not kill it, ii) the number of attackers has a great impact on the
acceptability of an argument. We start by proposing a set of postulates that such
semantics should satisfy, then propose various semantics that satisfy them.

1 Introduction

Argumentation is a reasoning model based on the construction and evaluation of inter-
acting arguments. The most popular semantics were proposed by Dung in his seminal
paper [6]. Those semantics as well as their refinements (e.g. in [3, 5]) partition the pow-
erset of the set of arguments into two classes: extensions and non-extensions. Every
extension represents a coherent point of view. An absolute status is assigned to each
argument: accepted (if it belongs to every extension), rejected (if it does not belong
to any extension), and undecided if it is in some extensions and not in others. Those
semantics are based on the following considerations:

» The impact of an attack from an argument b to an argument a is binary. Indeed, if b is
accepted then the attack kills a, otherwise it has no effect on a.

» One attack against an argument a has the same effect on a as any number of attacks.
Indeed, one attack is sufficient to kill a, several attacks cannot kill a to a greater extent.

» Arguments that have the same status are considered as “equally acceptable”.

The first consideration may seem rational in applications like paraconsistent rea-
soning. An attack from an argument b to a is sufficient to kill a¢ (assuming that b is
non-attacked). Indeed, in this case arguments are formulas and attacks correspond to
contradictions. It makes sense to consider that one contradiction is lethal. However, in
other applications like decision making, an attack does not necessarily kill its target but
just weakens it. Suppose that the two arguments a and b are exchanged by two doctors.

a: The patient should have a surgery since he has cancer.
b: But, the statistics show that the probability that a surgery will improve the state of
the patient is low.
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In this case, the attack from b only weakens a but does not kill it. The doctor may
still choose to do the surgery since it gives (a small) chance for the patient to survive.

The second consideration is debatable in situations like decision making. Suppose
a seller who provides the argument a in favor of a given car.

a: This car is certainly powerful since it is made by Peugeot.

by: The engines of Peugeot cars break down before 300000km.
o: The airbags of Peugeot cars are not reliable.

: The spare part is very expensive.
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If the buyer receives the argument b; against Peugeot (thus against a), then he ac-
cepts less a. The situation becomes worse if he receives bs and bs. Indeed, the more
arguments he receives against a, the less his confidence in a.

The third consideration is also debatable. Consider the case of grounded extension
[6]. It contains the non-attacked arguments of a framework and the ones defended by
them. Both types are assumed to be equally acceptable due to the first consideration
which assumes that attacks kill their targets. However, being attacked weakens an argu-
ment. Thus, non-attacked arguments are more acceptable than attacked ones.

To sum up, existing semantics may be well suited for reasoning but not for applica-
tions like decision making. In the present paper, we propose a new family of semantics
that are based on the following graded considerations:

» Weakening: Arguments cannot be killed. However they can be weakened to an extreme
extent. An attack from an argument b to an argument a always causes a decrease
in the acceptability of a (possibly only by an infinitesimal amount). The greater the
acceptability of b, the greater the decrease in the acceptability of a.

» Counting: the more numerous the attacks against a, the greater the decrease in the
acceptability of a.

» Graduality: Arguments are not necessarily equally acceptable.

In our approach, a semantics is a function that transforms any argumentation frame-
work into a ranking on its set of arguments: from the most accepted to the weakest
one(s). Our first step consists of proposing postulates, each of which is an intuitive
and desirable property that a semantics may enjoy. Such an axiomatic approach allows
a better understanding of semantics and a more precise comparison between different
proposals. We investigate the dependencies and the compatibilities between postulates.
In a second step, we construct two semantics based on our graded considerations that
satisfy certain postulates.

2 Ranking-based semantics

An argumentation framework consists of a set of arguments and a set of attacks between
them. Arguments represent reasons to believe in statements, doing actions, etc. Attacks
express conflicts between pairs of arguments. In what follows, both components are
assumed to be abstract entities.



Definition 1 (Argumentation framework) An argumentation framework is an ordered
pair A = (A, R), where A is a finite set of arguments and R a binary relation on A
We call R an attack relation. Intuitively, aRb (or {a,b) € R) means that a attacks b.

Notation For an argumentation framework A = (A, R), we define that Arg(A) = A.
Fora € A, Atta(a) = {b € A|bRa}. When the context is clear, we write Att(a) for
short. The same goes for all notations.

As in classical approaches for argumentation [6], since arguments may be conflict-
ing, it is important to evaluate them and to identify the ones to rely on for inferring
conclusions (in case of handling inconsistency in knowledge bases) or making deci-
sions, . . .. For that purpose, we propose ranking-based semantics which rank-order the
set of arguments from the most acceptable to the weakest one(s). Thus, unlike existing
semantics which assign an absolute status (accepted, rejected, undecided) for each ar-
gument, the new approach compares pairs of arguments on the basis of their respective
sets of attackers, and states which argument is more acceptable than another. A ranking
is a total and transitive binary relation.

Definition 2 (Ranking) A ranking < on a set A is a binary relation on A such that:

v =is total (i.e. foralla,b € A, a <borb =< a)
« < is transitive (i.e. forall a,b,c € A, ifa <bandb < ¢, thena < ¢).

Intuitively, a = b means that a is at least as acceptable as b. So, b A a means that
a is strictly more acceptable than b.

Definition 3 (Ranking-based semantics) A ranking-based semantics S is a function
that transforms any argumentation framework A = (A, R) into a ranking on A.

A ranking should not be defined in an arbitrary way, but should obey to some prin-

ciples (postulates). In the next section, we discuss some intuitive and basic postulates.

3 Postulates for semantics

A ranking on a set of arguments is defined using only the attacks between arguments.
Thus, the first postulate that a semantics should enjoy ensures that the evaluation of
arguments does not depend on their identity but only on the attack relation. Let us
illustrate our purpose on the following example.

Example 1 Consider the two argumentation frameworks depicted in the figure below.

The ranking relation between a and b should be the same as the one between c and d.

Before presenting the postulate, let us first define when two argumentation frame-
works are equivalent.



Definition 4 (Isomorphism) Let A = (A, R) and A’ = (A, R') be two argumenta-
tion frameworks. An isomorphism from A to A’ is a bijective function f from A to A’
such thatV a,b € A, aRb iff f(a)R'f(b).

The first postulate, called abstraction, is defined as follows:

Postulate 1 (Abstraction) A ranking-based semantics S satisfies abstraction (Ab) iff
for any two frameworks A = (A, R) and A’ = (A', R'), for any isomorphism f from
A to A/, we have that ¥V a,b € A, (a,b) € S(A) iff (f(a), f(b)) € S(A).

It is worth pointing out that extension-based semantics (i.e., Dung’s semantics) obey
in some sense to this postulate. For instance, both argumentation frameworks of Exam-
ple 1 have one preferred extension which contains the non attacked argument (a resp. ¢).

The second postulate states the following: the question whether an argument a is at
least as acceptable as an argument b should be independent of any argument c that is
not connected to a or b, that is, there is no path from a or b to ¢ (ignoring the direction
of the edges). Let us first define the independent parts of an argumentation framework.

Definition 5 (Weak connected component) A weak connected component of an ar-
gumentation framework A is a maximal subgraph of A in which any two vertices are
connected to each other by a path (ignoring the direction of the edges). Com(A) denotes
the set of every argumentation framework B s.t. B is a weak connected component of
A or the graph union of several weak connected components of A.

Let us now define the postulate, called independence.

Postulate 2 (Independence) A ranking-based semantics S satisfies independence (In)
iff for every argumentation framework A, ¥V B € Com(A), V a,b € Arg(B), {a,b) €
S(A) iff (a,b) € S(B).

Example 1 (Cont) Assume that the two graphs of Example 1 constitutes a single argu-
mentation framework. Then, the ranking relation between a and b (and the one between
c and d) should remain the same after the fusion of the two frameworks.

As already said, a ranking is based on the attack relation. Thus, comparing two argu-
ments amounts to comparing their respective sets of attackers. It is natural to consider
an argument which has no attackers as more acceptable (and thus ranked higher) than
another argument which has attackers. The third postulate encodes this idea.

Postulate 3 (Void Precedence) A ranking-based semantics S satisfies void precedence
(VP) iff for every argumentationframework A = (A, R), foralla,b € A, if Att(a) =0
and Att(b) # 0, then (b,a) ¢ S(A).

Example 1 (Cont) This postulate ensures that a is ranked higher than b, and c is ranked
higher than d.

Non-attacked arguments are also favored by extension-based semantics. They be-
long to any extension under grounded, complete, stable, preferred semantics. Thus, they
are accepted. However, they may have the same status (accepted) as attacked arguments
(which are defended). Let us consider the following example.



Example 2 Assume the argumentation framework depicted in the figure below.

The grounded extension of this framework is {a,c}. The arguments a and c are both
accepted whereas b is rejected. Our approach ranks argument a higher than c since c
is attacked, thus weakened. Thus, it ensures a more refined treatment of arguments.

What about two arguments that both have attackers? The idea is to privilege the one
with weak attackers. Since an attack always weakens its target, then the fourth postulate
states that having attacked attackers is better than having non-attacked attackers. In
other words, being defended is better than not. The intuition here is that if an argument
a is defended, then its attackers are weakened. However, an argument which is not
defended still has strong attackers. Let us illustrate our purpose on an example.

Example 3 Consider the argumentation framework depicted in the figure below.

Both arguments a and b have two attackers. The two attackers of b are not attacked,
thus they are strong. However, a is defended by h wrt c thus, the attacker c is weakened.
To sum up, a has one strong and one weak attacker while b has two strong attackers.
Thus, a should be ranked higher than b.

Notation Let A = (A, R) be an argumentation framework and a € A. We denote by
Defa(a) ={b€ A|3Jc € As.t cRa and bRe} the set of all defenders of a in A.

Postulate 4 (Defense Precedence) A ranking-based semantics S satisfies defense prece-
dence (DP) iff for every argumentation framework A = (A, R), Va,b € A, if |Att(a)| =
|Att(b)|, Def(a) # 0, and Def(b) = 0, then (b,a) ¢ S(A).

Example 3 (Cont) The (DP) postulate says that a is strictly more acceptable than b.

Note that the previous postulate treats the case where two arguments have exactly the
same number of attackers and one argument may not be defended. The next postulate
called counter-transitivity, generalizes it in two ways: first it considers arbitrary num-
bers of attackers and second, it considers various strengths of arguments. The postulate
says that an argument a should be ranked at least as high as an argument b, if the attack-
ers of b are at least as numerous and well-ranked as those of a. Before defining formally
the postulate, let us first introduce a relation that compares sets of arguments.

Definition 6 (Group comparison) Let =< be a ranking on a set A of arguments. For
every A, B C A, (A, B) € Gr(=X) iff there exists an injective function f from B to A
suchthatV a € B, f(a) < a.



Intuitively, (A, B) € Gr(=) iff the elements of the group A are at least as numerous
and well-ranked as those of B. The next property follows from the previous definition.

Proposition 1 Let < be a ranking on a set A of arguments and A, B C A. If (A, B) €
Gr(=R), then:

- |A[ > |B[;
— forallx € B, Jy € A such that y < .

Postulate 5 (Counter-Transitivity) A ranking-based semantics S satisfies the postu-
late counter-transitivity (CT) iff for every argumentation framework A = (A, R),
Va,be A if (Att(b),Att(a)) € Gr[S(A)], then {(a,b) € S(A).

Example 3 (Cont) The two arguments a and b have the same number of attackers. Both
attackers of b are strong (since non-attacked), thus they should be ranked higher than ¢
which is attacked (due to (VP) postulate). Thus, a should be ranked at least as high as b.

Strict counter-transitivity is another mandatory postulate in our approach. It says
that an argument a should be ranked higher than an argument b, if the attackers of b
are at least as numerous and well-ranked as those of a. Moreover, the attackers of b are
more numerous or well-ranked. This postulate is defined in two steps.

Definition 7 (Strict group comparison) Let < be a ranking on a set A of arguments.
For every A, B C A, (A, B) € Sgr(=) iff there exists an injective function f from B
to A satisfying the two following conditions:

|V(1€B, f(a) ja;
v |Bl| < |Alor3Ja € B,aZ f(a)

Intuitively, (A, B) € Sgr(=) iff the elements of A are better than those of B based
on cardinality and acceptability.

Postulate 6 (Strict Counter-Transitivity) A ranking-based semantics S satisfies strict
counter-transitivity (SCT) iff for every argumentation framework A = (A, R), V a,b €
A, if (Att(b),Att(a)) € Sgr[S(A)], then (b,a) ¢ S(A).

Example 3 (Cont) The argument b cannot be ranked as a since its attackers are ranked
higher than those of a. Thus, according to the (SCT) postulate, a should be strictly more
acceptable than b.

There are situations where the cardinality of the attackers and their quality are op-
posed as discussed in the following example.

Example 4 Consider the argumentation framework depicted in the figure below.
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If one non-attacked attacker is sufficient to kill an argument (which is the case in
most approaches to argumentation), then the argument a should naturally be ranked
higher than b. But, in our approach, as explained in the introduction, no number of
attacked or non-attacked attackers can kill an argument. They can just weaken it. Con-
sequently, in this example, a is attacked by two weakened arguments, while b is attacked
by one strong argument. As usual, we have to make a choice: give precedence to cardi-
nality over quality (i.e. two weakened attackers is worse for the target than one strong
attacker), or give precedence to quality over cardinality. In certain applications such as
decision-making, both options are reasonable. For example, suppose we have to buy a
car and we are considering a red one and a blue one. In addition:

b = The red car has got 5 stars out of 5 in our favorite car magazine;

e = The magazine does not take into account the fact that the red car is 1000 euros
more expensive than the blue one;

a = The blue car has got 5 stars out of 5 in our favorite car magazine;

¢ = The magazine does not take into account the fact that there is a probability of 0.5
that the blue cars engine breaks down before 300000km. The reparations would
cost 2000 euros;

h = A friend of ours is a mechanic. He would offer us a 10% discount on engine repa-
ration;

d = The magazine does not take into account the fact that there is a probability of 0.5
that the blue car will be stolen from us before 10 years. The insurance will pay for
another blue car, but there is a deductibility provision of 2000 euros;

g = In our neighborhood, the rate of motor vehicle theft is 10% lower than the average.

In this example, it is intuitive to consider that b is more acceptable than a. Moreover,
in decision making, a rational principle is that the values of the arguments sum up, and
the greatest sum wins. More precisely, in the absence of h and g, it is intuitive that e,
¢, and d have the same value. Thus, the value of {c, d} is 2 times the value of e. So, in
the presence of h and g, the value of {¢, d} is approximately 0.9 times 2 times the value
of e, which is strictly greater than the latter. So, according to the sum-up principle, a
is more seriously attacked than b. Now, suppose that the argument e is replaced by the
following one:

e = The magazine does not take into account the fact that the red car is 4000 euros
more expensive than the blue one.

This time it is intuitive to consider that a is more acceptable than b.

To summarize, the outcome of Example 4 is debatable. We can give precedence to
cardinality over quality (i.e. b is more acceptable than a) or give precedence to quality
over cardinality (i.e. a is more acceptable than b). Both options are rational and it is
impossible to make a general and non-arbitrary choice. We turn to two axioms that
represent these two choices.

Postulate 7 (Cardinality Precedence) A ranking-based semantics S satisfies cardi-
nality preference (CP) iff for every argumentation framework A = (A, R), V a,b € A,
if [Att(a)| < |Att (D), then (b,a) & S(A).



On the contrary, quality precedence says that an argument a should be ranked higher
than an argument b, if one attacker of b is ranked higher than any attacker of a.

Postulate 8 (Quality Precedence) A ranking-based semantics S satisfies quality prece-
dence (QP) iff for every argumentation framework A = (A, R), V a,b € A, if there
exists ¢ € Att(b) such thatV d € Att(a), (d,c) ¢ S(A), then (b,a) ¢ S(A).

The last postulate concerns the way arguments are defended. The idea is that an argu-
ment which is defended against more attackers is ranked higher than an argument which
is defended against a smaller number of attacks. Before defining formally the postulate,
let us first introduce the concepts of simple and distributed defense.

Definition 8 (Simple/distributed defense) Ler A = (A, R) be an argumentation frame-
work and a € A.

» The defense of a is simple iff every defender of a attacks exactly one attacker of a.
» The defense of a is distributed iff every attacker of a is attacked by at least one argu-
ment.

Let us illustrate these concepts on the following example.

Example 5 Consider the argumentation framework depicted in the figure below.

The two arguments a and b have the same number of defenders: Def(a) = {h, g} and
Def(b) = {e, k}. However, the defense of a is simple and distributed while the defense
of b is simple but not distributed.

The postulate, called distributed-defense precedence, is defined as follows.

Postulate 9 (Distributed-Defense Precedence) A ranking-based semantics S satisfies
distributed-defense precedence (DDP) iff for any argumentation framework A = (A, R),
YV a,b € A such that |Att(a)| = |Att(b)| and |Def(a)| = |Def(d)|, if the defense
of a is simple and distributed and the defense of b is simple but not distributed, then
(b,a) ¢ S(A).

Example 5 (Cont) The postulate (DDP) ensures that a is more acceptable than b.

4 Relationships between postulates

So far we have proposed a set of postulates that are suitable for defining a ranking-based
semantics in argumentation theory. In this section, we study their dependencies as well
as their compatibilities (i.e., whether they can be satisfied together by a semantics). We
start by showing that the postulates (CT), (SCT), (VP) and (DP) are not independent.



Proposition 2 Let S be a ranking-based semantics:

v if S satisfies (SCT), then it satisfies (VP);
v if S satisfies both (CT) and (SCT), then it satisfies (DP).

The remaining postulates are independent. Let us now check the compatibility of
the postulates. We show that all the postulates are compatible except (CP) and (QP)
which cannot be satisfied together. Example 4 already illustrates this issue. Indeed,
(QP) prefers a to b while (CP) prefers the converse.

Proposition 3 No ranking-based semantics can satisfy both (CP) and (QP).

The two postulates (CP) and (QP) can however be satisfied separately. In addition,
they are compatible with the remaining postulates.

Proposition 4 The postulates (CP), (CT), (SCT), (In), (Ab) and (DDP) are compatible.

In the next section we provide two semantics which satisfy the six above postulates.
Similarly, (QP) is compatible with some postulates.

Proposition 5 The postulates (QP), (In) and (Ab) are compatible.

Recall that (QP) and (CP) represent two opposed directions. The extension-based
semantics take one direction (QP), while graded semantics may take the other one.

5 Discussion-based and Burden-based semantics

This section introduces two semantics that satisfy the postulates, namely those that are
compatible with (CP).

The first semantics, called discussion-based semantics, is based on a notion of linear
discussion similar to ‘argumentation line’ in [8]. A linear discussion is a sequence of
arguments such that each argument attacks the argument preceding it in the sequence.

Definition 9 (Linear discussions) Let A = (A, R) be an argumentation framework
and a € A. A linear discussion for a in A is a sequence s = {ay,...,a,) (Where n is
a positive integer) of elements of A such that a; = aandVi € {2,3,...,n} a;Ra;—1.
The length of s is n. We say that: s is won iff n is odd; s is lost iff n is even.

Let us illustrate this notion on an example.

Example 5 (Cont) Two won linear discussions for the argument a are e.g., s1 = (a)
and so = (a,d,g) and one lost linear discussion is, for instance, s3 = {a,c,h,l).
Similarly, three won linear discussions for the argument b are s} = (b), s = (b, j,e)
and s5 = (b, 7, k) and one lost discussion is s = (b, 7).

The basic idea behind the semantics is: for every argument a, for every positive
integer 7, to count the number of won or lost linear discussions of length i for a. We
positively count the lost discussions and negatively count the won discussions. So, in
any case, the smaller the number calculated, the better the situation for a.



Definition 10 (Discussion counts) Let A = (A, R) be an argumentation framework,
a € A, and i a positive integer. We define that:

. | =N ifiisodd;
Disai(a) = {N if i is even;

where N is the number of linear discussions for a of length 1.

Example 5 (Cont) The following table provides the discussion counts Dis a; of the two
arguments a and b.

alb
-14-1
212
-2(-2
110

= 0N | .

This semantics lexicographically ranks the arguments on the basis of their won and
lost linear discussions.

Definition 11 (Discussion-based semantics) The ranking-based semantics Dbs trans-
forms any argumentation framework A = (A, R) into the ranking Dbs(A) such that
Va,be A (a,b) € Dbs(A) iff one of the two following cases holds:

Vi S {1, 2, .. .}, Disi(a) = DiSi(b);
v Ji e {1,2,...}, Dis;(a) < Dis;(b)andVj € {1,2,...,i—1},Dis;(a) = Dis;(b).

Example 5 (Cont) Note that forall: = 1,2, 3,Dis;(a) = Dis;(b). However,Dis4(a) >
Dis4(b). Thus, (a,b) ¢ Dbs(A), i.e., b is strictly more acceptable than a.

At first sight, the infinite character of the set {1, 2, ...} of all positive integers may
look like an issue from a computational point of view. Indeed, Dis;(a) may never stop
getting bigger. This is due to the possible presence of cycles in the argumentation frame-
work. But, if Dis;(a) never stops evolving, it evolves cyclically. So, we strongly con-
jecture that there exists a threshold ¢ such that if Vi < ¢, Dis;(a) = Dis;(b), then
Vi > t,Dis;(a) = Dis;(b). Such an equality ensuring threshold would be dependent
on the length of the longest simple cycle in the argumentation framework. This thresh-
old would be useful to write a program implementing our discussion-based semantics.
Note also that the computation can simply be done up to a fixed step t. The greater ¢,
the closer the ranking obtained to the actual discussion-based ranking. This kind of ap-
proximation can be found in the ranking-system literature. Certain well-known ranking
systems are theoretically defined by an infinite number of iterations, but in practice only
a finite number of iterations are computed. For example, this is the case of Pagerank,
the system at the basis of the Google search engine. The original version of Pagerank
can be found in [10]. An exhaustive study of Pagerank, as well as alternate versions,
can be found in e.g. [9].

The postulates represent a theoretical validation for our semantics.

Theorem 1 Dbs sarisfies (CT), (SCT), (CP), (Ab), and (In).



From Proposition 2, it follows that Dbs satisfies also (VP) and (DP).
Corollary 1. Dbs satisfies (VP) and (DP).
Theorem 2 Dbs does not satisfy (DDP).

We show next that the Dbs semantics treats (odd and even length) cycles in a similar
way. Before that, let us recall what is an elementary cycle.

Definition 12 (Elementary cycle) Let A = (A, R) be an argumentation framework.
A cycle in A is a sequence {a1,as,...,ay) of elements of A (where n is a positive
integer) such thatVi € {1,2,...,n—1}, a;Ra;+1 and a,Ray. A cycle (a1, as, ..., ay)
in A is elementary iff there is no cycle {by,ba, ..., by,) in A such that m < n and
{bl, bg, ey bm} Q {al,ag, e ,an}.

Proposition 6 Let A = (A, R) be an argumentation framework. Suppose that A con-
sists of one elementary cycle, i.e. there exists an elementary cycle {a1,...,an) in A
such that {a,...,an} = A Then, ¥ a,b € A, (a,b) € Dbs(A).

The second semantics, called burden-based semantics, satisfies (DDP). It follows a
multiple steps process. At each step, it assigns a burden number to every argument. In
the initial step, this number is 1 for all arguments. Then, in each step, all the burden
numbers are simultaneously recomputed on the basis of the number of attackers and
their burden numbers in the previous step. More precisely, for every argument a, its
burden number is set back to 1, then, for every argument b attacking a, the burden
number of a is increased by a quantity inversely proportional to the burden number of b
in the previous step. An argument a is at least as acceptable as an argument b iff @ and
b have the same burden numbers or the burden numbers of b increase more rapidly.

Definition 13 (Burden numbers) Let A = (A, R) be an argumentation framework.
We define by recursion the function Bura on {0,1,...}. Foreveryi € {0,1,...}, Bur;
(i.e. Bura (1)) is the function from A to Q such thatV a € A,

Bur;(a) = L iri=0;
S 1+ Dheare(a)1/Buri_1(b) otherwise.

By convention, if Att(a) = (), then Xy per(q)1/Bur;_1(b) = 0. Bur;(a) is the bur-
den number of a in the i™ step.

Let us illustrate this function on the following example.

Example 2 (Cont) The burden numbers of each argument and at each step are summa-
rized in the table below. Note that the burden numbers of the three arguments will not
change beyond step 2.

Step i|a|b| ¢
0 [1]1]1
1 12| 2
2 |1]2]1.5




We lexicographically compare two arguments on the basis of their burden numbers.

Definition 14 (Burden-based semantics) The ranking-based semantics Bbs transforms
any argumentation framework A = (A, R) into the ranking Bbs(A) on A such that
Va,be A (a,b) € Bbs(A) iff one of the two following cases holds:

' Vi€ {0,1,...}, Bur;(a) = Bur,(b);
v 31 €{0,1,...}, Bur;(a) < Bur;(b)andVj € {0,1,...,i—1}, Bur;(a) = Bur;(b).

As for the discussion-based semantics, an equality-ensuring threshold probably ex-
ists for the burden-based semantics. Such a threshold would make possible an exact
computation, despite the fact that {0, 1, ...} is infinite.

Note that both semantics (Dbs and Bbs) do not take into account possible depen-
dencies between an argument and one of its attackers, nor the dependencies between
two attackers. Actually, Dbs and Bbs rank the arguments only on the basis of the struc-
ture obtained by “unrolling” the cycles. For example, our semantics do not distinguish
between a loop (e.g. aRa) and a cycle (e.g. aRb, bRa). The notion of dependence is
hard to capture and is beyond the scope of this paper. Our goal in the present paper is
essentially to introduce a new kind of semantics, basic postulates for it, and instances
satisfying those postulates.

We show that the burden-based semantics satisfies all the postulates except (AP)
which is not compatible with (CP).

Theorem 3 The semantics Bbs satisfies (CT), (SCT), (CP), (DDP), (Ab) and (In).
From Proposition 2, it satisfies also (VP) and (DP).
Corollary 2. Bbs satisfies (VP) and (DP).

Let us see on examples how the semantics works.

Example 2 (Cont) According to Bbs, the argument a is strictly more acceptable than ¢
which is itself strictly more acceptable than b.

Note that Bbs returns a more refined result than Dung’s semantics. Indeed, the set
{a, ¢} is a (preferred, grounded, stable) extension according to [6]. Our approach refines
the result by ranking a higher than c since it is non attacked. This does not mean that
Bbs semantics coincides with Dung’s ones. The following example shows that the two
approaches may return different results since they are grounded on different principles.

Example 4 (Cont) The argumentation framework has a unique extension {h, g, a, e}
which is grounded, preferred and stable. Thus, the argument b is rejected. Let us now
apply the Bbs semantics on the same framework. The table below provides the burden
numbers of the arguments.



Step i|h|g|c|d|ale|b
0 |T|1{1j1|1|1f1
1 |1(1]2]2|3]1]2
2 |1{1[2{2]2]1|2

Bbs semantics provides the following ranking: h, g,e < ¢,d,b =< a. Thus, b is more
acceptable than a since it has less attackers.

Example 5 (Cont) According to Bbs, « is strictly more acceptable than b.

Note that in this example, the semantics Dbs returns the converse. This shows that
the two semantics may return different results. This difference comes from the postulate
DDP which is satisfied by Bbs but violated by Dbs.

As with Dbs, we show next that the Bbs semantics treats (odd and even length)
cycles in a similar way.

Proposition 7 Let A = (A, R) be an argumentation framework. Suppose that A con-
sists of one elementary cycle, i.e. there exists an elementary cycle {a1,...,a) in A
such that {aq,...,an} = A Then, ¥ a,b € A, (a,b) € Bbs(A).

6 Related work

There are three works in the literature which are somehow related to our contribution.
The first attempts were done in [1,2] where the authors identified different principles
and compared existing semantics wrt them. The principles are tailored for extension-
based semantics, and do not apply for ranking-based ones. The work in [4] is closer
to ours. The authors defined a notion of gradual acceptability. The idea is to assign a
numerical value to each argument on the basis of its attackers. The properties of the
valuation function are unclear. Our approach defines, through a set of postulates, the
desirable properties of a preference relation over a set of arguments. The two semantics
Dbs and Bbs define formally two valuation functions that satisfy the postulates. In [7],
Dung’s abstract framework was extended by considering weighted attacks. The basic
idea is to remove some attacks up to a certain degree representing the tolerated incoher-
ence, and then to apply existing semantics on the new graph(s) by ignoring completely
the weights. This leads to extensions which are not conflict-free in the sense of the at-
tack relation. Consider the following weighted framework. If one tolerates incoherence
up to degree 1 (3 = 1), then the attack from a to b is ignored. Consequently, (} and
{a, b} are two B-grounded extensions.

5 (o) 1
—®

This approach is different from ours for several reasons. First, it obeys to the three ‘bi-
nary’ considerations of Dung’s framework. Indeed, weights are only used for deciding



which attacks can be ignored when computing the extensions. The second difference
stems from the fact that weights of attacks are inputs of a framework. In our approach,
we compute the relative importance of arguments. The more an argument is important,
the stronger the attacks emanating from it. However, this does not mean that weights
of attacks are generated. In our approach, the three arguments a, b and ¢ are equal wrt.
Bbs and Dbs. The reason is that we do not consider weights on attacks. However, our
semantics can easily be extended to deal with weighted attacks.

7 Conclusion

The paper developed an axiomatic approach for defining semantics for argumentation
frameworks. It proposed postulates (each of which represents a criterion) that a seman-
tics may satisfy. The approach offers thus a theoretical framework for comparing se-
mantics. It is worth recalling that only some of the postulates (like abstraction and void
precedence) are satisfied by Dung’s semantics. The others are based on graded consid-
erations which may be natural in applications like decision making. Another novelty of
the approach is that it computes the acceptability of arguments without passing through
multiple points of view. Its basic idea is to compute a complete ranking on the set of
arguments. The paper proposed two novel semantics that satisfy the postulates but that
do not necessarily return the same results. An important future work is to characterize
the semantics that satisfy the postulates.
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