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Abstract Rule-based argumentation systems are developed for reasoning about de-
feasible information. As a major feature, their logical language distinguishes between
strict rules (encoding strict information) and defeasible rules (describing general be-
havior with exceptional cases). They build arguments by chaining such rules, define
attacks between them, use a semantics for evaluating the arguments, and finally iden-
tify the plausible conclusions that follow from the rules.
Focusing on the family of inconsistency-based attack relations, this paper presents
the first study of the outcomes of such systems under various acceptability semantics
namely naive, stable, semi-stable, preferred, grounded and ideal. It starts by extend-
ing the existing list of rationality postulates that any rule-based system should satisfy.
Then, it defines the key notion of option of a theory (a theory being a set of facts, a
set of strict rules and a set of defeasible rules). For each of the cited semantics, it
characterizes the extensions of a rule-based system that satisfies all the postulates in
terms of options of the theory under which the system is built. It also fully character-
izes the set of plausible conclusions of the system. The results show that designing a
rule-based argumentation system requires great care.
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1 Introduction

Argumentation is a promising approach for reasoning about inconsistent information.
It consists of generating arguments that support claims, defining attacks between
them, evaluating the arguments using a given semantics, and finally identifying the
plausible claims on the basis of the strength of their arguments.
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Dung proposed in [1] various semantics at an abstract level, i.e., without tak-
ing into account the structure of arguments or the nature of attacks. His abstract
framework was instantiated by several scholars. The idea is as follows: Start with
a knowledge base whose elements are encoded in a logical language, generate argu-
ments using the consequence operator attached to the language, identify the attacks,
and apply Dung’s semantics for the evaluation task. There were two major categories
of instantiations for this abstract framework. The first category uses deductive log-
ics (such as propositional logic [2,3] or any Tarskian logic [4]) whereas the second
category uses rule-based languages. These languages distinguish between:

facts which are information about particular instances like ‘My laptop is heavy’.

strict rules which encode general laws about classes of instances like ‘First gen-
eration laptops are heavy’. Such rules do not have exceptions.

defeasible rules which describe general behavior with exceptional cases. Defeasi-
ble rules correspond thus to what is called defaults in [5] or conditional assertions
in [6,7].

Examples of rule-based argumentation systems are: ASPIC [8], its extended version
ASPIC+ [9], DELP [10], and the systems developed in [11–15]. Despite the popular-
ity of these systems, the results they return have not been characterized yet, except
the system discussed in [11]. The following questions are thus still open:

what are the underpinnings of the extensions under various semantics?

do the semantics return different results as at the abstract level?

what is the number of extensions a system may have?

what are the plausible conclusions with such systems?

In this paper, we answer all the four questions in three steps: we start by defining a
rule-based argumentation system over a knowledge base called theory (a set of facts,
a set of strict rules and a set of defeasible rules). The system uses a notion of deriva-
tion schema for generating arguments from the theory. For the sake of generality,
the attack relation is left unspecified. However, it has the property of being conflict-
dependent, that is, it captures the inconsistency that may be present in the theory. It
is worth mentioning that all existing attack relations (like rebuttal and assumption
attack) are conflict-dependent. A notable exception is undercutting which aims at
blocking the application of defeasible rules [16].

In a second step, we extend the list of postulates (consistency, closure under strict
rules) proposed in [17]. The aim of those postulates is to mathematically capture what
humans perceive as rationale behavior from the semantics of defeasible theories.
They are thus desirable properties that a system should satisfy. We introduce three
new postulates. The first one, strict precedence, ensures that any claim that follows
from the strict part of a theory is a plausible conclusion of the argumentation system.
The second postulate, exhaustiveness, ensures a form of completeness of the exten-
sions of an argumentation system. The third postulate, closure under sub-arguments,
states that an argument cannot be accepted if one of its sub-parts is questionable.

Finally, we investigate the outputs of rule-based argumentation systems that sat-
isfy all the postulates. We show that naive extensions return options of the theory (an
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option being a sub-theory that gathers a maximal -up to consistency- set of the facts,
strict rules, and defeasible rules). Furthermore, the set of plausible conclusions under
the naive semantics contains all the conclusions that are drawn from all the options.
Stable extensions return preferred options but not necessarily all of them, it depends
on the attack relation at work. Unlike options, preferred options are options that con-
tain the strict part. Should not all preferred options be picked as stable extensions,
defining an attack relation that discards exactly the spurious ones thus turns out to be
tricky. The same results hold under preferred semantics. We also characterize both
ideal and grounded extensions. We show that the ideal extension of an argumentation
systems is the set of arguments built from the free part of a theory (i.e., the sub-theory
that contains the strict part as well as all defeasible rules that are not involved in any
minimal conflict). The grounded extension is a subset of the ideal extension. This
means that under grounded semantics, an argumentation system may miss intuitive
conclusions.

The paper is structured as follows: Section 2 recalls Dung’s semantics. Section
3 introduces the logical language that will be used in the paper. Section 4 defines
rule-based argumentation systems. Section 5 introduces a list of postulates that such
systems should satisfy. Section 6 studies the outcomes of rule-based systems under
naive, stable, semi-stable, preferred, grounded and ideal semantics. Section 7 dis-
cusses how our results may apply to existing systems, and the last section concludes.

2 Abstract argumentation framework

An argumentation framework consists of a set of arguments and a binary relation
expressing attacks among the arguments. Throughout this section, the structure and
the origin of arguments are left unspecified.

Definition 1 (Argumentation framework) An argumentation framework is a pair
H = (A,R) where A is a non-empty (possibly infinite) set of arguments and R ⊆
A × A is an attack relation. A pair (a, b) ∈ R means that a attacks b. A set E ⊆ A
attacks an argument b iff ∃a ∈ E such that (a, b) ∈ R.

Notation: We sometimes use the infix notation aRb to denote (a, b) ∈ R.

An argumentation framework (A,R) is represented as a graph, argumentation
graph, whose nodes are the arguments of A and its edges are the attacks inR. Argu-
ments are evaluated using a semantics, i.e., a set of criteria that should be satisfied by
an argument in order to be acceptable. Throughout this paper, we focus on extension-
based semantics initially introduced by Dung in [1]. Such semantics look for accept-
able sets of arguments, called extensions. Each extension represents a coherent point
of view and satisfies two basic properties: conflict-freeness and defence.

Definition 2 (Conflict-freeness, Defence, Admissibility) Let H = (A,R) be an
argumentation framework and E ⊆ A.

E is conflict-free iff @a, b ∈ E such that (a, b) ∈ R.
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E defends an argument a iff ∀b ∈ A, if (b, a) ∈ R, then E attacks b.

E is an admissible set iff E is conflict-free and defends all its elements.

The following definition recalls the main semantics that were proposed in [1,18,
19]. It is worth noticing that all those semantics are based on the notion of admissi-
bility.

Definition 3 (Semantics) Let H = (A,R) be an argumentation framework, and
E ⊆ A be a conflict-free set.

E is a naive extension iff it is a maximal (w.r.t. ⊆) conflict-free set.

E is a complete extension iff E is an admissible set that contains any argument it
defends.

E is a preferred extension iff E is a maximal (w.r.t. ⊆) complete extension.

E is a stable extension iff E attacks any argument in A \ E .

E is a semi-stable extension iff E is a complete extension and the union of the set
E and the set of all arguments attacked by E is maximal (w.r.t. ⊆).

E is a grounded extension iff E is a minimal (w.r.t. ⊆) complete extension.

E is an ideal extension iff E is a maximal (w.r.t. ⊆) admissible set contained in
every preferred extension.

An argumentation framework has a single grounded (respectively ideal) exten-
sion. However, it may have several naive, admissible, complete, preferred, stable and
semi-stable extensions. It may also have zero stable extensions.

Notations: LetH = (A,R) be an argumentation framework. We denote by Extx(H)
the set of all extensions ofH under semantics x ∈ {n, p, s, ss}, where n (respec-
tively p, s, ss) stands for naive (respectively preferred, stable and semi-stable).
We denote by GE(H) (respectively IE(H)) the single grounded (respectively ideal)
extension ofH. When we do not need to refer to a particular semantics, we write
Ext(H) for short.

The following result recalls some key properties of these semantics.

Property 1 ([18,1,19]) LetH = (A,R) be an argumentation framework.

Exts(H) ⊆ Extn(H)
Exts(H) ⊆ Extp(H)
If |Exts(H)| > 0, then Exts(H) = Extss(H)
H has one grounded (respectively ideal) extension

GE(H) ⊆ IE(H)

When Exts(H) = Extp(H), the frameworkH is said to be coherent. It is also worth
recalling that an argumentation framework that has an infinite set of arguments may
have an infinite number of extensions (under multiple-extensions semantics).

Let us now illustrate the different semantics on the argumentation frameworkH1

depicted below.
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This framework has eight naive extensions:

E1 = {a, c, g},
E2 = {d, e, f},
E3 = {b, d, f},
E4 = {a, e, g},
E5 = {a, b, g},
E6 = {b, e, g},
E7 = {b, d, g}, and

E8 = {c, f}.
H1 has one stable/semi-stable extension E3 and two preferred extensions: E3 and
E6 = {a, g}. Its grounded and ideal extensions are empty (GE(H1) = IE(H1) = ∅).

Consider now the following argumentation framework H2 borrowed from [19].
It lays bare some differences between ideal and grounded semantics.

a b c d

It can be checked that:

GE(H2) = ∅,
Extp(H2) = {{b, c}, {b, d}}, and

IE(H2) = {b}.
Throughout the paper, we will refer to the seven semantics of Definition 3 by

the reviewed semantics, and by extension-based semantics to any semantics, which
partitions the power set of the set of arguments into two parts: extensions and non-
extensions. Note that there are other semantics in the literature like recursive [20] and
stage [21] that follow this line of research. This distinction is important since some of
the results in next sections hold for any extension-based semantics while others hold
under the reviewed ones.

3 Rule-based logical language

In what follows, L is a set of literals, i.e., atoms or negation of atoms. The negation
of an atom x from L is denoted ¬x. We consider two additional constants > and σ
such that > /∈ L and σ /∈ L. Three kinds of information are distinguished:
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Facts, which are elements of L ∪ {>}
Strict rules, which are of the form x1, . . . , xn → x (x, x1..., xn denoting literals
in L)

Defeasible rules, which are of the form x1, . . . , xn ⇒ x or of the form > ⇒ x
(x, x1..., xn denoting literals in L)

Facts are information about particular instances. A strict rule expresses general
information that has no exception. It is read as follows: if x1, . . . , xn hold, then x
always holds. A defeasible rule of the form x1, . . . , xn ⇒ x expresses general in-
formation that may have exceptions, and is read as follows: if x1, . . . , xn hold, then
generally x holds as well. A defeasible rule of the form > ⇒ x expresses that x is a
defeasible fact and is read as follows: generally x holds. Unlike existing systems like
ASPIC [8] where a strict rule with an empty body represents a fact, in our formalism
we keep general information and factual information separate.

Let L′ be a set of atoms used for naming rules with the constraints L ∩ L′ = ∅,
> /∈ L′, and σ /∈ L′. Every rule has a unique name and two rules cannot have the
same name. Throughout the paper, rules are named r, r1, r2, . . .

Definition 4 (Theory) A theory is a triple T = (F ,S,D) where F = {>} ∪ X ,
with X ⊆ L, is a set of facts, and S ⊆ L′ (respectively D ⊆ L′) is a set of strict
(respectively defeasible) rules’ names. T is finite iff all three sets F , S and D are
finite.

Note that > is a fact in any theory. Note also that the two sets S and D contain
names of rules and not the corresponding rules themselves. Throughout the paper,
(F ,S, ∅) is referred to as the strict part of a theory T = (F ,S,D).

Notations: Let r ∈ L′, the function Rule(r) returns the (strict or defeasible) rule
whose name is r. For each rule x1, . . . , xn → x (respectively x1, . . . , xn ⇒ x or
> ⇒ x) whose name is r, the head of the rule is Head(r) = x and the body of
the rule is Body(r) = {x1, . . . , xn} or Body(r) = {>}. Let T = (F ,S,D) and
T ′ = (F ′,S ′,D′) be two theories. We say that T is a sub-theory of T ′, written
T v T ′, iff F ⊆ F ′ and S ⊆ S ′ and D ⊆ D′. The relation @ is the strict version
of v (i.e., it is the case that at least one of the three inclusions is strict).

The notion of consistency is defined as follows:

Definition 5 (Consistency) A set X ⊆ L is consistent iff @x, y ∈ X such that x =
¬y. It is inconsistent otherwise.

This simple definition of consistency is sufficient since the language L contains
only literals. However, it is not suitable in case of richer languages. Assume that L is
a propositional language. Thus, the set {x, y,¬x ∨ ¬y} is consistent with respect to
the above definition while it is clearly not the case. Thus, richer languages require a
stronger definition of consistency like the one proposed in [22].

Without loss of generality, throughout the paper we make the three following
assumptions about rules.
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Assumptions: The body of every (strict/defeasible) rule is finite and not empty. More-
over, for each rule r, Body(r) ∪ {Head(r)} is consistent. We say that r is consis-
tent.

Note that the fact that rules are consistent does not ensure the consistency of a set
of rules. [23] discussed different forms of rule consistency. One of them is illustrated
by the example {x⇒ y, y ⇒ ¬x}where both defeasible rules are consistent whereas
together lead to an inconsistent rule x⇒ ¬x.

Let us now show how new information (i.e., literal) is produced from a given
theory. This is generally the case when (strict and/or defeasible) rules are fired in a
derivation schema. Below we provide a definition which generalizes derivations as
defined by [10,24] and others.

Definition 6 (Derivation schema) Let T = (F ,S,D) be a theory, x ∈ L. A deriva-
tion schema for x from T is a finite sequence d = 〈(x1, r1), . . . , (xn, rn)〉 such that:

xn = x

for i ∈ {1, . . . , n},
xi ∈ F and ri = σ, or

xi = Head(ri), with ri ∈ S ∪ D and Body(ri) ⊆ {x1, .., xi−1}

Seq(d) = {x1, . . . , xn}.
Facts(d) = {xi | i ∈ {1, . . . , n}, ri = σ}.
Strict(d) = {ri | i ∈ {1, . . . , n}, ri ∈ S}.
Def(d) = {ri | i ∈ {1, . . . , n}, ri ∈ D}.

In order to improve readability, we somehow abuse the notation: We use the rules
themselves instead of their names.

Example 1 Consider the theory T1 such that F1, S1, D1 are as follows.

F1

{
p
q

S1

p → s (r1)
q → ¬s (r2)
p, s→ u (r3)

D1

¬s ⇒ t (r4)
t, u⇒ v (r5)
p ⇒ q (r6)

Each of (1)–(7) below is a derivation schema from theory T1

〈(p, σ)〉 (1)
〈(q, σ), (¬s, r2)〉 (2)

〈(p, σ), (s, r1), (u, r3)〉 (3)
〈(p, σ), (s, r1), (p, σ), (u, r3)〉 (4)
〈(p, σ), (q, σ), (s, r1), (u, r3)〉 (5)

〈(p, σ), (q, r6), (¬s, r2)〉 (6)
〈(p, σ), (q, σ), (¬s, r2), (s, r1), (u, r3), (t, r4), (v, r5)〉 (7)
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A derivation schema is not necessarily consistent (such as (7) above), as it may
contain opposite literals in the form xi = ¬xj for some i and j (a derivation d is
consistent iff Seq(d) is consistent). Moreover, a derivation schema is not necessarily
minimal (for set inclusion) as shown in Example 1: Compare (3) with (4). The former
is a proper sub-sequence of the latter.

Definition 7 (Minimal derivation schema) Let T be a theory and x ∈ L. A deriva-
tion schema for x from T is minimal iff none of its proper subsequences is a deriva-
tion schema for x from T .

Interestingly enough, there are two ways for a derivation schema not to be min-
imal for set inclusion: i) Involving superfluous literals, i.e., literals that do not serve
towards inferring the conclusion as is illustrated by (5) in Example 1 (q is of no
use there), ii) involving redundancy (hence, repeated literals) as illustrated by (4) in
Example 1 (p is repeated twice).

Definition 8 (Focused derivation schema) Let T = (F ,S,D) be a theory and x ∈
L. A derivation schema d = 〈(x1, r1), . . . , (xn, rn)〉 for x from T is focused iff it can
be reduced to a minimal one by just deleting repeated pairs (xi, ri).

Property 2 Let T = (F ,S,D) be a theory and x ∈ L. A derivation schema d
= 〈(x1, r1), . . ., (xn, rn)〉 for x from T is minimal iff d is focused and the literals
x1, . . . , xn are pairwise distinct.

Notation: For a theory T , CN(T ) denotes the set of all literals that have a derivation
schema from T . We call CN(T ) the potential consequences drawn from T (for
short, consequences) but they need not be definitive as they may happen to be
dismissed by opposite conclusions.

The following property applies to the consequences drawn from a given theory.

Property 3 Let T = (F ,S,D) be a theory.

CN(T ) ⊆ F ∪ {Head(r) | r ∈ S ∪ D} ⊆ L
If T is finite, then CN(T ) is finite

F ⊆ CN((F ,S, ∅)) ⊆ CN(T )
> ∈ CN(T )
CN(T ) = {>} iff F = {>} and @r ∈ D such that Body(r) = {>}.
If d is a derivation schema from T , Seq(d) ⊆ CN(T )

Some rules may not be activated (i.e., the literals in their body have no derivation
schema). Let us consider the following example.

Example 2 Let T2 = (F2,S2,D2) be a theory such that

F2

{
p
q

S2
{
p→ t (r1)
s → u (r2)

D2

{
p ⇒ q (r3)
u⇒ v (r4)

There are rules here whose head is not a consequence of T2. In symbols, CN(T2) =
{p, q, t} ⊂ {p, q, t, u, v} = F2 ∪ {Head(r) | r ∈ S2 ∪D2}. Namely, the two rules r2
and r4 are not activated.
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It is also easy to show that CN is monotonic. Note that a similar result was shown
in [25] for the logic underlying the ASPIC system [8].

Property 4 Let T and T ′ be two theories. If T v T ′ then CN(T ) ⊆ CN(T ′).

Let us now introduce the key notion of option which is useful for characterizing
the extensions of argumentation systems under various semantics. An option is a
maximal (for set inclusion) consistent sub-theory of a given theory.

Definition 9 (Option) Let T = (F ,S,D) be a theory. An option of T is a sub-theory
T ′ = (F ′,S ′,D′) of T such that:

F ′ ⊆ F , S ′ ⊆ S and D′ ⊆ D
CN(T ′) is consistent

@T ′′ v T such that T ′ @ T ′′ and CN(T ′′) is consistent.

Opt(T ) denotes the set of all options of T .

Let us illustrate this new notion by the following example.

Example 3 Consider T3 such that F3, S3, D3 are as follows.

F3

p
q
¬s

S3
{
t, v → s (r1) D3

p ⇒ t (r2)
q ⇒ u (r3)
u⇒ v (r4)

The theory T3 has seven options:

O1 = (F3,S3, {r2, r3})
O2 = (F3,S3, {r2, r4})
O3 = (F3,S3, {r3, r4})
O4 = (F3, ∅,D3)

O5 = ({p, q},S3,D3)

O6 = ({p,¬s},S3,D3)

O7 = ({q,¬s},S3,D3)

A theory has at least one option which is the theory itself in case it is consistent.
This is the case in Example 2: Opt(T2) = {T2}.

Property 5 Let T = (F ,S,D) be a theory.

Opt(T ) 6= ∅.
Opt(T ) = {T } iff CN(T ) is consistent.

We show next that options are all pairwise distinct.

Proposition 1 For all O,O′ ∈ Opt(T ), if CN(O) = CN(O′), then O = O′.

The definition of option does not make any difference between the strict part of a
theory (i.e., its facts and strict rules) and its defeasible part. In rule systems [24], the
former takes precedence over the latter since it represents the “certain” information
of a theory. For instance, in default logic the certain part belongs to every extension of
a theory [5]. This precedence is captured by the following notion of preferred option.
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Definition 10 (Preferred option) Let T = (F ,S,D) be a theory. A preferred option
of T is a sub-theory T ′ = (F ′,S ′,D′) of T such that:

F ′ = F and S ′ = S, D′ ⊆ D,

CN(T ′) is consistent,

∀r ∈ D \ D′, CN((F ,S,D′ ∪ {r})) is inconsistent.

POpt(T ) denotes the set of all preferred options of T .

Let us illustrate this notion by an example.

Example 3 (Cont) The theory T3 has three preferred options: O1, O2 and O3.

Unlike options, the defeasible rules of a theory do not necessarily belong to at
least one preferred option of the theory as shown by the following example.

Example 4 The theory T4 such that

F4

{
p
q

S4
{
p→ s (r1) D4

{
p⇒ ¬s (r2)

has a single preferred option O = (F4,S4, ∅) which does not contain the unique
defeasible rule r2.

Every preferred option is an option. The converse holds only when the theory is
consistent in which case the latter is the only (preferred) option (cf. Property 5).

Property 6 Let T = (F ,S,D) be a theory.

POpt(T ) ⊆ Opt(T ).
Opt(T ) ⊆ POpt(T ) iff CN(T ) is consistent.

A theory may not have preferred options. This is in particular the case when the
strict part (the set of facts and strict rules) is inconsistent.

Property 7 Let T = (F ,S,D) be a theory.

POpt(T ) = ∅ iff CN((F ,S, ∅)) is inconsistent.

For all r ∈ D, if CN((F ,S, {r})) is consistent, then there exists a preferred
option O such that (F ,S, {r}) v O.

Notice that the set of consequences of an (preferred) option is not necessarily
maximal for set inclusion as shown by Example 3.

Example 3 (Cont) We have CN(O1) = {p, q,¬s, t, u} and CN(O2) = {p, q,¬s, t}.
Thus, CN(O2) ⊆ CN(O1).

Notation For a set B of theories, we denote the set of its maximal elements as
Max(B) = {T ∈ B | @T ′ ∈ B such that CN(T )  CN(T ′)}.
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Note that in general, maximal preferred options may be different from maximal
options. Consider for instance the theory in Example 3. Its maximal options are O4

and O5 while its maximal preferred options are O1 and O3.

Let us now introduce the concept of free part of a theory T = (F ,S,D). It is the
sub-theory that is made of the set of facts, the set of strict rules and the defeasible
rules which are involved in every preferred option of T .

Definition 11 (Free Sub-theory) The free sub-theory of a theory T = (F ,S,D) is
Free(T ) = (F ,S,

⋂
(F,S,Di)∈POpt(T )

Di).

The following result summarizes some basic properties of this sub-theory.

Property 8 Let T be a theory.

For any O ∈ POpt(T ), Free(T ) v O
CN(Free(T )) is consistent

4 Rule-based argumentation systems

In this section, we propose an instantiation of Dung’s framework that allows rea-
soning about defeasible information, i.e., drawing conclusions from a theory T =
(F ,S,D). The instantiation is referred to as argumentation system keeping thus the
term framework for the abstract formalism of Dung. The backbone of an argumenta-
tion system is naturally the notion of argument. Intuitively, an argument is a justifica-
tion of a claim, i.e., it provides evidence that the claim is true. Thus, it should satisfy
at least the three following basic properties: i) internal coherence, ii) relevance to the
claim it justifies, and iii) truth preserving (i.e., it guarantees the truth of the claim). It
is true that humans’ arguments may be inconsistent, but they are seen as fallacious by
reasonable people. Furthermore, the topic of the paper is not reasoning about humans’
arguments. It is rather reasoning about inconsistent theories by using arguments as a
building block of the proposed logic.

Definition 12 (Argument) Let T = (F ,S,D) be a theory. An argument defined
from T is a pair (d, x) such that:

x ∈ L
d is a derivation schema for x from T (Truth preserving)

Seq(d) is consistent (Internal coherence)

@T ′ @ (Facts(d), Strict(d), Def(d)) such that x ∈ CN(T ′) (Relevance)

An argument (d, x) is strict iff Def(d) = ∅.

Example 1 (Cont) Below are the nine arguments that are built from the theory T1.

(〈(p, σ)〉, p)
(〈(q, σ)〉, q)
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(〈(p, σ), (q, r6)〉, q)
(〈(p, σ), (s, r1)〉, s)
(〈(q, σ), (¬s, r2)〉,¬s)
(〈(p, σ), (q, r6), (¬s, r2)〉,¬s)
(〈(p, σ), (s, r1), (u, r3)〉, u)
(〈(q, σ), (¬s, r2), (t, r4)〉, t)
(〈(p, σ), (q, r6), (¬s, r2), (u, r3)〉, t)

Note that there is no argument in favor of v since all derivation schemas for v are
inconsistent. The derivations (4) and (5) do not give birth to arguments since they are
not minimal.

Notations: Let T be a theory, Arg(T ) denotes the set of all arguments built from T
in the sense of Definition 12. If a = (d, x) is an argument, then Conc(a) = x. For
a set E of arguments, Concs(E) = {x | (d, x) ∈ E} and Th(E) is a theory such
that

Th(E) = (
⋃

(d,x)∈E

Facts(d),
⋃

(d,x)∈E

Strict(d),
⋃

(d,x)∈E

Def(d)).

The following result shows that an argument provides a minimal derivation schema
for a conclusion.

Theorem 1 Let T be a theory. For any consistent sequence d= 〈(x1, r1), . . ., (xn, rn)〉
from T , the following two statements are equivalent:

(d, x) is an argument (from T )

d is a focused derivation schema from T such that x = xn

An argument may have several sub-parts, each of which may give birth to an
argument, called sub-argument of the original argument.

Definition 13 (Sub-argument) An argument (d, x) is a sub-argument of (d′, x′) iff
(Facts(d), Strict(d), Def(d)) v (Facts(d′), Strict(d′), Def(d′)).

Notation: The function Sub(.) returns the set of all sub-arguments of a given argu-
ment.

Example 1 (Cont) The argument (〈(q, σ), (¬s, r2)〉,¬s) has two sub-arguments:
(〈(q, σ)〉, q) and itself. By contrast, (〈(q, σ)〉, q) is not a sub-argument of (〈(p, σ),
(q, r6)〉, q).

Property 9 If (d, x) is a sub-argument of (d′, x′), then Seq(d) ⊆ Seq(d′).

The converse is not true as shown next.

Example 5 Consider the two arguments a and b:

a = (〈(p, σ), (t, p→ t)〉, t)
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b = (〈(p, σ), (q, p→ q), (t, q ⇒ t)〉, t)

Note that Seq(a) = {p, t} ⊆ {p, q, t} = Seq(b) but a is not a sub-argument of b
since the theory ({p}, {p→ t}, σ) is not a sub-theory of ({p}, {p→ q}, {q ⇒ t}).

Argumentation systems that use a Tarskian logic such as propositional logic may
have infinite sets of arguments even when the theories (called knowledge bases) over
which they are built are themselves finite (cf. [26]). We show that this is not the case
for rule-based argumentation systems. Indeed, the sets of arguments are finite as soon
as the theories are finite.

Proposition 2 If a theory T is finite, then Arg(T ) is finite.

The set of arguments built from a given theory cannot be empty since the set of
facts of a theory contains at least >.

Property 10 For a theory T = (F ,S,D), Arg(T ) 6= ∅.

The construction of arguments in all existing structured argumentation systems
is a monotonic process. By structured systems we mean argumentation systems that
build their arguments from knowledge bases encoded in particular logics. These in-
clude ASPIC [8], ASPIC+ [9], DeLP [10], ABA [27] and those discussed in [4].
Thus, unlike Dung’s framework where arguments are abstract entities, in structured
systems arguments have a clear origin and a precise structure. Hunter studied in [25]
the properties of the logics underlying existing structured systems. The results show
that the set of arguments built from a knowledge base cannot be shrunk when the base
is extended by new information. The following result shows that this property holds
also for the kind of logic discussed in this paper.

Proposition 3 Let T and T ′ be two theories. If T v T ′ then Arg(T ) ⊆ Arg(T ′).

A rule-based instantiation of Dung’s abstract framework is defined as follows:

Definition 14 (Argumentation system) An argumentation system defined over a the-
ory T = (F ,S,D) is a pairH = (Arg(T ),R) where Arg(T ) is the set of arguments
built from T in the sense of Definition 12 and R ⊆ Arg(T ) × Arg(T ) is an attack
relation.

For the sake of generality, the attack relation of an argumentation system is left
unspecified in the sequel. Thus, it may be instantiated in different ways. In existing
rule-based argumentation systems like the ASPIC system as defined in [8,17] and its
extended version ASPIC+ [9], three kinds of attack relations are used: i) rebut, ini-
tially proposed in [28], which requires that two arguments have opposite conclusions,
ii) assumption attack, proposed also in [28], according to which an argument under-
mines a premise of another argument, and iii) undercut, proposed in [16], which al-
lows an argument to prevent the application of a defeasible rule in another argument.
The two first relations are conflict-dependent, i.e., they capture the inconsistency of
the theory over which an argumentation system is built. Such relations should show
no attack from argument a to b unless their derivation schemas contain opposite lit-
erals.
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Definition 15 (Conflict-dependency) Let H = (Arg(T ), R) be an argumentation
system. The attack relationR is conflict-dependent iff for all (d, x), (d′, x′) ∈ Arg(T ),
if (d, x)R (d′, x′) then Seq(d) ∪ Seq(d′) is inconsistent.

An important feature of conflict-dependent attack relations is that they do not
admit self-attacking arguments, mainly since arguments are consistent.

Proposition 4 Let H = (Arg(T ), R) be an argumentation system. If R is conflict-
dependent, then for all a ∈ Arg(T ) (a, a) /∈ R.

Conflict-dependency is somehow related to the notion of conflict-freeness of sets
of arguments. Indeed, when the attack relation is conflict-dependent, the set of argu-
ments built from any consistent theory is conflict-free with respect to this relation.

Proposition 5 LetH = (Arg(T ),R) be an argumentation system built over a theory
T . For every T ′ v T , if CN(T ′) is consistent and R is conflict-dependent, then
Arg(T ′) is conflict-free.

Another feature of all the attack relations in existing rule-based argumentation
systems is the fact that they privilege strict arguments.

Definition 16 (Strict argument precedence) Let H = (Arg(T ),R) be an argu-
mentation system built over a theory T . An attack relation R privileges strict argu-
ments iff for all a = (d, x), b = (d′, x′) ∈ Arg(T ), if a is strict and Seq(d)∪Seq(d′)
is inconsistent, then aRb.

A consequence of this property is that the set Arg(Free(T )) is admissible (i.e.,
it is conflict-free and defends all its elements). We will show in a subsequent section
that this result is crucial for characterizing ideal extension.

Theorem 2 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F ,S,D) such that CN((F ,S, ∅)) is consistent. If R is conflict-dependent and
privileges strict arguments, then Arg(Free(T )) is an admissible set ofH.

Unless stated otherwise, in what follows we do not make any assumption about
the attack relation of a rule-based argumentation system. However, the arguments
of the latter are evaluated using any of the semantics recalled in Definition 3. The
extensions of a system are used for defining the plausible conclusions to be drawn
from the theory over which the system is built. A literal is a plausible conclusion of a
system iff it is a common conclusion to all the extensions.

Definition 17 (Plausible conclusions) Let H = (Arg(T ),R) be an argumentation
system built over a theory T . The set of plausible conclusions of H under semantics
x is

Output(H) =
{
{z ∈ L | ∀E ∈ Extx(H), ∃a ∈ E s.t. Conc(a) = z} if Extx(H) 6= ∅
∅ else

The set of plausible conclusions coincides with the set of common conclusions of
the extensions, of course when extensions exist.
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Property 11 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that Extx(H) 6= ∅ where x is any of the reviewed semantics. The equality
Output(H) =

⋂
Ei∈Extx(H)

Concs(Ei) holds.

Finally, it is obvious that the plausible conclusions of an argumentation system
are consequences of the theory over which it is built.

Property 12 Let H = (Arg(T ),R) be an argumentation system built over a theory
T . The inclusion Output(H) ⊆ CN(T ) holds under any extension-based semantics.

It is worth noticing that under admissible semantics, the set of plausible con-
clusions of any argumentation system is empty. This is mainly due to the fact that
the empty set is always an admissible extension. This makes this semantics unsuit-
able for defeasible reasoning. Complete semantics suffers from the same problem.
Indeed, since under this semantics extensions are not maximal for set inclusion, the
empty set may be an extension leading thus to an empty set of plausible conclusions.
Stable semantics may also be unsuitable for argumentation systems that do not have
extensions. However, we show in a subsequent section that rule-based systems that
satisfy some desirable properties do have stable extensions, in particular when the
attack relation is conflict-dependent.

5 Postulates for rule-based argumentation systems

Like any reasoning model, argumentation systems should enjoy some desirable prop-
erties or rationality postulates that ensure their soundness. The first work on postu-
lates in argumentation was done by [17] in the context of rule-based systems. Starting
from the observation that some existing systems like those proposed in [12,29] suf-
fer from two main problems: i) returning inconsistent sets of plausible conclusions,
and ii) forgetting intuitive conclusions, the authors proposed three postulates which
prevent the encountered problems. In what follows, we recall the three postulates and
propose three new ones. The first postulate proposed in [17] concerns the consistency
of the set of conclusions supported by every extension.

Postulate 1 (Consistency) An argumentation system H = (Arg(T ),R) built over
a theory T = (F ,S,D) satisfies consistency under semantics x iff for any E ∈
Extx(H), Concs(E) is consistent.

A rule-based system which satisfies this postulate has necessarily a consistent set
of plausible conclusions.

Property 13 ([17]) If an argumentation system H = (Arg(T ), R) satisfies consis-
tency under semantics x (x being any extension-based semantics), then Output(H)
is consistent.

The second postulate ensures a form of “completeness” of the outputs of an ar-
gumentation system. It says that if there is an argument with conclusion x in an
extension of the system, and there exists a strict rule x→ y in the theory over which
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the system is built, then y should also be supported by an argument in the same ex-
tension. Recall that a strict rule has no exception. Thus, as soon as x is true, y holds
for sure.

Postulate 2 (Closure under strict rules) An argumentation systemH = (Arg(T ),R)
built over a theory T = (F ,S,D) is closed under strict rules under semantics x iff
for any E ∈ Extx(H), Concs(E) = CN((Concs(E),S, ∅)).

If an argumentation system is closed under strict rules, then its set of plausible
conclusions is also closed under strict rules.

Property 14 ([17]) Let H = (Arg(T ), R) be an argumentation system built over a
theory T = (F ,S,D). If H is closed under strict rules under semantics x (x being
any extension-based semantics), then Output(H) = CN((Output(H),S, ∅)).

A third postulate, called indirect consistency, was proposed in [17]. It ensures that
every closed (under strict rules) extension should satisfy consistency. It was shown
that a system that satisfies consistency and closure under strict rules satisfies this form
of indirect consistency.

Property 15 ([17]) Let H = (Arg(T ), R) be an argumentation system built over a
theory T = (F , S,D). IfH satisfies consistency and is closed under strict rules under
semantics x (x being any extension-based semantics), then for any E ∈ Extx(H),
CN((Concs(E),S, ∅)) is consistent.

It is worth mentioning that the three previous results hold for any attack relation
and under any extension-based acceptability semantics, thus under any of the seman-
tics recalled in Definition 3 and others like recursive semantics [20].

In any axiomatic approach, the axioms (or postulates) should ideally all be inde-
pendent from each other, i.e., none is deduced from the others. Thus, in the sequel
indirect consistency is abandoned since it follows from Postulates 1 and 2. We pro-
pose next three new postulates which were already defined in [30] for argumentation
systems that use a logic in the sense of [22]. The first one says that if an argument be-
longs to an extension, then all its sub-arguments should be in the extension. Thus, an
argument cannot be accepted if one of its sub-parts is questionable. This is a natural
requirement since plausible conclusions inferred from a theory rely on their support-
ing arguments which should be unassailable.

Postulate 3 (Closure under sub-arguments) An argumentation systemH= (Arg(T ),
R) built over a theory T = (F ,S,D) is closed under sub-arguments under seman-
tics x iff for any E ∈ Extx(H), if a ∈ E then Sub(a) ⊆ E .

Argumentation systems that satisfy both consistency and closure under sub-arguments
enjoy a strong version of consistency. Indeed, the set of consequences that follow
from the theory of an extension is consistent.

Proposition 6 LetH = (Arg(T ),R) be an argumentation system built over a theory
T = (F ,S,D) such that Extx(H) 6= ∅ (x being any extension-based semantics). If
H satisfies consistency and closure under sub-arguments, then for any E ∈ Extx(H),
CN(Th(E)) is consistent.
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Let us illustrate this result with an example.

Example 6 Let T5 = (F5,S5,D5) be a theory such that S5 = ∅ and

F5

{
x
¬x D5

{
x ⇒ y (r1)
¬x⇒ z (r2)

Consider the two arguments (d1, y), (d2, z) with d1 = 〈(x, σ), (y, r1)〉 and d2 =
〈(¬x, σ), (z, r2)〉. Assume that the set E = {(d1, y), (d2, z)} is an extension of (Arg(T5),R)
under a given semantics. Clearly, CN((Concs(E),S, ∅)) = {y, z} is consistent. How-
ever, Th(E) = T and CN(T ) = {x,¬x, y, z} is inconsistent. Proposition 6 ensures
that the argumentation system (Arg(T5),R) violates at least one of the consistency
or closure under sub-arguments postulates.

Since facts and strict rules are the certain part in a theory (facts being observable
and strict rules having no exceptions), they should be plausible conclusions of any ar-
gumentation system. It is worth mentioning that this principle is applied, for instance,
in default logic where the non-defeasible information of a default theory is part of all
extensions [5]. Of course this makes sense when the non-defeasible information is
consistent.

Postulate 4 (Strict precedence) An argumentation system H = (Arg(T ), R) built
over a theory T = (F ,S,D) satisfies strict precedence under semantics x iff CN((F ,S, ∅)) ⊆
Output(H).

Notice that argumentation systems that have no extensions violate this postulate.
Similarly, systems that evaluate their arguments using a semantics which considers
the empty set as an extension (like admissible semantics) violate strict precedence.
Such systems are thus not suitable for defeasible reasoning since they may miss intu-
itive conclusions.

Proposition 7 LetH = (Arg(T ),R) be an argumentation system built over a theory
T = (F ,S,D) such that ∅ ∈ Extx(H).H violates strict precedence under semantics
x.

We show next that if an argumentation system satisfies consistency and strict
precedence, then the strict part of the theory over which it is built is consistent.

Proposition 8 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T = (F ,S,D) such that Extx(H) 6= ∅. If H satisfies consistency and strict
precedence under semantics x, then CN((F ,S, ∅)) is consistent.

The last postulate ensures a form of completeness of the extensions of an argumenta-
tion system under any semantics. It says that if the sequence of an argument is part of
the conclusions of a given extension, then the argument should belong to the exten-
sion. Informally: If each step in the argument is good enough to be in the extension,
then so is the argument itself. It is worth pointing out that this postulates holds for
both strict and defeasible rules.
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Postulate 5 (Exhaustiveness) An argumentation system H = (Arg(T ),R) built
over a theory T = (F ,S,D) satisfies exhaustiveness under semantics x iff for any
E ∈ Extx(H), for any (d, x) ∈ Arg(T ), if Seq(d) ⊆ Concs(E), then (d, x) ∈ E .

Argumentation systems that satisfy exhaustiveness and closure under sub-arguments
have complete extensions, i.e., they are closed in terms of arguments.

Proposition 9 LetH = (Arg(T ),R) be an argumentation system such that Extx(H) 6=
∅ (x being any extension-based semantics). If H is closed under sub-arguments and
satisfies exhaustiveness under semantics x, then for all E ∈ Extx(H), E = Arg(Th(E)).

When an argumentation system satisfies strict precedence and exhaustiveness,
then its strict arguments are part of any extension. This holds under any extension-
based semantics.

Proposition 10 LetH = (Arg(T ),R) be an argumentation system such that Ext(H) 6=
∅ (under an extension-based semantics). IfH satisfies exhaustiveness and strict prece-
dence, then for any E ∈ Ext(H), Arg((F ,S, ∅)) ⊆ E .

An axiomatic approach should obey an important feature: the postulates should
be compatible, i.e., they can be satisfied all together by an argumentation system
under a given semantics. Fortunately, this is the case of the five postulates discussed
in this section.

Proposition 11 The five postulates are compatible.

The four postulates (consistency, closure under sub-arguments, closure under
strict rules, strict precedence) are independent. None of them follows from a sub-
set of the three others. However, as will be shown in the next section, exhaustiveness
follows from consistency and closure under sub-arguments when an argumentation
system uses a conflict-dependent attack relation and naive or stable semantics for
evaluating arguments.

6 Outcomes of rule-based argumentation systems

This section analyzes the outputs of rule-based argumentation systems under the re-
viewed semantics, i.e., those recalled in Definition 3, that are suitable for defeasible
reasoning. Recall that complete semantics is not a good candidate for such reason-
ing since its extensions are not maximal (for set inclusion) and may thus lead to an
empty set of plausible conclusions, and missing intuitive conclusions. We analyze the
extensions under each semantics. Indeed, we characterize the set Concs(.) of conclu-
sions and the theory Th(.) of each extension. We also characterize the set Output(.)
of plausible conclusions that are drawn by a rule-based argumentation system from a
theory.

Note that the argumentation system described in Section 4 is not fully specified
since its attack relation is left undefined, and may thus be instantiated in different
ways. For the purpose of our study we do not need to consider a particular attack
relation. Since any reasonable argumentation system should satisfy the discussed



A formal characterization of the outcomes of rule-based argumentation systems 19

postulates, then throughout this section we only focus on systems that satisfy the
postulates. Such systems exist and ASPIC, defined in [17], is one of them. Indeed, it
was shown in [17] that ASPIC, which uses restricted rebut as attack relation, satisfies
consistency and closure under both sub-arguments and strict rules under all Dung’s
semantics. Furthermore, the attack relation in ASPIC privileges strict arguments (by
definition) and the strict part of a theory is assumed to be consistent. Thus, the system
satisfies strict precedence under the same semantics. Finally, from our Proposition 15
(respectively Proposition 13), it follows that it also satisfies exhaustiveness under
stable (respectively naive) semantics. The results we provide next hold for any in-
stantiation of the attack relation R. This means that whatever the attack relation that
is considered, the outcome will be the same. This shows also that all the reasonable
rule-based argumentation systems that can be built over the same theory are equiva-
lent [31,32], in the sense they provide the same extensions and the set of plausible
conclusions under a given semantics.

Before presenting the formal results concerning the reviewed semantics, below
are some results that hold under any extension-based semantics, thus under all the
reviewed semantics but also under several other semantics (e.g., recursive semantics
[20], the one used in DeLP system [10], stage semantics [21], . . . ). The first result
characterizes the set of conclusions of each extension of an argumentation system
which is closed under sub-arguments.

Proposition 12 LetH = (Arg(T ),R) be an argumentation system such that Ext(H)
6= ∅ (under an extension-based semantics). IfH is closed under sub-arguments, then
for any E ∈ Ext(H),

Concs(E) = X ∪ {Head(r) | r ∈ Y ∪ Z} where Th(E) = (X,Y, Z)

Concs(E) = CN(Th(E))
∀(d, x) ∈ Arg(Th(E)), Seq(d) ⊆ Concs(E)

The next result shows that if an argumentation system over a theory satisfies strict
precedence, closure under both sub-arguments and strict rules, then the set of literals
deduced from Th(E), the theory of an extension E , is exactly the same set that is
obtained from Th(E) extended by all facts and strict rules which are not in Th(E).

Theorem 3 Let H = (Arg(T ), R) be an argumentation system built over a theory
T = (F ,S,D) such that Ext(H) 6= ∅ (under an extension-based semantics). If H
satisfies strict precedence and closure under both strict rules and sub-arguments,
then for any E ∈ Ext(H),

CN(Th(E)) = CN((F ,S,
⋃

(d,x)∈E

Def(d))).

We also show that the theory of an extension can be extended into a sub-theory
(of the argumentation system) which infers, using the notion of derivation, all the
conclusions that are supported by arguments of the extension. This (i.e., Theorem 4)
will be useful in proving various results in the next sections.
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Theorem 4 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F ,S,D) such that Ext(H) 6= ∅ (under an extension-based semantics). If H
satisfies strict precedence, and closure under both strict rules and sub-arguments,
then for any E ∈ Ext(H), Concs(E) = CN(O) for O = (F ,S, ζ) such that

ζ = (
⋃

(d,x)∈E

Def(d)) ∪ {r | r ∈ D and Body(r) 6⊆ CN(Th(E))}.

6.1 Naive semantics

Before characterizing the extensions as well as the plausible conclusions of a rule-
based argumentation system, let us first show some additional links between the pos-
tulates in the particular case of naive semantics. The first result shows that exhaus-
tiveness follows from consistency and closure under sub-arguments. This is the case
when the attack relation is conflict-dependent.

Proposition 13 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T such thatR is conflict-dependent. IfH satisfies consistency and closure under
sub-arguments under naive semantics, then H satisfies exhaustiveness under naive
semantics.

The second result shows that when an argumentation system is closed under sub-
arguments and satisfies the consistency postulate under naive semantics, then every
naive extension of the system is closed in terms of arguments.

Proposition 14 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T such thatR is conflict-dependent andH satisfies consistency and closure under
sub-arguments under naive semantics. For any E ∈ Extn(H), E = Arg(Th(E)).

Strict precedence is problematic in case of naive semantics since it may be vi-
olated by a rule-based argumentation system. This is mainly due to the fact that the
orientation of attacks is not taken into account when computing naive extensions, thus
there is no way to enforce the postulate. We show next that strict arguments are part
of any naive extension only when they neither are attacked nor attack any argument.

Theorem 5 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T = (F ,S,D) such that R is conflict-dependent. For any E ∈ Extn(H),
Arg((F , S, ∅)) ⊆ E iff for any a ∈ Arg((F , S, ∅)), @b ∈ Arg(T ) such that aRb
or bRa.

We have previously shown that the five postulates are compatible in the general
case. Indeed, under stable and preferred semantics, it was shown that the ASPIC sys-
tem satisfies all the postulates. In case of naive semantics this is not always true. Strict
precedence is not compatible with consistency when the strict part is inconsistent, or
it is consistent but in conflict with the defeasible part. For instance, any argumenta-
tion system built over the theory of Example 3 will violate at least one of the two
postulates under naive semantics.
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Theorem 6 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T = (F ,S,D) such that R is conflict-dependent. If ∃a, b ∈ Arg(T ) such that
a ∈ Arg((F ,S, ∅)) and Conc(a) = ¬Conc(b), then H cannot satisfy both strict
precedence and consistency under naive semantics.

In case of the ASPIC system, the argument b cannot be strict since the strict part
(i.e., CN(F ,S, ∅)) is assumed to be consistent. Moreover, there is only one conflict
between a and b and which emanates from a since strict arguments cannot be attacked
by defeasible ones. Thus, strict precedence is violated.

We show next that, assuming consistency and closure under sub-arguments, naive
extensions are maximal.

Theorem 7 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments under naive semantics. For all E , E ′ ∈ Extn(H), if Concs(E ′) ⊆
Concs(E) then E = E ′.

The following theorem characterizes naive extensions. It says that every naive
extension of an argumentation system which satisfies consistency and closure under
sub-arguments has a unique corresponding maximal option in the theory at hand.

Theorem 8 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments under naive semantics. For any E ∈ Extn(H), there exists a unique
option O ∈ Max(Opt(T )) such that Th(E) v O and Concs(E) = CN(O).

Note that the inclusion Th(E) ⊆ O is due to the fact that a theory Th(E) of
an extension E contains only activated (strict and defeasible) rules while maximal
options may contain non-activated ones. Thus, the elements which in O but not in
Th(E) are non-activated rules.

Notation For E any extension ofH such thatO in Max(Opt(T )) satisfies Th(E) v O
and Concs(E) = CN(O), let

Option(E) def
= O.

We prove that no two naive extensions return the same option. Moreover, every ex-
tension is exactly the set of all arguments that can be built from its corresponding
option.

Theorem 9 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments under naive semantics.

For all E , E ′ ∈ Extn(H), if Option(E) = Option(E ′), then E = E ′

For any E ∈ Extn(H), E = Arg(Option(E))

We have shown that each naive extension captures exactly one maximal option
and it supports all, and only, the consequences of that option. Theorem 10 states that
every maximal option has a corresponding naive extension. So, there is a bijection
from the set of naive extensions to the set of maximal options.
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Theorem 10 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments under naive semantics.

For any O ∈ Max(Opt(T )), Arg(O) ∈ Extn(H)
For any O ∈ Max(Opt(T )), O = Option(Arg(O))
For all O,O′ ∈ Max(Opt(T )), if Arg(O) = Arg(O′) then O = O′

Example 3 (Cont) The theory T3 has seven options, of which only two are maximal:
Max(Opt(T3)) = {O4,O5}. For all argumentation system H built over T3, if the
attack relation of H is to be conflict-dependent and consistency and closure under
sub-arguments satisfied, then Extn(H) = {Arg(O4), Arg(O5)}.

From the previous results, it follows that there is a bijection between the set of
naive extensions of an argumentation system and the maximal options of the theory
over which the system is built.

Corollary 1 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments under naive semantics. There is a bijection between Extn(H) and
Max(Opt(T )).

The previous results require only the satisfaction of two postulates: consistency
and closure under sub-arguments. We show next that when a rule-based argumen-
tation system satisfies all the five postulates, there is a bijection between the set of
naive extensions of the system and the maximal preferred options of the theory over
which it is built. The reason is that in such a case, the maximal options of the theory
coincide with the maximal preferred ones. Recall that in general, maximal preferred
options may be different from maximal options.

Theorem 11 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency, strict precedence
and closure under both strict rules and sub-arguments under naive semantics. The
equality Max(POpt(T )) = Max(Opt(T )) holds.

Corollary 2 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency, strict precedence
and closure under both strict rules and sub-arguments under naive semantics. There
is a bijection between Extn(H) and Max(POpt(T )).

It is possible to delimit the number of naive extensions of any argumentation
system that satisfies consistency and closure under sub-arguments. It is exactly the
number of maximal options of the theory at hand.

Corollary 3 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments under naive semantics. The equality |Extn(H)| = |Max(Opt(T ))|
holds.
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It follows also that when a theory is finite, then any system built over it has a finite
number of naive extensions.

Corollary 4 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments under naive semantics. If T is finite, then H has a finite number of
naive extensions.

What about the plausible conclusions that are drawn from a theory using an argu-
mentation system that satisfies the postulates? From the previous results, it is easy to
show that they are the literals that follow from all the maximal options.

Theorem 12 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies consistency and closure under
sub-arguments under naive semantics.

Output(H) =
⋂

Oi∈Max(Opt(T ))

CN(Oi)

Example 3 (Cont) Any argumentation system H that can be built over the theory
T3 and has a conflict-dependent attack relation and satisfies consistency and closure
under sub-arguments will have as output the set Output(H) = CN(O4) ∩ CN(O5) =
{p, q, t, u, v}.

Let us summarize the main results: Under naive semantics, any rule-based argu-
mentation system may violate strict precedence. However, the other postulates can
be satisfied. In such a case , if the attack relation is conflict-dependent then any ar-
gumentation system will infer exactly the literals that follow from all the maximal
options of the theory over which the system is built. This is due to the bijection that
holds between the set of naive extensions and the set of maximal options. In case the
system satisfies also strict precedence and closure under strict rules, then the maximal
options of the theory coincide with the maximal preferred options.

6.2 Stable semantics

As for naive semantics, exhaustiveness follows from consistency and closure under
sub-arguments in case of stable semantics.

Proposition 15 Let H = (Arg(T ),R) be an argumentation system built over a the-
ory T such thatR is conflict-dependent. IfH satisfies consistency and closure under
sub-arguments under stable semantics, then the following two properties hold:

H satisfies exhaustiveness under stable semantics.

For any E ∈ Exts(H), E = Arg(Th(E)).

Stable extensions of rule-based argumentation systems satisfying the five postu-
lates return maximal preferred options. This means that if one instantiates Dung’s
framework and does not get maximal preferred options with stable extensions, then
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the instantiation certainly violates at least one of the postulates. Note that strict prece-
dence may be satisfied by an argumentation system under stable semantics while it is
violated by the same system under naive semantics. This is due to the fact that the ori-
entation of attacks plays an important role in stable semantics, then strict precedence
can be enforced by choosing an appropriate orientation.

Theorem 13 Let H = (Arg(T ),R) be an argumentation system defined over a
theory T such that R is conflict-dependent. If H satisfies consistency, strict prece-
dence and closure under both sub-arguments and strict rules under stable seman-
tics, and Exts(H) 6= ∅, then for any E ∈ Exts(H), there exists a unique option
O ∈ Max(POpt(T )) such that:

Th(E) v O
Concs(E) = CN(O)
E = Arg(O)

Two stable extensions cannot capture the same maximal preferred option.

Theorem 14 Let H = (Arg(T ),R) be an argumentation system defined over a the-
ory T such that R is conflict-dependent. If H satisfies consistency, strict precedence
and closure under both sub-arguments and strict rules under stable semantics and
Exts(H) 6= ∅, then for all E , E ′ ∈ Exts(H), if Option(E) = Option(E ′) then
E = E ′.

The previous results characterize the stable extensions of rule-based argumen-
tation systems that satisfy the postulates. However, they do not guarantee that each
maximal preferred option of a theory has a corresponding stable extension. To put it
differently, it does not guarantee a bijection between the sets Exts(H) and Max(POpt(T )),
thus does not ensure the equality |Exts(H)| = |Max(POpt(T ))|. In case of argumen-
tation systems that use a Tarskian logic for representing information and for comput-
ing arguments, it was shown in [4] that this equality depends on the attack relation
that is chosen. We show next that this is also the case for rule-based systems.

Given T , let <s be the set of all attack relations that are conflict-dependent and
that ensure the five postulates under stable semantics:

<s = {R ⊆ Arg(T )× Arg(T ) | R is conflict-dependent and (Arg(T ),R)
satisfies the five postulates under stable semantics for any theory T }.

This set contains three disjoints subsets of attack relations, i.e.,<s = <s1∪<s2∪<s3 :

<s1 : the set of relations such that |Exts(H)| = 0

<s2 : the set of relations such that |Exts(H)| = |Max(POpt(T ))|
<s3 : the set of relations such that |Exts(H)| < |Max(POpt(T ))|

Let us analyze separately each category of attack relations. The following re-
sult shows that the set <s1 is empty, meaning that there is no attack relation which
prevents the existence of stable extensions. To say it differently, any argumentation
system which satisfies the postulates has at least one stable extension.
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Theorem 15 <s1 = ∅.

A consequence of this postulate is that stable extensions coincide with semi-stable
ones. Indeed, it was shown in [18] that when stable extensions exist, they coincide
with semi-stable extensions.

Corollary 5 For all argumentation system H = (Arg(T ),R), if R ∈ <s2 ∪ <s3 ,
then Exts(H) = Extss(H).

From the previous results, it is possible to delimit the number of stable extensions
of rule-based argumentation systems that satisfy the five postulates.

Corollary 6 Let H = (Arg(T ),R) be an argumentation system defined over a the-
ory T such thatR is conflict-dependent. IfH satisfies the five postulates, then

1 ≤ |Exts(H)| ≤ |Max(POpt(T ))|.

It follows that when a theory is finite, any argumentation system built over it has
a finite number of stable extensions.

Corollary 7 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such that R is conflict-dependent and H satisfies the five postulates. If T is finite,
thenH has a finite number of stable extensions.

Attack relations of category <s2 induce a bijection between the set of stable ex-
tensions of an argumentation system and the set of maximal preferred options of the
theory over which the system is built. Indeed, every preferred option gives a stable
extension.

Theorem 16 Let H = (Arg(T ), R) be an argumentation system over a theory T
such thatR ∈ <s2 . For any O ∈ Max(POpt(T )), Arg(O) ∈ Exts(H).

Example 3 (Cont) The theory T3 has seven options, of which only two are pre-
ferred maximal: Max(POpt(T3)) = {O1,O3}. Thus, for all argumentation system
H built over T3, if the attack relation of H is of category <s2 , then Exts(H) =
{Arg(O1), Arg(O3)}. Recall that under naive semantics, there is no argumentation
system over T3 that can satisfy strict precedence. The ones that guarantee consis-
tency and closure under sub-arguments will all have the following naive extensions:
Extn(H) = {Arg(O4), Arg(O5)}.

Argumentation systems with an attack relation from <s2 are coherent, meaning
that the preferred extensions exhaust all the stable ones. It follows thus that the three
semantics (semi-stable, stable, preferred) coincide. This means that semi-stable and
preferred semantics have no added value wrt stable semantics since they guarantee
the same results.

Theorem 17 For any argumentation system H = (Arg(T ), R) such that R ∈ <s2 ,
it holds Exts(H) = Extss(H) = Extp(H).
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In case an argumentation system satisfies strict precedence under naive semantics
(see Theorem 5), then its extensions coincide with the stable ones. To put differently,
in case naive semantics can guarantee strict precedence, stable semantics becomes
useless since it provides no added value wrt naive semantics.

Theorem 18 For all argumentation system H = (Arg(T ), R) such that R ∈ <s2 , if
H satisfies the postulates under naive semantics, then

Extn(H) = Exts(H) = Extss(H) = Extp(H).

Plausible conclusions of rule-based argumentation systems that use attack rela-
tions in category <s2 are exactly the literals that follow from all the maximal pre-
ferred options of the theory at hand.

Theorem 19 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such thatR ∈ <s2 .

Output(H) =
⋂

Oi∈ Max(POpt(T ))

CN(Oi).

Systems that use relations in <s3 choose a proper subset of the maximal preferred
options of T and make inferences from them. Their output sets are as follows:

Theorem 20 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such thatR ∈ <s3 .

Output(H) =
⋂
Oi∈X

CN(Oi)

with X = {Oi ∈ Max(POpt(T )) | Ei = Arg(Oi) ∈ Exts(H)}.

These attack relations introduce a critical discrimination between the maximal
preferred options of a theory. Hence, great care must be exercised when designing
rule-based argumentation systems based on stable semantics: The principles gov-
erning the interaction between ⇒ and R must be both rigorously and meticulously
specified so as to avoid trouble of which the following example is an easy case.

Example 7 Consider T6 such that F6, S6, D6 are as follows:

F6

{
p
q

S6 = ∅ D6

{
p⇒ s (r1)
q ⇒ ¬s (r2)

The theory T6 has two maximal preferred options:

O1 = (F6,S6, {r1})
O2 = (F6,S6, {r2})

For a systemH whose attack relation is in <s3 either (i) Arg(O1) or (ii) Arg(O2)
is its unique stable extension. In case (i), s ∈ Output(H) and ¬s /∈ Output(H).
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In case (ii), ¬s is the plausible conclusion. By the obvious symmetry (don’t be
misled by negation! 1), either choice would be arbitrary and this is an instance where
an attack relation from <s2 is alright.

To sum up, attack relations satisfying the postulates can be split into two cate-
gories: <s2 and <s3 . Relations from <s2 make semi-stable semantics and preferred
semantics to collapse into stable semantics. They offer no added value wrt the latter.
Stable semantics may, however, be more valuable than naive semantics. Indeed, the
theories for which strict precedence cannot be satisfied under naive semantics, are
handled correctly under stable semantics. This latter can enforce the satisfaction of
strict precedence if the attack relation is defined in an appropriate way. For those the-
ories where the postulate is satisfied, stable semantics collapses into naive semantics.
With attack relations from category <s3 , pitfalls threaten as preferred options are dis-
carded, and a lot of care must be exercised when designing such an argumentation
system.

6.3 Preferred semantics

Preferred semantics was originally proposed in order to overcome the limitation of
stable semantics which does not guarantee the existence of extensions. Indeed, any
argumentation system has at least one preferred extension which may be empty. We
show that in case of rule-based systems the empty set cannot be an extension.

Theorem 21 Let H be an argumentation system built over a theory T = (F ,S,D)
such thatH satisfies the strict precedence postulate under preferred semantics. Extp(H) 6=
{∅}.

Unlike the cases of naive and stable extensions, a preferred extension may capture
a proper sub-part of a maximal preferred option. For instance, it is not impossible that
a preferred extension captures only the strict part of theory T6 in Example 7.

Theorem 22 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such thatR is conflict-dependent andH satisfies the five postulates under preferred
semantics. For any E ∈ Extp(H), ∃O ∈ Max(POpt(T )) such that Th(E) v O and
Concs(E) ⊆ CN(O).

Each preferred extension corresponds to exactly one maximal preferred option.
It either returns all the consequences of that option, or chooses a subset. The latter
contains all the conclusions that follow from the strict part and some conclusions
that follow using defeasible rules. We show next that there is at least one maximal
preferred option which is captured by a preferred extension. This is mainly due to the
fact that stable extensions exist.

1 There is an apparent asymmetry between s and ¬s but it is meaningless because we can choose an
atom t to represent the intuitive statement formalized by ¬s and then the intuitive statement formalized by
s gets represented as ¬t. As an illustration about numbers, by letting odd instead of even, or vice-versa, to
be an atom of L, asymmetry about negation could be reversed while in both cases the meaning would be
the same.
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Theorem 23 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F ,S,D) such that R is conflict-dependent and H satisfies the five postulates
under preferred semantics. There exists O ∈ Max(POpt(T )) such that Arg(O) ∈
Extp(H).

Example 7 (Cont) At least one of Arg(O1) and Arg(O2) is a preferred extension of
an argumentation systemH = (Arg(T6),R) which satisfies the five postulates.

Two preferred extensions refer to different preferred options.

Theorem 24 Let H = (Arg(T ),R) be an argumentation system such that R is
conflict-dependent and H satisfies exhaustiveness and closure under sub-arguments
under preferred semantics. Let E , E ′ ∈ Extp(H) andO ∈ Max(POpt(T )). If Th(E) v
O and Th(E ′) v O, then E = E ′.

We show next that the free part of a theory, i.e., the sub-theory which consists of
the set of facts, the set of strict rules and the defeasible rules which are involved in
every preferred option, is part of any preferred extension of argumentation systems
that satisfy the postulates. Indeed, the set Arg(Free(T )) is part of every preferred
extension of any argumentation system which satisfies consistency, exhaustiveness,
strict precedence and closure under sub-arguments.

Theorem 25 Let H = (Arg(T ),R) be an argumentation system over a theory
T = (F ,S,D) such that R is conflict-dependent and privileges strict arguments
(recall Definition 16), and H satisfies consistency, exhaustiveness, strict precedence
and closure under sub-arguments under preferred semantics.

Arg(Free(T )) ⊆
⋂

Ei∈Extp(H)

Ei.

From the previous results, it follows that the number of preferred extensions does
not exceed the number of maximal preferred options of the theory over which the
system is built.

Theorem 26 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such thatR is conflict-dependent andH satisfies the five postulates under preferred
semantics.

1 ≤ |Extp(H)| ≤ |Max(POpt(T ))|

When a theory is finite, any argumentation system built over it has a finite number
of preferred extensions.

Corollary 8 Let H = (Arg(T ),R) be an argumentation system built over a theory
T such thatR is conflict-dependent andH satisfies the five postulates under preferred
semantics. If T is finite, thenH has a finite number of preferred extensions.

Let us now characterize the plausible conclusions that are drawn from a theory
T by an argumentation systemH satisfying the rationality postulates under preferred
semantics. Let <p be the set of all attack relations that ensure the postulates under
preferred semantics:
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<p = {R ⊆ Arg(T )× Arg(T ) | R is conflict-dependent and (Arg(T ),R)
satisfies the five postulates under preferred semantics }.

In his seminal paper [1], Dung has shown that the stable extensions of an argu-
mentation system are also preferred extensions of the system. Consequently, the set
<p is a subset of <s.

Property 16 <p ⊆ <s.

Then,<p contains three disjoint subsets of attack relations:<p = <p1∪<p2∪<p3 :

<p1 : the relations which are in <p ∩ <s1 .

<p2 : the relations which are in <p ∩ <s2 .

<p3 : the relations which are in <p ∩ <s3 .

Let us analyze each category of attack relations separately. The first set is empty
(i.e., <p1 = ∅) since we have shown previously that there is no attack relation which
prevents an argumentation system from having stable extensions (<s1 = ∅).

Attack relations of category <p2 lead to coherent argumentation systems (i.e.,
Exts(H) = Extp(H)) as shown in Theorem 17. Thus, preferred semantics does not
provide an added value w.r.t. stable semantics. Moreover, there is a bijection between
the two sets: Extp(H) and Max(POpt(T )).

Corollary 9 LetH = (Arg(T ),R) be an argumentation system over a theory T such
thatR ∈ <p2 .

For any E ∈ Extp(H), ∃O ∈ Max(POpt(T )) such that Concs(E) = CN(O) and
Th(E) v O.

For any O ∈ Max(POpt(T )), Arg(O) ∈ Extp(H).
For any O ∈ Max(POpt(T )), O = Option(Arg(O)).

In the case of attack relations of category <p2 , Arg(Free(T )) is equal to the
intersection of all preferred extensions.

Theorem 27 Let H = (Arg(T ),R) be an argumentation system over a theory T . If
R ∈ <p2 , then

Arg(Free(T )) =
⋂

Ei∈Extx(H)

Ei

where x ∈ {p, s, ss}.

The output of an argumentation system is in this case the same as under stable
semantics, i.e., the plausible conclusions given in Theorem 19.

Let us now analyze attack relations of category <p3 . Remember that in this case
stable semantics chooses only some maximal preferred options of the theory at hand.
Four situations may be encountered:
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1. The stable extensions and the preferred extensions of an argumentation system
coincide. Thus, preferred semantics has no added value w.r.t. stable semantics.
Moreover, it may lead to arbitrary results as discussed in the previous subsection
when R ∈ <s3 (see Example 7 where one of the defeasible rules in chosen in an
arbitrary way).

2. The preferred extensions consider additional but not all maximal preferred op-
tions (other than the ones chosen by stable semantics). This case is similar to the
previous one and the argumentation system may return arbitrary results. Note that
Example 7 is not sufficient to show this case since stable semantics will return one
of O1 and O2 while preferred semantics will return the second one, which cor-
responds more to the case above. In order to exemplify this case, consider the
following theory T7.

Example 8 Consider T7 such that F7, S7, D7 are as follows:

F7

{
p
t

S7 = ∅ D7


p⇒ q (r1)
q ⇒ s (r2)
t ⇒ ¬s (r3)
t ⇒ ¬q (r4)

The theory T7 has three maximal preferred options:
O1 = (F7,S7, {r1, r2})
O2 = (F7,S7, {r1, r3})
O3 = (F7,S7, {r3, r4})

Assume that Arg(O1) is the single stable extension of an argumentation system
H = (Arg(T7),R) which satisfies the five postulates. Thus, Arg(O1) is also a
preferred extension ofH. Case 2 suggests either Arg(O2) or Arg(O3) (not both)
is another preferred extension. Thus, as in Example 7, some rules are discarded
in an arbitrary way.

3. The preferred extensions return all the maximal preferred options of the theory.
This means that stable semantics chooses some maximal preferred options and
preferred semantics considers the remaining ones. This case coincides exactly
with the case of attack relations of category <p2 (see Theorem 19). Indeed, the
argumentation system returns all the conclusions that follow from all maximal
preferred options of the theory. Note that this output is also ensured by stable
semantics whenR ∈ <s2.

4. Some of the preferred extensions provide proper sub-parts of maximal preferred
options. In this case, the result of the argumentation system may be arbitrary as
can be seen on the following example.

Example 8 (Cont) Consider an argumentation system H = (Arg(T7),R) such
that R ∈ <p3 . Assume that H has two preferred extensions: E1 and E2. From
Theorem 23, one of them captures necessarily a maximal preferred option. Let
E1 be such extension, and let Option(E1) = O1. Case 4 suggests that there is
at least another preferred extension, say E2 such that Option(E2) @ Oi (i =
2, 3). Assume that i = 2 and Th(E2) = (F7,S7, {r3}). Note that since preferred
extensions are maximal for set inclusion, it cannot be the case that Th(E2) =
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(F7,S7, {r1}) (since E2 would be a subset of E1). One can notice that among the
four rules, r4 is not used, which is unjustified.

To sum up, attack relations of category <p3 may lead either to arbitrary results
or to results which can be provided by stable semantics.

6.4 Grounded – Ideal semantics

This section analyses the outcomes of rule-based systems under grounded and ideal
semantics. Recall that both semantics ensure only one extension, which may be
empty, for an argumentation system. Moreover, the grounded extension GE(H) of
an argumentation system H is a sub-part of the ideal extension IE(H) of the same
system. Consequently, the conclusions supported by the former are also supported
by the latter, i.e., Concs(GE(H)) ⊆ Concs(IE(H)). Note also that the output set of
an argumentation system is exactly Concs(GE(H)) (respectively Concs(IE(H))) in
case of grounded (respectively ideal) semantics. Before presenting the formal results,
it is worth mentioning that an argumentation system that satisfies the postulates under
preferred semantics does not necessarily satisfy the postulates under grounded/ideal
semantics. Similarly, a system that satisfies the postulates under ideal semantics may
violate some of the postulates under grounded semantics. That is why in the following
we study each semantics separately.

The ideal extension, introduced in [19], is a maximal (for set inclusion) admissi-
ble set that is a subset of each preferred extension. In case of a rule-based argumenta-
tion system which satisfies the postulates, it returns a sub-part of one of the preferred
options of the theory over which the system is built. Formally:

Theorem 28 If an argumentation system H satisfies the five postulates under ideal
semantics, then there exists a preferred optionO ∈ POpt(T ) such that Th(IE(H)) v
O and CN((F ,S, ∅)) ⊆ Concs(IE(H)) ⊆ CN(O).

Note that the outcome under ideal semantics may be arbitrary. This is in particular
the case when the semantics selects one preferred option and draws all the conclu-
sions that follow from this option. However, when the attack relation is of category
<p2 and privileges strict arguments (recall Definition 16), then the ideal extension is
exactly the set Arg(Free(T )).

Theorem 29 If an argumentation system H satisfies the five postulates under ideal
semantics andR ∈ <p2 and privileges strict arguments, then IE(H) = Arg(Free(T )).

The above result shows that ideal semantics allows the inference of literals only
from the free part of a theory.

Corollary 10 If an argumentation system H satisfies the five postulates under ideal
semantics andR ∈ <p2 and privileges strict arguments, then Output(H) = CN(Free(T )).

Note that in this case grounded extension may be more cautious than ideal one
and may miss intuitive (free) conclusions since GE(H) ⊆ Arg(Free(T )).
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The grounded extension of any argumentation system which satisfies the pos-
tulates under grounded semantics captures a sub-part of a preferred option, i.e., it
behaves exactly like ideal extension.

Theorem 30 If an argumentation systemH satisfies the five postulates under grounded
semantics, then there exists a preferred optionO ∈ POpt(T ) such that Th(GE(H)) v
O and
CN((F ,S, ∅)) ⊆ Concs(GE(H)) ⊆ CN(O).

7 Related work

The abstract argumentation framework proposed by Dung in [1] was used for rea-
soning about defeasible information, and more generally for handling inconsistency.
It was thus instantiated in different ways, considering different logical languages for
representing information. Examples of such languages are propositional language
(e.g.,[2,3]) and rule-based ones (e.g., [33,11,29,27,8,9]).

All the instantiations are defined in a similar way: define arguments and attacks,
then apply Dung’s semantics on the defined graph, and infer the formulas that follow
from all extensions. Some of these works are incomplete since there is one important
step which is missing: characterizing the set of inferences that are drawn from a
theory/knowledge base, i.e., describing formally how the output relates to the theory.

For filling this gap, in [4], we considered argumentation systems that use Tarskian
logics, covering thus the systems studied in [2,3]. In [33,11], we focused on rule-
based logics. Here we faced two issues: First, the logical languages that are consid-
ered in the literature are different. In ASPIC [8], defeasible rules express defaults
and any uncertain information. In ABA [27], uncertain information is encoded by as-
sumptions. In ASPIC+ [9], several types of information are considered (axioms, ordi-
nary premises, issues, assumptions, strict rules and defeasible rules). The differences
between all these types are unclear, especially between strict rules and axioms (both
represent certain and non-defeasible information), and between ordinary premises,
assumptions and defeasible rules (which all represent uncertain and defeasible in-
formation). Consequently, we have chosen the logical language used in the ASPIC
system [8,17]. It considers facts and strict rules (for encoding strict information)
and defeasible rules (for encoding assumptions, defeasible rules, ordinary premises).
Another issue with rule-based argumentation systems is that there are two types of
attack relations: inconsistency-based ones and undercut which amounts to blocking
the application of defeasible rules. For a better understanding of each type of attack
relation, we studied in [11] argumentation systems that use undercut as their sole
attack relation and in this paper we studied the impact of inconsistency-based ones.

Our formalism uses the same logical language as ASPIC and a more general
inconsistency-based attack relation. Our results apply thus to ASPIC when its under-
cut relation is empty. Note that our results and those from [11] should be combined
for characterizing the outcomes of the ASPIC system when it uses the two kinds of
relations. This is left for future work.

ASPIC+ uses a ”richer” logical language since its aim was to unify all existing
argumentation systems. It can thus be seen a union of several elementary systems:
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ABA for dealing with assumptions, ASPIC for dealing with strict/defeasible infor-
mation, and the systems defined in [4] for dealing with Tarskian logics. In [4], we
have characterized this sub-class of ASPIC+. In this paper we characterized the sub-
class capturing ASPIC.

The last well-known argumentation system, called ABA, cannot be compared to
our formalism since the two systems use different logical languages. While ABA uses
assumptions for capturing the defeasible information in a theory, our formalism uses
defeasible rules.

8 Conclusion

The paper provides the first investigation on the outputs of rule-based argumentation
systems that use inconsistency-based attack relations. The study is general in the
sense that it keeps the attack relation unspecified. Thus, the system can be instantiated
with any of the attack relations that are used in existing systems. The results show that
under naive semantics, the systems return the literals that follow from all the options
of the theory at hand. Stable and preferred semantics either do not provide an added
value wrt naive semantics or the attack relation of a system should be formalized in a
very rigorous way in order to avoid arbitrary results. Ideal semantics returns the free
part of a theory whereas the grounded semantics returns a sub-part of the free part
meaning that it may miss interesting conclusions.
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Appendix: Proofs

Proof of Property 2. Let T = (F ,S,D) be a theory and x ∈ L. Let d = 〈(x1, r1),
. . ., (xn, rn)〉 be a derivation schema for x from T .

(−→) Let us assume that there exist xi and xj such that xi = xj but i 6= j.
Clearly, we can further assume i < j without loss of generality. For each (xk, rk)
in d where k > j, xj ∈ Body(rk) is trivially equivalent to xi ∈ Body(rk) hence
Body(rk) ⊆ {x1, . . . , xj−1, xj+1, . . . , xk−1}. Therefore, 〈(x1, r1), . . ., (xj−1, rj−1),
(xj+1, rj+1), . . ., (xn, rn)〉 is also a derivation schema but it is a proper subsequence
of d, a contradiction arises. Now, let us assume that d fails to be focused. There ex-
ists i ∈ {1, . . . , n − 1} such that xi 6∈ Body(rj) for every j > i. Consequently,
〈(x1, r1), . . . , (xi−1, ri−1), (xi+1, ri+1), . . . , (xn, rn)〉 is also a derivation schema
for x in T , contradicting the minimality of d.

(←−) Let us assume that d fails to be minimal although d is focussed and the lit-
erals x1, . . . , xn are pairwise distinct. As d is not minimal, there exists a proper sub-
sequence d′ of d which is a derivation schema for x in T . Let us write 〈(xk+1, rk+1),
. . ., (xn, rn)〉 for the largest common final subsequence of d and d′. Now, k exists
(and k > 0) because d′ is a proper subsequence of d. As d′ is a derivation schema
for xn and d′ is a subsequence of d and x1, . . . , xn are pairwise distinct, k < n
ensues. Since d is focussed, xk ∈ Body(rj) for some j > k. So, (xj , rj) is in
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〈(xk+1, rk+1), . . . , (xn, rn)〉. As d′ is a derivation schema, Body(rj) ⊆ {x1, . . . , xk−1}
(remember, d′ is a subsequence of 〈(x1, r1), . . ., (xk−1, rk−1), (xk+1, rk+1), . . .,
(xn, rn)〉). Hence, xk ∈ {x1, . . . , xk−1}. That is, x1, . . . , xn are not pairwise dis-
tinct.

Proof of Property 3. Let T = (F ,S,D) be a theory.

The inclusions CN(T ) ⊆ F ∪ {Head(r) | r ∈ S ∪ D} ⊆ L follow trivially from
Definition 6.

If T is finite, then F ,S,D are finite. Thus, the set F ∪ {Head(r) | r ∈ S ∪ D}
is finite. From the first item, CN(T ) is finite.

For any x ∈ F , the sequence 〈(x, σ)〉 is a derivation schema for x from T . Thus,
x ∈ CN(T ) and this proves the inclusion F ⊆ CN(T ).
> ∈ CN(T ) since > ∈ F and F ⊆ CN(T ).
Assume that F = {>} and @r ∈ D such that Body(r) = {>}. Thus, since the

body of any other rule in T is assumed to be non-empty, then no rule in S∪D can
be applied, hence CN(T ) = {>}. Conversely, if CN(T ) = {>} then F = {>}
(since F ⊆ CN(T )) and @r ∈ D such that Body(r) = {>} (since each such rule
is applicable when it exists).

Let d = 〈(x1, r1), . . . , (xn, rn)〉 be a derivation schema for x ∈ L from T . From
Definition 6, for each xi (i = 1, . . . , n), there exists a derivation schema from T
for xi. Thus, Seq(d) ⊆ CN(T ).

Proof of Property 4. Let T = (F ,S,D) and T ′ = (F ′,S ′,D′) be two theories such
that T v T ′. Let x ∈ CN(T ). So, there exists a derivation schema d = 〈(x1, r1), . . .,
(xn, rn)〉 for x from T . Since T v T ′, then Facts(d) ⊆ F ′ and Strict(d) ⊆ S ′
and Def(d) ⊆ D′. Therefore, d is also a derivation schema for x from T ′.

Proof of Property 5. The two properties follow trivially from the definition of option.

Proof of Property 6. The inclusion POpt(T ) ⊆ Opt(T ) follows trivially from Defi-
nitions 9 and 10.

Assume that CN(T ) is consistent. From Property 5, Opt(T ) = {T }. Since (F ,S, ∅) v
T , then POpt(T ) = {T }. Assume now that Opt(T ) ⊆ POpt(T ). Since Opt(T ) 6= ∅,
then for all O ∈ Opt(T ) it holds that O ∈ POpt(T ). Thus, for all O ∈ Opt(T ),
(F ,S, ∅) v O. It follows that (F ,S, ∅) v Free(T )2. Assume that CN(T ) is incon-
sistent. Then, there exists a minimal conflict2 C = (X,Y, Z) v T . Since (F ,S, ∅) v
Free(T ), then X = Y = ∅. But, by assumption, the body of every defeasible rule is
not empty. Thus, CN(C) = ∅. This contradicts the fact that CN(C) is inconsistent.

2 Let T be a theory. Free(T ) is a sub-theory (X,Y, Z) of T such that for all minimal conflict C =
(X′, Y ′, Z′) of T , it holds that X ∩ X′ = ∅ and Y ∩ Y ′ = ∅ and Z ∩ Z′ = ∅. A minimal conflict
of theory T is a sub-theory C of T such that CN(C) is inconsistent and @C′ @ C such that CN(C′) is
inconsistent.
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Proof of Property 7. Let T = (F ,S,D) be a theory.
Assume that CN((F ,S, ∅)) is consistent. Thus, there exists a preferred option

O such that either i) for all r ∈ D, CN((F ,S, {r})) is inconsistent meaning that
O = CN((F ,S, ∅)) or ii) there exists r ∈ D such that CN((F ,S, {r})) is consistent
thus (F ,S, ∅) @ O. In both cases POpt(T ) 6= ∅. Assume now that CN((F ,S, ∅))
is inconsistent. Since F and S should be part of any preferred option and the set of
consequences of a preferred option should be consistent, then POpt(T ) = ∅.

Let r ∈ D and assume that CN((F ,S, {r})) is consistent. From Definition 10,
(F ,S, {r}) is either a preferred option (iff for all r′ ∈ D such that r 6= r′, CN((F ,S, {r, r′}))
is inconsistent). Or, there exists a preferred option O = (F ,S, {r} ∪ D′) where
D′ ⊆ D \ {r}.

Proof of Property 8. Let T = (F ,S,D) be a theory and Free(T ) = (F ,S,D′).
From the definition of Free(T ), Free(T ) v O for allO ∈ POpt(T ). From Property
4, CN(Free(T )) ⊆ CN(O). Since CN(O) is consistent, then so is for CN(Free(T )).

Proof of Property 9. Let (d, x) be a sub-argument of (d′, x′). Let xi ∈ Seq(d). There
are two possibilities:

xi ∈ Facts(d), thus xi ∈ Facts(d′) since Facts(d) ⊆ Facts(d′). So, xi ∈
Seq(d′).

xi = Head(r) with r ∈ Strict(d) ∪ Def(d) thus r ∈ Strict(d′) ∪ Def(d′)
since Strict(d) ⊆ Strict(d′) and Def(d) ⊆ Def(d′). So, xi ∈ Seq(d′).

Proof of Property 10. Let T = (F ,S,D) be a theory. Since > ∈ F by Definition 4,
then (〈>, σ〉,>) ∈ Arg(T ) and thus Arg(T ) 6= ∅.

Proof of Property 11. Let H = (Arg(T ),R) be an argumentation system over a
theory T and Ext(H) its set of extensions under any extension-based semantics.
Assume that Ext(H) 6= ∅.

Let x ∈ Output(H). Thus, for all E ∈ Ext(H), ∃a ∈ E such that Conc(a) = x.
It follows that x ∈ Concs(Ei), ∀Ei ∈ Ext(H) and hence x ∈

⋂
Ei∈Ext(H) Concs(Ei).

Assume now that x ∈
⋂
Ei∈Ext(H) Concs(Ei). Thus, ∀Ei, ∃ai ∈ Ei such that

Conc(ai) = x. Consequently, x ∈ Output(H).

Proof of Property 12. Let H = (Arg(T ),R) be an argumentation system built over
a theory T . Let x ∈ Output(H). From Definition 17, ∃(d, x) ∈ Arg(T ). From
Definition 12, d is a derivation for x from T . Thus, x ∈ CN(T ).

Proof of Property 16. Let R ∈ <p and let H = (Arg(T ),R) be a rule-based ar-
gumentation system built over a theory T = (F ,S,D). Since H satisfies the five
postulates, thus for all E ∈ Extp(H),

Concs(E) is consistent

Concs(E) = CN(Concs(E),S, ∅)
For all a ∈ E , Sub(a) ⊆ E
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for all (d, x) ∈ Arg(T ), if Seq(d) ⊆ Concs(E), then (d, x) ∈ E .

From Property 1, Exts(H) ⊆ Extp(H), then for all E ∈ Exts(H), E satisfies
the above four properties. Thus, H satisfies consistency, exhaustiveness and clo-
sure under both sub-arguments and strict rules. Let us now show that it also sat-
isfies strict precedence under stable semantics. From Property 11, Output(H) =⋂
Ei∈Extp(H) Concs(Ei). Thus, for all E ∈ Extp(H), Output(H) ⊆ Concs(E).

Since H satisfies strict precedence under preferred semantics, then CN(F ,S, ∅) ⊆
Concs(E). Thus, the property is satisfied by every stable extension.

Proof of Proposition 1. Let T = (F ,S,D). Let O,O′ ∈ Opt(T ) be such that
CN(O) = CN(O′). Let O = (X,Y, Z) and O′ = (X ′, Y ′, Z ′). For all x ∈ X ,
x ∈ CN(O) and thus x ∈ X ′. The same holds for all x′ ∈ X ′. Thus, X = X ′.

Let r ∈ Y ∪ Z. There are two cases: i) Body(r) 6⊆ CN(O). Consequently,
Body(r) 6⊆ CN(O′). Thus, CN(O′ ⊕ r) is consistent. So, r ∈ Y ′ ∪ Z ′ (by defini-
tion of an option).

ii) Body(r) ⊆ CN(O). Consequently, Body(r) ⊆ CN(O′). Thus, CN(O′ ⊕ r) is
consistent. So, r ∈ Y ′ ∪ Z ′ (by definition of an option).

Proof of Proposition 2. If T is finite, then CN(T ) is finite (apply Property 3). Conse-
quently, Arg(T ) is finite.

Proof of Proposition 3. Let T and T ′ be two theories such that T v T ′. Let (d, x)
be an argument defined from T . All items in Definition 12 are independent from
T except for d being a derivation schema for x from T . Hence, for (d, x) to be an
argument defined from T ′, it is enough that d be a derivation schema for x from
T ′. Now, this is equivalent to x ∈ CN(T ′). By Property 4, the latter follows from
x ∈ CN(T ) (which is itself proved from the fact that d is a derivation schema for x
from T ). Thus, (d, x) is an argument defined from T ′.
Proof of Proposition 4. LetH = (Arg(T ),R) be an argumentation system such that
R is conflict-dependent. Let a = (d, x) ∈ Arg(T ) be such that (a, a) ∈ R. Since
R is conflict-dependent, then Seq(d) is inconsistent. This is impossible since a is an
argument (thus Seq(d) should be consistent).

Proof of Proposition 5. Let H = (Arg(T ),R) be an argumentation system built
over a theory T such that CN(T ) is consistent and R is conflict-dependent. Assume
that Arg(T ) is not conflict-free. Thus, there exist (d, x), (d′, x′) ∈ Arg(T ) such
that (d, x)R(d′, x′). Consequently, Seq(d) ∪ Seq(d′) is inconsistent. Besides, from
Property 3, Seq(d) ⊆ CN(T ) and Seq(d′) ⊆ CN(T ). Thus, CN(T ) is inconsistent.
Contradiction.

Proof of Proposition 6. Let H be an argumentation system which satisfies consis-
tency and closure under sub-arguments. From Proposition 12, ∀E ∈ Ext(H) Concs(E) =
CN(Th(E)). Since H satisfies consistency, ∀E ∈ Ext(H) Concs(E) is consistent.
Thus, so is for CN(Th(E)).
Proof of Proposition 7. LetH = (Arg(T ),R) be an argumentation system built over
a theory T = (F ,S,D) such that ∅ ∈ Ext(H). Thus, Output(H) = ∅. Assume that
H satisfies strict precedence, then CN((F ,S, ∅)) ⊆ Output(H). Since > ∈ F and
from Property 3, it holds that F ⊆ CN((F ,S, ∅)), then > ∈ Output(H).
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Proof of Proposition 8. LetH = (Arg(T ),R) be an argumentation system built over
a theory T = (F ,S,D). Assume that H satisfies consistency and strict precedence.
From Property 13, it holds that Output(H) is consistent. From strict precedence,
CN((F ,S, ∅)) ⊆ Output(H). Thus, CN((F ,S, ∅)) is consistent.

Proof of Proposition 9. LetH = (Arg(T ),R) be an argumentation system such that
Ext(H) 6= ∅ (under an extension-based semantics). Assume that H is closed under
sub-arguments and satisfies exhaustiveness. Let E ∈ Ext(H). From the monotonicity
of Arg, it holds that E ⊆ Arg(Th(E)). Let (d, x) ∈ Arg(Th(E)). From Proposition
12, Seq(d) ⊆ Concs(E). From the exhaustiveness postulate, (d, x) ∈ E .

Proof of Proposition 10. Let H = (Arg(T ),R) be an argumentation system such
that Ext(H) 6= ∅ (under an extension-based semantics). Assume that H satisfies ex-
haustiveness and strict precedence. SinceH satisfies strict precedence, CN((F ,S, ∅)) ⊆
Output(H). From Property 11, for all E ∈ Ext(H), CN((F ,S, ∅)) ⊆ Concs(E).
Let (d, x) ∈ Arg((F ,S, ∅)). Thus, Seq(d) ⊆ CN((F ,S, ∅)). From exhaustiveness,
(d, x) ∈ E .

Proof of Proposition 11. In order to prove the compatibility of the postulates, it is
sufficient to give an example of a system which satisfies all the five postulate. This
system is ASPIC as defined in [17]. Proposition 1 in [17] shows that the system is
closed under sub-arguments under any Dung’s semantics. Proposition 8 in [17] shows
that the system is closed under strict rules under complete semantics, thus under sta-
ble semantics. Property 2 in [17] shows that the system satisfies consistency under
any Dung’s semantics. From Proposition 13, the system satisfies exhaustiveness. Let
us now show that the system satisfies strict precedence. This follows from the defi-
nition of attack relation (Definition 16 in [17]) according to which a strict argument
cannot be attacked. Thus, it belongs to any stable extension.

Proof of Proposition 12. Let H be an argumentation system such that Ext(H) 6= ∅
where Ext(H) is its set of extensions under an extension-based semantics. Assume
thatH is closed under sub-arguments and let E ∈ Ext(H) and Th(E) = (X,Y, Z).

Let x ∈ Concs(E). Thus, ∃(d, x) ∈ E where d is a derivation for x from
(Facts(d), Strict(d), Def(d)). From Property 3, x ∈ Facts(d) (thus x ∈ X),
or x = Head(r) where r ∈ Strict(d) (thus r ∈ Y ) or x ∈ Def(d) (thus x ∈ Z).
Assume now that x ∈ X . Thus, ∃(d, y) ∈ E such that x ∈ Facts(d). Besides,
(〈(x, σ)〉, x) is a sub-argument of (d, y). SinceH is closed under sub-arguments,
then (〈(x, σ)〉, x) ∈ E and thus, x ∈ Concs(E).
Let r ∈ Y ∪ Z. Thus, ∃(d, x) ∈ E such that r ∈ Strict(d) ∪ Def(d). Let d =
〈(x1, r1), . . . , (xi, r), (xi+1, ri+1) . . . , (xn = x, rn)〉 with xi = Head(r). Thus,
there exists a sub-sequence d′ of d which is a derivation for xi. This derivation
is minimal (for set inclusion since (d, x) is an argument). Thus, (d′, xi) is an
argument. Moreover, it is a sub-argument of (d, x). Since H is closed under sub-
arguments, then (d′, xi) ∈ E . Consequently, xi ∈ Concs(E). Thus, Concs(E) =
X ∪ {Head(r) | r ∈ Y ∪ Z}.
From the definitions of the two functions Concs and Th, it follows that Concs(E)
⊆ CN(Th(E)). From Property 3, CN(Th(E)) ⊆ X ∪{Head(r) | r ∈ Y ∪Z}. From
above, CN(Th(E)) ⊆ Concs(E).
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Assume now that a = (d, x) ∈ Arg(Th(E)). For all xi ∈ Seq(d), xi ∈ CN(Th(E)).
Since H is closed under sub-arguments, CN(Th(E)) = Concs(E). Then, xi ∈
Concs(E). Thus, Seq(d) ⊆ Concs(E).

Proof of Proposition 13. Let H = (Arg(T ),R) be an argumentation system built
over a theory T such that R is conflict-dependent and H satisfies consistency and
closure under sub-arguments. Assume that H violates exhaustiveness. Thus, there
exists E ∈ Extn(H) and there exists a = (d, x) ∈ Arg(T ) such that Seq(d) ⊆
Concs(E) but (d, x) /∈ E . So, ∃b = (d′, x′) ∈ E such that aRb or bRa. Since R is
conflict-dependent, then Seq(d) ∪ Seq(d′) is inconsistent. Thus, ∃y ∈ Seq(d) such
that ¬y ∈ d′. But, y,¬y ∈ CN(Th(E)). Since H is closed under sub-arguments,
CN(Th(E)) = Concs(E). Thus, y,¬y ∈ Concs(E). This contradicts the fact that H
satisfies consistency.

Proof of Proposition 14. Let H = (Arg(T ),R) be an argumentation system built
over a theory T such that R is conflict-dependent and H satisfies consistency and
closure under sub-arguments. From Proposition 13,H satisfies exhaustiveness. From
Proposition 9, it follows that for all E ∈ Extn(H), E = Arg(Th(E)).

Proof of Proposition 15. The proof is similar to that of propositions 13 and 14.

Proof of Theorem 1. Let T be a theory and d = 〈(x1, r1), . . . , (xn, rn)〉 a consistent
sequence from T .

(−→) Assume that (d, x) is an argument from T . d = 〈(x1, r1), . . . , (xn, rn)〉
yields x = xn (Definition 12). Assume that d is not focused. Let d∗ be obtained from
d by deleting all repeated pairs. Since d is not focused, d∗ is not minimal. Therefore,
there exists (xk, rk) in d∗ (hence in d) such that depriving d∗ from (xk, rk) still gives
a derivation of x from T . Since d∗ contains no repeated pair, for every (xi, ri) in d∗,
if i 6= k then either xi 6= xk or ri 6= rk. For rk 6= σ, the former implies the latter
hence ri 6= rk whenever i 6= k. Thus, depriving d∗ from (xk, rk) gives a derivation
d′ of x from T such that Facts(d′) ⊆ Facts(d) and Strict(d′) ⊆ Strict(d) and
Def(d′) ⊆ Def(d), with one of the latter two inclusions being strict. That is, there
exists T ′ @ (Facts(d), Strict(d), Def(d)) such that x ∈ CN(T ′) thereby contra-
dicting Definition 12. The remaining case is rk = σ. Since d∗ contains no repeated
pair, no (xi, ri) in d∗ is (xk, σ) except for i = k and it follows that d∗ deprived from
(xk, rk) gives a derivation d′ of x from T such that Facts(d′) ⊂ Facts(d) while
Strict(d′) ⊆ Strict(d) and Def(d′) ⊆ Def(d). As above, a contradiction arises.

(←−) Assume that d is a focused derivation schema from T such that xn =
x. By the definitions, x ∈ L and d is a derivation schema for x from T . Due to
the hypothesis in the statement of the theorem, Seq(d) is consistent. Assume that
there exists T ′ = (F ′,S ′,D′) @ (Facts(d), Strict(d), Def(d)) such that x ∈
CN(T ′). That is, there exists a derivation d′ = 〈(x′1, r′1), . . . , (x′m, r′m)〉 for some
m < n such that Facts(d′) = F ′ and Strict(d′) = S ′ and Def(d′) = D′. Let
d∗ be a minimal derivation schema for x from T obtained from d by deleting all
repeated pairs. Accordingly, Facts(d∗) = Facts(d) and Strict(d∗) = Strict(d)
and Def(d∗) = Def(d). Since Strict(d′) ⊆ Strict(d) and Def(d′) ⊆ Def(d),
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if (x′i, r
′
i) is in d′ with r′i 6= σ then there exists k such that (xk, rk) is in d∗ where

rk = r′i (also, xk = x′i because x′i = Head(r′i) = Head(rk) = xk). Similarly, since
Facts(d′) ⊆ Facts(d), if (x′i, r

′
i) is in d′ with r′i = σ then there exists k such that

(xk, rk) is in d∗ where x′i = xk and rk = r′i = σ. That is, d′ is a proper subsequence
of a reordering of d∗ thereby contradicting the minimality of d∗.

Indeed, let us show that no initial proper fragment of a reordering d∗ι of d∗ is
a minimal derivation of x. Assume a reordering d∗ι = 〈(x∗ι1, r∗ι1), . . . , (x∗ιp, r∗ιp)〉 of
d∗ = 〈(x∗1, r∗1), . . . , (x∗p, r∗p)〉 such that dι = 〈(x∗ι1, r∗ι1), . . . , (x∗ιq, r∗ιq)〉 is a minimal
derivation of x from T for some q < p. Let j be the greatest index from 1 . . . p such
that x∗j is in Seq(d∗) but not in Seq(dι) (clearly, j < p). Since d∗ is minimal, there
must exist h > j such that x∗j ∈ Body(r∗h) (otherwise d∗ deprived of (x∗j , r

∗
j ) would

give a proper subsequence also being a derivation of x). By Property 2, x∗h 6= x∗i
for i 6= h. Hence, Head(r∗i ) 6= x∗h for i 6= h. Together with x∗j 6∈ Seq(dι) and
x∗j ∈ Body(r∗h), this entails x∗h 6∈ Seq(dι). Therefore, j is not the greatest index such
that x∗j is in Seq(d∗) but not in Seq(dι).

Lemma 1 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F ,S,D) such that CN((F ,S, ∅)) is consistent andR is conflict-dependent and
privileges strict arguments. For all a ∈ Arg(Free(T )), b ∈ Arg(T ), if aRb or bRa,
then ∃a′ ∈ Sub(a) such that a′ is strict and a′Rb.

Proof Let H = (Arg(T ),R) be an argumentation system built over a theory T =
(F ,S,D) such that CN((F ,S, ∅)) is consistent. Assume thatR is conflict-dependent
and privileges strict arguments.

Assume that ∃a = (d, x) ∈ Arg(Free(T )) and ∃b = (d′, x′) ∈ Arg(T ) such that
bRa or bRa. Since R is conflict-dependent, Seq(d) ∪ Seq(d′) is inconsistent and
thus CN(Th({a})) ∪ CN(Th({b})) is inconsistent (since from Property 3, Seq(d) ⊆
CN(Th({a})) and Seq(d′) ⊆ CN(Th({b}))).

Let Th({a}) = (X,Y, Z) and Th({b}) = (X ′, Y ′, Z ′). Let us show that CN((F ,S, Z ′))
is inconsistent. Assume that CN((F ,S, Z ′)) is consistent. Thus, there exists a pre-
ferred option O ∈ POpt(T ) such that (F ,S, Z ′) v O. Since (X,Y, Z) v Free(T )
and Free(T ) v O, then (F ,S, Z∪Z ′) v O. From Property 4, CN((F ,S, Z∪Z ′)) ⊆
CN(O). Thus, CN(O) is inconsistent. This contradicts the fact that O is an option.

Let Z∗ be the smallest (for set inclusion) subset of Z ′ such that CN((F ,S, Z∗))
is inconsistent. Thus, for all r ∈ Z∗, CN((F ,S, Z∗ \ {r})) is consistent. It follows
that for all r ∈ Z∗, there exists a preferred optionO ∈ POpt(T ) such that (F ,S, Z∪
Z∗ \ {r}) v O by Property 8.

Assume that for every strict a′′ ∈ Sub(a), Seq(d′′) ∪ Seq(d′) is consistent.
However, Seq(d) ∪ Seq(d′) is inconsistent (since aRb or bRa while R is conflict-
dependent). Hence, Head(Def(d))∪Head(Def(d′)) is inconsistent, say y ∈ Head(Def(d))
and ¬y ∈ Head(Def(d′)). Should no such y be in F ∪ Head(S), then there would
be a preferred option O = (F, S,DO) with ¬y ∈ Head(DO). A contradiction arises,
because a = (d, x) being in Arg(Free(T )) means that Def(d) is a subset of DO for
every preferred option O = (F, S,DO).

That is, there exists a′′ = (d′′, x′′) ∈ Sub(a) such that a′′ is strict and Seq(d′′) ∪
Seq(d′) is inconsistent. SinceR privileges strict arguments, a′′Rb.
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Proof of Theorem 2. Let H = (Arg(T ),R) be an argumentation system built over
a theory T = (F ,S,D) such that CN((F ,S, ∅)) is consistent. Assume that R is
conflict-dependent and privileges strict arguments.

We show first that Arg(Free(T )) is conflict-free. From Property 8, CN(Free(T ))
is consistent. SinceR is conflict-dependent, then from Proposition 5, Arg(Free(T ))
is conflict-free.

Let us now show that Arg(Free(T )) defends its elements. Assume that ∃a =
(d, x) ∈ Arg(Free(T )) and ∃b = (d′, x′) ∈ Arg(T ) such that bRa. From Lemma 1,
there exists a′ = (d”, x”) ∈ Sub(a) such that a′ is strict, hence a ∈ Arg(Free(T )),
and a′Rb.

Proof of Theorem 3. LetH = (Arg(T ),R) be an argumentation system built over a
theory T = (F ,S,D) such that Ext(H) 6= ∅. Assume that H satisfies strict prece-
dence and closure under both strict rules and sub-arguments.

Let E ∈ Ext(H) and Th(E) = (X,Y, Z). Since X ⊆ F and Y ⊆ S , then
(X,Y, Z) v (F ,S, Z). From Property 4, CN((X,Y, Z)) ⊆ CN((F ,S, Z)). Let us
now show that CN((F ,S, Z)) ⊆ CN((X,Y, Z)). Since H satisfies strict precedence,
then CN((F ,S, ∅)) ⊆ Output(H). From Property 11, Output(H) ⊆ Concs(E).
Since H is closed under sub-arguments, then Concs(E) = CN(Th(E)) by Propo-
sition 12. Hence, CN((F ,S, ∅)) ⊆ CN((X,Y, Z)). Furthermore, from Property 3,
F ⊆ CN((F ,S, ∅)). Thus, X = F , i.e., Th(E) = (F , Y, Z). Let x ∈ CN((F ,S, Z)).
Then, there exists a derivation schema

d = 〈(x1, r1), . . . , (xn, rn)〉

for x from (F ,S, Z). There are two cases:

For any i = 1, . . . , n, ri ∈ {σ} ∪ Y ∪ Z. Hence, d is also a derivation schema
for x from (F , Y, Z). Thus, x ∈ CN((F , Y, Z)).
There exists 1 < i ≤ n such that ri ∈ S \ Y (note that the two theories
(F , Y, Z) and (F ,S, Z) differ only on S \ Y ). Let i be the first step where
an element of S \ Y is used in the derivation d. Note also that i > 1 since
strict rules have non-empty bodies. Thus, for any j < i, rj ∈ {σ} ∪ Y ∪ Z
and 〈(x1, r1), . . . , (xj , rj)〉 is a derivation schema of xj from (F , Y, Z). Thus,
xj ∈ CN((F , Y, Z)). Furthermore, Body(ri) ⊆ {x1, . . . , xi−1}, so Body(ri) ⊆
CN((F , Y, Z)). Since Concs(E) = CN(Th(E)), then Body(ri) ⊆ Concs(E). Since
H is closed under strict rules, then Head(ri) ∈ Concs(E) = CN((F , Y, Z)),
i.e., xi ∈ CN((F , Y, Z)). We repeat the same reasoning for showing that each
xi ∈ CN((F , Y, Z)), and conclude that x ∈ CN((F , Y, Z)).

Proof of Theorem 4. LetH = (Arg(T ),R) be an argumentation system built over a
theory T = (F ,S,D) such thatH satisfies strict precedence, and closure under both
strict rules and sub-arguments.

Let E ∈ Ext(H) and Th(E) = (X,Y, Z). From Theorem 3 and Proposition 12, it
holds that

CN(Th(E)) = CN((F ,S, Z)) = Concs(E). (*)
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LetO = (F ,S, Z ∪Z ′) where Z ′ = {r | r ∈ D\Z and Body(r) 6⊆ CN(Th(E))}.
Since (F ,S, Z) v O, then from Property 4 and (*), Concs(E) ⊆ CN(O). Let us now
show that CN(O) ⊆ Concs(E). Let x ∈ CN((F ,S, Z ∪ Z ′)). Then, there exists a
derivation schema

d = 〈(x1, r1), . . . , (xn, rn)〉
for x from (F ,S, Z ∪ Z ′). There are two cases:

For any i = 1, . . . , n, ri ∈ {σ}∪S ∪Z. Hence, d is also a derivation schema for
x from (F ,S, Z). Thus, x ∈ CN((F ,S, Z)), and from (1), x ∈ Concs(E).
Assume that there exists 1 < i ≤ n such that ri ∈ Z ′ (note that the two theories
(F ,S, Z) and (F ,S, Z ∪ Z ′) differ only on Z ′). Let i be the first step where
an element of Z ′ is used in the derivation d. Since the bodies of defeasible rules
are not empty, then i > 1. It follows that for any j < i, ri ∈ {σ} ∪ S ∪ Z,
thus 〈(x1, r1), . . . , (xj , rj)〉 is a derivation schema of xj from (F ,S, Z). Thus,
xj ∈ CN((F ,S, Z)). Furthermore, by Definition 6, Body(ri) ⊆ {x1, . . . , xi−1}.
Then, Body(ri) ⊆ CN((F ,S, Z)). This contradicts the fact that ri ∈ Z ′ and thus
such ri does not exist.

Proof of Theorem 5. Let H = (Arg(T ),R) be an argumentation system built over
a theory T = (F ,S,D) such that R is conflict-dependent. Assume that for all
E ∈ Extn(H), Arg((F ,S, ∅)) ⊆ E . Assume now that ∃a ∈ Arg((F ,S, ∅)) and
∃b ∈ Arg(T ) such that aRb or bRa. Since R is conflict-dependent, (b, b) /∈ R (cf.
Proposition 4). Thus, ∃E ∈ Extn(H) such that b ∈ E . Consequently, a, b ∈ E , this
contradicts the fact that E is conflict-free (since it is a naive extension).

Assume now that for all a ∈ Arg((F ,S, ∅)), @b ∈ Arg(T ) such that aRb or bRa.
This means that arguments of Arg((F ,S, ∅)) are not attacked. Thus, they belong to
every naive extension.

Proof of Theorem 6. Let H = (Arg(T ),R) be an argumentation system built over
a theory T = (F ,S,D) such that R is conflict-dependent. Assume that ∃a, b ∈
Arg(T ) such that a ∈ Arg((F ,S, ∅)) and Conc(a) = ¬Conc(b). Thus, (b, b) /∈ R
and ∃E ∈ Extn(H) such that b ∈ E . If H satisfies strict precedence, then Conc(a) ∈
Concs(E) meaning that Concs(E) is inconsistent. Thus, H violates consistency. If
H satisfies consistency, then Conc(a) /∈ Concs(E) meaning that H violates strict
precedence.

Proof of Theorem 7. Let H = (Arg(T ),R) be an argumentation system built over
a theory T such thatR is conflict-dependent andH satisfies consistency and closure
under sub-arguments. Let E , E ′ ∈ Extn(H) such that Concs(E ′) ⊆ Concs(E).

Assume that ∃a = (d, x) ∈ E \ E ′. Thus, ∃b = (d′, x′) ∈ E ′ such that aRb or
bRa. SinceR is conflict-dependent, then Seq(d) ∪ Seq(d′) is inconsistent. But H is
closed under sub-arguments. Thus, Proposition 12 gives Concs(E) = CN(Th(E)) and
Concs(E ′) = CN(Th(E ′)). Besides, Seq(d) ⊆ CN(Th(E)) and Seq(d′) ⊆ CN(Th(E ′))
using Propositions 14 and 12. Since CN(Th(E ′)) ⊆ CN(Th(E)) then Seq(d)∪Seq(d′) ⊆
CN(Th(E)). Thus, CN(Th(E)) is inconsistent. This contradicts the fact thatH satisfies
consistency. The same reasoning holds for a = (d′, x′) ∈ E ′ \ E .



42 Leila Amgoud, Philippe Besnard

Proof of Theorem 8. Let H = (Arg(T ),R) be an argumentation system built over
a theory T such thatR is conflict-dependent andH satisfies consistency and closure
under sub-arguments. Let E ∈ Extn(H).

From Proposition 6, CN(Th(E)) is consistent. Thus, ∃O ∈ Opt(T ) such that
Th(E) v O. From Property 4, CN(Th(E)) ⊆ CN(O). Since H is closed under sub-
arguments, then CN(Th(E)) = Concs(E) by Proposition 12. Thus, Concs(E) ⊆
CN(O). Assume now that ∃x ∈ CN(O) \ Concs(E). Then, there exists a minimal
derivation d for x from O. From Property 3, Seq(d) ⊆ CN(O). Since CN(O) is con-
sistent, then (d, x) is an argument. In addition (d, x) /∈ E . Then, ∃(d′, x′) ∈ E such
that (d, x)R(d′, x′) or (d′, x′)R(d, x). SinceR is conflict-dependent, then Seq(d) ∪
Seq(d′) is inconsistent. But, Seq(d′) ⊆ Concs(E). So, Seq(d) ∪ Seq(d′) ⊆ CN(O).
This contradicts the fact that O is an option. So, CN(O) ⊆ Concs(E).

Since both Concs(E) ⊆ CN(O) and CN(O) ⊆ Concs(E) have now been proved,
the required CN(O) = Concs(E) follows.

Let us now show that O ∈ Max(Opt(T )). Assume that ∃O′ ∈ Opt(T ) such that
CN(O) ⊆ CN(O′). Thus, ∃x ∈ CN(O′) and x /∈ CN(O). Thus, there exists a minimal
derivation d for x from O′. Since CN(O′) is consistent and Seq(d) ⊆ CN(O′) (from
Property 3) then (d, x) is an argument. In addition (d, x) /∈ E (since x /∈ CN(O)).
Then, ∃(d′, x′) ∈ E such that (d, x)R(d′, x′) or (d′, x′)R(d, x). Since R is conflict-
dependent, then Seq(d) ∪ Seq(d′) is inconsistent. But, Seq(d′) ⊆ Concs(E). So,
Seq(d) ∪ Seq(d′) ⊆ CN(O′). This contradicts the fact that O′ is an option.

From Proposition 1, it follows that for all O,O′ ∈ Max(Opt(T )), if CN(O) =
CN(O′) = Concs(E), then O = O′.

Proof of Theorem 9. Let H = (Arg(T ),R) be an argumentation system built over
a theory T such thatR is conflict-dependent andH satisfies consistency and closure
under sub-arguments.

Let E , E ′ ∈ Extn(H). From Theorem 8, ∃O,O′ ∈ Max(Opt(T )) such that
Concs(E) = CN(O) and Concs(E ′) = CN(O′). If O = O′, then Concs(E) =
Concs(E ′). From Theorem 7, E = E ′.
Let E ∈ Extn(H) and O = Option(E). Thus, Th(E) v O and Concs(E) =
CN(O). From Proposition 3, Arg(Th(E)) ⊆ Arg(O). From Proposition 14, Arg(Th(E))
= E . Thus, E ⊆ Arg(O). Assume now that ∃a = (d, x) ∈ Arg(O) and a /∈ E .
Thus, ∃b = (d′, x′) ∈ E and aRb or bRa. Since R is conflict-dependent, then
Seq(d) ∪ Seq(d′) is inconsistent. Besides, Seq(d) ⊆ CN(O) and Seq(d′) ⊆
CN(Th(E)). Since H is closed under sub-arguments, then CN(Th(E)) = CN(O).
Thus, Seq(d) ∪ Seq(d′) ⊆ CN(O). This contradicts the fact that O is an option.

Proof of Theorem 10. LetH = (Arg(T ),R) be an argumentation system built over
a theory T such thatR is conflict-dependent andH satisfies consistency and closure
under sub-arguments.

Let O ∈ Max(Opt(T )). Thus, CN(O) is consistent. From Proposition 5, since
R is conflict-dependent, Arg(O) is conflict-free. Assume now that Arg(O) /∈
Extn(H). Thus, ∃a = (d, x) ∈ Arg(T ) such that a /∈ Arg(O) and Arg(O)∪{a}
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is conflict-free. Consequently, ∃E ∈ Extn(H) such that Arg(O) ∪ {a} ⊆ E . It
follows that Concs(Arg(O)∪{a}) ⊆ Concs(E). Since CN(O) is consistent, then
Concs(Arg(O)) = CN(O). Thus, CN(O) ∪ {x} ⊆ Concs(E). From Theorem
8, ∃O′ ∈ Max(Opt(T )) such that Concs(E) = CN(O′). Then, CN(O) ∪ {x} ⊆
CN(O′). This contradicts the fact that O is a maximal option.

LetO ∈ Max(Opt(T )). By definition of Th, Th(Arg(O)) v O. From Property 4,
CN(Th(Arg(O))) ⊆ CN(O). Besides, from first item, Arg(O) ∈ Extn(H). From
Theorem 8, ∃O′ ∈ Max(Opt(T )) such that Th(Arg(O)) v O′ and Concs(Arg(O)) =
CN(O′). SinceH is closed under sub-arguments, then CN(Th(Arg(O))) = Concs(Arg(O)).
Consequently, CN(O′) ⊆ CN(O). From Proposition 1, O = O′.
Let O,O′ ∈ Max(Opt(T )). Assume that Arg(O) = Arg(O′).

It follows that Option(Arg(O)) = Option(Arg(O′)). From item 2, it follows
that O = O′.

Proof of Theorem 11. LetH = (Arg(T ),R) be an argumentation system built over
a theory T = (F ,S,D) such thatR is conflict-dependent andH satisfies consistency,
strict precedence and closure under both strict rules and sub-arguments.

Let us show that Max(Opt(T )) ⊆ Max(POpt(T )). Let O ∈ Max(Opt(T )). From
(item 1) of Theorem 10, Arg(O) ∈ Extn(H). From Theorem 8, Concs(Arg(O)) =
CN(Option(Arg(O))). From Corollary 1, Option(Arg(O)) = O. Hence, Concs(Arg(O)) =
CN(O). From Theorem 4, there exists O′ = (F ,S, Z) such that

Z = (
⋃

(d,x)∈Arg(O)

Def(d)) ∪ {r | r ∈ D and Body(r) 6⊆ CN(Th(Arg(O)))}

and Concs(Arg(O)) = CN(O′). Since Concs(Arg(O)) = CN(O) and using Propo-
sition 12, Concs(Arg(O)) = CN(Th(Arg(O))), then CN(Th(Arg(O))) = CN(O) and
we get

Z = (
⋃

(d,x)∈Arg(O)

Def(d)) ∪ {r | r ∈ D and Body(r) 6⊆ CN(O)}

and CN(O) = CN(O′). From Proposition 1, it follows that O = O′. Furthermore,
O ∈ Max(Opt(T )) and is maximal (for set inclusion) up to consistency and contains
the strict part of T , then O ∈ Max(POpt(T )).

Let us now show that Max(POpt(T )) ⊆ Max(Opt(T )). Let O ∈ Max(POpt(T )).
By definition of preferred option, CN(O) is consistent. SinceR is conflict-dependent,
then Arg(O) is conflict-free by Proposition 5. Assume now that Arg(O) /∈ Extn(H).
Thus, ∃a ∈ Arg(T ) \ Arg(O) such that Arg(O) ∪ {a} is conflict-free. Conse-
quently, ∃E ∈ Extn(H) such that Arg(O) ∪ {a} ⊆ E . Thus, Concs(Arg(O) ∪
{a}) ⊆ Concs(E). Since CN(O) is consistent, then Concs(Arg(O)) = CN(O). Thus,
CN(O) ∪ {Conc(a)} ⊆ Concs(E). From Theorem 8, ∃O′ ∈ Max(Opt(T )) such that
Concs(E) = CN(O′). Then, CN(O) ∪ {Conc(a)} ⊆ CN(O′). This means that O′ ∈
POpt(T ) (since it contains all consequences of the strict part of T ). This contradicts
the fact that O is a maximal preferred option. Consequently, Arg(O) ∈ Extn(H).
From Theorem 8, O ∈ Max(Opt(T )).
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Proof of Theorem 12. LetH = (Arg(T ),R) be an argumentation system built over
a theory T such thatR is conflict-dependent andH satisfies consistency and closure
under sub-arguments. From Property 11, Output(H) =

⋂
Ei∈Extn(H)

Concs(Ei). From

Theorem 8, for all Ei ∈ Extn(H), there exists a uniqueOi ∈ Max(Opt(T )) such that
Concs(Ei) = CN(Oi). Also, Corollary 1 guarantees that Max(Opt(T )) does not have
any additional elements that do not have a mapping in Extn(H). Thus,

Output(H) =
⋂

Oi∈Max(Opt(T ))

CN(Oi).

Lemma 2 Let H = (Arg(T ),R) be an argumentation system built over a theory
T = (F ,S,D) such that R is conflict-dependent and H satisfies the five postulates.
For any E ∈ Exts(H), it holds that (F ,S, Z) ∈ Max(POpt(T )) whenever

Z = (
⋃

(d,x)∈E

Def(d)) ∪ {r | r ∈ D and Body(r) 6⊆ CN(Th(E))}.

Proof LetH = (Arg(T ),R) be an argumentation system built over a theory T such
that R is conflict-dependent and H satisfies the five postulates. Let E ∈ Exts(H)
and Th(E) = (X,Y, Z). Let O = (F ,S, Z ∪ Z ′) where Z ′ = {r | r ∈ D \
Z and Body(r) 6⊆ CN(Th(E))}. Clearly, Th(E) v O. From Theorem 4, Concs(E) =
CN(O). SinceH satisfies consistency, then Concs(E) is consistent, and thus CN(O) is
consistent as well. Since (F ,S, ∅) v O and CN(O) is consistent, then from Property
7, ∃O′ ∈ POpt(T ) such thatO v O′. From Proposition 3, Arg(Th(E)) ⊆ Arg(O) ⊆
Arg(O′). From Proposition 9, E = Arg(Th(E)). Hence, E ⊆ Arg(O) ⊆ Arg(O′).
Since R is conflict-dependent, CN(O) and CN(O′) are consistent, then from Proposi-
tion 5 Arg(O) and Arg(O′) are both conflict-free. From Property 1, E ∈ Extn(H).
Then, E is maximal (for set inclusion) among conflict-free sets. Thus, E = Arg(O) =
Arg(O′). From consistency of CN(O) and CN(O′), it follows that Concs(Arg(O)) =
CN(O) and Concs(Arg(O′)) = CN(O′). Then, CN(O) = CN(O′) and O ∈ POpt(T ).

Let us now show that O ∈ Max(POpt(T )). Assume that ∃O′ ∈ POpt(T ) such
that CN(O) ⊆ CN(O′). Since Concs(E) = CN(O), then Concs(E) ⊆ CN(O′). Let
x ∈ CN(O′) and x /∈ Concs(E). Since CN(O′) is consistent, then there exists an
argument (d, x) ∈ Arg(O′), i.e., d is a derivation of x from O′. Clearly, (d, x) /∈ E .
Thus, ∃(d′, x′) ∈ E such that (d′, x′)R(d, x). Since R is conflict-dependent, then
Seq(d) ∪ Seq(d′) is inconsistent. But, Seq(d′) ⊆ CN(Th(E)) and Seq(d) ⊆ CN(O′).
Proposition 13 gives CN(Th(E)) = Concs(E). Then, CN(Th(E)) ⊆ CN(O′). Finally,
Seq(d) ∪ Seq(d′) ⊆ CN(O′). This contradicts the fact that CN(O′) is consistent.

Proof of Theorem 13. LetH = (Arg(T ),R) be an argumentation system built over
a theory T such that R is conflict-dependent and H satisfies consistency, exhaus-
tiveness, strict precedence and closure under both strict rules and sub-arguments.
Assume that Exts(H) 6= ∅. Let E ∈ Exts(H) and Th(E) = (X,Y, Z). From
Lemma 2, the option O = (F ,S, Z ′) ∈ Max(POpt(T )) with Z ′ = Z ∪ {r | r ∈
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D \ Z and Body(r) 6⊆ CN(Th(E))}. Since X ⊆ F , Y ⊆ S and Z ⊆ Z ′, then
Th(E) v O. From Theorem 4, Concs(E) = CN(O).

Let us show that E has a unique corresponding preferred maximal option. As-
sume that ∃O1,O2 ∈ Max(POpt(T )) such that Th(E) v O1, Concs(E) = CN(O1),
Th(E) v O2 and Concs(E) = CN(O2). Obviously, CN(O1) = CN(O2). However,
O1,O2 ∈ POpt(T ) according to Property 6 hence Proposition 1 gives O1 = O2.

Let us now show that E = Arg(O). Since Th(E) v O, then from Proposi-
tion 3, Arg(Th(E)) ⊆ Arg(O). From Proposition 15, E ⊆ Arg(O). Assume now
that ∃a = (d, x) ∈ Arg(O) such that a /∈ E . Thus, ∃b = (d′, x′) ∈ E and
bRa. Since R is conflict-dependent, then Seq(d) ∪ Seq(d′) is inconsistent. Besides,
Seq(d) ⊆ CN(O) and Seq(d′) ⊆ CN(Th(E)). SinceH is closed under sub-arguments,
then CN(Th(E)) = CN(O) by Proposition 12. Thus, Seq(d)∪ Seq(d′) ⊆ CN(O). This
contradicts the fact that O is an option.

Proof of Theorem 14. LetH = (Arg(T ),R) be an argumentation system built over
a theory T such thatR is conflict-dependent andH satisfies consistency, strict prece-
dence and closure under both strict rules and sub-arguments. Assume that Exts(H) 6=
∅. Let E , E ′ ∈ Exts(H). From Theorem 13, ∃O ∈ Max(POpt(T )) such that Concs(E) =
CN(O) and ∃O′ ∈ Max(POpt(T )) such that Concs(E ′) = CN(O′). If O = O′, then
Concs(E) = Concs(E ′). Assume that ∃a = (d, x) ∈ E \ E ′. Thus, ∃b = (d′, x′) ∈
E ′ such that bRa. Since R is conflict-dependent, then Seq(d) ∪ Seq(d′) is incon-
sistent. But H is closed under sub-arguments. Thus, Concs(E) = CN(Th(E)) and
Concs(E ′) = CN(Th(E ′)). Besides, Seq(d) ⊆ CN(Th(E)) and Seq(d′) ⊆ CN(Th(E ′)).
Since CN(Th(E ′)) = CN(Th(E)) then Seq(d)∪Seq(d′) ⊆ CN(Th(E)). Thus, CN(Th(E))
is inconsistent. This contradicts the fact that H satisfies consistency. The same rea-
soning holds for a = (d′, x′) ∈ E ′ \ E .

Proof of Theorem 15. Any argumentation system H = (Arg(T ),R) that satisfies
strict precedence should have F as plausible conclusions, i.e., F ⊆ CN((F ,S, ∅)) ⊆
Output(H). Since > ∈ F , then Output(H) 6= ∅. However, since R ∈ <s1 ,
Exts(H) = ∅. Thus, Output(H) = ∅.

Proof of Theorem 16. Let H = (Arg(T ), R) be an argumentation system over
a theory T such that R ∈ <s2 . Let O ∈ Max(POpt(T )). Since |Exts(H)| =
|Max(POpt(T ))|, then from theorems 13 and 14, ∃E ∈ Exts(H) such that E =
Arg(O), hence Arg(O) ∈ Exts(H).

Proof of Theorem 17. LetH = (Arg(T ),R) be an argumentation system built over
a theory T such that R ∈ <s2. From Corollary 5, Exts(H) = Extss(H). Assume
that ∃E ∈ Extp(H) \ Exts(H). From Theorem 22, there exists O ∈ Max(POpt(T ))
such that Th(E) v O. Since |Exts(H)| = |Max(POpt(T ))|, then from Theorem
16, Arg(O) ∈ Exts(H). From Theorems 13 and 14, O = Option(Arg(O)). From
Theorem 24, E = Arg(O).

Proof of Theorem 18. Let H = (Arg(T ), R) be an argumentation system such that
R ∈ <s2 . IfH satisfies all the postulates under naive semantics, then from Corollary
1 and Theorem 11, there is a bijection between Extn(H) and Max(POpt(T )). From
theorems 13 and 16, |Exts(H)| = |Max(POpt(T ))|. Since every stable extension is a
naive one, then Extn(H) = Exts(H).
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Proof of Theorem 19. LetH = (Arg(T ),R) be an argumentation system built over
a theory T such thatR ∈ <s2 . From Property 11,

Output(H) =
⋂

Ei∈Exts(H)

Concs(Ei).

From theorems 13 and 14, for all Ei ∈ Exts(H), there exists a uniqueOi ∈ Max(POpt(T ))
such that Concs(Ei) = CN(Oi). Thus,

Output(H) =
⋂

Oi∈Max(Opt(T ))

CN(Oi).

Proof of Theorem 20. LetH = (Arg(T ),R) be an argumentation system built over
a theory T such thatR ∈ <s3 . From Property 11,

Output(H) =
⋂

Ei∈Exts(H)

Concs(Ei).

From Theorem 13, for all Ei ∈ Exts(H), there exists a unique Oi ∈ Max(POpt(T ))
such that Concs(Ei) = CN(Oi). SinceR ∈ <s3 , then |Exts(H)| < |Max(POpt(T ))|.
Thus,

Output(H) =
⋂
Oi∈X

CN(Oi)

with X = {Oi ∈ Max(POpt(T )) | Ei = Arg(Oi) ∈ Exts(H)}.

Proof of Theorem 21. Let H be an argumentation system built over a theory T =
(F ,S,D) such thatH satisfies the strict precedence postulate, i.e., F ⊆ Output(H).
Since > ∈ F , then Output(H) 6= ∅. Hence, Extp(H) 6= {∅}.

Proof of Theorem 22. LetH = (Arg(T ),R) be an argumentation system built over
a theory T such that R is conflict-dependent and H satisfies the five postulates. Let
E ∈ Extp(H) and Th(E) = (X,Y, Z). From Theorem 4, Concs(E) = CN(O) where
O = (F ,S, Z ∪ Z ′) and Z ′ ⊆ D \ Z. Clearly Th(E) v O. From consistency,
Concs(E) is consistent. Then, CN(O) is consistent as well. Then, there exists O′ ∈
Max(POpt(T )) such that O v O′. Therefore, CN(O) ⊆ CN(O′). Thus, Concs(E) ⊆
CN(O′).

Proof of Theorem 23. LetH = (Arg(T ),R) be an argumentation system built over
a theory T = (F ,S,D) such thatR is conflict-dependent andH satisfies the five pos-
tulates under preferred semantics. Since Exts(H) ⊆ Extp(H), then H satisfies the
postulates under stable semantics. Consequently, from Theorem 15, Exts(H) 6= ∅.
Let E ∈ Exts(H). From Theorem 13, ∃O ∈ Max(POpt(T )) such that E = Arg(O).
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Proof of Theorem 24. Let H = (Arg(T ),R) be an argumentation system built
over a theory T such thatR is conflict-dependent andH satisfies exhaustiveness and
closure under sub-arguments. Let E , E ′ ∈ Extp(H) and O ∈ Max(POpt(T )) such
that Th(E) v O and Th(E ′) v O. We show that E ∪ E ′ is a preferred extension
(which contradicts the fact that E and E ′ are preferred extensions).

From Proposition 3, Arg(Th(E)) ⊆ Arg(O) and Arg(Th(E ′)) ⊆ Arg(O). Since
H satisfies exhaustiveness and closure under sub-arguments, then from Proposition
9, Arg(Th(E)) = E and Arg(Th(E ′)) = E ′. Thus, E ∪ E ′ ⊆ Arg(O). Since CN(O)
is consistent andR is conflic-dependent, then from Proposition 5 Arg(O) is conflict-
free. Consequently, E ∪E ′ is also conflict-free. Moreover, E ∪E ′ defends its elements
since E and E ′ are preferred extensions. Thus, E ∪ E ′ is an admissible set. Due to E
and E ′ being preferred extensions, it follows that E ∪ E ′ = E = E ′.

Proof of Theorem 25. LetH = (Arg(T ),R) be an argumentation system built over
a theory T = (F ,S,D) such that R is conflict-dependent and privileges strict ar-
guments, and H satisfies consistency, exhaustiveness, strict precedence and closure
under sub-arguments. From consistency and strict precedence it follows by Proposi-
tion 8 that CN((F ,S, ∅)) is consistent.

The conclusion of the theorem, i.e., Arg(Free(T )) ⊆
⋂
Ei∈Extp(H) Ei is trivial

in the case that Arg(Free(T )) is empty. Consider a ∈ Arg(Free(T )). Let E ∈
Extp(H).

Let us show that E ∪ {a} is conflict-free. Assume that ∃b = (d2, x2) ∈ E such
that aRb or bRa. From Lemma 1, there exists a′ ∈ Sub(a) such that a′ = (d′1, x

′
1) ∈

Arg((F ,S, ∅)) and a′Rb. Then, Seq(d′1) ∪ Seq(d2) is inconsistent. Since H satis-
fies strict precedence and exhaustiveness, then Arg((F ,S, ∅)) ⊆ E by Proposition
10, so a′ ∈ E . Consequently, Seq(d′1) ∪ Seq(d2) ⊆ CN(Th(E)) by Proposition 12.
Since H satisfies consistency and closure under sub-arguments, then by Proposition
6 Concs(E) = CN(Th(E)) is consistent. Contradiction.

Let us show that E defends a. Consider b ∈ Arg(T ) such that bRa. From Lemma
1, there exists a′ ∈ Sub(a) such that a′ ∈ Arg((F ,S, ∅)) and a′Rb. SinceH satisfies
strict precedence and exhaustiveness, then Arg((F ,S, ∅)) ⊆ E , thus a′ ∈ E .

Summing up, E ∪ {a} is an admissible set. However, E ∈ Extp(H) means that E
is a maximal admissible set hence E ∪ {a} ⊆ E . Therefore, a ∈ E .

Proof of Theorem 26. LetH = (Arg(T ),R) be a system built over a theory T such
that R is conflict-dependent and H satisfies the five postulates. From Theorem 22,
for all E ∈ Extp(H), ∃O ∈ Max(POpt(T )) such that Th(E) v O and Concs(E) ⊆
CN(O). From Theorem 24, there cannot exist two maximal preferred extensions E
and E ′ such that Th(E) v O and Th(E ′) v O for some O ∈ Max(POpt(T )). Thus,
every maximal preferred option is captured by at most one preferred extension. Then,
|Extp(H)| ≤ |Max(POpt(T ))|.

Proof of Theorem 27. Let H = (Arg(T ),R) be an argumentation system built
over a theory T = (F ,S,D). Assume that R ∈ <p2 . The following equalities hold
by Theorems 16 and 17: Extp(H) = Exts(H) = Extss(H) = {Arg(Oi) | Oi ∈
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Max(POpt(T ))}. Let us now show the equality⋂
Oi∈Max(POpt(T ))

Arg(Oi) = Arg(
⋂

Oi∈Max(POpt(T ))

Oi).

Let Max(POpt(T )) = {O1 = (F ,S,D1), . . . ,On = (F ,S,Dn)}. Assume that

(d, x) ∈
n⋂
i=1

Arg(Oi). For any i = 1, . . . , n, (d, x) ∈ Arg(Oi) and thus

(Facts(d), Strict(d), Def(d)) v Oi.

This means that Def(d) ⊆
n⋂
i=1

Di. Consequently, d is also a derivation schema from

(F ,S,
n⋂
i=1

Di) =
n⋂
i=1

Oi. Finally, (d, x) ∈ Arg(
n⋂
i=1

Oi).

Assume now that (d, x) ∈ Arg(
n⋂
i=1

Oi). Then, d is a derivation schema from

(F ,S,
n⋂
i=1

Di). Hence, Def(d) ⊆
n⋂
i=1

Di. Hence, for any i = 1, . . . , n, Def(d) ⊆ Di.

Thus, d is a derivation schema from each theoryOi and (d, x) is an argument in each
Arg(Oi).
From above, it follows that⋂

Oi∈Max(POpt(T ))

Arg(Oi) = Arg(Free(T )).

Proof of Theorem 28. Let H be an argumentation system which satisfies the five
postulates. From strict precedence and the fact that Output(H) = Concs(IE(H)),
it holds that CN((F ,S, ∅)) ⊆ Concs(IE(H)). From Theorem 4, Concs(IE(H)) =
CN(O) such that O = (F ,S, Z) where

Z = (
⋃

(d,x)∈IE(H)

Def(d)) ∪ {r | r ∈ D and Body(r) 6⊆ CN(Th(IE(H)))}.

It holds that Th(IE(H)) v O. From consistency postulate, it follows that CN(O)
is consistent (since Concs(IE(H)) is consistent). Thus, there exists O′ ∈ POpt(T )
such thatO v O′. From Property 4, CN(O) ⊆ CN(O′). Consequently, Concs(IE(H))
⊆ CN(O′).

Proof of Theorem 29. LetH = (Arg(T ),R) be an argumentation system built over
a theory T . Assume thatR ∈ <p2 and privileges strict arguments. From Theorem 27,⋂
Ei∈Extp(H) Ei = Arg(Free(T )). From Theorem 2, Arg(Free(T )) is an admissible

extension ofH. Thus, IE(H) = Arg(Free(T )).

Proof of Theorem 30. The proof is similar to that of Theorem 28.

Proof of Corollary 1. It follows directly from theorems: 8 and 10.
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Proof of Corollary 2. It follows directly from Theorem 11 and Corollary 1.

Proof of Corollary 3. It follows from Corollary 1.

Proof of Corollary 4. It follows from Corollary 3, i.e., the equality |Extn(H)| =
|Max(Opt(T ))| and the fact that if a theory T is finite, then it has a finite number of
options, thus of maximal options.

Proof of Corollary 5. Let H = (Arg(T ),R) be such that R ∈ <s2 ∪ <s3 . From
Theorem 15, Exts(H) 6= ∅. From Property 1, Exts(H) = Extss(H).

Proof of Corollary 6. Let H = (Arg(T ),R) be an argumentation system built over
a theory T such thatR is conflict-dependent andH satisfies the five postulates. From
Theorem 15, Exts(H) 6= ∅. From Theorem 13, |Exts(H)| ≤ |Max(POpt(T ))|.

Proof of Corollary 7 Let H = (Arg(T ),R) be an argumentation system built over
a theory T such that R is conflict-dependent and H satisfies the five postulates. If T
is finite, then T has a finite number of maximal preferred options. From Corollary 6
H has a finite number of stable extensions.

Proof of Corollary 8. It follows immediately from Theorem 26.

Proof of Corollary 9. It follows immediately from theorems 17, 13 and 16.

Proof of Corollary 10. Let H = (Arg(T ),R) be an argumentation system over
a theory T such that R ∈ <p2 and privileges strict arguments. From Theorem 29,
IE(H) = Arg(Free(T )). Then, Output(H) = Concs(IE(H)) = Concs(Arg(Free(T ))).
Since CN(Free(T )) is consistent, then CN(Free(T )) = Concs(Arg(Free(T ))).
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