On argumentation-based paraconsistent logics

Leila Amgoud

IRIT — CNRS
118, route de Narbonne
31062, Toulouse Cedex 09
amgoud@irit.fr

Abstract. Argumentatioris an alternative approach for reasoning with inconsis-
tent information. Starting from a knowledge base (a set efrses) encoded in

a logical language, an argumentation-based logic defirggsmentsandattacks
between them using the consequence operator associatethevianguage, then
uses asemanticdor evaluating the arguments. The plausible conclusionseto
drawn from the knowledge base are those supported by “gaodieents.

In this paper, we discuss two families of such logics: theiffiaf logics that
uses extension semantics for the evaluation of argumemtsthe@ one that uses
ranking semantics. We discuss the outcomes of both fanaiidscompare them.

1 Introduction

An important problem in the management of knowledge-bagsgms is handling of
inconsistency. Inconsistency may be present for mainlgetieasons: i) A knowledge
base may contain a default rule and strict rules encodingmians of the default rule
[26]. The two kinds of rules may lead to opposite conclusidhin model-based diag-
nosis [21], the description of the normal behavior of a gysteay be conflicting with
the observations made on this system. iii) An inconsisteoitedge base may result
from the union of several consistent knowledge bases pértato the same domain
[12]. Moreover, in [18], Gabbay and Hunter claim that indstency in a database ex-
ists on purpose and may be useful if its presence triggetatdeiactions that cope with
it. They give the example of overbooking in airline bookiygtems.

Whatever the source of inconsistency, a paraconsisteiatigeeded to deal with
it. A paraconsistent logic consists of a language and a cpu@see operator which
returns rational conclusions even from inconsistent sefisrmulas.

There has been much work on constructing and investigaticlylegics. Two fami-
lies can be distinguished: those that restore consistengy, (10, 26, 27]) and those that
tolerate inconsistency and cope with it (e.g., [6, 7, 13).1@he important instance of
the first family computes the maximal (for set inclusion) sistent subbases of a knowl-
edge base, then chooses the conclusions that follow frothagk subbases ([27]). Re-
garding the second family, a prominent approach considargmalued interpretations
with the crucial particularity that they can be models ofreireconsistent premises and
thus, can be used to draw conclusions.

Since early nineties, due to its explanatory poveegumentationhas become a
promising approach for handling inconsistency. Like maajued logics, it accepts in-
consistency and copes with it. Starting from a knowledge leesoded in a particular



logical language, an argumentation-based logic buildearaemts and attack relations
between them using a consequence operator associatedhaitmguage, then it eval-
uates the arguments using a semantics. Finally, it drawsdhelusions that are sup-
ported by good arguments. Attacks generally refer to therisistency of the base.

In the argumentation literature, arguments are mainlyuatatl usingextension
based semantics (or extension semantics for short) asluteal by Dung in his seminal
paper [15]. Extension semantics are functions transfagraimy argumentation graph
into one or several subsets of arguments, cadlddnsionseach of which representing
a coherent point of view. Using the extensions, the set afraents is partitioned into
three disjoint categories: i) the arguments which are iresiensions (calledcepti-
cally accepted), ii) the arguments that are in some but not alheidas (callectred-
ulouslyaccepted), and ii) the arguments which do not belong to atgneion (called
rejected. Examples of extension semantics are the well-known stgiveferred, com-
plete, grounded, and admissible semantics proposed by DuUid], as well as their
refinements like the recursive semantics [5] and ideal séosdii4].

More recently, another family of semantics, calggaded semantigss emerging.
Those semantics do not compute extensions and are baseffesardiprinciples. For
instance, the number of attackers is taken into accoungevithiloes not play any role
in extension semantics. Thus, the two families of semarféxgension semantics and
graded semantics) may not provide the same evaluationgoifremnts.

Graded semantics assign to every argument a numericalnggdtesenting itstrength
These values allow to rank-order the arguments from the ex=tptable to the less
acceptable ones. Ranking semantics [ELategoriser semantics [8, 25], value-based
semantics [11], and game-theoretical semantics [22] aamples of graded semantics.

In [29], the authors presented a very interesting extensfdung’s semantics by
introducing the notion oftratified labellings Like graded semantics, the idea is to
provide graded assessment of arguments by assigning eedegrach argument. How-
ever, the degree does not represent the strength of an antjbuteather to what extent
the argument is controversial. Thus, the correspondingaaéos do not satisfy the
mandatory properties of graded semantics. Interestingbugh, stratified labellings
have close relationships with ranking functions like Z-emidg [23].

All the above semantics evaluate arguments solely on this baattacks and do
not take into account the internal structure of argumerttsirlinput is a plain directed
graph whose nodes and arrows represent abstract argumedrattacks.

Our aim in this paper is to discuss and compare the parat¢enslegics built on
top of any Tarskian logic ([28]) and induced by each familysefmantics. We consider
in particular the most popular extension semantics (stabtepreferred semantics in-
troduced by Dung in [15]) and e&nking semanticslefined more recently in [1]. We
show that logics based on extension semantics (ALES) rdlmirconclusions and re-
store consistency. Furthermore, they generalize to argkikar logic the paraconsistent
logic defined by Rescher and Manor in [27] on top of proposdidogic. The paracon-
sistent logics based on ranking semantics (ALRS) returkedwconclusions (from the
most plausible to the less plausible ones) and toleratensistency. Moreover, they are
good candidates for measuring inconsistency in knowledges Finally, we show that
ALRS are more discriminating than ALES in that they solveoinsistency while ALES
avoid it.



2 Argumentation-based logics

An argumentation-based logic is built on top of a logic. listhaper, we focus on
Tarskian logics [28]. According to Tarski, a logic is a setall-formedformulaeand a
consequence operatarhich returns the set of formulae that follow from anothdrase
formulae. There are no requirements on the connectivesusied language. However,
the consequence operator should satisfy some very bagienies.

Definition 1 (Logic) A logic is a tuple(F,w,CN) where F is a set of well-formed
formulae,w is a well-ordet on F, CN is a consequence operator, i.e., a function from
27 to 27 such that ford C F,

— @ C CN(D) (Expansion)
— CN(CN(®)) = CN(P) (Idempotence)
— CN(P) = Ug,chj CN(¥) (Compactness)
— CN({¢}) = F for somep € F (Absurdity)

— ON(0) # F (Coherence)

Notation: Y C ¢y X means thal” is a finite subset oX .

The well-orderingw enables to arbitrarily selectrepresentativdormula among
equivalent ones. Its exact definition is not important far gurpose of the paper. Al-
most all well-known monotonic logics (classical logicduitionistic logics, modal log-
ics, etc.) can be viewed as special cases of Tarski’'s nofian abstract logic. Al intro-
duced non-monotonic logics, which do not satisfy monotioy[8].

The next definition introduces the conceptaljunctivelogic.

Definition 2 (Adjunctiveness) A logic (F, w, CN) is adjunctiveiff for all ¢ and in
F, there existex € F such thatN({a}) = CN({¢, ¥}).

Intuitively, an adjunctive logic infers, from the union afa formulas{¢, '}, some
formula(s) that can be inferred neither frenalone nor fromy alone (except, of course,
whens) ensues frong or vice-versa). In fact, most well-known logics are adjivet
A logic which is not adjunctive could for instance fail to gepV ) from the premises
{_'(bv ﬂ/}}

The notion ofconsistencyssociated with such logics is defined as follows:

Definition 3 (Consistency) A setd C L is consistentvrt alogic (L, w, CN) iff CN(®) #
L. Itis inconsistenbtherwise.

Before introducing the notion of argument, let us first defiinen pairs of formulas
are equivalent.

1 A well-orderon a setX is a relation with the property that every non-empty sub$eX das
a least element in this ordering.

2 Some fragments of well-known logics fail to be adjunctivey. gthe pure implicational frag-
ment of classical logic as it is negationless, disjuncess| and, of course, conjunctionless.



Definition 4 (Equivalent formulas) Let (F,w,CN) be a logic andp, ¢ € F. The for-
mula ¢ is equivalentto ¢ wrt logic (F,w,CN), denoted by = 1, iff CN({¢}) =
CN({1)}).

The building block of argumentation-based logics is theambf argument. An
argument is a reason for concluding a formula. Thus, it has rtvain components:
a supportand aconclusion In what follows, two arguments having the same supports
and different yet equivalent conclusions are not distislyed, they are rather seen as the
same argument. The reason is that those arguments are eedand increase uselessly
and misleadingly the argumentation graph both from a thealeand computational
point of view.

Definition 5 (Argument) Let (F,w,CN) be a logic and® C; F. Anargumenbuilt
from @ is a pair (¥, v) such that:

— ¥ C @ andV¥ is consistent,
— 1 is thew-smallest element df)’ € F | ¢ = ¢} such that) € CN(¥),
— W’ C ¥ such thaty € CN(¥).

An argument?, v)) is asub-argumenof (&', ) iff w C ¥’

Notations: Let (¥, w, CN) be a logic andd C; F. Supp andConc denote respectively
thesupport? and theconclusiony of an argumeng?, ) built from . Arg(&®) denotes
the set of all arguments that can be built frérby means of Definition Sub((¥, v)) is
a function that returns all the sub-arguments of arguri&ng). For any& C Arg(P),
Concs(&) = {Conc(a) | a € £} andBase(E) =, ¢ Supp(a). Max(®) is the set of all
maximal (for set inclusion) consistent subsetsbof.e. for anyS € Max(®), S C &,
S is consistent wrt logidF, w,CN), and for anyg € & \ S, it holds thatS U {¢}
is inconsistentMIC(®) denotes the set of all minimal (for set inclusion) incoresist
subsets o, i.e., for anyS € MIC(®), S C &, S is inconsistent wrt logi¢.F, w, CN),
and for any¢ € S, it holds thatS \ {¢} is consistent wrt logi¢.F, w, CN). Finally,
Free(®) = {¢ € @ | VS € MIC(D), ¢ ¢ S}, i.e.,Free(P) is the set of formulae ob
that are not involved in any minimal (for set inclusion) ins@stent subset a@b.

Since information may be inconsistent, arguments may latach other. In what
follows, such attacks are captured by a binary relationpteshbyR. For two argu-
mentsa, b, (a,b) € R (or aRb) means that attacksb. For the sake of generalitR
is left unspecifiedlt can thus be instantiated in various ways (see [19] forrgdas of
instantiations ofR). However, we assume that it is based on inconsistency.

Definition 6 (Conflict-dependency) Let (F, w, CN) be a logic andP C; F. An attack
relationR C Arg(®) x Arg(®) is conflict-dependeriff for all a, b € Arg(P), if (a,b) €
R thenSupp(a) U Supp(b) is inconsistent.

All existing attack relations are conflict-dependent withadable exceptioryndercut-
ting [24], which prevents the application of defaults in caseagfi¢s built on top of
rule-based languages like ASPIC [4].

As said before, an argumentation-based logic defines frarh sat of formula a
directed graph whose nodes are arguments and arrows aresdttetween them.



Definition 7 (Argumentation function) An argumentation functiog on a logic (F,
w, CN) transforms any sep C; F into a finite directed graph(Arg(®), R) where
R C Arg(P) x Arg(P) is a conflict-dependent attack relation.

We are now ready to introdu@gumentation-based logi¢é\L). An AL is a logic
(in the sense of Definition 1) which is defined upobase logic The latter is supposed
to behave in a rational way when information is consistentdxhibits an irrational
behaviour in presence of inconsistency. Propositionatlisgan example of such logic.
AL restricts thus the base logic’s inference power. An ALg@eds as follows: For any
set® of formulas in the base logic, it defines its correspondingarentation graph.
The conclusions to be drawn frofmusing the consequence operator of the AL are the
formulae that are supported by good arguments accordingiteea semantics.

Definition 8 (AL) Anargumentation-based lodiaL) is alogicL = (F, w, CN’) which
is based on base logicF, w, CN), argumentation functiog on (F, w, CN) and seman-
tics S, where for any®d C; F, CN'(P) C {¢ € F | Ja € Arg(P) with G(P) =
(Arg(®), R) andConc(a) = ¢ wrt logic (F, w, CN)}. If @ is consistent wrt F, w, CN),
thenCN' (@) = CN(P).

In the next two sections, we define more precisely the corsempoperatorgN’ of
the logics induced by extensions semantics and ranking ones

3 Logics induced by extension semantics

The most popular semantics were proposed by Dung in his s¢péper [15]. Those
semantics as well as their refinements (e.g. in [5, 14]) fi@mtihe powerset of the set of
arguments into two classesxtension&indnon-extensiongvery extension represents
a coherent point of view. We illustrate the kind of paracetesit logics induced by such
semantics, namely naive, stable and preferred. Beforagivie formal definitions of
the three semantics, we first introduce two key concepts achithey are based.

Definition 9 (Conflict-freeness—Defence).et7T = (A, R) be an argumentation graph,
£ C Aanda € A.

— & is conflict-freeiff $a, b € £ such thaiaRb.
— & defendsan argument: iff Vb € A such thabRa, 3c € £ such thattRb.

Definition 10 (Semantics)Let7 = (A, R) be an argumentation graph ar&lC A.

— £ is anaiveextension iff it is a maximal (w.r.t. s€t) conflict-free set.

— £ is anadmissibleset iff it defends all its elements.

— £ is acompleteextension iff it is an admissible set that contains any argoinit
defends.

— £ is apreferredextension iff it is a maximal (w.r.t. s€f) set that is conflict-free and
defends its elements.

— & is astableextension iff it is conflict-free and attacks any argumendtlif €.

— £ is agrounded extensioiff it is a minimal (w.r.t. setC) complete extension.

% In the literature, the paifArg(®), R) is also callecargumentation system



— £ is anideal extensioiriff it is a maximal (w.r.t. setC) admissible set contained in
every preferred extension.

Notations: Ext,(7) denotes the set of all extensionsbfunder semantics where

x € {n,p, s} andn (resp.p ands) stands for naive (respectively preferred and stable).
When we do not need to refer to a particular semantics, weit(7") for short. Since
any argumentation frameworKk has a single grounded and a single ideal extension,
they will be denoted respectively I&f(7) andIE(T).

Example 1 The argumentation graph depicted below

@-0-O-0

has five naive extensions; = {a,c,g},& = {d,e, f},E3 = {b,d, f},&E1 = {a, e, g},
& = {a, b, g}; one stablef; and two preferred extensiods and&s = {a, g}.

It is worth recalling that stable extensions are naive @etpely preferred) exten-
sions but the converses are not always true. Moreover, amegtation framework
may have no stable extensions.

Let us now define the plausible conclusions that may be dreavn & set of formu-
lae ® by an argumentation-based logic. The idea is to infer a ftamdrom @ iff it is
the conclusion of at least one argument in every extensidneohrgumentation graph
built from &.

Definition 11 (ALES) An argumentation-based logic induced from extension seman-
tics (ALES) is a logicC = (F,w, CN’) based on base logitF, w, CN), argumentation
functiong, and semantics € {n, p, s}, where

forall @ Cy F,forall ¢ € F,
¢ € CN'(®) iff VE € Extx(G(P)), Ja € & s.t.Conc(a) = x wrt logic (F, w, CN).

In [3] a comprehensive study has been made on the family aé¢dadescribed in
this section. It has been shown that when the argumentategrhdouilt over a set of
formulae satisfies two key properties, then there is a fullespondence between the
naive extensions of the graph and the maximal consistesessibf the set of formulae.
Before presenting the formal result, let us first recall the properties.

Postulates (Closure under sub-arguments — Consistenclt G be an argumentation
function on logic(F, w, CN) and® C; F. For all€ € Ext(G(P)),

— if a € €, thenSub(a) C £. We say that}(P) is closed under sub-arguments.
— Concs(€) is consistent. We say thg{(®) satisfies consistency.



The following result shows that there is a one-to-one cpwadence between the
naive extensions of an argumentation graph and the maxforad€t inclusion) subsets
of the set of formulae over which the graph is built. Indeexthemaximal consistent
subset gives birth to a naive extension using the fundtighand each naive extension
returns a maximal consistent set of formulae using the fan@&zase.

Theorem 1. [3] Let G be an argumentation function on an adjunctive logf w, CN),
andletd C, F. If G(P) satisfies consistency and is closed under sub-argumerds un
naive semantics), then:

— Forall £ € Ext,(G(®P)), Base(€) € Max(P).

— For all (2‘,5]‘ € Eth(g(@)), if Base(&) = Base(é'j) theng&; = 5j.
— Forall € € Ext,,(G(D)), £ = Arg(Base(€)).

— Forall S € Max(®), Arg(S) € Ext,(G(D)).

Let us now characterize the set of inferences that may berdfiemm a set of for-
mulae® by any argumentation-based logic under naive semanticsiritides with the
set of inferences that are drawn from the maximal consistangets of.

Theorem 2. [3] Let £ = (F,w,CN’) be an ALES based on adjunctive logi, w, CN),
argumentation functior, and naive semantics. For a## C; F, if G(P) satisfies
consistency and is closed under sub-arguments, then

(@)= () CN(Si).

S;EMax(P)

It is worth noticing that the paraconsistent logics ALESwoes consistency and re-
turn flat consequences. Moreover, they generalize to argkiBar logic the universal
logic defined by Rescher and Manor in [27].

In both previous theorems, the base logic is considerechatije. An important
question is what about the case where the base logic is nm@dje? It was shown in
[3] that in that case the argumentation-based logic may sthaobitrarilysomemax-
imal consistent subsets of a knowledge base, leading tramiater-intuitive outcomes.

A similar study has been conducted for stable and prefegethatics. It has been
shown that there are two families of attack relations. Tt family leads to coherent
argumentation graphs (i.e., their stable extensions @@neith their preferred ones).
Furthermore, stable extensions coincide with the naive.dBech graphs coincide then
with the above discussed ones. The ideal extension of thragdg coincide with the
grounded extension. It also coincides with the interseatitthe preferred (thus naive,
stable) extensions. Furthermore, it is exactly theAsg{(Free(®)), i.e., the set of ar-
guments built over the set of free formulaedafFinally, the conclusions drawn under
ideal and grounded semantics are the formulae that follomgubke base logic from the
free formulae of a given set of formulae.

The second family of attack relations allows choosing adypemaximal consis-
tent subbsets of a knowledge base. Thus, the corresporndimgantation-based logics
infer counter-intuitive conclusions under stable and gmefd semantics. The grounded
and ideal extensions of such graphs may lead to countetietresults as well.



Let us now illustrate this approach with propositional mg@in instance of Tarskian
logic. We assume that there isfiaite number of variableg the language. This as-
sumption, very common in the literature, ensures the fiegercondition of Definition
1. The attack relation between argumentagsumption-attacktroduced for the first
time in [16].

Definition 12 (Assumption attack) Let (F, w, CN) be propositional logic. An argu-
ment(¥, v) attacksan argument?’, '), denoted by{¥, 1)) R,s (&', ¢’), iff 3¢ € &’
St’g/} = —\Qﬁ.

Assumption attack is among the attacks relation that leaattonal argumentation-
based logics.

Theorem 3. [3] Let G be an argumentation function on propositional logic= (F, w, CN)
such thatforallp C; F, G(P) = (Arg(P), Ras). It holds that

Ext, (G(P)) = Exts(G(P)) = Ext,(G(D)).

IE(G(®)) = GE(G(P)) = Arg(Free(?P)).
Let us now consider the following example.

Example 2 Let® = {p, —p, q,p — —q} be a propositional knowledge base. This base
has three maximal (for set inclusion) consistent subbases:

-9, =1{p,q},
- Dy = {p,p = —q},
- &3 ={-p,q,p — —q}.

An argumentation-based logic induced from naive, stabi@referred semantics will
draw from¢ the tautologies since they are the only common consequehties three
subbases.

Note that none of the two conflicty, —-p} and{p,q,p — —q} is solved. Such
output may seem unsatisfactory in general and in multi-egystems where one needs
an efficient way for solving conflicts between agents. Let s have a closer look at
the knowledge basé. The four formulae in? do not have the same responsibility for
inconsistency. For instance, the degree of blameisthigher than the one gfsince it
is involved in more conflicts. Moreovey,is frontally opposed whilg is opposed in an
indirect way. Similarly,—q is more to blame thag since it follows from the controver-
sial formulap.

To sum up,rational argumentation-based logics induced from extension seman-
tics generalize, to any Tarskian logic, the paraconsisteyi¢ defined by Rescher and
Manor in [27] on top of propositional logic. Such logics caihe with their base logic in
case of a consistent knowledge base. When the latter issistent, they only draw the
formulae that follow logically (using the base logic) frohetset of formulae which are
not involved in inconsistency. This means that they leavdlimts unsolved as shown
in Example 2.



4 Logics induced by ranking semantics

Ranking semantics have been introduced in [1] as an alteeregiproach for evaluating
arguments. Their basic idea is to rank arguments from the tadke less acceptable
ones, instead of computing extensions. They should satisfyms (i.e., desirable prop-
erties), some of them are mandatory while others are ogtibnevhat follows, we in-
vestigate the argumentation-based logics induced frorden-based semanti¢Bbs),

a ranking semantics introduced in [1]. Bbs assigbs@en numbeto every argument.
The heavier the burden of an argument, the weaker its attacks

Definition 13 (Burden numbers) Let 7 = (A, R) be a finite argumentation graph,
i €{0,1,...},anda € A. We denote byur;(a) theburden numbeofa in the:™ step:

Bur;(a) = { 1 +3 =Ll i(;ctae:rv(\)/i;se
beatt(a) Bur; 1 (b)
whereAtt(a) = {be€ A | (b,a) € R}.
By convention, ifAtt(a) = 0, then
> 1 __,
beatt(a) Bur—1(b)

Let us illustrate this function in the following example.

Example 1 (Cont)Consider the argumentation graph depicted in Example 1bthe
den numbers of each argument are summarized in the tabl.belo

Stepi| a | b | c | d|e | flg
0 1/]1)]1)]1|1]1]1
1 21232 |2]|2|2
2 115(1.33 2 |15]/15(15|15
3 11.661.5|2.331.661.751.661.64
4 11.601.422.171.601.661.601.60

It is worth pointing out that the functioBur converges, and thus each argument
has a single burden numt@ur(a) = lim;_, o, Bur;(a).

There are different ways of comparing pairs of arguments) edwhich leads to a
new semantics. For instance, one may compare the final bardabers of arguments
(i.e., the ones got by the limit). The corresponding sencarsitisfies all the mandatory
axioms defined in [1]. Moreover, it allowompensationindeed, it considers that two
weak attacks are equivalent to a strong one. Another atieeneonsists of comparing
arguments lexicographically as follows:

Definition 14 (Bbs) The burden-based semantiBbs transforms any argumentation
graph7T = (A, R} into the rankingbs(7") on.A such thatva,b € A, (a,b) € Bbs(T)
iff one of the two following cases holds:



1 Vie{0,1,...},Bur;(a) = Bur,(b);
+3i€{0,1,...},Bur;(a) < Bur;(b) andVj € {0,1,...,i— 1}, Bur;(a) = Bur;(b).

Intuitively, (a,b) € Bbs(7) means that is at least as acceptablasb. Let us see
in an example how the semantics works.

Example 1 (Cont) According toBbs, the argument is strictly more acceptable than
a,d, f, andg which are themselves equally acceptable and strictly mareable than
e. Finally, e is more acceptable than

It is worth noticing that Bbs considers finite argumentagoaphs. However, from
a finite set of formulae, Definition 5 may generate an infinibenber of arguments.
Of course, most of them are redundant. In order to avoid ssefess arguments, we
assume that a logic satisfies the following additional ctioili

— {cn({¢}) | ¢ € F}isfinite (Finiteness)

Finiteness ensures a finite number of non-equivalent faeurhis condition, not
considered by Tarski, will avoid redundant arguments.Wasth recalling that classical
logic satisfies finiteness when the number of propositioaghbles is finite, which is a
quite common assumption in the literature.

Property 1. For all® C; F, Arg(®) is finite.

The plausible conclusions of an argumentation-based Mgt uses ranking se-
mantics are simply those supported by at least one arguidet#.that a formula and
its negation may both be plausible. This means that the apprtolerates inconsis-
tency. More importantly, the conclusions are ranked froertiost to the least plausible
ones. A formula is ranked higher than another formula if isupported by an argu-
ment which is more acceptable than any argument suppohagedcond formula. The
notationg = ¢ means thap is at least as plausible @s

Definition 15 (ALRS) Anargumentation-based logic induced from ranking semantics
(ALRS) is a logicL = (F,w,CN’) based on base logi¢F, w,CN), argumentation
functiong, and semanticBbs, where for all® C ¢ F, G(®) = (Arg(®), R), and

— CN'(@) = {¢ € F | Ja € Arg(P) andConc(a) = ¢ wrt logic (F, w, CN)}.
— for all ¢, € CN'(®), ¢ = v iff Ja € Arg(P) such thatConc(a) = ¢ andVb €
Arg(®) such thatConc(b) = v, (a,b) € Bbs(G(P)).

Unlike certain well-known inconsistency-tolerating logi(like the 3- and 4-valued
ones [6, 13]), the above logics satisfy the following crugieoperty: if the premises
are consistent, the conclusions coincide with thoseNofThey satisfy other important
properties like ranking free formulae above non-free ofeall that free formulae
are those that are not involved in any minimal (for set indasinconsistent subset of
a knowledge base. They also consider that any formula is at agplausible as its
logical consequences and thus equivalent formula are lgculausible (see [2] for a
complete study of these logics).

Let us now illustrate this family of logics by consideringpositional logic as base
logic and assumption-attack as attack relation.



Example 2 (Cont)Let® = {p, —p, q, p — —¢} be a propositional knowledge base. As-
sume that the non-equivalent formulae selected by theavdlringw are as follows:

PApPpIpA—gl Tp [p— qlpV P
PAqg| —q¢ |p—q
PATG|pq|qg—p
DPAG |p gl7p—q
q
D

The setArg(®) contains the 21 following arguments.

al ({-pah,pAg |[k|{e,p— —~q},pe )
b ({g;p — —q},pAq) |1 ({a}, @)
c| ({psp = —q},p A q) Im ({r},p)
d  ({p.ak,pNhaq nl  {-php— g
e ({-r}, ) ol {p— —¢},p— —q)
Il dap——q},-p) |y {=r},p—q
g {p.p——q},—q) |z H{at,p—q)
o {p.q}peq) r {r},a—p)
il ({-pah,pe g s {r},—»—q
J|{p,p = —q},p < )|t (g}, r—q)
u <@vp\/ _‘p>

The sefCN’(P) contains the conclusions of the arguments and their equnvébr-
mulae. Due to the large number of attacks, we do not give them. lFrom the argu-
mentation graph, the following burden numbers are comp(itdde on the left). The
ranking onArg(®) is as shown in the table on the right.

i=0li=1]i =2[i =3

w | 1] 1] 1]1 "
m,s,r| 1 3 |1.83]2.41 R
e,n,y| 1 2 11.33]1.54 e7 ;L ’y
Lzt| 1| 2 |1.25]1.48 b’f’k

o | 1| 2 |1.25/1.48 Al
dh | 1 | 4 |2.05]2.89 @,
b,fk| 1 | 3 [1.50/1.96 mns
cg,5| 1 | 4 |2.05]2.89 ¢.d,g,h, j
ai | 1 | 3 |1.58]2.02

The conclusions of the arguments are ranked as follows:

pVp
pP—>74 ¢ p—>q p—(g
-p
PAG P g
p,q—p
PADG, g, pAG D g




Recall that equivalent formula are equally plausible. lstancep A p is as plau-
sible ag. Note that-p is more plausible thap, andq is more plausible thang. Thus,
unlike ALES, logics that use ranking semantics solve botiflads of the base.

The ranking of formulae produced by the previous logic isarbitrary. It not only
satisfies some rationality postulates discussed in [2]sd aaptures in some cases a
well-knowninconsistency measuf@0]. The latter assigns a degree of blame to each
formula of a knowledge base. This degree is the number ofmahinconsistent sus-
bsets of the base (called conflicts) in which the formula i®ived. It was shown in
[2] that if a formulag of a knowledge base is involved in more conflicts than another
formulay of the base, therp is more plausible than. This result is only true in case
each formula in the base cannot be inferred from anothelistens subset of the base.

Theorem 4. [2] Let £ = (F,w, CN') be an ALRS based on propositional lo¢f€, w, CN),
argumentation functio such that for all® C; F, G(®) = (Arg(P), Ras), and se-
manticsBbs. Let® C F. If for all ¢ € &, p¥ C &\ {4} such that¥ is consistent
and¢ € CN(¥), then for allg, ¢ € CN (@) NP, if |{¥ € MIC(D) | ¢ € ¥}| > {¥' €
MIC(P) | ¢ € W'}, theny = ¢ (i.e.,9p = ¢ and¢ # ).

Works on inconsistency measures focus only on the formdldeedase and com-
pletely neglect their logical consequences. ALRS focus ath.bThat's why the two
approaches may not find the same results in the general cdeed, it may be the case
that a formulap of a base is involved in more conflicts than another formulaf the
same base, byt follows logically from a subset of the base and this subsestitutes
a more acceptable argument than the one suppattifidius, ALRS will rankg higher
thany while the inconsistency measure will preter

To sum up, argumentation-based logics induced from rank@mgantics tolerate
inconsistency in that they may infer inconsistent condnsi Furthermore, they rank-
order the conclusions with regard to plausibility. Finaliyplike ALES, they solve in-
consistency.

5 Conclusion

Argumentation is a natural approach for handling incoesisy. It is more akin to the
way humans deal with inconsistency in everyday life. Indéecbnstructs arguments
pro and arguments con claims, then it evaluates the argsrhefdre concluding.

This paper discussed two families of argumentation-basedcpnsistent logics:
the family of logics that use naive (respectively stablef@mred, grounded and ideal)
semantics, and the family of logics that use ranking serogntiamely Bbs. We have
shown that argumentation logics are efficient since, ungtmsion semantics, they
generalize well-known logics and, under ranking semanties outperform them.
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