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Dung’s argumentation framework takes as input two abstract entities: a set of
arguments and a binary relation encoding attacks between these arguments. It
returns acceptable sets of arguments, called extensions, wrt a given semantics. While
the abstract nature of this setting is seen as a great advantage, it induces a big
gap with the application that it is used to. This raises some questions about the
compatibility of the setting with a logical formalism (i.e., whether it is possible to
instantiate it properly from a logical knowledge base), and about the significance of
the various semantics in the application context.

In this paper we tackle the above questions. We first propose to fill in the previ-
ous gap by extending Dung’s framework. The idea is to consider all the ingredients
involved in an argumentation process. We start with the notion of an abstract mono-
tonic logic which consists of a language (defining the formulas) and a consequence
operator. We show how to build, in a systematic way, arguments from a knowledge
base formalized in such a logic. We then recall some basic postulates that any instan-
tiation should satisfy. We study how to choose an attack relation so that the instanti-
ation satisfies the postulates. We show that symmetric attack relations are generally
not suitable. However, we identify at least one ‘appropriate’ attack relation. Next,
we investigate under stable, semi-stable, preferred, grounded and ideal semantics the
outputs of logic-based instantiations that satisfy the postulates. For each semantics,
we delimit the number of extensions an argumentation system may have, characterize
the extensions in terms of subsets of the knowledge base, and finally characterize the
set of conclusions that are drawn from the knowledge base. The study reveals that
stable, semi-stable and preferred semantics either lead to counter-intuitive results or
provide no added value w.r.t. naive semantics. Besides, naive semantics either leads
to arbitrary results or generalizes the coherence-based approach initially developed by
Rescher and Manor in 1970. Ideal and grounded semantics either coincide and gener-
alize the free consequence relation developed by Benferhat, Dubois and Prade in 1997,
or return arbitrary results. Consequently, Dung’s framework seems problematic when
applied over deductive logical formalisms.

Keywords: Abstract argumentation frameworks, Logic, Postulates.

1. Introduction

Argumentation has become an Artificial Intelligence keyword for the last twenty
years, especially for handling inconsistency in knowledge bases (e.g., (6; 11; 31)),
making decisions (e.g., (8; 14)), modeling different types of dialogues between
agents like persuasion (e.g., (7; 34)), negotiation (e.g., (29; 32)) and inquiry (e.g.,
(12; 26)), and for learning concepts (e.g., (9; 25)).
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One of the most abstract argumentation formalisms in existing literature was pro-
posed by Dung in (21). It consists of a set of arguments and a binary relation
encoding attacks between these arguments. Semantics are used for defining ac-
ceptable sets of arguments, called extensions. Since its original formulation, Dung’s
framework has become very popular because it seriously abstracts away from the
application to which it can be used. Indeed, the structure and the origin of argu-
ments and attacks are left unspecified. While this can be seen as a great advantage
of the framework, two important questions are raised regarding its interplay with
logic, namely when it is applied for reasoning about inconsistent information:

(1) Is the framework compatible with a logical formalism? To put it differently,
is it possible to instantiate “properly” the framework from a logical knowl-
edge base?

(2) Are the semantics significant when the framework is instantiated from a
logical knowledge base? Are they really different? What are the counter-
parts of the extensions (under each semantics) in the knowledge base? Are
those counterparts meaningful? What are the plausible inferences under
these semantics?

In this paper we answer the above questions. For that purpose, we first propose
to fill in the gap between the abstract framework and the logical knowledge base
from which it is specified. The idea is to consider all the ingredients involved in
an argumentation problem. We start with the notion of an abstract monotonic
logic as defined by Tarski in (33). According to Tarski, a monotonic logic is a set
of formulas and a consequence operator that satisfies some axioms. It is worth
mentioning that almost all well-known monotonic logics such as propositional
logic, modal logic, first order logic, fuzzy logic and probabilistic logic are special
cases of Tarski’s notion of abstract logic. Consequently, any result that holds in the
general case of a Tarskian logic obviously holds under all these particular logics.
We then show how to build, in a systematic way, arguments from a knowledge
base formalized in such a logic.

A ‘good’ instantiation of Dung’s framework is one that satisfies some basic ra-
tionality postulates. In (17), three postulates were proposed, and it was shown that
not any instantiation is acceptable since some may lead to counter-intuitive results.
Examples are the instantiations proposed in (24; 28). The three postulates are
tailored for rule-based formalisms, i.e., logical languages that distinguish between
strict rules and defeasible ones. In (1; 2), those postulates were generalized to any
Tarskian logic. Moreover, three new and intuitive ones were proposed. We study
under which conditions they are satisfied or violated. The satisfaction/violation
of a postulate by an instantiation depends mainly on the properties of the attack
relation. We show that this relation should be based on the inconsistency of the
knowledge base. We show also that symmetric relations cannot be adopted when
the knowledge base contains a ternary or n-ary (n > 2) minimal conflict. We
do establish the existence of appropriate attack relations. To sum up, there are
interesting cases that cannot be captured by Dung’s framework. Nevertheless, the
framework can still be properly instantiated.

In the second part of the paper, we investigate the underpinnings of the main
semantics: stable, semi-stable, preferred, grounded and ideal. For that purpose, we
consider only the logic-based instantiations that satisfy the postulates since the
remaining ones are not good. For each semantics, we delimit the number of ex-
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tensions an instantiation may have, characterize its extensions in terms of subsets
of the knowledge base over which the instantiation is built, and fully characterize
its set of plausible inferences that may be drawn from the knowledge base. The
results show that unlike the abstract framework, its good instantiations have a
finite number of extensions under stable, semi-stable and preferred semantics.
This is particularly the case when the knowledge base is finite. We show that the
set of all formulas used in the supports of the arguments of a stable extension is
a maximal (for set inclusion) consistent subset of the knowledge base. However,
not every maximal consistent subset of the knowledge base has necessarily a
corresponding stable extension. This leads to arbitrary plausible inferences. In
case there is a full correspondence, stable semantics does not play any role since
the same result is already ensured by the naive semantics. This means that stable
semantics either returns arbitrary results or provide no added value. Besides,
naive semantics either leads to arbitrary results or generalizes the coherence-based
approach initially developed by Rescher and Manor in (30). The situation is worse
for preferred semantics. The set of formulas that are used in the supports of the
arguments of a preferred extension is a consistent (but not necessarily maximal
for set inclusion) subset of the knowledge base. Thus, arbitrary inferences may
be drawn from the knowledge base. Semi-stable extensions are shown to always
coincide with stable ones. Thus, semi-stable semantics has no added value w.r.t.
stable semantics. Regarding the ideal and grounded semantics; there are two cases
as well: i) both semantics coincide, i.e., the ideal extension of any argumentation
framework satisfying the postulates coincides with the grounded extension which
itself coincides with the set of arguments that are built from the free part of a
knowledge base, i.e., using the subset of formulas which are not involved in the
inconsistency of the knowledge base. Consequently, under these semantics, the set
of plausible conclusions is the so-called free consequences in the coherence-based
approach for reasoning about inconsistent information (10). ii) both semantics
return arbitrary conclusions.

The overall study reveals that Dung’s framework can be properly instantiated,
i.e., there are instantiations that satisfy some basic rationality postulates. However,
stable, semi-stable, preferred, ideal and grounded semantics are not suitable.
Thus, Dung’s framework is problematic when applied over a logical formalism,
specifically a deductive one.

The paper is structured as follows: Section 2 recalls the abstract argumenta-
tion framework of Dung. Section 3 details our instantiation of Dung’s framework.
Section 4 defines rationality postulates that such instantiation should satisfy, and
investigates when those postulates are satisfied/violated. Section 5 analyzes the
different acceptability semantics introduced by Dung. Section 6 compares our con-
tribution with existing works. Finally, Section 7 concludes the paper with some
remarks and perspectives.

2. Dung’s abstract argumentation framework

In (21), an argumentation framework consists of a set of arguments and a binary
relation expressing attacks among the arguments.

Definition 1 (Argumentation framework) An argumentation framework is a
pair (A,R) where A is a set of arguments and R ⊆ A×A is an attack relation.
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A pair (a, b) ∈ R means that a attacks b. A set E ⊆ A attacks an argument b iff
∃a ∈ E such that (a, b) ∈ R.

Notation: We sometimes use the infix notation aRb to denote (a, b) ∈ R.

An argumentation framework (A,R) is a graph whose nodes are the arguments
of A and its edges are the attacks in R. The arguments are evaluated using a
semantics. In (21), different acceptability semantics were proposed. Some of them
were refined, for instance in (16; 20). The basic idea behind them is the following:
for a rational agent, an argument is acceptable if he can defend this argument
against all attacks upon it. All the arguments jointly acceptable for a rational agent
will be gathered in a so-called extension. An extension must satisfy a consistency
requirement and must defend all its elements.

Definition 2 (Conflict-freeness, Defence) Let (A,R) be an argumentation
framework and E ⊆ A.

• E is conflict-free iff @a, b ∈ E such that (a, b) ∈ R.

• E defends an argument a iff ∀b ∈ A, if (b, a) ∈ R, then ∃c ∈ E such that
(c, b) ∈ R.

The following definition recalls the main semantics that were proposed by Dung
(21) as well as their refinements (16; 20). It is worth noticing that the fundamental
semantics features admissible extensions. The other semantics are based on it.

Definition 3 (Acceptability semantics) Let T = (A,R) be an argumentation
framework, and E ⊆ A be a conflict-free set.

• E is a naive extension iff it is a maximal (w.r.t. set ⊆) conflict-free set.

• E is an admissible set iff it defends all its elements.

• E is a complete extension iff it is an admissible set that contains any argument
it defends.

• E is a preferred extension iff it is a maximal (w.r.t. set ⊆) admissible set.

• E is a stable extension iff it attacks any argument in A \ E.

• E is a semi-stable extension iff it is a complete extension and the union of the
set E and the set of all arguments attacked by E is maximal (w.r.t. ⊆).

• E is a grounded extension iff it is a minimal (w.r.t. set ⊆) complete extension.

• E is an ideal extension iff it is a maximal (w.r.t. set ⊆) admissible set contained
in every preferred extension.

Notations: Extx(T ) denotes the set of all extensions of T under semantics x where
x ∈ {n, p, s, ss} and n (respectively p, s, ss) stands for naive (respectively preferred,
stable and semi-stable). When we do not need to refer to a particular semantics, we
write Ext(T ) for short. Since grounded and ideal extensions are unique for any ar-
gumentation framework T , they will be denoted respectively by GE(T ) and IE(T ).

It is worth recalling that stable extensions are naive (respectively preferred)
extensions but the converses are not always true. Moreover, an argumentation
framework has at least one preferred extension while it may have no stable exten-
sions. When stable extensions exist, they coincide with the semi-stable ones (i.e.,
if |Exts(T )| > 0, then Exts(T ) = Extss(T ) for any argumentation framework T ).

Example 1 Let us consider the argumentation framework T = (A,R) such that:

• A = {a, b, c, d, e, f, g}
• R = {(c, b), (b, e), (e, c), (d, c), (a, d), (d, a), (a, f), (f, g)}
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This framework has five naive extensions:

• E1 = {a, c, g},
• E2 = {d, e, f},
• E3 = {b, d, f},
• E4 = {a, e, g}, and

• E5 = {a, b, g}.

It has one stable/semi-stable extension E3 and two preferred extensions: E3 and
E6 = {a, g}. Both the grounded and the ideal extensions are empty, i.e., GE(T ) =
IE(T ) = ∅.

An argumentation framework may be infinite, i.e., its set of arguments may be
infinite. Consequently, it may have an infinite number of extensions (under a given
semantics).

3. Logic-based instantiations of Dung’s framework

Argumentation is an alternative approach for reasoning with inconsistent informa-
tion. It follows three main steps: i) constructing arguments and counterarguments
from a logical knowledge base, ii) defining the status of each argument, and iii)
specifying the conclusions to be drawn from the base. In what follows, we instan-
tiate Dung’s framework by defining all these items. We start with an abstract logic
as defined by Alfred Tarski (33) from which the notions of argument and attacks
between arguments are defined.

3.1 Tarski’s abstract consequence operators

Alfred Tarski (33) defines a logic as a pair (L,CN) where the members of L are
called well-formed formulas, and CN is a consequence operator. No constraints are
defined on the logical language L. Thus, no particular connectors are required.
However, the consequence operator CN is a function from 2L to 2L that should
satisfy the following axioms:

(1) X ⊆ CN(X) (Expansion)
(2) CN(CN(X)) = CN(X) (Idempotence)
(3) CN(X) =

⋃
Y⊆fX

CN(Y ) (Compactness)

(4) CN({x}) = L for some x ∈ L (Absurdity)
(5) CN(∅) 6= L (Coherence)

Notation: Y ⊆f X means that Y is a finite subset of X.

Intuitively, CN(X) returns the set of formulas that are logical consequences of
X according to the logic in question. In (33), it was shown that CN is a closure
operator, that is, CN enjoys properties such as:

Property 1 Let X,X ′, X ′′ ⊆ L.

(1) X ⊆ X ′ ⇒ CN(X) ⊆ CN(X ′).
(2) CN(X) ∪ CN(X ′) ⊆ CN(X ∪X ′).
(3) CN(X) = CN(X ′)⇒ CN(X ∪X ′′) = CN(X ′ ∪X ′′).
(4) CN(X ∩X ′) ⊆ CN(X) ∩ CN(X ′).

Almost all well-known monotonic logics (classical logics, intuitionistic logics,
modal logics, etc.) can be viewed as special cases of Tarski’s notion of an abstract
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logic. AI introduced non-monotonic logics, which do not satisfy monotonicity (13).

Once (L,CN) is fixed, a notion of consistency arises as follows:

Definition 4 (Consistency) Let X ⊆ L. X is consistent w.r.t. the logic (L,CN)
iff CN(X) 6= L. It is inconsistent otherwise.

In simple English, this says that X is consistent iff its set of consequences is not
the set of all formulas. The coherence requirement (absent from Tarski’s original
proposal but added here to avoid considering trivial systems) forces the empty set
∅ to always be consistent - this makes sense for any reasonable logic.

One can show that if a set X is consistent, then its closure under CN is also
consistent and any proper subset of X is consistent.

Property 2 Let X ⊆ L.

(1) If X is consistent, then CN(X) is consistent as well.
(2) ∀X ′ ⊆ X, if X is consistent, then X ′ is consistent.
(3) ∀X ′ ⊆ X, if X ′ is inconsistent, then X is inconsistent.

If a set X ⊆ L of formulas is inconsistent, this means that it contains minimal
conflicts.

Definition 5 (Minimal conflict) A set C ⊆ L is a minimal conflict iff:

• C is inconsistent

• ∀x ∈ C, C\{x} is consistent

Notations: Let X ⊆ L. CX denotes the set of all minimal conflicts C such that
C ⊆ X. Max(X) is the set of all maximal (for set inclusion) consistent subsets of
X, Free(X) =

⋂
Si∈Max(X) Si, and Inc(X) = X \ Free(X).

The following properties are useful for proving our results.

Property 3 For all X ⊆ Σ ⊆ L,

• if X is consistent then CX = ∅.
• if X is consistent then X ⊆ S for some S ∈ Max(Σ).

• if X is inconsistent then there exists at least one minimal conflict C such that
C ⊆ X.

The next property is true in case the underlying logic is adjunctive. Let us first
define this new concept.

Definition 6 (Adjunctiveness) A logic (L,CN) is adjunctive iff for all x and y
in L, there exists z ∈ L such that CN({z}) = CN({x, y}).

Intuitively, an adjunctive logic infers, from the union of two formulas {x, y}, some
formula(s) that can be inferred neither from x alone nor from y alone (except, of
course, when y ensues from x or vice-versa). In fact, most well-known logics are
adjunctive.1 A logic which is not adjunctive could for instance fail to deny x ∨ y
from the premises {¬x,¬y}.

Property 4 Let (L,CN) be adjunctive, C ⊆ L be a minimal conflict. For all
X ⊂ C, if X 6= ∅, then:

1Some fragments of well-known logics fail to be adjunctive, e.g., the pure implicational fragment of classical
logic as it is negationless, disjunctionless, and, of course, conjunctionless.
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(1) ∃x ∈ L such that CN({x}) = CN(X).
(2) ∃x1 ∈ CN(X) and ∃x2 ∈ CN(C \X) such that the set {x1, x2} is inconsis-

tent.

3.2 Tarskian logic-based instantiations

Let (L,CN) be a fixed abstract logic. From now on, we will consider a knowledge
base Σ which is a subset of the logical language L (in symbols, Σ ⊆ L). This base
may be infinite, however, with no loss of generality and for the sake of simplicity,
it is assumed to be free of tautologies:

Assumption 1 Let Σ be a knowledge base. For all x ∈ Σ, x /∈ CN(∅).

The first parameter of an argumentation framework is the set of arguments. In
Dung’s framework, an argument is an abstract entity. In what follows, it is built
from a knowledge base Σ. It gives a reason for believing a conclusion. Formally,
an argument satisfies three main requirements: i) the reason is a subset of the
knowledge base, thus restricting the origin of the arguments, ii) the reason should
be consistent, thus avoiding absurd reasons, and iii) the reason is minimal. The
latter means that only relevant information w.r.t. the conclusion are considered.

Definition 7 (Argument) Let Σ be a knowledge base. An argument is a pair
(X,x) such that:

(1) X ⊆ Σ and x ∈ L
(2) X is consistent
(3) x ∈ CN(X)
(4) @X ′ ⊂ X such that x ∈ CN(X ′)

An argument (X,x) is a sub-argument of another argument (X ′, x′) iff X ⊆ X ′.

Let us introduce some notations that will be used throughout the paper.

Notations: Supp and Conc are two functions that return respectively the support
X and the conclusion x of an argument (X,x). Sub is a function that returns all
the sub-arguments of a given argument. For X ⊆ L, Arg(X) denotes the set of
all arguments that can be built from X by means of Definition 7. For a set E of
arguments, Concs(E) = {Conc(a) | a ∈ E} and Base(E) =

⋃
a∈E Supp(a).

The following property shows that the conclusion of any argument is consistent.

Property 5 For all (X,x) ∈ Arg(Σ), the set {x} is consistent.

Due to Assumption 1 (x 6∈ CN(∅) for all x ∈ Σ), it can also be shown that each
consistent formula in Σ gives birth to an argument:

Property 6 Let Σ be a knowledge base such that for all x ∈ Σ, x 6∈ CN(∅). For
all x ∈ Σ such that the set {x} is consistent, ({x}, x) ∈ Arg(Σ).

Since CN is monotonic, constructing arguments is a monotonic process: Addi-
tional knowledge never makes the set of arguments to shrink but only gives rise to
extra arguments that may interact with the existing ones.

Property 7 Arg(Σ) ⊆ Arg(Σ′) whenever Σ ⊆ Σ′ ⊆ L.

We show now that any proper subset of a minimal conflict is the support of at
least one argument. This is in particular true in case of adjunctive logics. This
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result is of utmost importance as regards encoding the attack relation.

Proposition 1 Let (L,CN) be adjunctive and Σ be a knowledge base. For all non-
empty proper subset X of some minimal conflict C ∈ CΣ, there exists a ∈ Arg(Σ)
such that Supp(a) = X.

Proposition 1 is fundamental because it says that if statements from Σ contradict
others then it is always possible to define an argument exhibiting the conflict.

In the sequel, we use the term system instead of framework in order to distinguish
the framework of Dung from its logical instantiations which are defined as follows.

Definition 8 (Argumentation system) Let (L,CN) be a given Tarskian logic
and Σ ⊆ L be a knowledge base. An argumentation system over Σ is a pair T =
(Arg(Σ),R) such that R ⊆ Arg(Σ)×Arg(Σ) (intuitively, it is an attack relation).

In the previous definition, the attack relation is left unspecified. However, in
Section 4 we show that it should enjoy some properties otherwise the system may
return counter-intuitive results.

The arguments of a system T = (Arg(Σ),R) are evaluated using one of the
semantics given in Definition 3. Recall that the structure of arguments is not taken
into account in those semantics. The extensions are used in order to define the
conclusions that may be drawn from Σ according to the system T . The idea is to
conclude x if it is the conclusion of an argument in every extension of the system.

Definition 9 (Output) Let T = (Arg(Σ),R) be an argumentation system over
a knowledge base Σ and Ext(T ) its set of extensions under a given semantics. For
x ∈ L, x is a conclusion of T iff ∀Ei ∈ Ext(T ), ∃a ∈ Ei such that Conc(a) = x.
We write Output(T ) to denote the set of all conclusions of T .

It follows immediately from the definition that the set of conclusions exactly
consists of the formulas which happen to be, in each extension, the conclusion of
an argument of the extension.

Property 8 Let T = (Arg(Σ),R) be an argumentation system over a knowledge
base Σ and Ext(T ) its set of extensions under a given semantics. It holds that

Output(T ) =
⋂

Ei∈Ext(T )

Concs(Ei).

Finally, it is obvious that the outputs of an argumentation system are conse-
quences of the corresponding knowledge base under the consequence operator CN.

Property 9 Let T = (Arg(Σ),R) be an argumentation system over a knowledge
base Σ. Output(T ) ⊆ CN(Σ).

4. On the quality of logic-based argumentation systems

We have shown so far how to build an argumentation system from a logical knowl-
edge base. The system is still incomplete since the attack relation is not specified.
As already mentioned, Dung is silent on how to proceed in order to obtain a rea-
sonable R in practice. It happens that it is in fact a delicate step. We will show
next that the choice of this relation is crucial for the “soundness” of the system.
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Soundness is determined by some rationality postulates that any system should
satisfy.

The first work on rationality postulates in argumentation was done by Caminada
and Amgoud (17). The authors focused only on rule-based systems (i.e., systems
that distinguish between strict and defeasible rules in their underlying logical lan-
guage). They proposed the following postulates that such systems should satisfy:

• Closure: The idea is that if a system concludes x and there is a strict rule1 x→ y,
then the system should also conclude y.

• Direct consistency: the set of conclusions of arguments of each extension should
be consistent.

• Indirect consistency: the closure of the set of conclusions of arguments of each
extension should be consistent.

As obvious as they may appear, these postulates are violated by most rule-based
systems (like (5; 24; 27; 28)). Besides, they are tailored for rule-based logics. Their
counterparts for any Tarskian logic were defined in (1; 2). Moreover, three new
postulates were proposed in (1). In what follows, we recall all the postulates that
are necessary for our study.

4.1 Rationality postulates for logic-based argumentation systems

The first rationality postulate that an argumentation system should satisfy con-
cerns the closure of its output. The basic idea is that the conclusions of a formalism
should be “complete”. There should be no case that a user performs on her own
some extra reasoning to derive statements that the formalism apparently “forgot”
to entail. In (17), closure is defined for rule-based argumentation systems. In what
follows, we extend this postulate to systems that are grounded on any Tarskian
logic. The idea is to define closure using the consequence operator CN.

Postulate 1 (Closure under CN) Let T = (Arg(Σ),R) be an argumentation
system over a knowledge base Σ. For all E ∈ Ext(T ), Concs(E) = CN(Concs(E)).
We say that T is closed under CN.

In (17), closure is imposed both on the extensions of a system and on its output
set. The next result shows that the closure of the output set does not deserve to
be a separate postulate since it follows immediately from the closure of extensions.

Proposition 2 Let T = (Arg(Σ),R) be an argumentation system over a knowl-
edge base Σ. If T is closed under CN, then Output(T ) = CN(Output(T )).

The second rationality postulate concerns sub-arguments. An argument may have
one or several sub-arguments, reflecting the different premises on which it is based.
Thus, the acceptance of an argument should imply also the acceptance of all its
sub-parts.

Postulate 2 (Closure under sub-arguments) Let T = (Arg(Σ), R) be an ar-
gumentation system over a knowledge base Σ. For all E ∈ Ext(T ), if a ∈ E, then
Sub(a) ⊆ E. We say that T is closed under sub-arguments.

These two postulates have a great impact on the extensions of an argumentation
system as shown by the following result.

1A strict rule x→ y means that if x holds, then y holds with no exception whatsoever.
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Proposition 3 Let T = (Arg(Σ),R) be an argumentation system over a knowl-
edge base. If T is closed under sub-arguments and under CN, then for all E ∈
Ext(T ), Concs(E) = CN(Base(E)).

The third rationality postulate concerns the consistency of the results. It ensures
that the set of conclusions supported by each extension is consistent. The following
postulate generalizes the direct consistency postulate which was proposed for rule-
based argumentation systems in (17).

Postulate 3 (Consistency) Let T = (Arg(Σ),R) be an argumentation system
over a knowledge base Σ. For all E ∈ Ext(T ), Concs(E) is consistent. We say that
T satisfies consistency.

As for closure, in (17) a postulate imposing the consistency of the output is defined.
We show next that such a postulate is not necessary. Indeed, an argumentation
system that satisfies Postulate 3 has necessarily a consistent output.

Proposition 4 If an argumentation system T = (Arg(Σ),R) satisfies consistency,
then the set Output(T ) is consistent.

We show next that argumentation systems that satisfy both consistency and
closure under sub-arguments enjoy a strong version of consistency. Indeed, the set
of formulae used in arguments of each extension is consistent. It is worth mentioning
that this result is very general as it holds under any semantics, any attack relation
and any Tarskian logic.

Proposition 5 Let T = (Arg(Σ),R) be an argumentation system over a knowl-
edge base Σ such that for all x ∈ Σ, x /∈ CN(∅). If T satisfies consistency and is
closed under sub-arguments, then for all E ∈ Ext(T ), Base(E) is consistent.

Since the free formulas of a knowledge base (i.e., the ones that are not involved
in any minimal conflict) are the “hard” part in the base, it is natural that any
argument that is built only from this part should be in every extension of an
argumentation system built over the knowledge base.

Postulate 4 (Free Precedence) Let T = (Arg(Σ),R) be an argumentation sys-
tem over a knowledge base Σ. For all E ∈ Ext(T ), Arg(Free(Σ)) ⊆ E. We say that
T satisfies free precedence.

We show next that the free formulas are drawn by any argumentation system
satisfying Postulate 4.

Proposition 6 Let T = (Arg(Σ),R) be an argumentation system over a knowl-
edge base Σ. If T satisfies free precedence, then Free(Σ) ⊆ Output(T ) (under any
of the reviewed semantics).

The last postulate says that if the support and the conclusion of an argument
are part of the conclusions of a given extension, then the argument should belong
to the extension. Informally: If each step in the argument is good enough to be in
the extension, then so is the argument itself.

Postulate 5 (Exhaustiveness) An argumentation system T = (Arg(Σ),R) over
a knowledge base Σ satisfies exhaustiveness iff for all E ∈ Ext(T ), for all (X,x) ∈
Arg(Σ), if X ∪ {x} ⊆ Concs(E), then (X,x) ∈ E.

The following result shows that when this postulate is satisfied, then extensions
are closed in terms of arguments.

10
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Proposition 7 If an argumentation system T is closed under both CN and sub-
arguments and satisfies the exhaustiveness postulate, then ∀E ∈ Ext(T ), E =
Arg(Base(E)) (under any of the reviewed semantics).

The five postulates are generally independent. However, in case of naive and
stable semantics, closure under the consequence operator CN is induced from clo-
sure under sub-arguments and consistency. This is in particular the case when the
attack relation is based on inconsistency.

Definition 10 (Conflict-dependent) An attack relation R is conflict-
dependent iff for all a, b ∈ Arg(Σ), if aRb then Supp(a)∪ Supp(b) is inconsistent.

The above definition says that R should show no attack from a to b unless Σ
provides evidence (according to CN) that the supports of a and b conflict with
each other. That is, being conflict-dependent ensures that, when passing from Σ to
(Arg(Σ),R), no conflict is “invented” in R. Note that all the attack relations that
are used in existing structured argumentation systems are conflict-dependent (see
(23) for a summary of existing relations).

Proposition 8 Let T = (Arg(Σ), R) be an argumentation system over a knowl-
edge base Σ such that R is conflict-dependent. If T satisfies consistency and is
closed under sub-arguments (under naive and stable semantics), then it is closed
under CN (under naive and stable semantics).

It was shown in (1) that the five postulates are compatible, i.e., they can be
satisfied all together by an argumentation system. This is in particular witnessed by
the argumentation system studied in (18). This system is grounded on propositional
logic (a Tarskian logic) and uses the assumption attack relation defined in (22).
According to this relation, an argument attacks another if its conclusion is the
negation of an element of the support of the second argument. This relation was
generalized to any Tarskian logic in (3) as follows:

Definition 11 (Assumption attack relation) Let (L,CN) be a Tarskian logic.
An argument (X,x) attacks another argument (X ′, x′) iff ∃y ∈ X ′ such that the
set {x, y} is inconsistent. This relation will be denoted by Ras.

It was shown in (1) that any argumentation system (Arg(Σ),Ras) satisfies the
five postulates. This is certainly a positive result as it shows that Dung’s abstract
framework can be correctly instantiated with logical formalisms. However, in the
next section we show that there is a broad class of natural instantiations that are
not possible since they violate the postulates.

4.2 On the violation of consistency postulate

In sub-section 3.2 we provided a clear definition of an argument and how it is
built from a knowledge base Σ. However, there still is no indication on how the
attack relation R is chosen and how it is related to Σ. Moreover, in (17) it was
shown that there are some instantiations of Dung’s framework that violate the
consistency postulate. This means that the choice of the attack relation has a direct
impact on the postulates. This means also that conflict-freeness is not sufficient to
ensure consistency. Thus, an attack relation should enjoy some basic properties.
The first one concerns its origin. We show that an attack relation should be based
on inconsistency, thus conflict-dependent.

When the attack relation is conflict-dependent, then it is empty when the knowl-

11
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edge base is consistent.

Proposition 9 Let (Arg(Σ),R) be such that R is conflict-dependent. If Σ is con-
sistent, then R = ∅.

It follows that when the attack relation is conflict-dependent, if a set of arguments
is such that its corresponding base (set-theoretic union of supports) is consistent
then it is a conflict-free set:

Proposition 10 Let (Arg(Σ),R) be such that R is conflict-dependent. ∀E ⊆
Arg(Σ), if Base(E) is consistent, then E is conflict-free.

It is also worth pointing out that an attack relation which is conflict-dependent
exhibits no self-attacks.

Proposition 11 Let (Arg(Σ),R) be such that R is conflict-dependent. For all
a ∈ Arg(Σ), (a, a) 6∈ R.

Let us now consider the following example of an argumentation system that is built
from a propositional knowledge base and that uses the symmetric attack relation
known as rebut (22). According to this relation, an argument a attacks another
argument b iff Conc(a) ≡ ¬Conc(b) (in case (L,CN) is propositional logic). This
relation will be denoted by Rre.

Example 2 Let (L,CN) be propositional logic and Σ = {x, y, x → ¬y}. Let us
consider the following set of arguments:

• a1 = ({x}, x)

• a2 = ({y}, y)

• a3 = ({x→ ¬y}, x→ ¬y)

• a4 = ({x, x→ ¬y},¬y)

• a5 = ({y, x→ ¬y},¬x)

• a6 = ({x, y}, x ∧ y)

The rebut relation is as follows: {(a1, a5), (a5, a1), (a2, a4), (a4, a2), (a3, a6), (a6, a3)}.
The set {a1, a2, a3} (as a finite representation (4) for all its “mates”, i.e., the
arguments ({x}, . . .) and ({y}, . . .) and ({x→ ¬y}, . . .)) is an admissible extension
of the system (Arg(Σ),Rre). However, the set {Conc(a1),Conc(a2),Conc(a3)} is
inconsistent. Similarly, the set {a4, a5, a6} is (a finite representation of) another
admissible extension whose set of conclusions is inconsistent.

This example shows that an admissible set of arguments may fail to have a
consistent set of conclusions. The problem encountered with the rebut relation is
due to the fact that it is binary, in compliance with Dung’s definitions imposing
the attack relation to be binary. Thus, the ternary conflict between a1, a2 and a3 is
not captured. Particularly, symmetric attack relations are crippled by non-binary
minimal conflicts. Indeed, we show that when the attack relation is symmetric,
Postulate 3 is violated.

Proposition 12 Let (L,CN) be adjunctive and Σ be a knowledge base such that
∃C ∈ CΣ and |C| > 2. If R is conflict-dependent and symmetric, then the argu-
mentation system (Arg(Σ),R) violates consistency.

This result shows a broad class of attack relations that cannot be used in argu-
mentation: the symmetric ones. Relations like rebut or a union of rebut and any
other conflict-dependent attack relation would lead to the violation of consistency,
namely when there exist n-ary (n > 2) minimal conflicts in the knowledge base.

12
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Consequently, the symmetric systems studied in (19) cannot be adopted in a con-
crete application.

5. The outcomes of logic-based argumentation systems

The aim of this section is to investigate the underpinnings of the different accept-
ability semantics introduced in (16; 20; 21) and to check whether they make sense
in a concrete application. Recall that those semantics are defined without consid-
ering neither the internal structure nor the origin of arguments and attacks. In this
section, we fully characterize for the first time both the extensions and the output
set of any Tarskian logic-based argumentation system under naive, stable, semi-
stable, preferred, grounded and ideal semantics. For that purpose, we consider only
systems that enjoy the rationality postulates introduced in the previous section (as
the other systems are regarded as ill-fated instantiations of Dung’s framework).

5.1 Naive semantics

In this section, we characterize the outputs of an argumentation system under naive
semantics. We show that the naive extensions of any argumentation system that
satisfies consistency and closure under sub-arguments always return maximal (for
set inclusion) consistent subsets of Σ.

Theorem 1 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent. If T satisfies consistency and is closed
under sub-arguments (under naive semantics), then:

• For all E ∈ Extn(T ), Base(E) ∈ Max(Σ).

• For all E ∈ Extn(T ), E = Arg(Base(E)).

• For all Ei, Ej ∈ Extn(T ), if Base(Ei) = Base(Ej) then Ei = Ej.

The next theorem confirms that any maximal consistent subset of Σ defines a
naive extension of an argumentation system which satisfies consistency and closure
under sub-arguments. This is the case when the logic (L,CN) is adjunctive.

Theorem 2 Let (L,CN) be adjunctive. Let T = (Arg(Σ), R) be an argumentation
system over a knowledge base Σ such that R is conflict-dependent. If T satisfies
consistency and is closed under sub-arguments (under naive semantics), then:

• For all S ∈ Max(Σ), Arg(S) ∈ Extn(T ).

• For all Si,Sj ∈ Max(Σ), if Arg(Si) = Arg(Sj) then Si = Sj.
• For all S ∈ Max(Σ), S = Base(Arg(S)).

It follows that any argumentation system that satisfies the two postulates 2 and
3 enjoys a full correspondence between the maximal consistent subsets of Σ and
the naive extensions of the system.

Corollary 1 Let (L,CN) be adjunctive. Let T = (Arg(Σ), R) be an argumentation
system over a knowledge base Σ such that R is conflict-dependent. T satisfies
consistency and is closed under sub-arguments (under naive semantics) iff there is
a bijection between the naive extensions of T and the elements of Max(Σ).

A direct consequence of the previous result is that the number of naive extensions
of an argumentation system is less or equal to the number of maximal consistent
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subbases of the knowledge base over which the system is built. Thus, if the knowl-
edge base is finite, then the system has a finite number of naive extensions.

Corollary 2 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent and T satisfies consistency and is closed
under sub-arguments (under naive semantics).

• |Extn(T )| ≤ |Max(Σ)|
• If Σ is finite, then T has a finite number of naive extensions.

The following result characterizes the case where an argumentation system has an
empty naive extension. It shows that the knowledge base contains only inconsistent
formulae.

Corollary 3 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent and T satisfies consistency and is closed
under sub-arguments (under naive semantics). If Extn(T ) = {∅}, then for all x ∈
Σ, CN({x}) is inconsistent.

Let us now characterize the set of inferences that may be drawn from a knowledge
base Σ by any argumentation system under naive semantics. It coincides with the
set of inferences that are drawn from some maximal consistent subsets of Σ.

Theorem 3 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent, T satisfies consistency and is closed under
sub-arguments (under naive semantics). Output(T ) =

⋂
CN(Si) where Si ranges

over {Si ∈ Max(Σ) | ∃Ei ∈ Extn(T ) and Si = Base(Ei)}.

When the number of naive extensions of an argumentation system is less than
the number of maximal consistent subsets of the knowledge base over which the
system is built, the system returns arbitrary conclusions.

Example 3 Assume that (L,CN) is non adjunctive, Σ = {x,¬x ∧ y} and assume
that this base has two maximal consistent subsets:

• S1 = {x}
• S2 = {¬x ∧ y}

According to Theorem 1, any argumentation system T = (Arg(Σ), R) satisfying
the postulates and whose attack relation R is conflict-dependent will have one or
two naive extensions: E1 = Arg(S1) and E2 = Arg(S2). Assume that Extn(T ) =
{E1}. It follows that x ∈ Output(T ) and ¬x /∈ Output(T ). If Extn(T ) = {E2},
x /∈ Output(T ) and ¬x ∈ Output(T ). Both results are arbitrary.

In case of adjunctive logics, the output of an argumentation system is the set of
conclusions that follow from all the maximal consistent subsets of Σ.

Corollary 4 Let (L,CN) be adjunctive. Let T = (Arg(Σ), R) be an argumentation
system over a knowledge base Σ such that R is conflict-dependent, T satisfies
consistency and is closed under sub-arguments (under naive semantics).

Output(T ) =
⋂

Si∈Max(Σ)

CN(Si).

Example 3 (Cont): Assume now that (L,CN) is propositional logic (which is
adjunctive). The base Σ = {x,¬x ∧ y} has two maximal consistent subsets:

14



May 6, 2013 Journal of Applied Non-Classical Logics JANCL

• S1 = {x}
• S2 = {¬x ∧ y}

According to Corollary 1, any argumentation system T = (Arg(Σ), R) satisfying
the postulates and whose attack relation R is conflict-dependent will have exactly
two naive extensions: Arg(S1) and Arg(S2). Moreover, Output(T ) = CN(S1) ∩
CN(S2).

In short, under naive semantics, any ‘good’ instantiation of Dung’s abstract
framework returns exactly the formulas that are drawn (with CN) by all the max-
imal consistent subsets of the knowledge base Σ. So whatever the attack relation
that is chosen, the result will be the same. It is worth recalling that the output
set contains exactly the so-called universal conclusions in the coherence-based ap-
proach developed by Rescher and Manor in (30) for reasoning from inconsistent
propositional bases. Indeed, in their approach Rescher and Manor takes as in-
put a (possibly inconsistent) propositional knowledge base, then compute all its
maximal (for set inclusion) consistent subsets. The universal conclusions to be
drawn from the base are the formulae that follow logically from all those subsets.
Thus, argumentation systems generalize (under naive semantics) this approach to
any adjunctive Tarskian logic. As a consequence, the argumentation approach is
syntax-dependent, and may thus lead to undesirable results as discussed in the
following example.

Example 3 (Cont): Assume again that (L,CN) is propositional logic. Thus,
Output(T ) = CN(S1) ∩ CN(S2). Note that y /∈ Output(T ).

Assume that x stands for ‘Sunny day’ and y for ‘It is cloudy’. The fact that
y /∈ Output(T ) seems reasonable. Assume now that y stands for ‘The temperature
is 18 degrees’. In this case, y should be inferred from Σ according to the idea that
it is not part of the conflict.

Should ¬x ∧ y instead be written as two formulas, namely ¬x and y, then y is
out of the conflict and is inferred.

Figure 1 summarizes the main results under naive semantics.

(L,CN) Output

Non-adjunctive Arbitrary conclusions may be drawn from Σ

Adjunctive Generalized universal conclusions of Rescher and Manor

Figure 1. Reasoning under naive semantics

5.2 Stable - Semi-stable semantics

We show that the stable extensions of any argumentation system satisfying con-
sistency and closure under sub-arguments return maximal consistent subsets of Σ.
This means that if one instantiates Dung’s framework and does not get maximal
consistent subsets with stable extensions, then the instantiation certainly violates
one or both of the two key postulates: consistency and closure under sub-arguments.

Theorem 4 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent. If T satisfies consistency and closure
under sub-arguments (under stable semantics) and Exts(T ) 6= ∅, then:

• For all E ∈ Exts(T ), Base(E) ∈ Max(Σ).
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• For all E ∈ Exts(T ), E = Arg(Base(E)).

• For all Ei, Ej ∈ Exts(T ), if Base(Ei) = Base(Ej) then Ei = Ej.

This result characterizes the stable extensions of a large class of argumentation
systems, namely the ones that are built using (adjunctive and non-adjunctive)
Tarskian logics. However, it does not guarantee that each maximal consistent
subset of Σ has a corresponding stable extension in an argumentation sys-
tem T = (Arg(Σ),R). To put it differently, it does not guarantee a bijection
from the set Exts(T ) to the set Max(Σ). The bijection (thus the equality
|Exts(T )| = |Max(Σ)|) depends broadly on the attack relation that is chosen.

Let <s be the set of all attack relations that ensure the postulates under stable
semantics:

<s =
⋃

Σ⊆L{R ⊆ Arg(Σ)×Arg(Σ) | R is conflict-dependent and (Arg(Σ),R)
satisfies Postulates 1, 2, 3, 4 and 5 under stable semantics}.

This set contains three disjoint subsets of attack relations: <s = <s1 ∪<s2 ∪<s3 :

• <s1 : the relations which lead to |Exts(T )| = 0.

• <s2 : the relations which ensure 0 < |Exts(T )| < |Max(Σ)|.
• <s3 : the relations which ensure |Exts(T )| = |Max(Σ)|.

Let us analyze separately each category of attack relations. The following result
shows that the set <s1 is empty, meaning that there is no attack relation which
prevents the existence of stable extensions. In other words, any argumentation
system satisfying the rationality postulates has at least one stable extension. It
is worth recalling that in the general case, Dung has shown that stable semantics
does not guarantee the existence of extensions. This was considered as a weakness
of this semantics.

Theorem 5 It holds that <s1 = ∅.

What about the attack relations of category <s2? Systems that use these relations
choose a proper subset of the maximal consistent subsets of Σ and make inferences
from them. Their output sets are as follows:

Theorem 6 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R ∈ <s2. Output(T ) =

⋂
CN(Si) where Si ranges over {Si ∈

Max(Σ) | ∃Ei ∈ Exts(T ) and Si = Base(Ei)}.

These attack relations lead to an unjustified discrimination between maximal
consistent subsets of a knowledge base. Unfortunately, this is fatal for the
argumentation systems which use them as they may return arbitrary results. Note
that the situation is similar to the one encountered under naive semantics when
the logic is non adjunctive (see Example 3).

Attack relations of category <s3 induce a one-to-one correspondence between the
stable extensions of an argumentation system and the maximal consistent subsets
of the knowledge base over which it is built.

Theorem 7 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R ∈ <s3. For all S ∈ Max(Σ), Arg(S) ∈ Exts(T ).

The stable extensions of any argumentation system using an attack relation
of category <s3 coincide with the naive extensions. They even coincide with the
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preferred extensions of the system meaning that this latter is coherent (21).

Theorem 8 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R ∈ <s3. The equality Extn(T ) = Exts(T ) holds. If T satisfies
the postulates under preferred semantics, then Exts(T ) = Extp(T ).

An argumentation system using an attack relation of this category leads exactly
to the same result under naive semantics. It returns the universal conclusions (of the
coherence-based approach) under any monotonic logic and not only propositional
logic as in (30). Finally, it is worth mentioning that the set <s3 is not empty.
Indeed, the assumption attack relation (Ras) recalled in Definition 11 is one of
its elements. In (18), it was shown that there is a full correspondence between the
stable extensions of an argumentation system (defined over propositional logic) and
the maximal consistent subsets of the propositional knowledge base over which it
is built. This result was generalized to any Tarskian logic in (3). Consequently, any
argumentation system using Ras is coherent.

Corollary 5 For all Σ ⊆ L, the argumentation system T = (Arg(Σ), Ras) is
coherent.

From the previous results, it follows that any argumentation system satisfying
the four postulates has stable extensions. Moreover, it is possible to delimit their
maximum number.

Corollary 6 Let T = (Arg(Σ), R) be an argumentation system over a base Σ
such that R is conflict-dependent and T satisfies consistency, closure under sub-
arguments and free precedence (under stable semantics). It holds that

0 < |Exts(T )| ≤ |Max(Σ)|.

It follows that when the knowledge base is finite, the number of stable extensions
is finite as well.

Corollary 7 If Σ is finite, then the set Exts(T ) is finite, whenever T =
(Arg(Σ),R) satisfies consistency and closure under sub-arguments (under stable
semantics).

To sum up, there are two possible categories of attack relations that lead to the
satisfaction of the rationality postulates: <s2 and <s3 . Relations of <s2 should
be avoided as they lead to arbitrary results. Relations of category <s3 lead to
“correct” results, but argumentation systems based on them return exactly the
same results under naive semantics. This means that stable semantics does not
play any particular role in the logic-based argumentation systems studied in the
paper. Thus, stable semantics either leads to undesirable results or offers no added
value w.r.t. naive semantics. Figure 2 summarizes the different situations that
may be encountered under this semantics.

R ∈ <s1 Impossible

R ∈ <s2 Arbitrary conclusions are drawn from Σ

R ∈ <s3 Extn(T ) = Exts(T ) = Extss(T ) = Extp(T )

Figure 2. Reasoning under stable semantics
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From the definitions of the two categories <s2 and <s3, stable extensions exist.
Besides, it was shown in (16) that when this is the case, semi-stable extensions
coincide with the stable ones.

Corollary 8 Let T = (Arg(Σ), R) be an argumentation system over a base Σ
such that R is conflict-dependent and T satisfies consistency, closure under sub-
arguments and free precedence (under stable semantics). The equality Exts(T ) =
Extss(T ) holds.

Thus, in practice semi-stable semantics does not offer an added value w.r.t. stable
semantics which is itself problematic.

5.3 Preferred semantics

Preferred semantics was mainly proposed in (21) as an alternative to stable se-
mantics since the latter does not guarantee (for abstract frameworks) the existence
of extensions. In this section, we study the outcomes of logic-based argumenta-
tion systems under preferred semantics and check whether it has an added value
w.r.t. stable semantics in the context of handling inconsistency in knowledge bases.

We have previously shown in Proposition 5 that the extensions (under any
admissibility-based semantics) of an argumentation system satisfying the postu-
lates are made up of consistent subsets of the knowledge base over which the sys-
tem is defined. Thus, the subset Base(E) computed from any preferred extension
E is a subset of maximal consistent subbase of the knowledge base at hand.

Theorem 9 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies consistency and closure under sub-arguments
(under preferred semantics). For all E ∈ Extp(T ), there exists S ∈ Max(Σ) such
that Base(E) ⊆ S.

Unlike stable extensions, the subsets of a knowledge base that are computed from
preferred extensions are not necessarily maximal (for set inclusion). This is due to
the existence of undecided arguments under preferred semantics. In (15) another
way of defining Dung’s semantics was provided. It consists of labeling the nodes of
the graph corresponding to the argumentation system with three possibles values:
{in, out, undec}. An argument is labeled in iff all its attackers are labeled out, it is
labeled out iff one of its attackers is labeled in. Finally, it is labeled undec iff it is
not possible to assign neither in nor out. When the subset of Σ which is computed
from a preferred extension is not maximal then some formulae of Σ appear only in
the support of undecided arguments.

This does not mean that a preferred extension can never return a maximal con-
sistent subset. Remember that stable extensions exist, thus, there is at least one
preferred extension whose base is maximal for set inclusion.

Corollary 9 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies consistency, closure under sub-arguments and
free precedence (under preferred semantics). There exists E ∈ Extp(T ) such that
Base(E) ∈ Max(Σ).

The following result shows that the subsets computed from the preferred exten-
sions of an argumentation system are pairwise different.

Theorem 10 Let T = (Arg(Σ),R) be an argumentation system such that R is
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conflict-dependent and T satisfies consistency and closure under sub-arguments
(under preferred semantics). For all Ei, Ej ∈ Extp(T ), if Base(Ei) ⊆ Base(Ej) then
Ei = Ej.

We show that every maximal consistent subset of a knowledge base is captured
by at most one preferred extension.

Theorem 11 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies consistency and closure under sub-arguments
(under preferred semantics). Let S ∈ Max(Σ). For all Ei, Ej ∈ Extp(T ), if
Base(Ei) ⊆ S and Base(Ej) ⊆ S, then Ei = Ej.

The previous result allows us to delimit the maximum number of preferred ex-
tensions a system may have. Like stable semantics, it is the number of maximal
(for set inclusion) consistent subsets of the knowledge base at hand.

Theorem 12 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies consistency and closure under sub-arguments
(under preferred semantics). It holds that

1 ≤ |Extp(T )| ≤ |Max(Σ)|.

When a knowledge base is finite, each argumentation system enjoying the ratio-
nality postulates has a finite number of preferred extensions.

Corollary 10 If a knowledge base Σ is finite, then for all T = (Arg(Σ),R) such
that R is conflict-dependent and T satisfies consistency and closure under sub-
arguments (under preferred semantics), Extp(T ) is finite.

Let us characterize the inferences that are drawn from a knowledge base Σ by
an argumentation system T satisfying the rationality postulates under preferred
semantics. Let <p be the set of all attack relations that ensure the postulates under
preferred semantics:

<p =
⋃

Σ⊆L{R ⊆ Arg(Σ)×Arg(Σ) | R is conflict-dependent and (Arg(Σ),R)
satisfies Postulates 1, 2, 3, 4 and 5 under preferred semantics}.

In his seminal paper (21), Dung has shown that the stable extensions of an
argumentation system are also preferred extensions of the system. Consequently,
the set <p is a subset of <s.

Property 10 It holds that <p ⊆ <s.

The set <p contains thus three disjoint subsets of attack relations: <p = <p1
∪

<p2
∪ <p3

:

• <p1
: the relations which are in <p ∩ <s1 .

• <p2
: the relations which are in <p ∩ <s2 .

• <p3
: the relations which are in <p ∩ <s3 .

Let us analyze each category of attack relations separately. The first set is empty
(i.e., <p1

= ∅) since we have shown previously that there is no attack relation
which prevents an argumentation system from having stable extensions (<s1 = ∅).

Attack relations of category <p3
lead to coherent argumentation systems (their

stable extensions coincide with the preferred extensions) as shown in Theorem
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8. Moreover, the preferred extensions coincide with the naive ones meaning that
preferred semantics does not provide an added value w.r.t. naive semantics.

Theorem 13 Let T =(Arg(Σ),R) be an argumentation system. If R ∈ <p3
then:

• For all S ∈ Max(Σ), Arg(S) ∈ Extp(T ).

• |Extp(T )| = |Max(Σ)|

The output of an argumentation system is in this case the same as under naive
semantics, i.e., the universal conclusions given in Corollary 4.

Corollary 11 Let T = (Arg(Σ),R) be an argumentation system such that R ∈
<p3

.

Output(T ) =
⋂

Si∈Max(Σ)

CN(Si)

Let us now analyze attack relations of the second category <p2
. Remember that

in this case stable semantics chooses only some maximal consistent subsets of the
knowledge base at hand. Four situations may be encountered:

(1) The stable extensions and the preferred extensions of an argumentation
system coincide. Thus, preferred semantics has no added value w.r.t. sta-
ble semantics. Moreover, it leads to arbitrary results as discussed in the
previous subsection (i.e., when R ∈ <s2).

(2) The preferred extensions consider additional but not all maximal consistent
subsets (other than the ones chosen by stable semantics). This case is similar
to the previous one and the argumentation system returns arbitrary results.

(3) The preferred extensions return all the maximal consistent subsets of the
knowledge base. This means that stable semantics chooses some maximal
consistent subsets and preferred semantics considers the remaining ones.
This case collapses with the case of attack relations of category <p3

. We
have seen that the result of preferred semantics is already ensured by naive
and stable semantics in this case.

(4) Some of the preferred extensions provide non-maximal consistent subsets
of the knowledge base. In this case, the result of the argumentation system
is arbitrary.

To sum up, attack relations of category <p2
may lead either to arbitrary results or

to results which can be provided by naive semantics. The results are characterized
in the following theorem.

Theorem 14 Let T = (Arg(Σ),R) be an argumentation system over a knowl-
edge base Σ such that R ∈ <p2

. Output(T ) =
⋂

CN(Si) where Si ranges over
{Si ∈ Cons(Σ) | ∃Ei ∈ Extp(T ) and Si = Base(Ei)} and Cons(Σ) = {S | S ⊆
Σ, S is consistent and Free(Σ) ⊆ S}.

The results of this section show that reasoning under preferred semantics is
not recommended since it leads either to arbitrary results or to the results got
under naive semantics. Figure 3 summarizes the different situations that may be
encountered under this semantics.
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R ∈ <p1
Impossible

R ∈ <p2
Arbitrary conclusions are drawn from Σ

R ∈ <p3
Extn(T ) = Exts(T ) = Extss(T ) = Extp(T )

Figure 3. Reasoning under preferred semantics

5.4 Grounded - Ideal semantics

This section analyzes the outputs of argumentation systems under existing skep-
tical semantics, namely grounded and ideal. Grounded semantics was proposed by
Dung in (21). It ensures a unique extension for every argumentation system, and
is based on a skeptical principle. It starts by non-attacked arguments to which
are added arguments they defend. This reinstatement process is repeated until a
fixpoint is reached. Argumentation systems that do not have non-attacked argu-
ments have empty grounded extensions. In (20), this semantics was extended to
the so-called ideal semantics. The new semantics returns a unique extension which
is an admissible set of arguments contained by every preferred extension of an
argumentation system. The following properties were shown in (20).

Property 11 (20) Let T be an argumentation system.

• T admits a unique ideal extension.

• GE(T ) ⊆ IE(T ) ⊆
⋂
Ei∈Extp(T ) Ei.

• If
⋂
Ei∈Extp(T ) Ei is admissible, then IE(T ) =

⋂
Ei∈Extp(T ) Ei.

The following example, borrowed from (20), shows some differences between ideal
and grounded semantics.

Example 4 Let us consider the argumentation framework T = (A,R) where

• A = {a, b, c, d}
• R = {(a, a), (a, b), (b, a), (c, d), (d, c)}

It can be checked that:

• GE(T ) = ∅,
• Extp(T ) = {{b, c}, {b, d}}, and

• IE(T ) = {b}.

Before analyzing the argumentation systems’ outputs under ideal and grounded
semantics, we provide a result of great importance. It shows that the set of argu-
ments built from Free(Σ) is an admissible extension of any argumentation system
whose attack relation is conflict-dependent. Thus, this is true even for systems that
do not satisfy the free precedence postulate.

Theorem 15 Let T = (Arg(Σ), R) be such that R is conflict-dependent.

• For all a ∈ Arg(Free(Σ)), a neither attacks nor is attacked by another argument
in Arg(Σ).

• Arg(Free(Σ)) is an admissible extension of T .

Since ideal semantics is based on preferred semantics, we analyze the two cases
that may be encountered with the latter. We start by the case of an argumenta-
tion system that uses an attack relation of category <p3

. We show that the ideal
extension of such system coincides with the intersection of all its preferred exten-
sions. Moreover, it is exactly the set of arguments built from the free part of the
knowledge base.
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Theorem 16 Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p3
.

IE(T ) =
⋂

Ei∈Extp(T )

Ei = Arg(Free(Σ)).

Since arguments of Arg(Free(Σ)) are not attacked by any argument, then they
belong to the grounded extension of the argumentation system. Consequently,
grounded and ideal extensions coincide.

Corollary 12 Let T = (Arg(Σ),R) be an argumentation system such that R ∈
<p3

. IE(T ) = GE(T ) = Arg(Free(Σ)).

From the previous results, it is possible to characterize the set of conclusions
drawn from a knowledge base using grounded and ideal semantics. It is the set of
all formulae that follow using the consequence operator CN from Free(Σ).

Theorem 17 Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p3
.

The output of T under grounded/ideal semantics is:

Output(T ) = CN(Free(Σ)).

It is worth pointing out that in this case, argumentation systems generalize the
free consequences proposed by Benferhat, Dubois and Prade for reasoning about
inconsistent propositional knowledge bases (10). Indeed, argumentation systems
consider not only propositional logic but also any other Tarskian logic.

Recall that the assumption attack relation leads to coherent argumentation sys-
tems, thus their ideal and grounded semantics coincide.

Corollary 13 Let T = (Arg(Σ),Ras). For any Σ ⊆ L, Output(T ) =
CN(Free(Σ)).

Let us now consider the case where the attack relation of an argumentation sys-
tem is of category <p2

. Here again, since the attack relation is conflict-dependent,
the set of arguments Arg(Free(Σ)) is contained by both ideal and grounded exten-
sions.

Corollary 14 Let T = (Arg(Σ),R) be an argumentation system such that R ∈
<p2

. The inclusions Arg(Free(Σ)) ⊆ GE(T ) ⊆ IE(T ) ⊆ S hold for some S ∈
Max(Σ).

In case the above inclusions are strict, i.e., Arg(Free(Σ)) ⊂ GE(T ) (respectively
Arg(Free(Σ)) ⊂ IE(T )), we show that the argumentation system T returns arbi-
trary conclusions.

Theorem 18 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies the five postulates under grounded (respectively
ideal) semantics. If Arg(Free(Σ)) ⊂ GE(T ) (respectively Arg(Free(Σ)) ⊂ IE(T ))
then there exists C ∈ CΣ such that there exist x, x′ ∈ C and x ∈ Output(T ) and
x′ /∈ Output(T ).

To sum up, ideal and grounded semantics either coincide and return as out-
put the set of all formulas that follow from the safe part of a knowledge base,
i.e., CN(Free(Σ)), or may both return arbitrary results. Figure 4 summarizes the
different situations encountered under these two semantics.
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R ∈ <p2
Arbitrary conclusions are drawn from Σ

R ∈ <p3
Output(T ) = CN(Free(Σ))

Figure 4. Reasoning under grounded and ideal semantics

6. Related work

This paper investigated the compatibility of Dung’s argumentation framework with
logical formalisms. For that purpose, it showed how to instantiate the framework
from a logical knowledge base, namely how to define in a systematic way the
arguments. Then, it proposed some basic postulates that the logical instantiations
should satisfy, and studied under which conditions the postulates may be violated.
Next, it investigated the outputs of such instantiations under various semantics.

There are some works in the literature which are somehow related to our. In
(17), rationality postulates were proposed for instantiations that use a particular
language (it distinguishes between strict rules and defeasible rules). In our work, we
extended some of those postulates to Tarskian logics and proposed three new ones.
In (17), the authors investigated when the ASPIC system satisfies the postulates.
In (23), the authors focused on some argumentation systems that are defined using
propositional logic. They studied when those systems satisfy some of the rationality
postulates presented in this paper. Our work is more general since we considered
a larger class of logics, and we did not focus on particular attack relations. Our
results holds for any attack relation that is conflict-dependent. Note that all the
attack relations that were studied in (23) are conflict-dependent.

The second part of our paper on the outputs of argumentation systems under
various semantics is novel. There is almost no work on the topic except the one
by Cayrol in (18). Cayrol studied the underpinnings of stable semantics for one
particular argumentation system: the one that is grounded on propositional logic
(a particular case of Tarski’s logics) and uses the “assumption attack” relation. She
showed that there is a one-to-one correspondence between the stable extensions of
the system and the maximal consistent subsets of the knowledge base over which
the system is built. In our paper, this result is generalized to any Tarskian logic and
any attack relation. Moreover, we have shown that this result is already ensured by
naive semantics. Thus, in the case of the system studied by Cayrol, stable semantics
is useless. Finally, we have shown that this particular system is coherent, i.e., its
stable extensions coincide with its preferred ones. Our work is more general since it
presented a complete view of the outputs of argumentation systems not only under
stable semantics but also under various other semantics.

7. Conclusion

The paper investigated Dung’s argumentation framework. It started by pointing
out its main limits, namely the gap between the abstract framework and the
application to which it may be used, the lack of rationality postulates that would
describe the kind of results expected from the framework, the lack of methodology
for defining arguments and the attacks between them, and finally some overlook
of the underpinnings of the different acceptability semantics as well as the basic
concepts of the framework like defense and conflict-freeness. The paper gave an
answer to each of these issues.

The paper extended Dung’s argumentation framework by taking into account
the logic from which arguments are built. The new framework is general since it
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is grounded on any abstract logic in Tarski’s sense. Thus, a wide variety of logics
can be used even those that have not been considered yet in argumentation, like
temporal logic, modal logic, etc. The extension has two main advantages: First,
it enforces the framework to avoid unsound conclusions. Second, it relates the
different notions of Dung’s approach, like the attack relation and conflict-freeness,
to the knowledge base at hand.

In (17), three rationality postulates were defined for rule-based argumentation
systems. The paper generalized the two postulates on direct consistency and clo-
sure to any argumentation framework built over a monotonic logic, and proposed
three new postulates on sub-arguments, free precedence and exhaustiveness. It
then showed that indirect consistency is always satisfied if direct consistency is
ensured. Moreover, it showed that if consistency (respectively closure) is satisfied
by the different extensions, then it is also satisfied by the output of the framework.

The paper then presented a formal methodology for defining arguments from a
knowledge base, and for eliciting an appropriate attack relation. By appropriate,
we mean an attack relation that satisfies the postulates. It showed that an attack
relation should be grounded on the minimal conflicts that occur in the knowledge
base at hand. An important result shows that when ternary or more minimal
conflicts occur in the knowledge base, then symmetric attack relations should be
avoided since they lead to the violation of direct consistency.

Using well-behaved attack relations, the paper analyzed the different accept-
ability semantics introduced in (21) in terms of the subsets that are returned by
each extension. The results of the analysis are very surprising and, unfortunately,
disappointing. In fact, they show to what extent the rationality of Dung’s
approach is at stake. Moreover, it behaves in a completely arbitrary way. The
first important result shows that maximal conflict-free sets of arguments are
sufficient in order to derive reasonable conclusions from a knowledge base. Indeed,
there is a one-to-one correspondence between maximal consistent subsets of a
knowledge base and maximal conflict-free sets of arguments. This means that
the different acceptability semantics defined in the literature are not necessary,
and the notion of defense is useless. It is also shown that under naive semantics,
argumentation systems generalize the coherence-based approach of Rescher and
Manor (30) to any Tarskian logic. This is particularly the case for adjunctive logics.

Remember that stable extensions are maximal conflict-free sets of arguments.
Does this mean that stable semantics is appropriate? The answer is unfortunately
no. Indeed, stable extensions amount either to an arbitrary pick of some maximal
consistent subsets of the knowledge base, or to consider all of them. In the first
case, they lead to arbitrary inferences whereas in the second case they lead to
the result already ensured by naive semantics. The case of preferred semantics is
even worse and the semantics should be avoided. The corresponding extensions
represent some consistent subsets but not necessarily maximal ones. Thus, they
lead to arbitrary inferences. There are, however, two good news: The first one is
that the number of (stable/preferred/naive) extensions is finite as soon as the
knowledge base is finite. The second one is that stable extensions always exist
meaning that semi-stable semantics proposed in (16) is useless since it does not
provide an added value wrt stable semantics. Reasoning under ideal and grounded
semantics may also be problematic. There are two possible situations: i) the
situation where the two extensions (grounded and ideal) coincide with the set of
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arguments built from the free part of a knowledge base, ii) the situation where
both semantics lead to arbitrary results.

One of the main reasons for this defective behavior of Dung’s approach is the
attack relation. Indeed, we have shown that in order to ensure reasonable results,
this relation should capture the minimal conflicts that occur in the knowledge base
at hand. A minimal conflict is an inconsistent set of formulas. It is well-known
that the notion of inconsistency is not oriented. Thus, it should be captured by a
symmetric attack relation. However, we have also shown that, due to the binary
character of the attack relation, if it is symmetric, then consistency often fails.
Which is when n-ary (other than binary) minimal conflicts occur in the knowledge
base. The second reason is the definition of semantics without taking into account
the application to which the system is applied, and thus without considering the
structure of arguments.
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Appendix

Property 1 Let X,X ′, X ′′ ⊆ L.

(1) X ⊆ X ′ ⇒ CN(X) ⊆ CN(X ′).
(2) CN(X) ∪ CN(X ′) ⊆ CN(X ∪X ′).
(3) CN(X) = CN(X ′)⇒ CN(X ∪X ′′) = CN(X ′ ∪X ′′).
(4) CN(X ∩X ′) ⊆ CN(X) ∩ CN(X ′).

Proof Let X,X ′, X ′′ ⊆ L.

(1) Assume that X ⊆ X ′. According to the compactness axiom, it holds that
CN(X) =

⋃
Y⊆fX

CN(Y ).
⋃

Y⊆fX
CN(Y ) ⊆

⋃
Y⊆fX′ CN(Y ) = CN(X ′) since

Y ⊆f X ⊂ X ′.
(2) X ⊆ X ∪ X ′, thus by monotonicity, CN(X) ⊆ CN(X ∪ X ′) (a). Similarly,

X ′ ⊆ X ∪X ′ thus CN(X ′) ⊆ CN(X ∪X ′) (b). From (a) and (b), CN(X) ∪
CN(X ′) ⊆ CN(X ∪X ′).

(3) Assume that CN(X) = CN(X ′). According to the expansion axiom, the
following inclusions hold: X ′ ⊆ CN(X ′) and X ′′ ⊆ CN(X ′′). Thus, X ′∪X ′′ ⊆
CN(X ′) ∪ CN(X ′′) = CN(X) ∪ CN(X ′′) (a). Moreover, X ⊆ X ∪ X ′′ thus
CN(X) ⊆ CN(X ∪ X ′′) (a’). Similarly, X ′′ ⊆ X ∪ X ′′ thus CN(X ′′) ⊆
CN(X∪X ′′) (b’). From (a’) and (b’), CN(X)∪CN(X ′′) ⊆ CN(X∪X ′′). From
(a), it follows that X ′∪X ′′ ⊆ CN(X∪X ′′). By monotonicity, CN(X ′∪X ′′) ⊆
CN(CN(X∪X ′′)). Finally, by the idempotence axiom, the inclusion CN(X ′∪
X ′′) ⊆ CN(X ∪X ′′) holds. To show that CN(X ∪X ′′) ⊆ CN(X ′ ∪X ′′), the
same reasoning is applied by starting with X instead of X ′.

(4) X ∩ X ′ ⊆ X thus CN(X ∩ X ′) ⊆ CN(X). Similarly, X ∩ X ′ ⊆ X ′ thus
CN(X ∩X ′) ⊆ CN(X ′). Consequently, CN(X ∩X ′) ⊆ CN(X) ∩ CN(X ′).

�

Property 2 Let X ⊆ L.

(1) If X is consistent, then CN(X) is consistent as well.
(2) ∀X ′ ⊆ X, if X is consistent, then X ′ is consistent.
(3) ∀X ′ ⊆ X, if X ′ is inconsistent, then X is inconsistent.

Proof Let X ⊆ L. Assume that X is consistent, then CN(X) 6= L (1)

(1) Let us now assume that CN(X) is inconsistent. This means that
CN(CN(X)) = L. However, according to the idempotence axiom,
CN(CN(X)) = CN(X). Thus, CN(X) = L, this contradicts (1).

(2) Assume that ∃X ′ ⊆ X such that X ′ is inconsistent. This means that
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CN(X ′) = L. However, since X ′ ⊆ X then CN(X ′) ⊆ CN(X) (accord-
ing to the monotonicity axiom). Thus, L ⊆ CN(X). Since CN(X) ⊆ L,
then CN(X) = L. Thus, X is inconsistent. Contradiction.

(3) Let X ′ ⊆ X. Assume that X ′ is inconsistent. Since X ′ ⊆ X thus CN(X ′) ⊆
CN(X) (by monotonicity axiom). Since X ′ is inconsistent, CN(X ′) = L.
Consequently, CN(X) = L which means that X is inconsistent.

�

Property 3 For all X ⊆ Σ ⊆ L,

• if X is consistent then CX = ∅.
• if X is consistent then X ⊆ S for some S ∈ Max(Σ).

• if X is inconsistent then there exists at least one minimal conflict C such that
C ⊆ X.

Proof The first and third items are obvious. Let us now prove the second item.
Let us construct a maximal consistent subset of Σ that contains X. Consider an
enumeration s1, s2, . . . of Σ. Define a series S0, S1, S2, . . . of subsets of Σ as follows:
S0 is X, and Sn+1 = Sn∪{sn+1} if Sn∪{sn+1} is consistent, otherwise Sn+1 = Sn.
By construction, Sn is consistent for all n ≥ 0. Let S =

⋃
n≥0 Sn. Trivially, X ⊆ S.

We now show S ∈ Max(Σ). Assume first that S is inconsistent, i.e., CN(S) = L
according to Definition 4. Tarski’s absurdity axiom yields that x ∈ CN(S) for some
x satisfying CN({x}) = L. Since Sn ⊆ Sn+1, Tarski’s compactness axiom means
that x ∈ CN(S) iff x ∈ CN(Sk) for some k. However, x ∈ CN(Sk) means that
x ∈ Sk is inconsistent, a contradiction. Hence, we have shown that S is consistent.
By construction, it is a subset of Σ. There remains to show that it is a maximal
consistent subset of Σ. Let y be in Σ\S. Assume S∪{y} is consistent. Since y ∈ Σ,
y is some sh in the above enumeration. Should S ∪ {y} be consistent, so would be
Sh ∪ {y} in view of Tarski’s compactness axiom (monotony direction). However,
Sh ∪ {y} consistent would mean that y ∈ Sh+1 hence y ∈ S, a contradiction. �

Property 4 Let (L,CN) be adjunctive, C ⊆ L be a minimal conflict. For all
X ⊂ C, if X 6= ∅, then:

(1) ∃x ∈ L such that CN({x}) = CN(X).
(2) ∃x1 ∈ CN(X) and ∃x2 ∈ CN(C \X) such that the set {x1, x2} is inconsis-

tent.

Proof Let C be a minimal conflict. Consider X ⊂ C such that X 6= ∅.

We prove the first item of the property by induction, after we first take
care to show that X is finite. By Tarski’s requirements, there exists x0 ∈ L
s.t. CN({x0}) = L. Since C is a conflict, CN(C) = CN({x0}). As a con-
sequence, x0 ∈ CN(C). However, CN(C) =

⋃
C′⊆fC

CN(C ′) by Tarski’s

requirements. Thus, x0 ∈ CN(C) means that there exists C ′ ⊆f C s.t.
x0 ∈ CN(C ′). This says that C ′ is a conflict. Since C is a minimal conflict,
C = C ′ and it follows that C is finite. Of course, so is X: Let us write
X = {x1, . . . , xn}. Base step: n = 1. Taking x to be x1 is enough. Induction
step: Assume the lemma is true up to rank n − 1. As CN is a closure operator,
CN({x1, . . . , xn}) = CN(CN({x1, . . . , xn−1}) ∪ {xn}). The induction hypothesis
entails ∃x ∈ L s.t. CN(CN({x1, . . . , xn−1}) ∪ {xn}) = CN(CN({x}) ∪ {xn}). Then,
CN({x1, . . . , xn}) = CN({x, xn}). Hence, there exists y ∈ L s.t. CN({x, xn}) =
CN({y}) because (L,CN) is adjunctive. Since CN({x1, . . . , xn}) = CN({x, xn}) was
just proved, it follows that CN({y}) = CN({x1, . . . , xn}).
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Take X1 = X and X2 = C \X1. Since X is a non-empty proper subset of C, so
are both X1 and X2. Then, the first bullet of this property can be applied to X1

and X2. As a result, ∃x1 ∈ L s.t. CN({x1}) = CN(X1) and ∃x2 ∈ L s.t. CN({x2}) =
CN(X2). The expansion axiom gives {x1} ⊆ CN({x1}) and {x2} ⊆ CN({x2}). Thus,
x1 ∈ CN(X1) and x2 ∈ CN(X2). Using the expansion axiom again, X1 ⊆ CN(X1)
and X2 ⊆ CN(X2). Thus, X1 ∪X2 ⊆ CN(X1)∪CN(X2) = CN({x1})∪CN({x2}). It
follows that C ⊆ CN({x1})∪CN({x2}). Using Property 1, CN({x1})∪CN({x2}) ⊆
CN({x1, x2}), thus C ⊆ CN({x1, x2}). Since C is inconsistent, Property 2 gives that
CN({x1, x2}) is inconsistent as well. By the definition of inconsistency, it follows
that CN(CN({x1, x2})) = L. Applying the idempotence axiom, CN({x1, x2}) = L,
thus the set {x1, x2} is inconsistent. �

Property 5 For all (X,x) ∈ Arg(Σ), the set {x} is consistent.

Proof Let (X,x) ∈ Arg(Σ). From Definition 7, the support X is consistent. Thus,
according to Property 2, CN(X) is consistent as well. Since x ∈ CN(X), then
{x} ⊆ CN(X) thus {x} is consistent. �

Property 6 Let Σ be a knowledge base such that for all x ∈ Σ, x 6∈ CN(∅). For all
x ∈ Σ such that the set {x} is consistent, ({x}, x) ∈ Arg(Σ).

Proof Let x ∈ Σ be such that the set {x} is consistent. Since x 6∈ CN(∅), then {x}
is a minimal set such that x ∈ CN({x}). It follows that ({x}, x) ∈ Arg(Σ). �

Property 7 Arg(Σ) ⊆ Arg(Σ′) whenever Σ ⊆ Σ′ ⊆ L.

Proof Let Σ ⊆ Σ′ ⊆ L. Assume that (X,x) ∈ Arg(Σ) and (X,x) /∈ Arg(Σ′). Since
(X,x) /∈ Arg(Σ′), then there are four possible cases:

(1) X is not a subset of Σ′. This is impossible since (X,x) ∈ Arg(Σ), thus
X ⊆ Σ ⊆ Σ′.

(2) X is inconsistent, this is impossible since (X,x) ∈ Arg(Σ).
(3) x /∈ CN(X). This is impossible since (X,x) ∈ Arg(Σ) hence x ∈ CN(X).
(4) X is not minimal. This means that ∃X ′ ⊂ X that satisfies conditions 1-3

of Def. 7. This is impossible since (X,x) ∈ Arg(Σ).

�

Property 8 Let T = (Arg(Σ),R) be an argumentation system over a knowledge
base Σ and Ext(T ) its set of extensions under a given semantics. It holds that
Output(T ) =

⋂
Ei∈Ext(T ) Concs(Ei).

Proof Let T = (Arg(Σ),R) be an argumentation system over a base Σ.

(1) Let x ∈ Output(T ). Thus, for all Ei ∈ Ext(T ), ∃ai ∈ Ei such that
Conc(ai) = x. It follows that x ∈ Concs(Ei), ∀Ei and hence x ∈ ∩Concs(Ei).

(2) Assume that x ∈ ∩Concs(Ei). Thus, ∀Ei ∈ Ext(T ), ∃ai ∈ Ei such
thatConc(ai) = x. Consequently, x ∈ Output(T ).

�

Property 9 Let T = (Arg(Σ),R) be an argumentation system over a knowledge
base Σ. Output(T ) ⊆ CN(Σ).

Proof Let T = (Arg(Σ),R) be an argumentation system over a knowledge base
Σ. Let x ∈ Output(T ). Thus, ∃a ∈ Arg(Σ) such that Conc(a) = x. Besides, x ∈
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CN(Supp(a)) and Supp(a) ⊆ Σ. By monotonicity of CN, CN(Supp(a)) ⊆ CN(Σ).
Thus, x ∈ CN(Σ). �

Property 10 It holds that <p ⊆ <s.

Proof Let R ∈ <p. Thus, for all T = (Arg(Σ),R), T satisfies all the postulates,
i.e., for all E ∈ Extp(T ),

• Concs(E) is consistent.

• Concs(E) = CN(Concs(E))

• For all a ∈ E , Sub(a) ⊆ E
• Arg(Free(Σ)) ⊆ E
• for all (X,x) ∈ Arg(Σ), if X ∪ {x} ⊆ Concs(E), then (X,x) ∈ E

Since Exts(T ) ⊆ Extp(T ), thus the previous properties are satisfies by all the stable
extensions of T . Consequently, R ∈ <s. �

Proposition 1 Let (L,CN) be adjunctive and Σ be a knowledge base. For all non-
empty proper subset X of some minimal conflict C ∈ CΣ, there exists a ∈ Arg(Σ)
such that Supp(a) = X.

Proof Let C ∈ CΣ and X ⊆ C such that X is non-empty. Assume @a ∈ Arg(Σ)
such that Supp(a) = X. I.e., there exists no x such that X is a minimal consistent
set satisfying x ∈ CN(X). So, for all x ∈ L, if x ∈ CN(X) then ∃Y ⊂ X such
that x ∈ CN(Y ). In short, for all x ∈ CN(X), there exists Y ⊂ X such that
x ∈ CN(Y ). Property 4 says that there exists z ∈ L such that CN({z}) = CN(X).
However, z 6∈ CN(Y ) for all Y ⊂ X otherwise C would fail to be minimal (because
Y ∪ (C \X) ⊂ C while z ∈ CN(Y ) implies CN(C) = CN(X ∪ (C \X)) = CN({z} ∪
(C \X)) ⊆ CN(Y ∪ (C \X))). A contradiction arises. �

Proposition 2 Let T = (Arg(Σ),R) be an argumentation system over a knowledge
base Σ. If T is closed under CN, then Output(T ) = CN(Output(T )).

Proof Let T = (Arg(Σ),R) be an argumentation system over a knowledge base
Σ, and Ext(T ) be its set of extensions under a given semantics. Assume that T
satisfies closure under CN. From Expansion axiom, it follows that Output(T ) ⊆
CN(Output(T )).

Assume now that x ∈ CN(Output(T )). Thus, ∃x1, . . . , xn ∈ Output(T ) such
thatx ∈ CN({x1, . . . , xn}). From Property 8, x1, . . . , xn ∈ ∩Concs(Ei) where
Ei ∈ Ext(T ). From Property 1, it holds that CN({x1, . . . , xn}) ⊆ CN(∩Concs(Ei)).
Again, from Property 1, x ∈ CN(Concs(E1))∩ . . .∩CN(Concs(En)). Since T satisfies
closure under CN, then for each Ei it holds that CN(Concs(Ei)) = Concs(Ei). Thus,
x ∈ Concs(E1)∩ . . .∩Concs(En). From Property 8, it holds that x ∈ Output(T ). �

Proposition 3 Let T = (Args(Σ),R) be an argumentation system over a knowl-
edge base. If T is closed under sub-arguments and under CN, then for all E ∈
Ext(T ), Concs(E) = CN(Base(E)).

Proof Assume that T = (Args(Σ),R) is closed under sub-arguments and un-
der CN. From Property 4 in (1), since T is closed under sub-arguments, then it
follows that Base(E) ⊆ Concs(E). By monotonicity of CN, we get CN(Base(E)) ⊆
CN(Concs(E)). Since T is closed under CN, then CN(Base(E)) ⊆ Concs(E). Besides,
by definition of Concs(E), Concs(E) ⊆

⋃
CN(Supp(ai)) with ai ∈ E . From Property

1, it follows that Concs(E) ⊆ CN(
⋃

Supp(ai)), thus Concs(E) ⊆ CN(Base(E)). �

Proposition 4 If an argumentation system T = (Arg(Σ),R) satisfies consistency,
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then the set Output(T ) is consistent.

Proof Let T = (Arg(Σ),R) be an argumentation system built over a knowledge
base Σ. Assume that T satisfies consistency. Thus, ∀Ei ∈ Ext(T ), Concs(Ei) is con-
sistent. Let E be a given extension in the set Ext(T ). Since ∩Concs(Ei) ⊆ Concs(E),
then ∩Concs(Ei) is consistent as well. Besides, from Property 8, Output(T ) =
∩Concs(Ei). It follows that Output(T ) is consistent. �

Proposition 5 Let T = (Arg(Σ),R) be an argumentation system over a knowledge
base Σ such that for all x ∈ Σ, x /∈ CN(∅). If T satisfies consistency and is closed
under sub-arguments, then for all E ∈ Ext(T ), Base(E) is consistent.

Proof Let T = (Arg(Σ),R) be an argumentation system over a knowledge base Σ.
Assume that T satisfies consistency and closure under sub-arguments. From closure
under sub-arguments, it follows that for all E ∈ Ext(T ), Base(E) ⊆ Concs(E) (from
Property 4 in (1)). Since T satisfies consistency, the set Concs(E) is consistent.
From Property 2, it follows that Base(E) is consistent. �

Proposition 6 Let T = (Arg(Σ),R) be an argumentation system over a knowledge
base Σ. If T satisfies free precedence, then Free(Σ) ⊆ Output(T ) (under any of the
reviewed semantics).

Proof Let T = (Arg(Σ),R) be an argumentation system over a knowledge base
Σ, and let Ext(T ) be its set of extensions under any of the reviewed semantics.
Assume that T satisfies Postulate 4. Thus, for all E ∈ Ext(T ), Arg(Free(Σ)) ⊆ E .
Assume that Free(Σ) 6= ∅. Thus, for all x ∈ Free(Σ), ({x}, x) ∈ Arg(Free(Σ))
(indeed, x /∈ CN(∅)) and thus, ({x}, x) ∈ E (for all E ∈ Ext(T )). Consequently,
Free(Σ) ⊆ Concs(E) (for all E ∈ Ext). So, Free(Σ) ⊆ Output(T ). �

Proposition 7 If an argumentation system T is closed under both CN and sub-
arguments and satisfies the exhaustiveness postulate, then ∀E ∈ Ext(T ), E =
Arg(Base(E)) (under any of the reviewed semantics).

Proof Let T be an argumentation system that satisfies exhaustiveness and that is
closed under both CN and sub-arguments. Let Ext(T ) be its extensions under any
of the reviewed semantics. Let E ∈ Ext(T ). From the definition of Arg and Base,
it follows that E ⊆ Arg(Base(E)).

Assume now a ∈ Arg(Base(E)) and let a = (X,x). Thus, X ⊆ Base(E). By
monotonicity of CN, CN(X) ⊆ CN(Base(E)). From Proposition 3, since T is closed
under both CN and sub-arguments, then Concs(E) = CN(Base(E)). Thus, CN(X) ⊆
Concs(E). Besides, X ⊆ CN(X) (from Expansion Axiom of CN) and x ∈ CN(X)
(from the definition of an argument), thus, X∪{x} ⊆ Concs(E). By exhaustiveness
of T , a ∈ E . �

Proposition 8 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent. If T satisfies consistency and is closed
under sub-arguments (under naive and stable semantics), then it is closed under
CN (under naive and stable semantics).

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base Σ
such that R is conflict-dependent. Assume that T is closed under sub-arguments
and satisfies consistency. Assume also that T violates closure under CN. Thus, ∃E ∈
Extn(T ) such that Concs(E) 6= CN(Concs(E)). This means that ∃x ∈ CN(Concs(E))
and x /∈ Concs(E). Besides, CN(Concs(E)) ⊆ CN(Base(E)). Thus, x ∈ CN(Base(E)).
Since CN verifies compactness, then ∃X ⊆ Base(E) such that X is finite and x ∈
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CN(X). Moreover, from Proposition 5, Base(E) is consistent. Then, X is consistent
as well (from Property 2). Consequently, the pair (X,x) is an argument. Besides,
since x /∈ Concs(E) then (X,x) /∈ E . This means that ∃a ∈ E such that aR(X,x) or
(X,x)Ra. Finally, since R is conflict-dependent, then Supp(a) ∪X is inconsistent
and consequently Base(E) is inconsistent. This contradicts the assumption.

Since Exts(T ) ⊆ Extn(T ), then since T satisfies closure under CN under naive
semantics, then it also satisfies the postulate under stable semantics. �

Proposition 9 Let (Arg(Σ),R) be such that R is conflict-dependent. If Σ is con-
sistent, then R = ∅.

Proof Let (Arg(Σ),R) be s.t.R is conflict-dependent. Assume that Σ is consistent.
Then, for all a, b ∈ Arg(Σ), Supp(a) ∪ Supp(b) is consistent. Since R is conflict-
dependent, then (a, b) /∈ R. Thus, R = ∅. �

Proposition 10 Let (Arg(Σ),R) be such that R is conflict-dependent. ∀E ⊆
Arg(Σ), if Base(E) is consistent, then E is conflict-free.

Proof Let E ⊆ Arg(Σ). Since Base(E) is consistent, then so is Supp(a) ∪ Supp(b)
for all a and b in E (according to Property 2). Hence, there exist no minimal conflict
C ⊆ Supp(a)∪Supp(b). By the definition of R being conflict-dependent, (a, b) /∈ R
ensues. �

Proposition 11 Let (Arg(Σ),R) be such that R is conflict-dependent. For all
a ∈ Arg(Σ), (a, a) /∈ R.

Proof Assume that R is conflict-dependent and a ∈ Arg(Σ) such that(a, a) ∈ R.
Since R is conflict-dependent, then ∃C ∈ CΣ such thatC ⊆ Supp(a). This means
that Supp(a) is inconsistent. This contradicts the fact that a is an argument. �

Proposition 12 Let (L,CN) be adjunctive and Σ be a knowledge base such that
∃C ∈ CΣ and |C| > 2. If R is conflict-dependent and symmetric, then the argu-
mentation system (Arg(Σ),R) violates consistency.

Proof Let C be a minimal conflict in a knowledge base Σ. Consider a partition
{X1, X2, X3} of C. Due to Proposition 1, there exist a1, a2, a3 in Arg(Σ) such that
CN(Supp(ai)) = CN(Xi) for i = 1..3. For {a1, a2, a3} not to be an admissible ex-
tension, either it is not conflict-free or it fails to defend its elements. Assume that
{a1, a2, a3} is not conflict-free. I.e., aiRaj for some i and j in {1, 2, 3}. Since R is
conflict-dependent, there exists C ′ ∈ CΣ such that C ′ ⊆ Supp(ai) ∪ Supp(aj).
Hence, CN(Supp(ai) ∪ Supp(aj)) = L. However, CN(Supp(ai) ∪ Supp(aj)) =
CN(CN(Supp(ai))∪CN(Supp(aj))) = CN(CN(Xi)∪CN(Xj)) = CN(Xi∪Xj), mean-
ing that Xi ∪Xj is an inconsistent proper subset of C, contradicting C ∈ CΣ. Oth-
erwise, assume that {a1, a2, a3} fails to defend its elements. It obviously cannot be
the case because R is symmetric: If aRai then aiRa. �

Theorem 1 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent. If T satisfies consistency and is closed
under sub-arguments (under naive semantics), then:

• For all E ∈ Extn(T ), Base(E) ∈ Max(Σ).

• For all E ∈ Extn(T ), E = Arg(Base(E)).

• For all Ei, Ej ∈ Extn(T ), if Base(Ei) = Base(Ej) then Ei = Ej.

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base Σ
such thatR is conflict-dependent. Assume that T satisfies consistency and is closed
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under sub-arguments. Let E ∈ Extn(T ). From Proposition 5, Base(E) is consistent.
Assume now that Base(E) is not maximal (for set inclusion) consistent. Thus,
∃x ∈ Σ \ Base(E) such that Base(E) ∪ {x} is consistent. This means that {x} is
consistent. Thus, ∃a ∈ A such that Supp(a) = {x}. Since x /∈ Base(E), then a /∈ E .
Since E is a naive extension, then ∃b ∈ E such that aRb or bRa. Since R is conflict-
dependent, then Supp(a) ∪ Supp(b) is inconsistent. But, Supp(b) ⊆ Base(E), this
would mean that Base(E) ∪ {x} is inconsistent. Contradiction.

Let E ∈ Extn(T ). It is obvious that E ⊆ Arg(Base(E)) since the construction of
arguments is monotonic. Let a ∈ Arg(Base(E)). Thus, Supp(a) ⊆ Base(E). Assume
that a /∈ E , then ∃b ∈ E such that aRb or bRa. Since R is conflict-dependent, then
Supp(a) ∪ Supp(b) is inconsistent. Besides, Supp(a) ∪ Supp(b) ⊆ Base(E). This
means that Base(E) is inconsistent. Contradiction.

Let now Ei, Ej ∈ Extn(T ). Assume that Base(Ei) = Base(Ej). Then,
Arg(Base(Ei)) = Arg(Base(Ej)). Besides, from the previous bullet, Ei =
Arg(Base(Ei)) and Ej = Arg(Base(Ej)). Consequently, Ei = Ej . �

Theorem 2 Let (L,CN) be adjunctive. Let T = (Arg(Σ), R) be an argumentation
system over a knowledge base Σ such that R is conflict-dependent. If T satisfies
consistency and is closed under sub-arguments (under naive semantics), then:

• For all S ∈ Max(Σ), Arg(S) ∈ Extn(T ).

• For all Si,Sj ∈ Max(Σ), if Arg(Si) = Arg(Sj) then Si = Sj.
• For all S ∈ Max(Σ), S = Base(Arg(S)).

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base
Σ such thatR is conflict-dependent. Assume that T satisfies Postulates 2 and 3.

Let S ∈ Max(Σ), and assume that Arg(S) /∈ Extn(T ). Since R is conflict-
dependent and S is consistent, then it follows from Proposition 10 that Arg(S)
is conflict-free. Thus, Arg(S) is not maximal for set inclusion. So, ∃a ∈ A such
that Arg(S) ∪ {a} is conflict-free. There are two possibilities:

(1) S ∪ Supp(a) is consistent. But since S ∈ Max(Σ), then Supp(a) ⊆ S, and
this would mean that a ∈ Arg(S).

(2) S ∪ Supp(a) is inconsistent. Thus, ∃C ∈ CΣ such that C ⊆ S ∪ Supp(a).
Let X1 = C ∩ S and X2 = C ∩ Supp(a) with X1 6= ∅ and X2 6= ∅
(since S and Supp(a) are consistent). From Property 4, ∃x1 ∈ CN(X1) and
∃x2 ∈ CN(X2) such that the set {x1, x2} is inconsistent. Note that (X1, x1)
and (X2, x2) are arguments. Moreover, (X1, x1) ∈ Arg(S) and (X2, x2) ∈
Sub(a). Besides, since Arg(S)∪ {a} is conflict-free, then ∃E ∈ Ext(T ) such
that Arg(S) ∪ {a} ⊆ E . Thus, (X1, x1) ∈ E . Since T is closed under sub-
arguments then (X2, x2) ∈ E . Thus, {x1, x2} ⊆ Concs(E). From Property
2, it follows that Concs(E) is inconsistent. This contradicts the fact that T
satisfies consistency.

Let now Si,Sj ∈ Max(Σ) be such that Arg(Si) = Arg(Sj). Assume that Si 6= Sj ,
thus ∃x ∈ Si and x /∈ Sj . Besides, Si is consistent, then so is the set {x}.
Consequently, ∃a ∈ A such that Supp(a) = {x}. It follows also that a ∈ Arg(Si)
and thus a ∈ Arg(Sj). By definition of an argument, Supp(a) ⊆ Sj . Contradiction.

Let S ∈ Max(Σ). Since S is consistent, then ∀x ∈ S, it holds that the set {x}
is consistent as well (from Property 2). Then, ({x}, x) is an argument in Arg(S)
(from Property 6). Thus, S ⊆ Base(Arg(S)). Conversely, let x ∈ Base(Arg(S)). By
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definition of the function Base, ∃a ∈ Arg(S) such that x ∈ Supp(a). Besides, by
definition of an argument, Supp(a) ⊆ S. Consequently, x ∈ S. �

Theorem 3 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent, T satisfies consistency and is closed under
sub-arguments (under naive semantics). Output(T ) =

⋂
CN(Si) where Si ranges

over {Si ∈ Max(Σ) | ∃Ei ∈ Extn(T ) and Si = Base(Ei)}.

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base Σ
such thatR is conflict-dependent. Assume that T satisfies consistency and is closed
under sub-arguments. From Proposition 8, T enjoys closure under CN (under naive
semantics). From Proposition 3, for all E ∈ Extn(T ), Concs(E) = CN(Base(E)).
Besides, from Theorem 1, for all Ei ∈ Extn(T ), ∃!Si ∈ Max(Σ) such that Base(Ei) =
Si. Thus, Concs(Ei) = CN(Si). By definition, Output(T ) =

⋂
Concs(Ei), thus

Output(T ) =
⋂

CN(Si). �

Theorem 4 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent. If T satisfies consistency and closure
under sub-arguments (under stable semantics) and Exts(T ) 6= ∅, then:

• For all E ∈ Exts(T ), Base(E) ∈ Max(Σ).

• For all E ∈ Exts(T ), E = Arg(Base(E)).

• For all Ei, Ej ∈ Exts(T ), if Base(Ei) = Base(Ej) then Ei = Ej.

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent. Let E ∈ Exts(T ). Since T satisfies
Postulates 1, 2 and 3, then Base(E) is consistent (from Proposition 5). Assume now
that Base(E) is not maximal for set inclusion. Thus, ∃x ∈ Σ \ Base(E) such that
Base(E)∪{x} is consistent. This means that {x} is consistent. Thus, from Property
6, ∃a ∈ Arg(Σ) such that Supp(a) = {x}. Since x /∈ Base(E), then a /∈ E . Since E
is a stable extension, then ∃b ∈ E such that bRa. Since R is conflict-dependent,
then Supp(a) ∪ Supp(b) is inconsistent. But, Supp(b) ⊆ Base(E), this would mean
that Base(E) ∪ {x} is inconsistent. Contradiction.

Let E ∈ Exts(T ). It is obvious that E ⊆ Arg(Base(E)) since the construction
of arguments is monotonic. Let a ∈ Arg(Base(E)). Thus, Supp(a) ⊆ Base(E).
Assume that a /∈ E , then ∃b ∈ E such that bRa. Since R is conflict-dependent,
then Supp(a) ∪ Supp(b) is inconsistent. Besides, Supp(a) ∪ Supp(b) ⊆ Base(E).
This means that Base(E) is inconsistent. Contradiction.

Let now Ei, Ej ∈ Exts(T ). Assume that Base(Ei) = Base(Ej). Then,
Arg(Base(Ei)) = Arg(Base(Ej)). Besides, from bullet 2 of this proof, Ei =
Arg(Base(Ei)) and Ej = Arg(Base(Ej)). Consequently, Ei = Ej . �

Theorem 5 It holds that <s1 = ∅.

Proof Let T = (Arg(Σ),R) be an argumentation system over a knowledge base
Σ such that R ∈ <s1. Thus, Output(T ) = ∅. Assume that Free(Σ) 6= ∅. Thus, T
violates free precedence postulate. This contradicts the fact that R ∈ <s1. �

Theorem 6 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R ∈ <s2. Output(T ) =

⋂
CN(Si) where Si ranges over {Si ∈

Max(Σ) | ∃Ei ∈ Exts(T ) and Si = Base(Ei)}.
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Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base
Σ such that R ∈ <s2. From Proposition 3, for all Ei ∈ Exts(T ), Concs(Ei) =
CN(Base(Ei)). Thus, Output(T ) =

⋂
CN(Base(Ei)) with Ei ∈ Exts(T ). From The-

orem 4, for all Ei ∈ Exts(T ), ∃!Si ∈ Max(Σ) such that Base(Ei) = Si. Thus,
Output(T ) =

⋂
CN(Si). �

Theorem 7 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R ∈ <s3. For all S ∈ Max(Σ), Arg(S) ∈ Exts(T ).

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base
Σ such that R ∈ <s3. Let S ∈ Max(Σ). Since |Exts(T )(T )| = |Max(Σ)|, then from
Theorem 4, ∃E ∈ Exts(T ) such that Base(E) = S. Besides, from the same theorem,
E = Arg(Base(E)), thus E = Arg(S). Consequently, Arg(S) ∈ Exts(T ). �

Theorem 8 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R ∈ <s3. The equality Extn(T ) = Exts(T ) holds. If T satisfies
the postulates under preferred semantics, then Exts(T ) = Extp(T ).

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base
Σ such that R ∈ <s3. From Theorem 7, for all S ∈ Max(Σ), Arg(S) ∈ Exts(T ).
From Theorem 1, |Extn(T )| ≤ |Max(Σ)|. Thus, Extn(T ) = Exts(T ). Assume now
that T satisfies the postulates under preferred semantics, then from Theorem 10,
|Extp(T )| = |Max(Σ)| and Exts(T ) = Extp(T ). �

Theorem 9 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies consistency and closure under sub-arguments
(under preferred semantics). For all E ∈ Extp(T ), there exists S ∈ Max(Σ) such
that Base(E) ⊆ S.

Proof Let T = (Arg(Σ),R) be an argumentation system such that R is conflict-
dependent and T satisfies consistency and closure under sub-arguments. Let
E ∈ Extp(T ). Due to consistency and closure under sub-arguments, Base(E) is
consistent (cf. Proposition 5). From Property 3, there exists S ∈ Max(Σ) such that
Base(E) ⊆ S. �

Theorem 10 Let T = (Arg(Σ),R) be an argumentation system such thatR is
conflict-dependent and T satisfies consistency and closure under sub-arguments
(under preferred semantics). For all Ei, Ej ∈ Extp(T ), if Base(Ei) ⊆ Base(Ej) then
Ei = Ej.

Proof Let T = (Arg(Σ),R) be an argumentation system such that R is conflict-
dependent and T satisfies consistency and closure under sub-arguments. Assume
that Ei, Ej ∈ Extp(T ) and Base(Ei) ⊆ Base(Ej).

We first show that ∀x ∈ {i, j}, Arg(Base(Ex)) is conflict-free. Assume that
Arg(Base(Ex)) is not conflict-free. Thus, ∃a, b ∈ Arg(Base(Ex)) such that aRb or
bRa. Since R is conflict-dependent, then Supp(a)∪Supp(b) is inconsistent. Besides,
Supp(a) ∪ Supp(b) ⊆ Base(Ex). Thus, Base(Ex) is inconsistent. This contradicts
Proposition 5.

Assume that Ei \ Ej 6= ∅. Let E = Ej ∪ (Ei \ Ej). E ⊆ Arg(Base(Ej)). Thus, E is
conflict-free (since Arg(Base(Ej)) is conflict-free). Moreover, E defends any element
in Ej (since Ej ∈ Extp(T )) and any element in Ei \ Ej (since Ei ∈ Extp(T )). Thus,
E is an admissible set. This contradicts the fact that Ej ∈ Extp(T ). The same
reasoning holds for the case Ej \ Ei 6= ∅ and having E = Ei ∪ Ej \ Ei. �

Theorem 11 Let T = (Arg(Σ),R) be an argumentation system such that R is
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conflict-dependent and T satisfies consistency and closure under sub-arguments
(under preferred semantics). Let S ∈ Max(Σ). For all Ei, Ej ∈ Extp(T ), if
Base(Ei) ⊆ S and Base(Ej) ⊆ S, then Ei = Ej.

Proof Let T = (Arg(Σ),R) be an argumentation system such that R is conflict-
dependent and T satisfies consistency and closure under sub-arguments (under
preferred semantics). Assume there exist two distinct preferred extensions E1 and E2

such that for some S ∈ Max(Σ), both Base(E1) ⊆ S and Base(E2) ⊆ S hold. Then,
Base(E1)∪Base(E2) ⊆ S and Base(E1)∪Base(E2) is consistent. Since R is conflict-
dependent, aRb would demand Supp(a) ∪ Supp(b) to be inconsistent. Therefore,
aRb is impossible for a and b both in E1∪E2. That is, E1∪E2 is conflict-free. Since E1

is an extension, it defends all arguments in E1. Since E2 is an extension, it defends all
arguments in E2. Hence, E1∪E2 defends all arguments in E1∪E2. That is, E1∪E2 is an
admissible set, and there exists a preferred extension E3 that contains it (possibly
improperly). According to Theorem 10, Base(E1) ⊆ Base(E1 ∪E2) = Base(E3) yield
E1 = E3, and, similarly, Base(E2) ⊆ Base(E1 ∪ E2) = Base(E3) yield E2 = E3.
Therefore, E1 = E2, contradicting the assumption that E1 and E2 are distinct. �

Theorem 12 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies consistency and closure under sub-arguments
(under preferred semantics). It holds that 1 ≤ |Extp(T )| ≤ |Max(Σ)|.

Proof Let T = (Arg(Σ),R) be an argumentation system such that R is conflict-
dependent and T satisfies consistency and closure under sub-arguments (under
preferred semantics). From Theorem 9, for all E ∈ Extp(T ), ∃S ∈ Max(Σ) such
that Base(E) ⊆ S. From Theorem 11, there cannot exist two distinct preferred
extensions Ei and Ej such that for some S ∈ Max(Σ), both Base(Ei) ⊆ S and
Base(Ej) ⊆ S. Thus, every S ∈ Max(Σ) is captured by at most one preferred
extension of T . It follows that 1 ≤ |Extp(T )| ≤ |Max(Σ)|. �

Theorem 13 Let T =(Arg(Σ),R) be an argumentation system. If R ∈ <p3
then:

• for all S ∈ Max(Σ), Arg(S) ∈ Extp(T ).

• |Extp(T )| = |Max(Σ)|

Proof Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p3
. From

Theorem 7, for all S ∈ Max(Σ), Arg(S) ∈ Exts(T ). Thus, Arg(S) ∈ Extp(T ).
Since R ∈ <p3

, thus |Exts(T )| = |Max(Σ)|. Assume now that there exists E ∈
Extp(T ) such that Base(E) /∈ Max(Σ). Thus, ∃S ∈ Max(Σ) such that Base(E) ⊆ S.
From the previous result, Arg(S) ∈ Extp(T ). From Theorem 10, E = Arg(S).
Consequently, |Extp(T )| = |Max(Σ)|. �

Theorem 14 Let T = (Arg(Σ),R) be an argumentation system over a knowledge
base Σ such that R ∈ <p2

. Output(T ) =
⋂

CN(Si) where Si ranges over {Si ∈
Cons(Σ) | ∃Ei ∈ Extp(T ) and Si = Base(Ei)}.

Proof Let T = (Arg(Σ),R) be an argumentation system such that R ∈ <p2
. Let

E ∈ Extp(T ). From Proposition 3, since T is closed both under CN and under
sub-arguments, then Concs(E) = CN(Base(E)). From Definition 9, Output(T ) =⋂

Concs(Ei), Ei ∈ Extp(T ). Thus, Output(T ) =
⋂

CN(Base(Ei)), Ei ∈ Extp(T ).
Besides, Free(Σ) ⊆ Base(E) for all E ∈ Extp(T ) and from Proposition 5, Base(E)
is consistent. Thus, Base(E) ∈ Cons(Σ). �

Theorem 15 Let T = (Arg(Σ), R) be such that R is conflict-dependent.

• For all a ∈ Arg(Free(Σ)), a neither attacks nor is attacked by another argument

36



May 6, 2013 Journal of Applied Non-Classical Logics JANCL

in Arg(Σ).

• Arg(Free(Σ)) is an admissible extension of T .

Proof Let (Arg(Σ),R) be such thatR is conflict-dependent. Let a ∈ Arg(Free(Σ)).
Assume that ∃b ∈ A s.t. aRb or bRa. Since R is conflict-dependent, then ∃C ∈ CΣ

such that C ⊆ Supp(a) ∪ Supp(b). By definition of an argument, both Supp(a)
and Supp(b) are consistent. Then, C ∩ Supp(a) 6= ∅. This contradicts the fact that
Supp(a) ⊆ Free(Σ). Thus, Arg(Free(Σ)) is conflict-free and can never be attacked.
Consequently, Arg(Free(Σ)) is an admissible extension of T . �

Theorem 16 Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p3
.

IE(T ) =
⋂

Ei∈Extp(T )

Ei = Arg(Free(Σ)).

Proof Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p3
. Since

T satisfies exhaustiveness, then from Proposition 7, for all Ei ∈ Extp(T ), Ei =
Arg(Base(Ei)). So,

⋂
Ei∈Extp(T )

Ei = Arg(
⋂

Ei∈Extp(T )

Base(Ei)).

From Theorem 13, for all Ei ∈ Extp(T ), Base(Ei) ∈ Max(Σ). Moreover, |Extp(T )| =
|Max(Σ)|. Thus,

⋂
Ei∈Extp(T ) Base(Ei) = Free(Σ). Consequently,

⋂
Ei∈Extp(T )

Ei = Arg(Free(Σ)).

From Theorem 15, Arg(Free(Σ)) is an admissible set of T . Thus, from Property
11,

IE(T ) =
⋂

Ei∈Extp(T )

Ei = Arg(Free(Σ)).

�

Theorem 17 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies the five postulates (under preferred semantics).
If |Extp(T )| = |Max(Σ)|, then the output of T under grounded/ideal semantics is:
Output(T ) = CN(Free(Σ)).

Proof Let T = (Arg(Σ),R) be an argumentation system such that R is conflict-
dependent and T satisfies the five postulates (under preferred semantics). As-
sume that |Extp(T )| = |Max(Σ)|. Then, from Corollary 12, IE(T ) = GE(T ) =⋂
Ei∈Extp(T ) Ei = Arg(Free(Σ)).

Let us first show that T is closed under CN under grounded/ideal semantics,
that is

Concs(
⋂

Ei∈Extp(T )

Ei) = CN(Concs(
⋂

Ei∈Extp(T )

Ei)).
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Let x ∈ CN(Concs(
⋂
Ei∈Extp(T ) Ei)). Thus, for all Ei ∈ Extp(T ), x ∈

CN(Concs(Ei)). Since T satisfies closure under CN, then x ∈ Concs(Ei). Be-
sides, since x ∈ CN(Concs(

⋂
Ei∈Extp(T ) Ei)), then there exists a finite set

x1, . . . , xn ∈ Concs(
⋂
Ei∈Extp(T ) Ei) such that x ∈ CN({x1, . . . , xn}). Moreover,

CN({x1, . . . , xn} ⊆ CN(Concs(
⋂
Ei∈Extp(T ) Ei)) (by monotonicity of CN). Thus,

x ∈ CN(Concs(
⋂
Ei∈Extp(T ) Ei)).

Let us now show that T is closed under sub-arguments under grounded/ideal se-
mantics. Assume that a ∈ IE(T ). Thus, a ∈

⋂
Ei∈Extp(T ) Ei. Since T is closed under

sub-arguments (under preferred semantics), then for all Ei ∈ Extp(T ), Sub(a) ⊆ Ei.
Thus, Sub(a) ⊆

⋂
Ei∈Extp(T ) Ei. So, Sub(a) ⊆ IE(T ).

Since T satisfies closure under sub-arguments and CN (under ideal/grounded
semantics), then from Proposition 3, Concs(IE(T )) = Concs(GE(T )) =
Output(T ) = CN(Free(Σ)). �

Theorem 18 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies the five postulates under grounded (respectively
ideal) semantics. If Arg(Free(Σ)) ⊂ GE(T ) (respectively Arg(Free(Σ)) ⊂ IE(T ))
then there exists C ∈ CΣ such that there exist x, x′ ∈ C and x ∈ Output(T ) and
x′ /∈ Output(T ).

Proof Let T = (Arg(Σ),R) be an argumentation system such that R is conflict-
dependent and T satisfies the five postulates under grounded semantics. Assume
that Arg(Free(Σ)) ⊂ GE(T ). Thus, there exists an argument a ∈ GE(T ) such
that a /∈ Arg(Free(Σ)). Thus, Supp(a) 6⊆ Free(Σ). So, there exists x ∈ Inc(Σ) such
that x ∈ Supp(a). Then, there exists C ∈ CΣ such that x ∈ C. Since T satisfies
closure and CN and under sub-arguments, then Output(T ) = Concs(GE(T )) =
CN(Base(GE(T ))). Since x ∈ Supp(a), then x ∈ Base(GE(T )). From expan-
sion axiom, x ∈ CN(Base(GE(T ))). Since T satisfies consistency, then C 6⊆
Concs(GE(T )). Thus, there exists x′ ∈ C such that x′ /∈ Concs(GE(T )).

The same proof holds for ideal semantics. �

Corollary 1 Let (L,CN) be adjunctive. Let T = (Arg(Σ), R) be an argumentation
system over a knowledge base Σ such that R is conflict-dependent. T satisfies
consistency and is closed under sub-arguments (under naive semantics) iff there is
a bijection between the naive extensions of Extn(T ) and the elements of Max(Σ).

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base
Σ such that R is conflict-dependent. Assume that T satisfies Postulates 2 and 3.
Then, from Theorems 1 and 2, it follows that there is a one-to-one correspondence
between Max(Σ) and Extn(T ).

Assume now that there is a one-to-one correspondence between Max(Σ) and
Extn(T ). Then, ∀E ∈ Ext(T ), Base(E) is consistent. Consequently, T satisfies
consistency. From (1), T is also closed under sub-arguments. �

Corollary 2 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent and T satisfies consistency and is closed
under sub-arguments (under naive semantics).

• |Extn(T )| ≤ |Max(Σ)|
• If Σ is finite, then T has a finite number of naive extensions.

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base Σ
such that R is conflict-dependent and T satisfies consistency and is closed under
sub-arguments. From Theorem 1, it follows that |Extn(T )| ≤ |Max(Σ)|. If Σ is
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finite, then it has a finite number of maximal consistent subsets. Thus, the number
of naive extensions is finite as well. �

Corollary 3 Let T = (Arg(Σ), R) be an argumentation system over a knowledge
base Σ such that R is conflict-dependent and T satisfies consistency and is closed
under sub-arguments (under naive semantics). If Extn(T ) = {∅}, then for all x ∈
Σ, CN({x}) is inconsistent.

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base Σ
such that R is conflict-dependent and T satisfies consistency and is closed under
sub-arguments. Assume that Extn(T ) = {∅}. Thus, Base(∅) = ∅. From Theorem
1, ∅ ∈ Max(Σ). Thus, for all x ∈ Σ, CN({x}) is inconsistent. �

Corollary 4 Let (L,CN) be adjunctive. Let T = (Arg(Σ), R) be an argumenta-
tion system over a knowledge base Σ such that R is conflict-dependent, T sat-
isfies consistency and is closed under sub-arguments (under naive semantics).
Output(T ) =

⋂
Si∈Max(Σ) CN(Si).

Proof It follows immediately from Theorem 2 and Theorem 3. �

Corollary 6 Let T = (Arg(Σ), R) be an argumentation system over a base Σ
such that R is conflict-dependent and T satisfies consistency, closure under sub-
arguments and free precedence (under stable semantics). It holds that

0 < |Exts(T )| ≤ |Max(Σ)|.

Proof Let T = (Arg(Σ), R) be an argumentation system over a knowledge base
Σ such that R is conflict-dependent and T satisfies consistency, closure under sub-
arguments and free precedence. From Theorem 4, |Exts(T )| ≤ |Max(Σ)|. From
Theorem 5 <s1 = ∅, then |Exts(T )| > 0. �

Corollary 7 If Σ is finite, then the set Exts(T ) is finite, whenever T =
(Arg(Σ),R) satisfies consistency and closure under sub-arguments (under stable
semantics).

Proof It follows from Corollary 6. �

Corollary 8 Let T = (Arg(Σ), R) be an argumentation system over a base Σ
such that R is conflict-dependent and T satisfies consistency, closure under sub-
arguments and free precedence (under stable semantics). The equality Exts(T ) =
Extss(T ) holds.

Proof Let T = (Arg(Σ), R) be an argumentation system over a base Σ such that
R is conflict-dependent and T satisfies consistency, closure under sub-arguments
and free precedence (under stable semantics). From Corollary 6, |Exts(T )| > 0.
From (16), Exts(T ) = Extss(T ). �

Corollary 9 Let T = (Arg(Σ),R) be an argumentation system such that R is
conflict-dependent and T satisfies consistency, closure under sub-arguments and
free precedence (under preferred semantics). There exists E ∈ Extp(T ) such that
Base(E) ∈ Max(Σ).

Proof Let T = (Arg(Σ),R) be an argumentation system such that R is conflict-
dependent and T satisfies consistency, closure under sub-arguments and free prece-
dence (under preferred semantics). Thus, T satisfies the same postulates under sta-
ble semantics since Exts(T ) ⊆ Extp(T ). Then, |Exts(T )| > 0. Thus, ∃E ∈ Exts(T )
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and thus E ∈ Extp(T ). From Theorem 4, Base(E) ∈ Max(Σ). �

Corollary 10 If a knowledge base Σ is finite, then for all T = (Arg(Σ),R) such
that R is conflict-dependent and T satisfies consistency and closure under sub-
arguments, Extp(T ) is finite.

Proof This follows from the compactness of the knowledge base and Theorem 12.
�

Corollary 11 Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p3
.

Output(T ) =
⋂

Si∈Max(Σ)

CN(Si)

Proof Let T = (Arg(Σ),R) be an argumentation system such that R ∈ <p3
.

From Theorem 13, for all E ∈ Extp(T ), Base(E) ∈ Max(Σ). Moreover, since T
is closed under both CN and sub-arguments, then Concs(E) = CN(Base(E)). Thus,
Output(T ) =

⋂
Si∈Max(Σ) CN(Si). �

Corollary 12 Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p3
.

IE(T ) = GE(T ) = Arg(Free(Σ)).

Proof Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p3
. From

Theorem 16, IE(T ) = Arg(Free(Σ)). Moreover, from Theorem 15 Arg(Free(Σ)) ⊆
GE(T ) (since arguments of Arg(Free(Σ)) are not attacked). Thus, GE(T ) = IE(T ).
�

Corollary 14 Let T =(Arg(Σ),R) be an argumentation system such that R ∈ <p2
.

The inclusions Arg(Free(Σ)) ⊆ GE(T ) ⊆ IE(T ) ⊆ S hold for some S ∈ Max(Σ).

Proof Follows from Theorem 15, Property 3 and Property 11. �
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