
On argumentation-based paraconsistent logics

Leila Amgoud

IRIT – CNRS
118, route de Narbonne

31062, Toulouse Cedex 09
amgoud@irit.fr

Abstract. Argumentationis an alternative approach for reasoning with inconsis-
tent information. Starting from a knowledge base (a set of premises) encoded in
a logical language, an argumentation-based logic definesargumentsandattacks
between them using the consequence operator associated with the language, then
uses asemanticsfor evaluating the arguments. The plausible conclusions tobe
drawn from the knowledge base are those supported by “good” arguments.
In this paper, we discuss two families of such logics: the family of logics that
uses extension semantics for the evaluation of arguments, and the one that uses
ranking semantics. We discuss the outcomes of both familiesand compare them.

1 Introduction

An important problem in the management of knowledge-based systems is handling of
inconsistency. Inconsistency may be present for mainly three reasons: i) A knowledge
base may contain a default rule and strict rules encoding exceptions of the default rule
[26]. The two kinds of rules may lead to opposite conclusions. ii) In model-based diag-
nosis [21], the description of the normal behavior of a system may be conflicting with
the observations made on this system. iii) An inconsistent knowledge base may result
from the union of several consistent knowledge bases pertaining to the same domain
[12]. Moreover, in [18], Gabbay and Hunter claim that inconsistency in a database ex-
ists on purpose and may be useful if its presence triggers suitable actions that cope with
it. They give the example of overbooking in airline booking systems.

Whatever the source of inconsistency, a paraconsistent logic is needed to deal with
it. A paraconsistent logic consists of a language and a consequence operator which
returns rational conclusions even from inconsistent sets of formulas.

There has been much work on constructing and investigating such logics. Two fami-
lies can be distinguished: those that restore consistency (e.g., [10, 26, 27]) and those that
tolerate inconsistency and cope with it (e.g., [6, 7, 13, 17]). One important instance of
the first family computes the maximal (for set inclusion) consistent subbases of a knowl-
edge base, then chooses the conclusions that follow from allthose subbases ([27]). Re-
garding the second family, a prominent approach considers many-valued interpretations
with the crucial particularity that they can be models of even inconsistent premises and
thus, can be used to draw conclusions.

Since early nineties, due to its explanatory power,argumentationhas become a
promising approach for handling inconsistency. Like many-valued logics, it accepts in-
consistency and copes with it. Starting from a knowledge base encoded in a particular



logical language, an argumentation-based logic builds arguments and attack relations
between them using a consequence operator associated with the language, then it eval-
uates the arguments using a semantics. Finally, it draws theconclusions that are sup-
ported by good arguments. Attacks generally refer to the inconsistency of the base.

In the argumentation literature, arguments are mainly evaluated usingextension-
based semantics (or extension semantics for short) as introduced by Dung in his seminal
paper [15]. Extension semantics are functions transforming any argumentation graph
into one or several subsets of arguments, calledextensions, each of which representing
a coherent point of view. Using the extensions, the set of arguments is partitioned into
three disjoint categories: i) the arguments which are in allextensions (calledscepti-
cally accepted), ii) the arguments that are in some but not all extensions (calledcred-
ulouslyaccepted), and ii) the arguments which do not belong to any extension (called
rejected). Examples of extension semantics are the well-known stable, preferred, com-
plete, grounded, and admissible semantics proposed by Dungin [15], as well as their
refinements like the recursive semantics [5] and ideal semantics [14].

More recently, another family of semantics, calledgraded semantics, is emerging.
Those semantics do not compute extensions and are based on different principles. For
instance, the number of attackers is taken into account while it does not play any role
in extension semantics. Thus, the two families of semantics(extension semantics and
graded semantics) may not provide the same evaluations of arguments.

Graded semantics assign to every argument a numerical valuerepresenting itsstrength.
These values allow to rank-order the arguments from the mostacceptable to the less
acceptable ones. Ranking semantics [1],h-categoriser semantics [8, 25], value-based
semantics [11], and game-theoretical semantics [22] are examples of graded semantics.

In [29], the authors presented a very interesting extensionof Dung’s semantics by
introducing the notion ofstratified labellings. Like graded semantics, the idea is to
provide graded assessment of arguments by assigning a degree to each argument. How-
ever, the degree does not represent the strength of an argument but rather to what extent
the argument is controversial. Thus, the corresponding semantics do not satisfy the
mandatory properties of graded semantics. Interestingly enough, stratified labellings
have close relationships with ranking functions like Z-ordering [23].

All the above semantics evaluate arguments solely on the basis of attacks and do
not take into account the internal structure of arguments. Their input is a plain directed
graph whose nodes and arrows represent abstract arguments and attacks.

Our aim in this paper is to discuss and compare the paraconsistent logics built on
top of any Tarskian logic ([28]) and induced by each family ofsemantics. We consider
in particular the most popular extension semantics (stableand preferred semantics in-
troduced by Dung in [15]) and aranking semanticsdefined more recently in [1]. We
show that logics based on extension semantics (ALES) returnflat conclusions and re-
store consistency. Furthermore, they generalize to any Tarskian logic the paraconsistent
logic defined by Rescher and Manor in [27] on top of propositional logic. The paracon-
sistent logics based on ranking semantics (ALRS) return ranked conclusions (from the
most plausible to the less plausible ones) and tolerate inconsistency. Moreover, they are
good candidates for measuring inconsistency in knowledge bases. Finally, we show that
ALRS are more discriminating than ALES in that they solve inconsistency while ALES
avoid it.



2 Argumentation-based logics

An argumentation-based logic is built on top of a logic. In this paper, we focus on
Tarskian logics [28]. According to Tarski, a logic is a set ofwell-formedformulaeand a
consequence operatorwhich returns the set of formulae that follow from another set of
formulae. There are no requirements on the connectives usedin the language. However,
the consequence operator should satisfy some very basic properties.

Definition 1 (Logic) A logic is a tuple〈F , w, CN〉 whereF is a set of well-formed
formulae,w is a well-order1 onF , CN is a consequence operator, i.e., a function from
2F to 2F such that forΦ ⊆ F ,

– Φ ⊆ CN(Φ) (Expansion)
– CN(CN(Φ)) = CN(Φ) (Idempotence)
– CN(Φ) =

⋃

Ψ⊆fΦ
CN(Ψ) (Compactness)

– CN({φ}) = F for someφ ∈ F (Absurdity)
– CN(∅) 6= F (Coherence)

Notation: Y ⊆f X means thatY is a finite subset ofX .

The well-orderingw enables to arbitrarily select arepresentativeformula among
equivalent ones. Its exact definition is not important for the purpose of the paper. Al-
most all well-known monotonic logics (classical logics, intuitionistic logics, modal log-
ics, etc.) can be viewed as special cases of Tarski’s notion of an abstract logic. AI intro-
duced non-monotonic logics, which do not satisfy monotonicity [9].

The next definition introduces the concept ofadjunctivelogic.

Definition 2 (Adjunctiveness) A logic 〈F , w, CN〉 is adjunctiveiff for all φ andψ in
F , there existsα ∈ F such thatCN({α}) = CN({φ, ψ}).

Intuitively, an adjunctive logic infers, from the union of two formulas{φ, ψ}, some
formula(s) that can be inferred neither fromφ alone nor fromψ alone (except, of course,
whenψ ensues fromφ or vice-versa). In fact, most well-known logics are adjunctive.2

A logic which is not adjunctive could for instance fail to deny φ ∨ ψ from the premises
{¬φ,¬ψ}.

The notion ofconsistencyassociated with such logics is defined as follows:

Definition 3 (Consistency) A setΦ ⊆ L is consistentwrt a logic(L, w, CN) iff CN(Φ) 6=
L. It is inconsistentotherwise.

Before introducing the notion of argument, let us first definewhen pairs of formulas
are equivalent.

1 A well-orderon a setX is a relation with the property that every non-empty subset of X has
a least element in this ordering.

2 Some fragments of well-known logics fail to be adjunctive, e.g., the pure implicational frag-
ment of classical logic as it is negationless, disjunctionless, and, of course, conjunctionless.



Definition 4 (Equivalent formulas) Let 〈F , w, CN〉 be a logic andφ, ψ ∈ F . The for-
mula φ is equivalentto ψ wrt logic 〈F , w, CN〉, denoted byφ ≡ ψ, iff CN({φ}) =
CN({ψ}).

The building block of argumentation-based logics is the notion of argument. An
argument is a reason for concluding a formula. Thus, it has two main components:
a supportand aconclusion. In what follows, two arguments having the same supports
and different yet equivalent conclusions are not distinguished, they are rather seen as the
same argument. The reason is that those arguments are redundant and increase uselessly
and misleadingly the argumentation graph both from a theoretical and computational
point of view.

Definition 5 (Argument) Let 〈F , w, CN〉 be a logic andΦ ⊆f F . An argumentbuilt
fromΦ is a pair (Ψ, ψ) such that:

– Ψ ⊆ Φ andΨ is consistent,
– ψ is thew-smallest element of{ψ′ ∈ F | ψ′ ≡ ψ} such thatψ ∈ CN(Ψ),
– ∄Ψ ′ ⊂ Ψ such thatψ ∈ CN(Ψ ′).

An argument(Ψ, ψ) is asub-argumentof (Ψ ′, ψ′) iff Ψ ⊆ Ψ ′.

Notations: Let 〈F , w, CN〉 be a logic andΦ ⊆f F . Supp andConc denote respectively
thesupportΨ and theconclusionψ of an argument(Ψ, ψ) built fromΦ. Arg(Φ) denotes
the set of all arguments that can be built fromΦ by means of Definition 5,Sub((Ψ, ψ)) is
a function that returns all the sub-arguments of argument(Ψ, ψ). For anyE ⊆ Arg(Φ),
Concs(E) = {Conc(a) | a ∈ E} andBase(E) =

⋃

a∈E Supp(a). Max(Φ) is the set of all
maximal (for set inclusion) consistent subsets ofΦ, i.e. for anyS ∈ Max(Φ), S ⊆ Φ,
S is consistent wrt logic(F , w, CN), and for anyφ ∈ Φ \ S, it holds thatS ∪ {φ}
is inconsistent.MIC(Φ) denotes the set of all minimal (for set inclusion) inconsistent
subsets ofΦ, i.e., for anyS ∈ MIC(Φ), S ⊆ Φ, S is inconsistent wrt logic(F , w, CN),
and for anyφ ∈ S, it holds thatS \ {φ} is consistent wrt logic(F , w, CN). Finally,
Free(Φ) = {φ ∈ Φ | ∀S ∈ MIC(Φ), φ /∈ S}, i.e.,Free(Φ) is the set of formulae ofΦ
that are not involved in any minimal (for set inclusion) inconsistent subset ofΦ.

Since information may be inconsistent, arguments may attack each other. In what
follows, such attacks are captured by a binary relation, denoted byR. For two argu-
mentsa, b, (a, b) ∈ R (or aRb) means thata attacksb. For the sake of generality,R
is left unspecified. It can thus be instantiated in various ways (see [19] for examples of
instantiations ofR). However, we assume that it is based on inconsistency.

Definition 6 (Conflict-dependency)Let 〈F , w, CN〉 be a logic andΦ ⊆f F . An attack
relationR ⊆ Arg(Φ)×Arg(Φ) is conflict-dependentiff for all a, b ∈ Arg(Φ), if (a, b) ∈
R thenSupp(a) ∪ Supp(b) is inconsistent.

All existing attack relations are conflict-dependent with anotable exception,undercut-
ting [24], which prevents the application of defaults in case of logics built on top of
rule-based languages like ASPIC [4].

As said before, an argumentation-based logic defines from each set of formula a
directed graph whose nodes are arguments and arrows are attacks between them.



Definition 7 (Argumentation function) An argumentation functionG on a logic〈F ,
w, CN〉 transforms any setΦ ⊆f F into a finite directed graph3 〈Arg(Φ),R〉 where
R ⊆ Arg(Φ)× Arg(Φ) is a conflict-dependent attack relation.

We are now ready to introduceargumentation-based logics(AL). An AL is a logic
(in the sense of Definition 1) which is defined upon abase logic. The latter is supposed
to behave in a rational way when information is consistent but exhibits an irrational
behaviour in presence of inconsistency. Propositional logic is an example of such logic.
AL restricts thus the base logic’s inference power. An AL proceeds as follows: For any
setΦ of formulas in the base logic, it defines its corresponding argumentation graph.
The conclusions to be drawn fromΦ using the consequence operator of the AL are the
formulae that are supported by good arguments according to agiven semanticsS.

Definition 8 (AL) Anargumentation-based logic(AL) is a logicL = 〈F , w, CN′〉which
is based on base logic〈F , w, CN〉, argumentation functionG on 〈F , w, CN〉 and seman-
tics S, where for anyΦ ⊆f F , CN′(Φ) ⊆ {φ ∈ F | ∃a ∈ Arg(Φ) with G(Φ) =
〈Arg(Φ),R〉 andConc(a) ≡ φ wrt logic 〈F , w, CN〉}. If Φ is consistent wrt〈F , w, CN〉,
thenCN′(Φ) = CN(Φ).

In the next two sections, we define more precisely the consequence operatorsCN′ of
the logics induced by extensions semantics and ranking ones.

3 Logics induced by extension semantics

The most popular semantics were proposed by Dung in his seminal paper [15]. Those
semantics as well as their refinements (e.g. in [5, 14]) partition the powerset of the set of
arguments into two classes:extensionsandnon-extensions. Every extension represents
a coherent point of view. We illustrate the kind of paraconsistent logics induced by such
semantics, namely naive, stable and preferred. Before giving the formal definitions of
the three semantics, we first introduce two key concepts on which they are based.

Definition 9 (Conflict-freeness–Defence)LetT = 〈A,R〉 be an argumentation graph,
E ⊆ A anda ∈ A.

– E is conflict-freeiff ∄a, b ∈ E such thataRb.
– E defendsan argumenta iff ∀b ∈ A such thatbRa, ∃c ∈ E such thatcRb.

Definition 10 (Semantics)LetT = 〈A,R〉 be an argumentation graph andE ⊆ A.

– E is a naiveextension iff it is a maximal (w.r.t. set⊆) conflict-free set.
– E is anadmissibleset iff it defends all its elements.
– E is a completeextension iff it is an admissible set that contains any argument it

defends.
– E is apreferredextension iff it is a maximal (w.r.t. set⊆) set that is conflict-free and

defends its elements.
– E is a stableextension iff it is conflict-free and attacks any argument inA \ E .
– E is a grounded extensioniff it is a minimal (w.r.t. set⊆) complete extension.

3 In the literature, the pair〈Arg(Φ),R〉 is also calledargumentation system.



– E is an ideal extensioniff it is a maximal (w.r.t. set⊆) admissible set contained in
every preferred extension.

Notations: Extx(T ) denotes the set of all extensions ofT under semanticsx where
x ∈ {n, p, s} andn (resp.p ands) stands for naive (respectively preferred and stable).
When we do not need to refer to a particular semantics, we writeExt(T ) for short. Since
any argumentation frameworkT has a single grounded and a single ideal extension,
they will be denoted respectively byGE(T ) andIE(T ).

Example 1 The argumentation graph depicted below

d a f g

c

e b

has five naive extensions:E1 = {a, c, g},E2 = {d, e, f},E3 = {b, d, f},E4 = {a, e, g},
E5 = {a, b, g}; one stableE3 and two preferred extensionsE3 andE6 = {a, g}.

It is worth recalling that stable extensions are naive (respectively preferred) exten-
sions but the converses are not always true. Moreover, an argumentation framework
may have no stable extensions.

Let us now define the plausible conclusions that may be drawn from a set of formu-
laeΦ by an argumentation-based logic. The idea is to infer a formula φ fromΦ iff it is
the conclusion of at least one argument in every extension ofthe argumentation graph
built fromΦ.

Definition 11 (ALES) An argumentation-based logic induced from extension seman-
tics (ALES) is a logicL = 〈F , w, CN′〉 based on base logic〈F , w, CN〉, argumentation
functionG, and semanticsx ∈ {n, p, s}, where

for all Φ ⊆f F , for all φ ∈ F ,
φ ∈ CN′(Φ) iff ∀E ∈ Extx(G(Φ)), ∃a ∈ E s.t.Conc(a) ≡ x wrt logic 〈F , w, CN〉.

In [3] a comprehensive study has been made on the family of logics described in
this section. It has been shown that when the argumentation graph built over a set of
formulae satisfies two key properties, then there is a full correspondence between the
naive extensions of the graph and the maximal consistent subsets of the set of formulae.
Before presenting the formal result, let us first recall the two properties.

Postulates (Closure under sub-arguments – Consistency)LetG be an argumentation
function on logic〈F , w, CN〉 andΦ ⊆f F . For allE ∈ Ext(G(Φ)),

– if a ∈ E , thenSub(a) ⊆ E . We say thatG(Φ) is closed under sub-arguments.
– Concs(E) is consistent. We say thatG(Φ) satisfies consistency.



The following result shows that there is a one-to-one correspondence between the
naive extensions of an argumentation graph and the maximal (for set inclusion) subsets
of the set of formulae over which the graph is built. Indeed, each maximal consistent
subset gives birth to a naive extension using the functionArg and each naive extension
returns a maximal consistent set of formulae using the function Base.

Theorem 1. [3] Let G be an argumentation function on an adjunctive logic〈F , w, CN〉,
and letΦ ⊆f F . If G(Φ) satisfies consistency and is closed under sub-arguments (under
naive semantics), then:

– For all E ∈ Extn(G(Φ)), Base(E) ∈ Max(Φ).
– For all Ei, Ej ∈ Extn(G(Φ)), if Base(Ei) = Base(Ej) thenEi = Ej .
– For all E ∈ Extn(G(Φ)), E = Arg(Base(E)).
– For all S ∈ Max(Φ), Arg(S) ∈ Extn(G(Φ)).

Let us now characterize the set of inferences that may be drawn from a set of for-
mulaeΦ by any argumentation-based logic under naive semantics. Itcoincides with the
set of inferences that are drawn from the maximal consistentsubsets ofΦ.

Theorem 2. [3] Let L = 〈F , w, CN′〉 be an ALES based on adjunctive logic〈F , w, CN〉,
argumentation functionG, and naive semantics. For allΦ ⊆f F , if G(Φ) satisfies
consistency and is closed under sub-arguments, then

CN′(Φ) =
⋂

Si∈Max(Φ)

CN(Si).

It is worth noticing that the paraconsistent logics ALES restore consistency and re-
turn flat consequences. Moreover, they generalize to any Tarskian logic the universal
logic defined by Rescher and Manor in [27].

In both previous theorems, the base logic is considered adjunctive. An important
question is what about the case where the base logic is not adjunctive? It was shown in
[3] that in that case the argumentation-based logic may choose arbitrarilysomemax-
imal consistent subsets of a knowledge base, leading thus tocounter-intuitive outcomes.

A similar study has been conducted for stable and preferred semantics. It has been
shown that there are two families of attack relations. The first family leads to coherent
argumentation graphs (i.e., their stable extensions coincide with their preferred ones).
Furthermore, stable extensions coincide with the naive ones. Such graphs coincide then
with the above discussed ones. The ideal extension of these graphs coincide with the
grounded extension. It also coincides with the intersection of the preferred (thus naive,
stable) extensions. Furthermore, it is exactly the setArg(Free(Φ)), i.e., the set of ar-
guments built over the set of free formulae ofΦ. Finally, the conclusions drawn under
ideal and grounded semantics are the formulae that follow using the base logic from the
free formulae of a given set of formulae.

The second family of attack relations allows choosing onlysomemaximal consis-
tent subbsets of a knowledge base. Thus, the corresponding argumentation-based logics
infer counter-intuitive conclusions under stable and preferred semantics. The grounded
and ideal extensions of such graphs may lead to counter-intuitive results as well.



Let us now illustrate this approach with propositional logic, an instance of Tarskian
logic. We assume that there is afinite number of variablesin the language. This as-
sumption, very common in the literature, ensures the finiteness condition of Definition
1. The attack relation between arguments isassumption-attackintroduced for the first
time in [16].

Definition 12 (Assumption attack) Let 〈F , w, CN〉 be propositional logic. An argu-
ment〈Ψ, ψ〉 attacksan argument〈Ψ ′, ψ′〉, denoted by〈Ψ, ψ〉 Ras 〈Ψ ′, ψ′〉, iff ∃φ ∈ Ψ ′

s.t.ψ ≡ ¬φ.

Assumption attack is among the attacks relation that lead torational argumentation-
based logics.

Theorem 3. [3] Let G be an argumentation function on propositional logicL = 〈F , w, CN〉
such that for allΦ ⊆f F , G(Φ) = 〈Arg(Φ),Ras〉. It holds that

Extn(G(Φ)) = Exts(G(Φ)) = Extp(G(Φ)).

IE(G(Φ)) = GE(G(Φ)) = Arg(Free(Φ)).

Let us now consider the following example.

Example 2 LetΦ = {p,¬p, q, p→ ¬q} be a propositional knowledge base. This base
has three maximal (for set inclusion) consistent subbases:

– Φ1 = {p, q},
– Φ2 = {p, p→ ¬q},
– Φ3 = {¬p, q, p→ ¬q}.

An argumentation-based logic induced from naive, stable, or preferred semantics will
draw fromΦ the tautologies since they are the only common consequencesof the three
subbases.

Note that none of the two conflicts{p,¬p} and{p, q, p → ¬q} is solved. Such
output may seem unsatisfactory in general and in multi-agent systems where one needs
an efficient way for solving conflicts between agents. Let us now have a closer look at
the knowledge baseΦ. The four formulae inΦ do not have the same responsibility for
inconsistency. For instance, the degree of blame ofp is higher than the one ofq since it
is involved in more conflicts. Moreover,p is frontally opposed whileq is opposed in an
indirect way. Similarly,¬q is more to blame thanq since it follows from the controver-
sial formulap.

To sum up,rational argumentation-based logics induced from extension seman-
tics generalize, to any Tarskian logic, the paraconsistentlogic defined by Rescher and
Manor in [27] on top of propositional logic. Such logics coincide with their base logic in
case of a consistent knowledge base. When the latter is inconsistent, they only draw the
formulae that follow logically (using the base logic) from the set of formulae which are
not involved in inconsistency. This means that they leave conflicts unsolved as shown
in Example 2.



4 Logics induced by ranking semantics

Ranking semantics have been introduced in [1] as an alternative approach for evaluating
arguments. Their basic idea is to rank arguments from the most to the less acceptable
ones, instead of computing extensions. They should satisfyaxioms (i.e., desirable prop-
erties), some of them are mandatory while others are optional. In what follows, we in-
vestigate the argumentation-based logics induced fromburden-based semantics(Bbs),
a ranking semantics introduced in [1]. Bbs assigns aburden numberto every argument.
The heavier the burden of an argument, the weaker its attacks.

Definition 13 (Burden numbers) Let T = 〈A,R〉 be a finite argumentation graph,
i ∈ {0, 1, . . .}, anda ∈ A. We denote byBuri(a) theburden numberofa in theith step:

Buri(a) =

{

1 if i = 0;
1 +

∑

b∈Att(a)
1

Buri−1(b)
otherwise.

whereAtt(a) = {b ∈ A | (b, a) ∈ R}.

By convention, ifAtt(a) = ∅, then

∑

b∈Att(a)

1

Buri−1(b)
= 0.

Let us illustrate this function in the following example.

Example 1 (Cont)Consider the argumentation graph depicted in Example 1. Thebur-
den numbers of each argument are summarized in the table below.

Stepi a b c d e f g
0 1 1 1 1 1 1 1
1 2 2 3 2 2 2 2
2 1.5 1.33 2 1.5 1.5 1.5 1.5
3 1.66 1.5 2.331.661.751.661.66
4 1.601.422.171.601.661.601.60
...

...
...

...
...

...
...

...

It is worth pointing out that the functionBur converges, and thus each argumenta
has a single burden numberBur(a) = limi→∞ Buri(a).

There are different ways of comparing pairs of arguments, each of which leads to a
new semantics. For instance, one may compare the final burdennumbers of arguments
(i.e., the ones got by the limit). The corresponding semantics satisfies all the mandatory
axioms defined in [1]. Moreover, it allowscompensation. Indeed, it considers that two
weak attacks are equivalent to a strong one. Another alternative consists of comparing
arguments lexicographically as follows:

Definition 14 (Bbs) The burden-based semanticsBbs transforms any argumentation
graphT = 〈A,R〉 into the rankingBbs(T ) onA such that∀a, b ∈ A, 〈a, b〉 ∈ Bbs(T )
iff one of the two following cases holds:



∀ i ∈ {0, 1, . . .}, Buri(a) = Buri(b);
∃ i ∈ {0, 1, . . .}, Buri(a) < Buri(b) and∀ j ∈ {0, 1, . . . , i− 1}, Burj(a) = Burj(b).

Intuitively, 〈a, b〉 ∈ Bbs(T ) means thata is at least as acceptableasb. Let us see
in an example how the semantics works.

Example 1 (Cont)According toBbs, the argumentb is strictly more acceptable than
a, d, f , andg which are themselves equally acceptable and strictly more acceptable than
e. Finally,e is more acceptable thanc.

It is worth noticing that Bbs considers finite argumentationgraphs. However, from
a finite set of formulae, Definition 5 may generate an infinite number of arguments.
Of course, most of them are redundant. In order to avoid such useless arguments, we
assume that a logic satisfies the following additional condition:

– {CN({φ}) | φ ∈ F} is finite (Finiteness)

Finiteness ensures a finite number of non-equivalent formulae. This condition, not
considered by Tarski, will avoid redundant arguments. It isworth recalling that classical
logic satisfies finiteness when the number of propositional variables is finite, which is a
quite common assumption in the literature.

Property 1. For allΦ ⊆f F , Arg(Φ) is finite.

The plausible conclusions of an argumentation-based logicthat uses ranking se-
mantics are simply those supported by at least one argument.Note that a formula and
its negation may both be plausible. This means that the approach tolerates inconsis-
tency. More importantly, the conclusions are ranked from the most to the least plausible
ones. A formula is ranked higher than another formula if it issupported by an argu-
ment which is more acceptable than any argument supporting the second formula. The
notationφ � ψ means thatφ is at least as plausible asψ.

Definition 15 (ALRS) An argumentation-based logic induced from ranking semantics
(ALRS) is a logicL = 〈F , w, CN′〉 based on base logic〈F , w, CN〉, argumentation
functionG, and semanticsBbs, where for allΦ ⊆f F , G(Φ) = 〈Arg(Φ),R〉, and

– CN′(Φ) = {φ ∈ F | ∃a ∈ Arg(Φ) andConc(a) ≡ φ wrt logic 〈F , w, CN〉}.
– for all φ, ψ ∈ CN′(Φ), φ � ψ iff ∃a ∈ Arg(Φ) such thatConc(a) ≡ φ and∀b ∈
Arg(Φ) such thatConc(b) ≡ ψ, 〈a, b〉 ∈ Bbs(G(Φ)).

Unlike certain well-known inconsistency-tolerating logics (like the 3- and 4-valued
ones [6, 13]), the above logics satisfy the following crucial property: if the premises
are consistent, the conclusions coincide with those ofCN. They satisfy other important
properties like ranking free formulae above non-free ones.Recall that free formulae
are those that are not involved in any minimal (for set inclusion) inconsistent subset of
a knowledge base. They also consider that any formula is at most as plausible as its
logical consequences and thus equivalent formula are equally plausible (see [2] for a
complete study of these logics).

Let us now illustrate this family of logics by considering propositional logic as base
logic and assumption-attack as attack relation.



Example 2 (Cont)LetΦ = {p,¬p, q, p→ ¬q} be a propositional knowledge base. As-
sume that the non-equivalent formulae selected by the well-orderingw are as follows:

p ∧ ¬p ¬p ∧ ¬q ¬p p→ ¬q p ∨ ¬p
¬p ∧ q ¬q p→ q
p ∧ ¬q p↔ q q → p
p ∧ q p↔ ¬q ¬p→ q

q
p

The setArg(Φ) contains the 21 following arguments.

a 〈{¬p, q},¬p ∧ q〉 k 〈{q, p→ ¬q}, p↔ ¬q〉
b 〈{q, p→ ¬q},¬p ∧ q〉 l 〈{q}, q〉
c 〈{p, p→ ¬q}, p ∧ ¬q〉 m 〈{p}, p〉
d 〈{p, q}, p ∧ q〉 n 〈{¬p}, p→ ¬q〉
e 〈{¬p},¬p〉 o 〈{p→ ¬q}, p→ ¬q〉
f 〈{q, p→ ¬q},¬p〉 y 〈{¬p}, p→ q〉
g 〈{p, p→ ¬q},¬q〉 z 〈{q}, p→ q〉
h 〈{p, q}, p↔ q〉 r 〈{p}, q → p〉
i 〈{¬p, q}, p↔ ¬q〉 s 〈{p},¬p→ q〉
j 〈{p, p→ ¬q}, p↔ ¬q〉 t 〈{q},¬p→ q〉

u 〈∅, p ∨ ¬p〉

The setCN′(Φ) contains the conclusions of the arguments and their equivalent for-
mulae. Due to the large number of attacks, we do not give them here. From the argu-
mentation graph, the following burden numbers are computed(table on the left). The
ranking onArg(Φ) is as shown in the table on the right.

i = 0 i = 1 i = 2 i = 3
u 1 1 1 1

m, s, r 1 3 1.83 2.41
e, n, y 1 2 1.33 1.54
l, z, t 1 2 1.25 1.48
o 1 2 1.25 1.48
d, h 1 4 2.05 2.89
b, f, k 1 3 1.50 1.96
c, g, j 1 4 2.05 2.89
a, i 1 3 1.58 2.02

u
o, l, z, t
e, n, y
b, f, k
a, i

m, r, s
c, d, g, h, j

The conclusions of the arguments are ranked as follows:

p ∨ ¬p
p→ ¬q, q, p→ q, ¬p → q

¬p
¬p ∧ q, p↔ ¬q

p, q → p
p ∧ ¬q, ¬q, p ∧ q, p↔ q



Recall that equivalent formula are equally plausible. For instance,p ∧ p is as plau-
sible asp. Note that¬p is more plausible thanp, andq is more plausible than¬q. Thus,
unlike ALES, logics that use ranking semantics solve both conflicts of the baseΦ.

The ranking of formulae produced by the previous logic is notarbitrary. It not only
satisfies some rationality postulates discussed in [2], it also captures in some cases a
well-known inconsistency measure[20]. The latter assigns a degree of blame to each
formula of a knowledge base. This degree is the number of minimal inconsistent sus-
bsets of the base (called conflicts) in which the formula is involved. It was shown in
[2] that if a formulaφ of a knowledge base is involved in more conflicts than another
formulaψ of the base, thenψ is more plausible thanφ. This result is only true in case
each formula in the base cannot be inferred from another consistent subset of the base.

Theorem 4. [2] Let L = 〈F , w, CN′〉 be an ALRS based on propositional logic〈F , w, CN〉,
argumentation functionG such that for allΦ ⊆f F , G(Φ) = 〈Arg(Φ),Ras〉, and se-
manticsBbs. LetΦ ⊆ F . If for all φ ∈ Φ, ∄Ψ ⊆ Φ \ {φ} such thatΨ is consistent
andφ ∈ CN(Ψ), then for allφ, ψ ∈ CN′(Φ) ∩ Φ, if |{Ψ ∈ MIC(Φ) | φ ∈ Ψ}| > |{Ψ ′ ∈
MIC(Φ) | ψ ∈ Ψ ′}|, thenψ ≻ φ (i.e.,ψ � φ andφ 6� ψ).

Works on inconsistency measures focus only on the formulae of the base and com-
pletely neglect their logical consequences. ALRS focus on both. That’s why the two
approaches may not find the same results in the general case. Indeed, it may be the case
that a formulaφ of a base is involved in more conflicts than another formulaψ of the
same base, butφ follows logically from a subset of the base and this subset constitutes
a more acceptable argument than the one supportingψ. Thus, ALRS will rankφ higher
thanψ while the inconsistency measure will preferψ.

To sum up, argumentation-based logics induced from rankingsemantics tolerate
inconsistency in that they may infer inconsistent conclusions. Furthermore, they rank-
order the conclusions with regard to plausibility. Finally, unlike ALES, they solve in-
consistency.

5 Conclusion

Argumentation is a natural approach for handling inconsistency. It is more akin to the
way humans deal with inconsistency in everyday life. Indeed, it constructs arguments
pro and arguments con claims, then it evaluates the arguments before concluding.

This paper discussed two families of argumentation-based paraconsistent logics:
the family of logics that use naive (respectively stable, preferred, grounded and ideal)
semantics, and the family of logics that use ranking semantics, namely Bbs. We have
shown that argumentation logics are efficient since, under extension semantics, they
generalize well-known logics and, under ranking semantics, they outperform them.
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