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Abstract

Explaining black-box classification models is a hot topic in AI, with the
overall goal of improving trust in decisions made by such models. Several
works have been done and diverse functions have been proposed. How-
ever, their formal properties and links have not been sufficiently studied.
This paper presents four contributions: The first consists of investigating
global explanations of black-box classifiers. We provide a formal and uni-
fying framework in which such explanations are defined from the whole
feature space. The framework is based on two concepts, which are seen as
two types of global explanations: arguments in favour of (or pro) predictions
and arguments against (or con) predictions. The second contribution con-
sists of defining various types of local explanations (abductive explanations,
counterfactuals, contrastive explanations) from the whole feature space, in-
vestigating their properties, links and differences, and showing how they
relate to global explanations. The third contribution consists of analysing
and defining explanation functions that generate (global, local) abductive
explanations from incomplete information (i.e., from a subset of the feature
space). We start by proposing two desirable properties that an explainer
would satisfy, namely success and coherence. The former ensures the exis-
tence of explanations while the latter ensures their correctness. We show
that in the incomplete case, the two properties cannot be satisfied together.
The fourth contribution consists of proposing two functions that generate
abductive explanations and which satisfy coherence at the expense of suc-
cess.
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1. Introduction

In recent years, remarkable advances have been made in data-driven arti-
ficial intelligence in general, and deep learning in particular. In this sub-field
of AI, the idea is to learn a targeted objective (eg. the class of an object)
from a vast quantity of data. Despite the recent successes, existing models
are opaque, in that their predictions (outcomes) can hardly be explained in
a transparent way. Indeed, the predictions of these models resist analysis
due to their inherent non-linear behaviour and their vast amount of inter-
acting parameters. This opacity is seen as a great limitation, which impedes
the relevance of those models from a theoretical point of view, since their
properties are difficult to investigate, and from a practical point of view, as
many applications, such as healthcare or embedded systems need guaran-
tees to be deployed, and others, e.g in the legal or financial domain require
transparency to be accepted. Hence, improving trust in decisions made by
such models becomes crucial for the acceptance of automated systems, and
an important way of doing that is by providing explanations for the out-
comes of the models. Explanations help human users understand i) why a
decision was reached and why alternative decisions were not recommended,
ii) what could be changed to receive a desired outcome in the future. They
may also help designers or data scientists to detect possible flaws of mod-
els. Interested readers can refer to [1, 2, 3, 4, 5, 6] for more information on
explainability.

Explaining the functionality of classification models and their rationale
has become a vital need, and has generated a lot of research (see [7, 2, 1]
for recent surveys on explainability of machine learning models). Existing
explanation functions, or explainers, can be classified in three different ways.
The first way distinguishes explainers that provide explanations for individ-
ual predictions (i.e., explaining the decision of a given instance), called local
explanations (eg. [8, 9, 10, 11, 12]) from explainers that provide explana-
tions for classes independently of instances, called global explanations, (eg.
[13, 14]). The second way is based on the information used for generating
explanations. Some explainers, like those studied in [11, 13, 14, 15, 16], use
the whole set of instances, called the feature space, while others like Anchors
[9], LIME [8] and the non-monotonic explainer from [17], use only subsets of
the feature space. The third way distinguishes explainers which look inside
the model from those which consider a model as a black-box whose internal
reasoning is left unspecified. The former provide insight into the internal
decision-making process, e.g., [16, 18, 19, 20]. They are suitable for explain-
ing interpretable models like decision trees and Bayesian networks; however
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they may not be feasible for complex and non-interpretable ones like deep
neural networks. Furthermore, a predominant finding from research in phi-
losophy and social science is that a full causal explanation of a prediction is
not desirable for humans, as they do not need to understand the algorithm
followed by a model. In other words, an explanation does not necessarily
hinge on the general public understanding of how algorithmic systems func-
tion. Hence, the second family of explainers considers a classification model
as a black-box and provides explanations without looking inside the model.
It looks for possible correlations between input data and the predictions
made by a model. This approach has been applied to non-interpretable
models (eg. [9, 10, 14, 21, 22, 23, 24]) and also to interpretable ones (eg.
[11, 12, 19]).

Throughout the paper, we follow this second line of research and thus
consider black-box classification models. In this context, existing literature
suffers from three main shortcomings. The first concerns its focus mainly on
local explanations, indeed existing works provide explanations for individ-
ual instances. Such explanations are important in particular for providing
feedback for the users of a classifier (eg. explaining why a loan has been
rejected for a given customer). However, the compatibility of these local
explanations with the global behaviour of a model has not been sufficiently
studied. More generally, the question of explaining classes (instead of in-
stances) received little interest. Such explanations may be important for
data scientists to understand how a model assigns classes to input data.

It is also worth mentioning that several types of explanations have been
defined. The most prominent ones are prime implicants [18], called also
abductive explanations in [14], counterfactuals [24], semi-factual [25] and
contrastive explanations [22, 10]. The former are seen as sufficient reasons
for getting an outcome, counterfactuals are changes that should occur for
avoiding an outcome, and contrastive explanations clarify why an outcome
is proposed instead of another (desirable) one [6]. The second shortcoming
of this literature is that, with a rare exception [11], the previous types of
explanations have been studied in restrictive, practical, experimental cases,
and mostly in isolation. A comprehensive formal comparison is thus missing
while it is crucial for clarifying the role and added value of each notion, and
relate them to desirable properties for explanations.

The third shortcoming is due to the information used for generating ex-
planations. Some works like [11, 12, 16] generate abductive explanations
by exploring the whole feature space (i.e., complete information), which
may not be reasonable in practice especially for complex models. Other
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explainers, like Anchors [9] and LIME [8], generate explanations from a
proper subset of the feature space (i.e., incomplete information). The two
approaches (complete/incomplete information) have not been compared nei-
ther formally nor in an experimental way, and the strengths and weaknesses
of each approach are still unclear.

This paper bridges the above three gaps with four-fold contributions.
The first contribution consists of investigating global explanations of black-
box classifiers. We provide a formal and unifying framework in which such
explanations are defined from the whole feature space. The framework is
based on two concepts, which are seen as two types of global explanations:
arguments in favour of (or pro) predictions and arguments against (or con)
predictions. The former justify why a class is suggested by a classifier and
the latter state why a class is not proposed. We investigate the formal
properties of both types of arguments and show that they are dual. Indeed,
we provide ways for generating arguments pro a class from arguments con
the class and vice versa.

The second contribution consists of defining various types of local expla-
nations (abductive explanations, counterfactuals, contrastive explanations)
from the whole feature space, investigating their properties, links and dif-
ferences, and showing how they relate to global explanations. We show
that abductive explanations are based on arguments pro while contrastive
explanations and counterfactuals are based on arguments con.

The third contribution consists of analysing and defining explanation
functions that generate (global, local) abductive explanations from incom-
plete information, i.e. from a proper subset of the feature space. The subset
can be chosen in different ways: It may be the neighbourhood of specific
instances, or a set of instances on which the classifier returns a good confi-
dence, or simply a dataset on which it was trained. We start by proposing
two desirable properties that an explainer would satisfy, namely success
and coherence. The former ensures the existence of explanations while the
latter ensures their correctness. Indeed, it forbids two compatible sets of
features-values from explaining distinct classes. Then, we introduce plausi-
ble explanations, which are abductive explanations generated from a subset
of instances. Such explanations are only plausible since they are generated
from incomplete information, hence they may no longer be valid if the subset
of instances is extended with further ones. Such explainers are thus non-
monotonic. Furthermore, they violate the property of coherence leading to
incorrect explanations, elucidating thus the origin of the flaws of the func-
tions Anchors and LIME. We also show that any explainer which selects
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a subset of plausible explanations violates either coherence or success. In
other words, an explainer which generates a proper subset of plausible expla-
nations cannot satisfy the two properties (success and coherence) together.
Defining non-monotonic explainers that are coherent remains a challenge in
the XAI literature. The fourth contribution bridges this gap by proposing
two functions that generate abductive explanations and which satisfy the co-
herence property. They are based on argumentation, a reasoning approach
which is based on the construction and evaluation of interacting arguments
(see [26] for more on argumentation theory and its applications).

Argumentation is based on the justification of claims by arguments, i.e.
reasons for accepting claims. It received great interest from the Artificial
Intelligence community since late 1980s, namely as a unifying approach for
nonmonotonic reasoning [27]. It was later used for solving different other
problems like reasoning with inconsistent information (eg. [28, 29]), decision
making (eg. [30? ]), classification (eg. [31]), etc. It has also several practical
applications, namely in legal and medical domains (see [32]). Whatever the
problem to be solved, an argumentation process follows generally four main
steps: to justify claims by arguments, identify (attack, support) relations
between arguments, evaluate the arguments, and define an output. The last
step depends on the results of the evaluation. For instance, an inference
system draws formulas that are justified by what is qualified at the evalu-
ation step as “strong” arguments. Evaluation of arguments is thus crucial
as it impacts the outcomes of argument-based systems. Consequently, a
plethora of methods, called semantics, have been proposed in the literature.
The very first ones are the extension semantics (stable, preferred, complete
and grounded) that have been proposed by Dung in [33]. Argumentation is
a powerful approach for solving different kinds of conflicts. In this paper,
conflicts are due to the violation of the coherence property. We define then
two argumentation systems which solve the conflicts, each of which defines
an explanation function that guarantees coherence at the expense of success.

This paper unifies and extensively develops the content of two conference
papers [13, 17]. It contains detailed proofs of all the results and investigates
more deeply than [13] the notions of local and global explanations under
complete information. It also extends [17] in different ways. It introduces
the novel property of success and shows an impossibility result stating that
there is no function that generates abductive explanations from a subset of
the feature space and satisfies both coherence and success. The paper studies
deeply the properties of the explainer proposed in [17] and introduces a novel
one which takes into account priorities among features.
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The paper is structured as follows: Section 2 presents a background
on classification and some useful notations. Section 3 defines two types of
explanation functions and some properties. Section 4 investigates global and
local explanations under complete information while Section 5 studies the
case of incomplete information. Section 6 is devoted to related work and
the last section to concluding remarks and perspectives. Proofs are put in
an appendix at the end of the document.

2. Classification Problem

Let F = {f1, . . . , fn} be a finite and non-empty set of features (called
also attributes), dom is a function on F such that, for every f ∈ F , dom(f) is
countable (discrete domains) with |dom(f)| > 1. Throughout the paper, we
focus on the important case of discrete features, as is the case in important
applications (e.g., image or natural language processing). It is worth men-
tioning that there are well-known ways of discretizing continuous attributes,
which sometimes gives better results on some learning algorithms, see [34].
We call a literal any pair (f, v) where f ∈ F and v ∈ dom(f), and we denote
by Lit the set of all possible literals. A set of literals is consistent if it does
not contain two literals that assign distinct values to the same feature.

Definition 1 (Consistency). A set H ⊆ Lit is consistent iff @(f, v),
(f ′, v′) ∈ H such that f = f ′ and v 6= v′. Otherwise, H is said to be
inconsistent.

We call an instance any subset of literals in which every feature (of the set
F) appears exactly once, i.e., it is an assignment of values to all features.
We denote by Inst the set of all instances and call it feature space. Clearly,
the set Inst is finite since F and dom are finite. Furthermore, its elements
are all consistent and any consistent set of literals is included in at least one
instance.

Property 1. The following properties hold.

1. For any x ∈ Inst, x is consistent.

2. For any H ⊆ Lit such that H is consistent, the following hold:

(a) ∀H ′ ⊂ H, H ′ is consistent.
(b) ∃x ∈ Inst such that H ⊆ x.

For x ∈ Inst, H ⊆ Lit such that H is consistent, x↓H denotes the set
of literals obtained by replacing in x the values of the common features to
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the two sets by those in H and keeping the values of the remaining (non-
common) features unchanged. Formally:

x↓H = H ∪ {(f, v) | (f, v) ∈ x and @(f, v′) ∈ H}.

It is easy to show that the modified version of x is itself an instance, i.e.,
element of Inst.

Property 2. For any x ∈ Inst, for any H ⊆ Lit, if H is consistent, then
x↓H ∈ Inst.

Let C = {c1, . . . , cm}, with m > 1, be a finite and non-empty set of
possible distinct classes.

Definition 2 (Theory). A classification theory is a tuple T = 〈F , dom,
C〉 .

A classification model or classifier is a function which assigns to every
instance x ∈ Inst of a theory T = 〈F , dom, C〉 a single prediction, which
is a class from the set C. In some classification tasks, an instance can be
assigned several classes, however this case is beyond the scope of this paper.

Definition 3 (Classification Model). Let T = 〈F , dom, C〉 be a theory.
A classification model is a function F : Inst→ C.

Let us illustrate the above notions with a simple example borrowed from
[11].

Example 1. Consider the task of college admission. Decisions are made
on the basis of four binary features: Entrance exam (E), First time entrance
(F), Work experience (W), GPA (G). The decision is binary: a candidate is
either admitted or denied, so C = {Admitted, Denied}. Consider a Bayesian
network classifier F whose reasoning is represented by the following rules:

• If E = 1 and F = 0, then Admitted,

• If E = 1, F = 1, W = 1, then Admitted,

• If E = 1, F = 1 and W = 0 and G = 1, then Admitted,

• If E = 1, F = 1 and W = 0 and G = 0, then Denied,

• If E = 0, then Denied.
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Assume a student who passed the entrance exam, is a first-time applicant,
has no work experience and a high GPA. This corresponds to the instance
x = {(E, 1), (F, 1), (W, 0), (G, 1)} with F(x) = Admitted.

The previous example uses an interpretable classifier, Bayesian network.
The following example uses a complex classifier, like a deep neural network.

Example 2. Assume a classification problem of deciding whether to hike or
not. Hence, C = {c0, c1} where c0 stands for not hiking and c1 for hiking.
The decision is based on four binary features: Being in vacation (V ), having
a concert (C), having a meeting (M) and having an exhibition (E), thus
F = {V,C,M,E} and dom(.) = {0, 1}. Assume a classification model F that
assigns classes to instances of Y = {xi | i = 1, . . . , 7} ⊂ Inst as shown in
the table below.

Y V C M E F(xi)

x1 0 0 1 0 c0
x2 1 0 0 0 c1
x3 0 0 1 1 c0
x4 1 0 0 1 c1
x5 0 1 1 0 c0
x6 0 1 1 1 c0
x7 1 1 0 1 c1

The set of literals H = {(V, 0), (M, 0)} is consistent. Consider the instance
x1, note that x1↓H = {(V, 0), (M, 0), (C, 0), (E, 0)}.

3. Explanation Functions

Explaining a classifier means either describing its global behaviour, namely
how it assigns classes in general and independently of instances, or locally
justifying its predictions to individual instances. Whatever the goal, expla-
nations may take different forms including natural language texts (eg. [35]),
visualizations (eg. [36]), prototypes or examples (eg. [37]), conversations
(eg. [38]), and attributes-values (eg. [8]). In this paper, we focus on the
latter type where an explanation is a set of literals. We denote by
E the set of all possible explanations, i.e., the set of all subsets of literals.
Throughout this section, we consider a fixed but arbitrary theory T = 〈F ,
dom, C〉 and a classifier F which has predicted the outcomes of instances in
Inst.
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Global explanations concern classes (i.e., predictions) and answer two
questions: “why a given class is proposed?” or “why a class is not pro-
posed?”. A class explainer is a function which assigns to every class a set
of explanations.

Definition 4 (Class Explainer). A class explainer is a function G map-
ping every class c ∈ C into a set of explanations (i.e., a subset of E).

Local explanations concern instances (i.e., input data) and look for rea-
sons behind their predictions. They may answer different questions like:
“why a given class is proposed for the instance x?”, or “why the prediction
of the instance x has not been avoided?” or even “why the prediction of
x is the class c instead of c′?”. In this case, an explainer, called instance
explainer, is a function which assigns to every instance a set of explanations.

Definition 5 (Instance Explainer). An instance explainer is a function
L mapping every instance x ∈ Inst into a set of explanations (i.e., a subset
of E).

The two types of explainers are somehow related. Indeed, explaining for
example why an instance received some class consists mainly of providing
reasons behind assigning in general that class by the classifier. This means
that an instance explanation cannot be different from the prediction rules of
the classifier. We introduce below a notion of compatibility relating the two
types of explainers. It states that the explanations of a class are nothing
more than the explanations of instances labelled by that class.

Definition 6 (Compatibility). Let T = 〈F , dom, C〉 be a theory, F a clas-
sifier, L an instance explainer and G a class explainer. We say that L and G

are compatible iff, for every class c ∈ C, G(c) =
⋃

x∈Inst s.t. F(x)=c

L(x).

We discuss below two other properties that any class/instance explainer
would satisfy. Such properties are important for understanding the be-
haviour of an explainer, assessing its quality and for comparing pairs of
explainers. The first property ensures the existence of explanations. This
property may be mandatory for some types of explanations like sufficient
reasons and not for others like counterfactuals. Sufficient reasons provide
the main evidence behind assigning a class to an instance. Such explana-
tions are required and seen as crucial feedback by the users of the classifier.
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A counterfactual is a (minimal) change in instance for getting another out-
come, which is better than the current one from a user’s point of view.
Such explanation may not exist if the explainer returns only counterfactuals
whose changes are possible. Assume that for getting a bank loan, the age
of a customer should be at most 55. Sending such information to a 60 year
old customer is not necessary since the latter cannot modify his age.

Definition 7 (Success). A class explainer G (resp. instance explainer L)
satisfies success iff for any class c ∈ C (resp. any instance x ∈ Inst),
G(c) 6= ∅ (resp. L(x) 6= ∅).

The second property, called coherence, states that a set of literals cannot
lead to two distinct predictions. As we will see later, this property is crucial
for some type of explanations, namely sufficient reasons, called abductive
explanations in the literature. Let us illustrate the idea with examples.

Example 1 (Cont.) Let us recall the rules of the classifier.

• If E = 1 and F = 0, then Admitted,

• If E = 1, F = 1, W = 1, then Admitted,

• If E = 1, F = 1 and W = 0 and G = 1, then Admitted,

• If E = 1, F = 1 and W = 0 and G = 0, then Denied,

• If E = 0, then Denied.

Coherence prevents an explainer from providing the reason H = {(E, 1),
(F, 1), (W, 0)} to the class Admitted and H ′ = {(E, 1), (F, 1), (W, 0), (G, 0)}
to the class Denied. In the example, H is incomplete and as such it does
not explain properly the class.

Let us consider another example of situation that is prevented by the
coherence property.

Example 2 (Cont.) Assume an explainer which provides sufficient reasons
for predictions. Assume also that it explains the classes c0 and c1 with the
sets {(V, 0)} and {(M, 0)} respectively. Note that the set {(V, 0), (M, 0)}
is consistent, then there exists at least one instance x in the feature space
such that {(V, 0), (M, 0)} ⊆ x (see Property 1). Hence {(V, 0)} and {(M, 0)}
cannot be reasons for predicting c0 and c1 respectively.
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To sum up, there are two undesirable situations that are prevented by
coherence for a class explainer G. Let c, c′ ∈ C such that c 6= c′.

1. H ∈ G(c), H ′ ∈ G(c′) with H ⊆ H ′.
2. H ∈ G(c), H ′ ∈ G(c′) with H 6⊆ H ′ and H ∪H ′ is consistent.

Definition 8 (Coherence). A class explainer G satisfies coherence iff for
any two classes c, c′ ∈ C such that c 6= c′ the following holds: ∀H ∈ G(c),
∀H ′ ∈ G(c′), H ∪H ′ is inconsistent.

An instance explainer L satisfies coherence iff for any two instances
x, x′ ∈ Inst such that F(x) 6= F(x′) the following holds: ∀H ∈ L(x),
∀H ′ ∈ L(x′), H ∪H ′ is inconsistent.

The following result summarizes the links between the above properties.

Property 3. Let G and L be a class explainer and an instance explainer
respectively.

• If G and L are compatible and G is coherent, then L is coherent.

• If G and L are compatible and L is coherent, then G is coherent.

4. Explaining Classifiers under Complete Information

Two approaches for explaining black-box classification models have been
distinguished in the literature: a global approach which aims at stressing
when classes are predicted independently of instances, and a local approach
which looks for justifying individual predictions. In addition, different types
of local explanations have been studied in the recent literature, however
their links to global explanations remain unclear. In this section, we pro-
pose a unified setting for global explanations and local ones. It is based on
dual concepts that provide global explanations: arguments in favour of pre-
dictions and arguments against predictions. The former justify why a class
is suggested by a black-box classifier and the latter state why a class is not
proposed. We investigate the properties of both types of arguments, and
provide ways for generating arguments pro a class from arguments con the
class and vice versa. Finally, we define abductive explanations by arguments
pros and counterfactuals and contrastive explanations with arguments cons.
The three types are defined under complete information since they are gen-
erated from the whole feature space. Throughout the section, we assume
an arbitrary but fixed theory T = 〈F , dom, C〉 and an arbitrary but fixed
classifier F.
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4.1. Global Explanations

This section aims at understanding how a classifier F assigns classes to
instances of a theory T. For that purpose, we assume the availability of an
oracle of F that can be queried on any instance. We are interested by the
question: what is an argument in favour of labelling an instance with a class
c? In what follows, we consider an argument as a set of literals that are
minimally sufficient for labelling an instance with c. In other words, it is
the smallest set of literals that always lead to the class c. Such arguments
provide sufficient reasons for proposing a class c.

Definition 9 (Argument Pro). An argument pro a class c ∈ C is a pair
〈H, c〉 such that:

• H ⊆ Lit

• H is consistent

• ∀x ∈ Inst such that H ⊆ x, F(x) = c

• @H ′ ⊂ H such that H ′ satisfies the third condition.

H and c are respectively called support and conclusion of the argument. Let
Pros(c) denote the set of all arguments pro c in theory T, and arg+(T) =⋃
c∈C

Pros(c), i.e., arg+(T) stands for the set of all arguments pro classes of

a theory. Let Gpro be the class explainer which assigns to every class c ∈ C
a set {H | 〈H, c〉 ∈ Pros(c)}.

The consistency condition is useful for discarding irrelevant arguments,
thus global explanations, of the form 〈{(f1, v1), (f1, v2)}, c〉.

Example 1 (Cont.) It can be checked that Gpro(Denied) = {H1, H2} such
that:

• H1 = {(E, 0)},

• H2 = {(E, 1), (F, 1), (W, 0), (G, 0)}.

Gpro(Amitted) = {H ′1, H ′2, H ′3} such that:

• H ′1 = {(E, 1), (F, 0)},

• H ′2 = {(E, 1), (F, 1), (W, 1)},

• H ′3 = {(E, 1), (F, 1), (W, 0), (G, 1)}.
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Example 3. Let T = 〈F , dom, C〉 be such that F = {f1, f2}, dom(f1) =
dom(f2) = {0, 1}, and C = {c1, c2, c3}. Assume the following assignments of
classes to instances by a classifier F.

Inst f1 f2 F(xi)

x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

The classes c1, c2, c3 are supported respectively by the arguments a1, a2, a3
such that:

• a1 = 〈{(f1, 0), (f2, 0)}, c1〉 Gpro(c1) = {{(f1, 0), (f2, 0)}}

• a2 = 〈{(f1, 0), (f2, 1)}, c2〉 Gpro(c2) = {{(f1, 0), (f2, 1)}}

• a3 = 〈{(f1, 1)}, c3〉 Gpro(c3) = {{(f1, 1)}}

A class may have zero, one, or several arguments pro. The first case
holds when the class is not assigned by the classification model F to any
instance. When the same class is assigned to all instances of Inst, then
the set of arguments would contain a single argument, which is in favour of
the class and its support is the empty set. Furthermore, from a theory, it
is possible to generate arguments in favour of any class provided that the
latter is ascribed to at least one instance. Finally, every argument refers
to at least one instance of Inst. Note that from the same instance, it is
possible to generate more than one argument in favour of a class.

Proposition 1. Let c ∈ C. The following properties hold:

1. (arg+(T) = {〈∅, c〉}) ⇐⇒ (∀x ∈ Inst, F(x) = c)

2. For any x ∈ Inst, if F(x) = c, then ∃〈H, c〉 ∈ Pros(c). Furthermore,
H ⊆ x.

3. If 〈H, c〉 ∈ Pros(c), then ∃x ∈ Inst such that F(x) = c.

4. Pros(c) = ∅ iff ∀x ∈ Inst, F(x) 6= c.

The fourth property in the previous result shows that the only case where
a class is not supported by argument is when the class is never assigned
by the classification model. This case is extreme as it does not occur in
practice. Hence, if a classifier is surjective, then pros exist for every class
and consequently, Gpro satisfies success.
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Proposition 2. If the classifier F is a surjective function, then Gpro satisfies
success.

The following result shows that the supports of any pair of arguments
pro distinct classes are inconsistent. This means that the class explainer
Gpro satisfies coherence.

Proposition 3. Let c, c′ ∈ C with c 6= c′. For all 〈H, c〉, 〈H ′, c′〉 ∈ arg+(T),
the set H ∪H ′ is inconsistent. And, Gpro satisfies coherence.

We show next that the arguments that can be generated from a theory
define a partition of the set Inst of instances.

Proposition 4. Let C = {c1, . . . , cm} and i ∈ {1, . . . ,m},

Insti = {x ∈ Inst | ∃〈H, ci〉 ∈ arg+(T) and H ⊆ x}.

The following properties hold:

1. For all i, j ∈ {1, . . . ,m} such that i 6= j, Insti ∩ Instj = ∅.
2. Inst = Inst1 ∪ . . . ∪ Instm.

We now introduce the notion of argument against or con a class, say c.
It is a minimal set of literals that is sufficient for not assigning the class c
to any instance. It defines explanations that answer the question “why c is
not recommended by a classifier?” or “why not c?”.

Notation: For c ∈ C, c denotes that c is not recommended.

Definition 10 (Argument Con). Let c ∈ C. An argument con c is a pair
〈H, c〉 such that:

• H ⊆ Lit

• H is consistent

• ∀x ∈ Inst such that H ⊆ x, F(x) 6= c

• @H ′ ⊂ H such that H ′ satisfies the third condition.

Let Cons(c) be the set of all arguments con c and arg−(T) =
⋃
c∈C

Cons(c),

i.e., arg−(T) stands for the set of all arguments con classes of a theory.
Let Gcon be the class explainer which assigns to every class c ∈ C a set
{H | 〈H, c〉 ∈ Cons(c)}.
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Example 3 (Cont.) The classes c1, c2, c3 have the following arguments
con.

• b1 = 〈{(f1, 1)}, c1〉 Gcon(c1) = {{(f1, 1)}, {(f2, 1)}}

• b2 = 〈{(f2, 1)}, c1〉

• b3 = 〈{(f1, 1)}, c2〉 Gcon(c2) = {{(f1, 1)}, {(f2, 0)}}

• b4 = 〈{(f2, 0)}, c2〉

• b5 = 〈{f1, 0}, c3〉 Gcon(c3) = {{f1, 0}}

This example shows clearly that coherence is not satisfied by the class
explainer Gcon. It is even not recommended when explaining why a class
does not hold. Indeed, two classes like c1 and c2 may have the same reason
for avoiding them, namely {(f1, 1)}. This shows a key difference between
explaining “why a class is suggested” and “why it is not suggested”.

Proposition 5. The class explainer Gcon violates coherence.

It is easy to show that when the concept to learn is binary, the arguments
pro one class are con the other.

Proposition 6. If C = {c, c′}, then:

1. Pros(c) = {〈H, c〉 | 〈H, c′〉 ∈ Cons(c′)},
2. Cons(c) = {〈H, c〉 | 〈H, c′〉 ∈ Pros(c′)}.

In case of non-binary concepts, an argument that is against a given class
does not necessarily support another class. Let us consider the following
abstract example.

Example 3 (Cont.) The argument 〈{(f1, 0)}, c3〉 is against c3, however
the set {(f1, 0)} is not sufficient for supporting any other class.

Naturally, the support of every argument against a class is inconsistent
with the support of any argument pro that class.

Proposition 7. Let c ∈ C. For all 〈H, c〉 ∈ Pros(c), 〈H ′, c〉 ∈ Cons(c), the
set H ∪H ′ is inconsistent.

The following results show the relationship between an argument against
a class and those supporting other classes.
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Proposition 8. Let c ∈ C. The following properties hold:

1. 〈∅, c〉 ∈ Cons(c) iff ∀x ∈ Inst, F(x) 6= c.

2. If 〈H, c〉 ∈ Cons(c), then ∃x ∈ Inst such that F(x) 6= c. Furthermore,
H ⊆ x.

3. If ∃x ∈ Inst such that F(x) 6= c, then ∃〈H, c〉 ∈ Cons(c) such that
H ⊆ x.

4. If 〈H, c〉 ∈ Pros(c), then ∀c′ ∈ C \ {c}, ∃〈H ′, c′〉 ∈ Cons(c′) such that
H ′ ⊆ H.

While a class that is not assigned to any instance has no pros, we show
that it has a single argument con whose support is the empty set.

Proposition 9. Let c ∈ C. The following equivalences hold:

1. (Pros(c) = ∅) ⇐⇒ (Cons(c) = {〈∅, c〉})
2. (Cons(c) = ∅) ⇐⇒ (Pros(c) = {〈∅, c〉})

We have also the following straightforward property.

Proposition 10. Let c ∈ C. It holds that Inst = Y ∪ Z where

Y = {x ∈ Inst | ∃〈H, c〉 ∈ Cons(c) and H ⊆ x},

Z = {x ∈ Inst | ∃〈H, c〉 ∈ Pros(c) and H ⊆ x}.

From this property, it follows that if the classifier is a surjective function,
then the class explainer Gcon satisfies success.

Proposition 11. If the classifier F is a surjective function, then Gcon sat-
isfies success.

We show next that the two class explainers provide dual explanations.
Indeed, the sufficient reasons for proposing a class c can be generated from
the sufficient reasons for discarding the class and vice versa. The first result
below shows how to define the elements of the set Gpro(c) from those of the
set Gcon.

Theorem 1. Let c ∈ C and H ⊆ Lit. H ∈ Gpro(c) iff the following hold:

• H is consistent

• ∀H ′ ∈ Gcon(c), H ∪H ′ is inconsistent,
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• @H ′′ ⊆ Lit such that H ′′ ⊂ H and H ′′ satisfies the second condition.

The following result shows how to generate sufficient reasons for discard-
ing a class from sufficient reasons for proposing the class to instances.

Theorem 2. Let c ∈ C and H ⊆ Lit. H ∈ Gcon(c) iff the following hold:

• H is consistent

• ∀H ′ ∈ Gpro(c), H ∪H ′ is inconsistent,

• @H ′′ ⊆ Lit such that H ′′ ⊂ H and H ′′ satisfies the second condition.

To sum up, this section discussed two types of global explanations under
complete information: sufficient reasons for assigning a class to instances
and sufficient reasons for not suggesting the class. We have shown that
the two types are dual, and thus each of them can be generated from the
other. Both types of explanations exist when the classifier is a surjective
function. Note that in practice, this constraint is satisfied since every class
is assigned to at least one instance. The two types are however distinguished
by the coherence property. We have seen that this property is mandatory
for explaining why a class is suggested otherwise incorrect answers could be
provided by the corresponding class explainer. However, coherence is not
required for answering why a class is not proposed.

4.2. Local Explanations

This section investigates three types of local explanations: abductive
explanations, contrastive explanations and counterfactual explanations. It
studies their formal properties and their links with the global explanations
which are input-dependent. We show that local explanations, whatever their
type, are generated from arguments pro/con classes.

4.2.1. Abductive Explanations

Abductive explanations answer the question: “why an instance x is la-
belled with a class c”?, i.e., why does the outcome c hold for x? The an-
swer consists in highlighting factors that determined the given class. In
[11, 12, 18, 39, 40], an abductive explanation, called also prime implicant
in [11, 18], is defined as a minimal (for set inclusion) set of literals that is
sufficient for predicting a class. It is thus a sufficient reason for assigning
a class to an instance. Such explanations are closely tied to arguments pro
classes. They are definitely the supports of arguments pro classes. In what
follows, we refer to them as absolute explanations since they are generated
from the whole feature space (see condition 3 of Definition 9)
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Definition 11 (Absolute Abductive Explanation). Let x ∈ Inst. An
absolute abductive explanation of x is any member of the set:

Lae(x) = {H ⊆ Lit | H ∈ Gpro(c) and H ⊆ x}.

Example 1 (Cont.) Assume a candidate who has the following pro-
file: {(E, 0), (F, ), (W, 0), (G, 0)}. The Bayesian classifier assigns the class
Denied. There is a single explanation in this case: Lae(x) = {H1} where
H1 = {(E, 0)}. Recall that the class Denied has another global explanation,
which is H2 = {(E, 1), (F, 1), (W, 0), (G, 0)}.

Example 3 (Cont.) The absolute abductive explanations of x1, x2, x3, x4
are as follows:

• Lae(x1) = {H1} H1 = {(f1, 0), (f2, 0)}

• Lae(x2) = {H2} H2 = {(f1, 0), (f2, 1)}

• Lae(x3) = {H3} H3 = {(f1, 1)}

• Lae(x4) = {H3}

From the results presented in the previous section, it follows that a class
that is assigned to all instances has a unique explanation, which is the
emptyset.

Proposition 12. Let x ∈ Inst.

1. Lae(x) = {∅} iff ∀y ∈ Inst, F(y) = F(x).

2. Lae(x) ⊆ Gpro(c)

We show that the absolute abductive explanation function is coherent
and satisfies success. Furthermore, it is compatible with Gpro.

Proposition 13. The function Lae satisfies coherence and success. Fur-
thermore, Lae and Gpro are compatible.

Remark: It is worth mentioning that in [15], an abductive explanation of
an instance x is defined as the minimal set of features (instead of literals)
that determine the class F(x). Formally, the set of explanations of x is:
{{f ∈ F | (f, t) ∈ H} where H ∈ Lae(x)}. This feature-based definition is
reasonable when providing local explanations (i.e., for instances), however
unlike our definition, it may not recover the global explanations of a
class as shown in the following example.
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Example 3 (Cont.) The feature f1 determines the prediction c3, hence
{f1} is an explanation of x3 and x4. However, this is true only when f1 gets
the value 1. Indeed, if f1 receives 0, then c3 is not recommended by the
classifier. Thus, from the explanations of the instances, it is not possible to
deduce those of the classes.

4.2.2. Counterfactual Explanations

Counterfactual explanations are widely used for interpreting predictions
of black-box machine learning models, see eg. [23, 24, 41]. In the literature,
such explanations are sometimes confused with contrastive explanations.
In [6] a clear distinction is made between the two notions. Counterfactuals
state how the outcome of a given instance could have been changed. For that
purpose, they provide the (minimal) change in an instance that is sufficient
for altering the prediction of the instance to whatever class. The key idea
is then to avoid the current class of an instance, and this is exactly what
arguments cons a class provide.

Definition 12 (Counterfactual Explanation). Let x ∈ Inst. The coun-
terfactual explanations of x are the minimal (for set inclusion) elements of
the set:

{H \ x | 〈H, F(x)〉 ∈ Cons(F(x))}.

We denote by Lcf (x) the set of all counterfactual explanations of x.

Example 4. Consider the theory below:

Inst f1 f2 f3 F(xi)

x1 0 0 0 c1
x2 0 0 1 c1
x3 0 1 0 c1
x4 0 1 1 c2
x5 1 0 0 c1
x6 1 0 1 c3
x7 1 1 0 c3
x8 1 1 1 c3

Let us focus on the instance x2 and how to avoid its outcome c1. The class
c1 has three arguments con 〈Ui, c1〉 each of which leads to some Hi:

• U1 = {(f1, 1), (f2, 1)} H1 = U1 \ x2 = {(f1, 1), (f2, 1)}

• U2 = {(f1, 1), (f3, 1)} H2 = U2 \ x2 = {(f1, 1)}
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• U3 = {(f2, 1), (f3, 1)} H3 = U3 \ x2 = {(f2, 1)}

The counterfactual explanations of x2 are H2 and H3. They state respec-
tively that the value of f1 and f2 should be modified in order to avoid the
class current c1.

Remark: Note that arguments con a class may intersect with instances to
which the class is assigned (e.g. U2 and U3 share the literal (f3, 1) with x2).
The definition of counterfactual explanation removes those common literals.

The following result provides a characterization of counterfactual expla-
nations.

Theorem 3. For any x ∈ Inst, H ∈ Lcf (x) iff H satisfies the conditions
below:

• H ⊆ Lit

• H is consistent

• F(x↓H) 6= F(x)

• @H ′ ⊂ H such that H ′ satisfies the above conditions.

Remark: Our definition of counterfactual explanation generalizes and solves
a drawback of the notion of contrastive explanation as presented in [15]. In
that paper, a contrastive explanation for an instance x is defined as a mini-
mal (for set inclusion) subset of features F ⊆ F such that ∃y ∈ Inst \ {x}
where F(y) 6= F(x) and ∀f ∈ F \ F , Val(f, x) = Val(f, y). In Example 4,
the contrastive explanations of x2 are {f1} and {f2}. Such a definition is
reasonable when all features are binary since the modified value of each at-
tribute is implicit. This is however not true in the general case as shown in
the following example.

Example 5. Consider the following theory and a classifier that provides the
predictions described in the table below.

Inst f1 f2 F(xi)

x1 0 0 c1
x2 0 1 c2
x3 0 2 c1
x4 1 0 c3
x5 1 1 c3
x6 1 2 c3
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The instance x1 has two contrastive explanations in the sense of [15]: {f1}
and {f2}. However, it is worth noticing that f2 can only be modified to 1
since when it receives the value 2, the prediction does not change.

Unlike abductive explanations, counterfactual explanations may not ex-
ist. This is particularly the case when the class of the input at hand is
assigned to all instances of the feature space. However, they can never be
the empty set.

Proposition 14. Let x ∈ Inst. The following hold:

1. Lcf (x) ⊆ {H \ x | H ∈ Gcon(c)},
2. Lcf (x) = ∅ iff ∀y ∈ Inst, F(y) = F(x),

3. ∅ /∈ Lcf (x)

We have seen in the previous section that the property of coherence is
not required for the class explainer Gcon. It is also not required for counter-
factual explanations since the same minimal change may be necessary for
two instances which have different predictions.

Proposition 15. The instance explainer Lcf violates coherence. If the clas-
sifier F is a surjective function, then Lcf satisfies success.

4.2.3. Contrastive Explanations

A predominant finding from research in the philosophy of science and
social sciences is that explanation-seeking behaviour is generally contrastive
[42]. Indeed, when asking why a model predicted an output, humans ask
for a contrast against an expected output, called foil in the literature. They
answer thus the question: Why class c rather than class c′?. Contrastive
explanations oppose thus the current prediction of an instance to another
(generally desirable) outcome [10, 6]. In what follows, we define a contrastive
explanation as a minimal change in the instance which leads to the expected
class.

Definition 13 (Contrastive Explanation). Let x ∈ Inst, c ∈ C such
that F(x) 6= c. A contrastive explanation of (x, c) is a set H ⊆ Lit such
that:

• H is consistent,

• ∃y ∈ Inst such that F(y) = c and y = x↓H ,
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• @H ′ ⊂ H s.t. H ′ satisfies the above conditions.

Let Lco(x, c) denote the set of all contrastive explanations of (x, c).

Example 3 (Cont.) It is easy to check that Lco(x1, c2) = {{(f2, 1)}}. The
informal reading: if the feature f2 takes the value 1, then the outcome will
no longer be c1 but rather c2. Note also that Lco(x1, c3) = {{(f1, 1)}}.

In what follows, we show that contrastive explanations and counterfac-
tual explanations may be different.

Example 6. Consider the theory below:

Inst f1 f2 f3 F(xi)

x1 1 0 0 c1
x2 0 1 1 c2
x3 1 0 1 c3
x4 1 1 0 c3
x5 1 1 1 c3

Let us focus on the instance x1 and how to avoid its outcome c1. It can
be checked that x1 has two counterfactual explanations: H1 = {(f2, 1)} and
H2 = {(f3, 1)}. Assume now that our expected outcome is the class c2. Note
that none of the two possible changes lead to the desirable outcome. Indeed,
x1↓H1 = x4 and F(x4) 6= c2 and x1↓H2 = x4 and F(x3) 6= c2. The pair (x1, c2)
has a single contrastive explanation which is {(f1, 0), (f2, 1), (f3, 1)}.

When the concept to learn is binary, contrastive explanations coincide
with the counterfactual ones. This is not surprising since there is only one
possible targeted class.

Proposition 16. Let T = 〈F , dom, C〉 be a theory, C = {c, c′}, and x ∈ Inst

such that F(x) = c. It holds that Lco(x, c
′) = Lcf (x).

We show next that the function Lco satisfies success when the classifier
is surjective, but it violates coherence.

Proposition 17. The instance explainer Lco satisfies success when the clas-
sifier is surjective. It violates coherence.
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5. Explaining Classifiers under Incomplete Information

All types of explanations that we introduced in the previous section re-
quire exploring the whole feature space. While the corresponding explainers
satisfy interesting properties, the approach may not be feasible, in partic-
ular for complex classifiers whose querying may not be reasonable for all
instances. In this section, we investigate explanations under incomplete in-
formation, i.e., only a subset of instances is considered. The latter may be
the dataset a classifier has been trained on, a dataset in which the classifier
has better performance, etc. It is worth mentioning that some well-known
explanation functions like Anchors [9] and LIME [8]) already follow this ap-
proach and use datasets that they generate in specific ways. Throughout
this section, we focus on local explanations, namely sufficient reasons for
instance prediction, or abductive explanations. We consider an arbitrary
theory T = 〈F , dom, C〉 , a subset Y ⊆ Inst of instances and a classifier F.

5.1. Plausible Explanations

We define an explanation function that provides minimally sufficient
reasons from a dataset Y. Such a definition abstracts Anchors and LIME
since they both use datasets generated in different ways. Explanations are
based on arguments pro classes generated from Y as follows.

Definition 14 (Argument). Let c ∈ C. An argument in favor of c is a
pair 〈H, c〉 where:

• H ⊆ Lit,

• ∃x ∈ Y such that H ⊆ x,

• ∀y ∈ Y s.t. H ⊆ y, F(y) = c,

• @H ′ ⊂ H that verifies the above conditions.

H and c are called respectively support and conclusion of the argument. Let
arg(Y) denote the set of arguments built from Y.

Note that the set arg(Y) is finite since Y is finite. This set is used for
defining plausible abductive explanations for instances.

Definition 15 (Plausible Explanation). Let x ∈ Inst. A plausible ex-
planation of x is any member of the set:

Lpe(x) = {H ⊆ Lit | 〈H, F(x)〉 ∈ arg(Y) and H ⊆ x}.
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Consider the initial running example which contains seven instances.

Example 2 (Cont.) There are two classes in the theory: c0, c1. Their
arguments are given below:

• a1 = 〈U1, c0〉 U1 = {(V, 0)}

• a2 = 〈U2, c0〉 U2 = {(M, 1)}

• a3 = 〈U3, c0〉 U3 = {(C, 1), (E, 0)}

• a4 = 〈U4, c1〉 U4 = {(V, 1)}

• a5 = 〈U5, c1〉 U5 = {(M, 0)}

It can be checked that:

• Lpe(x1) = {U1, U2}

• Lpe(x5) = {U1, U2, U3}

• Lpe(x2) = Lpe(x4) = Lpe(x7) = {U4, U5}

Every plausible abductive explanation is consistent. Furthermore, an in-
stance may have one or several (absolute, plausible) abductive explanations.

Proposition 18. Let x ∈ Y.

1. For any H ∈ Lpe(x), H is consistent.

2. If Y = Inst, then Lae(x) = Lpe(x)

3. Lpe(x) = {∅} iff ∀y ∈ Y \ {x}, F(y) = F(x).

The plausible abductive explanation function Lpe guarantees at least one
explanation for every instance, however it violates coherence. This means
that it may return incorrect explanations. Indeed, in Example 2, the two
instances x1 and x2 are assigned different classes. However, {(V, 0)} is a
plausible explanation of x1 and {(M, 0)} is a plausible explanation of x2.
Note that the set {(V, 0), (M, 0)} is consistent. Thus, there exists for sure
an instance, say z ∈ Inst, such that {(V, 0), (M, 0)} ⊆ z. Hence, the third
condition of Definition 15 would not be applicable, which means that at
least one of two explanations is incorrect.

Proposition 19. The function Lpe violates coherence and satisfies success.
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Remark: As noted earlier, Anchors and LIME explanation functions are
somehow instances of Lpe as they generate abductive explanations from a
proper subset of the feature space. They even do not use a whole dataset but
only instances that are in the neighbourhood of the instance being explained.
Hence, the two functions violate coherence.

Let us switch to another property of the instance explainer Lpe. We show
that a plausible explanation of an instance is not necessarily an absolute one,
while, ideally Lpe should approximate Lae.

Property 4. Let Y ⊂ Inst and x ∈ Y. Lpe(x) 6⊆ Lae(x).

Example 2 (Cont.) Consider the instance x5. Recall that U3 = {(C, 1),
(E, 0)} is a plausible explanation of x5. Assume we receive the new instance
x8 below:

Y V C M E F(x8)

x8 1 1 0 0 c1

Note that {(C, 1), (E, 0)} is no longer a plausible explanation of x5 that can
be generated from the set Y ∪ {x5}.

We show next that when the set of plausible explanations generated by
Lpe is incoherent, then any explainer which extracts a subset of those expla-
nations cannot guarantee success and coherence together. Before presenting
the formal result, let us first introduce plausible explainers.

Definition 16 (Plausible Explainer). Let Y ⊆ Inst. A plausible ex-
plainer is a function L mapping every instance x ∈ Y into L(x) ⊆ Lpe(x).

We show next that there is no plausible explainer that can satisfy the
two principles at the same time. This impossibility result is important as it
shows the existence of a dilemma between two desirable properties.

Theorem 4. There is no plausible explainer that satisfies both coherence
and success.

Depending on the application domain, one can choose the property to
be satisfied. In critical applications like healthcare, providing correct ex-
planations is crucial as they may be used for making further decisions like
prescribing treatments for patients.
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To sum up, explanations are constructed from a dataset, which is a subset
of the feature space of a theory. However, due to incompleteness of informa-
tion in the dataset, some explanations may be incorrect, i.e., they are not
absolute. Furthermore, we have seen that the actual functions (like Anchors
and LIME) that generate plausible explanations suffer from another weak-
ness which is incoherence. The latter leads also to incorrect explanations.
Thus, defining an explanation function that is coherent remains a challenge
in the literature. However, the impossibility result shows that satisfaction
of coherence would be at the expense of success. In the next sections, we
propose two such functions.

5.2. Argument-based Explanation Function

We propose a novel explanation function, which is based on arguments
(see Definition 14). The latter support classes, in the sense they provide
the minimal sets of literals that determine a class. They are thus inde-
pendent from instances. An advantage of not considering instances is to
reduce the number of arguments that can be built. The arguments may be
conflicting. This is particularly the case when they violate the coherence
property, namely when their supports are consistent but their conclusions
are different.

Definition 17 (Attack Relation). Let 〈H, c〉, 〈H ′, c′〉 ∈ arg(Y). We say
that 〈H, c〉 attacks 〈H ′, c′〉 iff:

• H ∪H ′ is consistent, and

• c 6= c′.

Obviously, the above attack relation is symmetric and irreflexive.

Property 5. Let a, b ∈ arg(Y). If a attacks b, then b attacks a. Further-
more, an argument does not attack itself.

Example 2 (Cont.) The attacks between the arguments are depicted in
the figure below:

a2 a4 a3

a1 a5
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In this example, every argument in favor of a class attacks at least one argu-
ment in favour of the other class. This shows that the plausible explanations
generated by the function Lpe are incoherent, and cannot all be correct.

Arguments and their attack relationships form what we call an argumen-
tation system.

Definition 18 (Argumentation System). An argumentation system built
from Y ⊆ Inst is a pair AS = 〈arg(Y),R〉 where R ⊆ arg(Y)×arg(Y) such
that for a, b ∈ arg(Y), (a, b) ∈ R iff a attacks b (in the sense of Defini-
tion 17).

Since arguments are conflicting, they should be evaluated using a seman-
tics. There are different types of semantics in the literature. In this paper,
we consider extension-based ones that have been introduced by Dung in [33].
They compute sets of arguments that can be jointly accepted. Each set is
called an extension and represents a coherent position. In this paper, we
focus on stable semantics defined as follows.

Definition 19 (Stable Extensions). Let AS = 〈arg(Y),R〉 be an argu-
mentation system and E ⊆ arg(Y). The set E is a stable extension iff:

• @a, b ∈ E such that (a, b) ∈ R, and

• ∀a ∈ arg(Y) \ E, ∃b ∈ E such that (b, a) ∈ R.

Let σ(AS) denote the set of all stable extensions of AS.

It is well-known that stable extensions may not exist in some cases. How-
ever, since the attack relation is symmetric and irreflexive, stable extensions
coincide with the naive ones which always exist in this case as shown in [43].

Example 2 (Cont.) The argumentation system has four stable extensions:

• E1 = {a1, a2, a3}

• E2 = {a1, a4}

• E3 = {a2, a5}

• E4 = {a4, a5}

Each stable extension refers to a possible set of explanations. Note that
E1 and E4 promote respectively the arguments in favour of c0 and those in
favour of c1, while E2 and E3 contain arguments supporting both classes.
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We are now ready to define the new explanation function. For a given
instance x, it returns the support of any argument in favour of F(x) that is
in every stable extension and the support should be part of x. The intuition
is the following: when two arguments cannot hold together (coherence being
violated), both are discarded since at least one of them is incorrect. Without
additional information (eg., on possible strength of arguments), it is hard to
choose an argument at the expense of the other. The choice would certainly
be arbitrary, and it is likely that the chosen argument is the wrong one. Our
approach is therefore cautious as it abstains when facing a conflict between
arguments. It keeps only the arguments that belong to all stable extensions.

Definition 20 (Explainer L∗). Let Y ⊆ Inst and x ∈ Y. The set of
explanations of x is the following:

L∗(x) = {H ⊆ Lit | H ⊆ x and 〈H, F(x)〉 ∈
⋂

Ei∈σ(AS)

Ei},

where AS = 〈arg(Y),R〉 is an argumentation system.

Example 2 (Cont.) It can be checked that
⋂

Ei∈σ(AS)
Ei = ∅. Hence, ∀x ∈ Y,

L∗(x) = ∅. This means that with the available information, it is not possible
to generate reasonable abductive explanations.

In the above example, none of the instances of the dataset have explana-
tions since all the five arguments are attacked. However, this is not always
the case as shown in the following example.

Example 7. Consider the theory below.

Y f1 f2 F(Ii)

x1 0 0 c1
x2 0 1 c2
x3 1 0 c3

The argumentation system that is built from Y has three arguments a1, a2, a3:

• a1 = 〈{L1}, c1〉 L1 = {(f1, 0), (f2, 0)}

• a2 = 〈{L2}, c2〉 L2 = {(f2, 1)}

• a3 = 〈{L3}, c3〉 L3 = {(f1, 1)}
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Note that a2 attacks a3 and a3 attacks a2. Thus, the system has two stable
extensions:

• E1 = {a1, a2}

• E2 = {a1, a3}

Thus, L∗(x1) = {L1} and L∗(x2) = L∗(x3) = ∅.

When L∗ is applied on the whole feature space, the attack relation of
the corresponding argumentation system would be empty, and the gener-
ated explanations coincide with the absolute ones. It is also clear that the
function returns plausible explanations.

Proposition 20. Let Y ⊆ Inst and x ∈ Y.

• If Y = Inst, then L∗ = Lae,

• L∗(x) ⊆ Lpe(x).

One can observe that the sole explanation of x1 in Example 7 is the sup-
port of an argument (a1) which is not attacked in the argumentation system.
We characterize below the set of explanations returned by the novel func-
tion L∗, and show that it only provides supports of non-attacked arguments.
Before giving the result, let us first introduce some useful notation.

Notation: For Y ⊆ Inst, we denote by arg∗(Y) the set of all non-attacked
arguments, i.e., arg∗(Y) = {a ∈ arg(Y) | @b ∈ arg(Y) such that b attacks a}.

Theorem 5. Let Y ⊆ Inst and x ∈ Y.

L∗(x) = {H ⊆ Lit | H ⊆ x and 〈H, F(x)〉 ∈ arg ∗(Y)},

As a consequence, we show that L∗ keeps among all plausible explana-
tions (see Definition 15), those that are not involved in any conflict.

Corollary 1. Let Y ⊆ Inst, H ⊆ Lit and x ∈ Y. H ∈ L∗(x) iff:

• H ∈ Lpe(x), and

• ∀x′ ∈ Y such that F(x) 6= F(x′), @H ′ ∈ Lpe(x
′) with H ∪H ′ is consis-

tent.

Let us now switch to the behaviour of the function L∗ regarding the two
properties of coherence and success. We show that it satisfies the former
but violates the latter.
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Proposition 21. The function L∗ satisfies coherence and violates success.

To sum up, the function L∗ violates success due mainly to the impos-
sibility result given in Theorem 4. The function itself is very cautious as
it considers only non-conflicting plausible explanations, rejecting thus all
conflicts and leaving them unsolved. To explain more instances, a func-
tion would have to solve in a reasoned way conflicts, and for that it would
need additional information. In the next section, we propose another func-
tion which may explain more instances than L∗ while ensuring coherence.
It solves conflicts using external information, namely priorities on features.
Like L∗, it uses intersection for aggregating extensions. Intersection ensures
coherence by preventing picking up an argument from one extension and its
attacker from another extension.

5.3. Weighted Explanation Function

In the previous section, we introduced a function which generates ab-
ductive explanations from a dataset while satisfying coherence at the cost
of success. When facing a conflict, the function rejects all the involved ar-
guments. In order to solve conflicts, additional information should be used
to effectively discriminate between arguments. For example, one might as-
sign to every argument a strength. The latter may represent different things
including the proportion of instances of a dataset that are covered by the
argument’s support. The greater the proportion, the stronger the argu-
ment. In what follows, we rather investigate another source of strength,
which comes from priorities on features. It is quite common in classification
tasks that some features are more important for the outcomes than others.
Hence, explanations referring to important features are more reliable than
those referring to less important ones. It is worth mentioning that what-
ever the source of strength, the approach followed for defining an explainer
taking them into account is similar to the one we describe below.

In what follows, we propose an explainer, denoted wL∗, which assumes
that each feature and each subset of features in F = {f1, . . . , fn} has an
importance degree. Such degrees are ascribed by a capacity, called also fuzzy
measure in [44], which is a function that assigns to every subset of features
a value from the unit interval [0, 1].

Definition 21 (Capacity). A capacity over a set X is a function V from
P(X)1 to [0, 1] satisfying the following conditions:

1P(X) denotes the power set of the set X.
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• V(∅) = 0 (Boundary condition)

• V(A) ≤ V(B) whenever A ⊆ B ⊆ Inst (Monotonicity)

We call weighted theory a classical theory (Definition 2) whose set of
features is equipped with a capacity.

Definition 22 (Weighted Theory). A weighted classification theory is a
pair (T,V) where T = 〈F , dom, C〉 is a theory and V is a capacity over F .

We assume a set Y ⊆ Inst of instances and a classifier F which can be
queried on any instance in Y. The novel explainer wL∗ starts by generating
arguments from Y following Definition 14. Then, it assigns a strength to
every argument in arg(Y). The strength is the importance degree of the
features involved in the argument’s support.

Definition 23 (Argument Strength). Let a = 〈H, c〉 ∈ arg(Y). The
strength of a is St(a) = V({fi | (fi, vi) ∈ H}).

This strength is used for defining a defeat relation between arguments.
It is based on the attack relation (Definition 17) but prevents an argument
from attacking a stronger one, which makes defeat not symmetrical.

Definition 24 (Defeat Relation). Let a, b ∈ arg(Y). We say that a de-
feats b iff:

• a attacks b, and

• St(a) ≥ St(b).

We introduce now the extended version of an argumentation system.

Definition 25 (Weighted AS). A weighted argumentation system built
from Y ⊆ Inst is a pair AS = 〈arg(Y), Def〉 where Def ⊆ arg(Y) × arg(Y)
such that for a, b ∈ arg(Y), (a, b) ∈ Def iff a defeats b (in the sense of
Definition 24).

Arguments are evaluated using stable semantics. We show that any
weighted argumentation system has stable extensions since it does not con-
tain elementary odd-length cycles. Furthermore, its extensions are a subset
of those of the non-weighted system (Definition 18).

Proposition 22. Let Y ⊆ Inst, AS = 〈arg(Y ),R〉 and AS′ = 〈arg(Y ), Def〉.
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• σ(AS′) 6= ∅,

• σ(AS′) ⊆ σ(AS).

For every instance, the new explainer wL∗ returns the supports of argu-
ments which belong to all stable extensions and are part of the instance.

Definition 26 (Explainer wL∗). Let (T,V) be a weighted theory, Y ⊆ Inst

and x ∈ Y. The set of explanations of x is the following:

wL∗(x) = {H ⊆ Lit | H ⊆ x and 〈H, F(x)〉 ∈
⋂

Ei∈σ(AS)

Ei},

where AS = 〈arg(Y), Def〉 is a weighted argumentation system.

Example 7 (Cont.) Recall that there are three arguments that may be
built from Y (a1, a2, a3) with:

• a1 = 〈{L1}, c1〉 L1 = {(f1, 0), (f2, 0)}

• a2 = 〈{L2}, c2〉 L2 = {(f2, 1)}

• a3 = 〈{L3}, c3〉 L3 = {(f1, 1)}

Assume that the feature f2 is more important than the feature f1, i.e.,
V({f1, f2}) ≥ V({f2}) > V({f1}). Hence, St(a1) ≥ St(a2) > St(a3). Thus,
a2 defeats a3 while the converse does not hold. The corresponding weighted
argumentation system has a single stable extension: E = {a1, a2}. Conse-
quently, wL∗(x1) = {L1}, wL∗(x2) = {L2} and wL∗(x3) = ∅.

Note that the importance of features has been used for solving the con-
flict between the two arguments a2 and a3. Hence, unlike the function L∗,
the weighted wL∗ selects a2 and thus provides an explanation for the in-
stance x2. This function enriches thus the outcomes of L∗ as confirmed by
the following result.

Proposition 23. Let (T,V) be a weighted theory, Y ⊆ Inst and x ∈ Y. It
holds that: L∗(x) ⊆ wL∗(x) ⊆ Lpe(x). The converses do not hold.

The above example shows that the weighted function wL∗ violates success
(wL∗(x3) = ∅). However, we show next that it satisfies coherence.

Proposition 24. The function wL∗ satisfies coherence and violates success.
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6. Related Work

As automated decision-making systems are becoming popular and de-
ployed in several domains, the question of their explainability becomes in-
creasingly important, leading to a growing literature related to explanation.
Some of them focus on symbolic AI systems including reasoning models like
argumentation (eg., [45]) and answer set programming (eg., [46]), recom-
mendation systems (eg., [47]), multiple criteria decision systems (eg., [48]),
and planning systems (eg., [49, 50]). Explanations in these works shed light
on the system’s internal decision process. Other works are interested in ex-
plaining machine learning models. Most of them are experimental, focusing
on specific models, exposing their internal representations to find correla-
tions post hoc between these representations and the predictions, and they
are thus more about the arguably vaguer notion of interpretability. Fur-
thermore, they focused more on local explanations (eg. [51]). Examples
of such explanation functions are LIME [8], Anchors [9], SHAP [52] and
EXPLAN [53]. They are mainly validated in an experimental way, and no
formal guarantees are provided. In [54, 55], the authors tried to generate
global explanations that provide insights in a black-box model’s decision
making process. For that purpose, they start by generating local explana-
tions, then aggregate them using various operators. The approaches have
been validated experimentally and the results have shown that explanations
of LIME do not reliably represent model’s global behaviour.

In our paper we investigated formal approaches for explainability that
ensure formal guarantees. In the past few years, there is increasing interest in
such approaches, and all existing works generate explanations from the whole
feature space, which in practice is not reasonable ([12, 14, 18, 11, 16, 56]).
They also all, with the exception of [14], investigated local explanations.
They focused on abductive explanations and/or counterfactuals which they
generate either for an arbitrary classifier (eg., [12, 14, 11]) or for specific ones
like Bayesian networks, decision trees and random forests (eg., [18, 16]).

In our paper, we are more interested in explaining complex classifiers
whose internal reasoning is difficult to grasp. Hence, we defined explanation
functions which look for correlations between instances and the outcomes
provided by classifiers. We provided a unified setting for representing dif-
ferent types of explanations including abductive and counterfactuals. We
provided formal analysis of the links between global and local explanations.
Furthermore, unlike the above-cited works, we also investigated formally
functions that generate explanations from a subset of the feature space. We
have shown that this raises particular challenges and explanation functions
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should be defined with great care in this context.

Unlike our work which explains existing black-box classifiers, [31, 57]
proposed novel classification models that are based on arguments. Their
explanations are defined in dialectical way as fictitious dialogues between a
proponent (supporting an output) and an opponent (attacking the output)
following [33]. The authors in [58, 59, 60] followed the same approach for
defining explainable multiple decision systems, recommendation systems, or
scheduling systems. In the above papers an argument is simply an instance
and its label while our arguments pro/con are much richer. This shows that
they are proposed for different purposes.

There is also a great interest in explaining the outcomes of argumen-
tation frameworks (eg., [61, 62, 45]). The objective is to explain why an
argument is accepted or, alternatively, rejected under a given semantics
from [33]. These works are thus not related to ours as they do not focus
on classifiers. Furthermore, since argumentation is interpretable, their ex-
planations provide insight into the semantics while we consider classifiers as
black-boxes.

7. Conclusion

This paper investigated the different notions of (local, global) explana-
tion that have been discussed in the literature for interpreting black-box
classifiers without “opening” them. It proposes the first formal setting for
defining, generating, and comparing the most prominent types, namely ab-
ductive, counterfactuals, and contrastive explanations. The setting is based
on two dual types of arguments (pros and cons) for justifying predictions. It
used them as building blocks of explanations. This work lays the foundations
for formal comparisons with other types of explanation.

In this paper, we also argued that generating explanations from the whole
feature space is not reasonable in practice, and one should only consider a
subset which may be chosen in different ways. However, generating expla-
nations under such incomplete information raises particular issues, namely
the possibility of incorrectness of explanations or non-existence of explana-
tions. Thus, the definition of explainers should be done with great care. The
paper provided the first two functions that ensure correctness while gener-
ating explanations from datasets. The functions are based on a well-known
non-monotonic reasoning approach, namely argumentation.

This work can be extended in different ways. First, we have seen that
the novel functions L∗ and wL∗ may return an empty set of explanations
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for an instance. While cautious reasoning is suitable when dealing with
conflicting information by non-monotonic reasoning models, it may be a
great weakness in XAI since a user would always expect an explanation
for the outcome provided by a classifier. Hence, a future work consists of
exploring other functions that would improve the outputs of L∗ and wL∗.
Another line of research consists of using gradual semantics from [63] for
evaluating arguments. Such semantics provide finer-grained evaluations.
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8. Appendix: Proofs

Proof of Property 1 The three properties follow straightforwardly from
the definition of an instance as a tuple of the n available attributes of F .

Proof of Property 2 The property follows straightforwardly from the
definition of x↓H .

Proof of Property 3 Let G and L be a class explainer and instance explainer
respectively.

Assume that G and L are compatible and G is coherent. Let x, x′ ∈ Inst

such that F(x) 6= F(x′). From compatibility, L(x) ⊆ G(F(x)), so ∀H ∈ L(x),
H ∈ G(F(x)). Similarly, L(x′) ⊆ G(F(x′)), so ∀H ′ ∈ L(x′), H ′ ∈ G(F(x′)).
Since F(x) 6= F(x′), then from coherence of G, H ∪H ′ is inconsistent. Then,
L is coherent.

Assume that G and L are compatible and L is coherent. Let c, c′ ∈
C such that c 6= c′. From compatibility of L and G, we have G(c) =⋃
x∈Inst s.t. F(x)=c

L(x) and G(c′) =
⋃

x∈Inst s.t. F(x)=c′
L(x). Let H ∈ G(c) and

H ′ ∈ G(c′). Then, ∃x, x′ ∈ Inst such that H ∈ L(x) and H ′ ∈ L(x′), F(x) = c
and F(x′) = c′. From coherence of L, H ∪H ′ is inconsistent.

Proof of Property 4 Example 2 provides a counter example for Lpe(x) ⊆
Lae(x). Indeed, U3 = {(C, 1), (E, 0)} is a plausible explanation of x5 in
Y = {x1, . . . , x7} while it is not plausible in Y ∪ {x5}.

Proof of Property 5 The first property is straightforward from Defini-
tion 17. Let a be argument and c its conclusion. Assume that a attacks
itself. From Definition 17, c 6= c which is impossible.
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Proof of Proposition 1 Let T = 〈F , dom, C〉 be a theory and c ∈ C.
Let us show the equivalence. Assume that 〈∅, c〉 ∈ arg+(T) for some

c ∈ C. Since ∀x ∈ Inst, ∅ ⊂ x, then by Definition 9, ∀x ∈ Inst, F(x) = c.
Assume now that ∀x ∈ Inst, F(x) = c (assumption (1)). We show that i)
〈∅, c〉 ∈ arg+(T), and ii) if 〈H ′, c′〉 ∈ arg+(T), then 〈H ′, c′〉 = 〈∅, c〉. Since
∅ ⊆ Lit, ∅ is consistent, and ∀x ∈ Inst, ∅ ⊂ x, then 〈∅, c〉 ∈ arg+(T).
Assume now that 〈H ′, c′〉 ∈ arg+(T). Hence, H ′ is consistent. From Prop-
erty 1, ∃x ∈ Inst such that H ′ ⊆ x. It follows that F(x) = c′. From
assumption (1), c = c′. Since 〈∅, c〉 ∈ arg+(T), then H ′ = ∅ (otherwise
minimality would be violated).

Let us show the second property. T = {x ∈ Inst | F(x) = c} and x ∈ T .
Since x is consistent (from Property 1), then ∀H ⊆ x, H is consistent too
(from Property 1). So, ∃H ⊆ x such that H is minimal (for set inclusion)
such that ∀x′ ∈ Inst s.t. H ⊆ x′, F(x′) = c. Note that H = ∅ iff T = Inst,
H = x if |T | = 1, and H ⊆ x otherwise. Hence, 〈H, c〉 ∈ arg+(T).

Let us show the third property. Assume that 〈H, c〉 ∈ arg+(T). From
Definition 9, H is consistent. From Property 1, ∃x ∈ Inst s.t H ⊆ x. By
Definition 9, F(x) = c.
The last property follows straightforwardly from the two previous ones.

Proof of Proposition 2 Assume a classifier F is a surjective function, thus
for every class c ∈ C, there exists at least one x ∈ Inst such that F(x) = c.
From property 4 of Proposition 1, Pros(c) 6= ∅. Thus, Gpro(c) 6= ∅.

Proof of Proposition 3 Let T = 〈F , dom, C〉 be a theory and c, c′ ∈ C with
c 6= c′. Let also 〈H, c〉, 〈H ′, c′〉 ∈ arg+(T). Assume that H∪H ′ is consistent.
Hence, ∃x ∈ Inst such that H∪H ′ ⊆ x (from item 2b of Property 1). Hence,
F(x) = c and F(x) = c′, which contradicts the fact that M is a function that
ascribes a single class to every instance.

Let H ∈ Gpro(c) and H ′ ∈ Gpro(c
′). By definition of Gpro, 〈H, c〉 ∈ Pros(c)

and 〈H ′, c′〉 ∈ Pros(c′). From the previous property, H ∪H ′ is inconsistent.
Thus, Gpro satisfies coherence.

Proof of Proposition 4 Let F be a classification model and T = 〈F ,
dom, C〉 a theory with C = {c1, . . . , cm}. For every i ∈ {1, . . . ,m}, let
Insti = {x ∈ Inst | ∃〈H, ci〉 ∈ arg+(T) and H ⊆ x}.

Let us first show that Insti ∩ Instj = ∅ for i 6= j. Assume that x ∈
Insti ∩ Instj . By definition of Insti, Instj , there exist 〈H, ci〉, 〈H ′, cj〉 ∈
arg+(T) such that H ⊆ x and H ′ ⊆ x. Thus, H ∪ H ′ ⊆ x. But from
Proposition 3, the set H ∪H ′ is inconsistent while any instance x ∈ Inst is
consistent (from Property 1).
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Let us now show that Inst = Inst1∪. . .∪Instm. Obviously, Inst1∪. . .∪
Instm ⊆ Inst. Let x ∈ Inst and let us show that x ∈ Inst1 ∪ . . .∪ Instm.
From Definition 3, F assigns a class from C to every instance in Inst. Hence,
∃ci ∈ C such that F(x) = ci. From Proposition 1, there exists 〈H, ci〉 ∈
arg+(T). Hence, x ∈ Insti.

Proof of Proposition 5 In Example 3, the two classes c1 and c2 have the
same reason for avoiding them, namely {(f1, 1)}. The latter is consistent.

Proof of Proposition 6 Let T = 〈F , dom, C〉 be a theory such that C =
{c, c′}. Let 〈H, c〉 ∈ Pros(c). From Definition 9, H ⊆ Lit is consistent and
minimal (for set inclusion) such that: ∀x ∈ Inst, if H ⊆ x, then F(x) = c,
thus F(x) 6= c′. By Definition 10, it follows that 〈H, c′〉 ∈ Cons(c′). Following
the same reasoning, we show that if 〈H, c′〉 ∈ Cons(c′), then 〈H, c〉 ∈ Pros(c).

Proof of Proposition 7 Let T = 〈F , dom, C〉 be a theory and c ∈ C.
Let 〈H, c〉 ∈ arg+(T) and 〈H ′, c〉 ∈ arg−(T) such that H ∪H ′ is consistent.
From Property 1, ∃x ∈ Inst such that H ∪ H ′ ⊆ x. From Definition 9,
F(x) = c and from Definition 10 F(x) 6= c. Since F assigns a class to ever
instance, then ∃c′ ∈ C such that c 6= c′ and F(x) = c′. This contradicts the
fact that F is a function that assigns a single class to every instance.

Proof of Proposition 8 Let T = 〈F , dom, C〉 be a theory and c ∈ C.
Let us show the equivalence. Assume that 〈∅, c〉 ∈ Cons(c). Thus, ∀x ∈

Inst, ∅ ⊂ x, F(x) 6= c. Assume now that ∀x ∈ Inst, F(x) 6= c. Clearly,
∅ ⊂ Lit, ∅ is consistent and minimal (for set inclusion) such that ∅ ⊂ x, for
any x ∈ Inst. Hence, by Definition 10 it follows that 〈∅, c〉 ∈ Cons(c).

Let us show the second property. Let 〈H, c〉 ∈ arg−(T). By Defini-
tion 10, H is consistent. From Property 1, ∃x ∈ Inst such that H ⊆ x. By
Definition 10, F(x) 6= c.

Let us show the third property. Assume that ∃x∗ ∈ Inst s.t. F(x∗) 6= c.
Since F : Inst → C, then ∃c′ ∈ C s.t. c 6= c′ and F(x∗) = c′. From
Proposition 1, ∃〈H, c′〉 ∈ arg+(T) and H ⊆ x∗. Note that for any x ∈ Inst

s.t. H ⊆ x, F(x) = c′, thus F(x) 6= c. Let T = {x ∈ Inst |F(x) = c′ and H ⊆
x}. If ∀x ∈ Inst\T , F(x) = c, then 〈H, c〉 ∈ arg−(T) since any strict subset
of H would not be sufficient for getting c′, thus for avoiding c. Otherwise,
∃H ′ ⊆ H that is sufficient for avoiding c and 〈H ′, c〉 ∈ arg−(T).

Let us show the fourth property. Let c 6= c′ and 〈H ′, c′〉 ∈ arg+(T).
There are two cases: i) H ′ = ∅. From Proposition 1, for all x ∈ Inst,
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F(x) = c′, hence F(x) 6= c. Thus, 〈∅, c〉 ∈ Cons(c) (from above equivalence).
ii) H ′ 6= ∅. By Definition 9, ∀x ∈ Inst s.t. H ′ ⊆ x, F(x) = c′, i.e., F(x) 6= c.
Since H ′ is consistent, then ∀H ⊂ H ′, H is consistent. Hence, let H ⊆ H ′ be
the minimal (for set inclusion) subset such that for every x ∈ X s.t. H ⊆ x,
F(x) 6= c. Hence, 〈H, c〉 ∈ arg−(T) with ∅ ⊆ H ⊆ H ′.

Proof of Proposition 9 Let T = 〈F , dom, C〉 be a theory and c ∈
C. Let us show the first equivalence. Assume that Pros(c) = ∅. Hence,
@〈H, c〉 ∈ arg+(T). From Proposition 1, @x ∈ Inst s.t. F(x) = c, thus
∀x ∈ Inst, F(x) 6= c. From Proposition 8, 〈∅, c〉 ∈ Cons(c). Assume that
∃〈H, c〉 ∈ Cons(c). Obviously, H = ∅ because 〈∅, c〉 ∈ Cons(c), otherwise, H
would violate the minimality condition. Hence, Cons(c) = {〈∅, c〉}.

Assume now that Cons(c) = {〈∅, c〉}. From the first item of Propo-
sition 8, ∀x ∈ Inst, F(x) 6= c. From the fourth item of Proposition 1,
Pros(c) = ∅.
We show the second equivalence. Assume that Cons(c) = ∅. Thus, @〈H, c〉 ∈
arg−(T). From the third item of Proposition 8, @x ∈ Inst s.t. F(x) 6= c,
i.e., ∀x ∈ Inst, it holds that F(x) = c. From the first item of Proposition 1,
arg+(T) = {〈∅, c〉} = Pros(c).

Assume now that Pros(c) = {〈∅, c〉}. From the first item of Proposi-
tion 1, ∀x ∈ Inst, F(x) = c, i.e., @x ∈ Inst s.t. F(x) 6= c. From the second
item of Proposition 8, @〈H, c〉 ∈ arg−(T), thus Cons(c) = ∅.

Proof of Proposition 10 Let c ∈ C. Let us show that Y ⊆ Inst \ Z. Let
x ∈ Y. By definition of Y, ∃〈H, c〉 ∈ arg−(T) and H ⊆ x. Assume that
x ∈ Z, hence ∃〈H ′, c〉 ∈ arg+(T) and H ′ ⊆ x. So, H ∪ H ′ ⊆ x. From
Proposition 7, H ∪H ′ is inconsistent while x is consistent from Property 1.
Consequently, x /∈ Z and so x ∈ Inst \ Z.

Assume now that x ∈ Inst\Z, so x /∈ Z. From Proposition 4, F(x) 6= c.
From Proposition 8, ∃〈H, c〉 ∈ arg−(T) and H ⊆ x. Thus, x ∈ Y.

Proof of Proposition 11 Let c ∈ C. From Proposition 9, (Cons(c) = ∅)
⇐⇒ (Pros(c) = {〈∅, c〉}). From item 1 of Proposition 1, Pros(c) = {〈∅, c〉}
iff ∀x ∈ Inst, F(x) = c. But |C| > 1 and F is surjective. Thus, ∃y ∈
Inst such that F(y) 6= c. Then, Pros(c) 6= {〈∅, c〉} and so Cons(c) 6= ∅.
Consequently, Gcon(c) 6= ∅.

Proof of Proposition 12 Let T = 〈F , dom, C〉 be a theory, x ∈ Inst and
c ∈ C such that F(x) = c.

Assume that Lae(x) = {∅}. Then, ∅ ∈ Gpro(c) and so 〈∅, c〉 ∈ Pros(c).
From item 1 of Proposition 1, ∀y ∈ Inst, F(y) = c (1). Assume now that (1)
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holds. From item 1 of Proposition 1, 〈∅, c〉 ∈ Pros(c) and thus ∅ ∈ Gpro(c).
Hence, ∅ ∈ Lae(x). Suppose that ∃H ∈ Lae(x), so 〈H, c〉 ∈ Pros(c). It follows
that H = ∅ since 〈∅, c〉 ∈ Pros(c), otherwise H would violate minimality.

The second property is straightforward from the definition.

Proof of Proposition 13 Let T = 〈F , dom, C〉 be a theory, x ∈ Inst and
c ∈ C s.t. F(x) = c. From item 2 of Proposition 1, ∃〈H, c〉 ∈ Pros(c) and
H ⊆ x. Hence, H ∈ Gpro(c) and from Definition 11, H ∈ Lae(x) and so
Lae(x) 6= ∅ meaning that Lae satisfies success.

Let us now show that Lae is coherent. Let x, x′ ∈ Inst such that F(x) 6=
F(x′). Assume that H ∈ Lae(x) and H ′ ∈ Lae(x

′). From Definition 11,
H ∈ Gpro(F(x)) and H ′ ∈ Gpro(F(x′)). From Proposition 3, it follows that
H ∪H ′ is inconsistent.

Let us show that Lae and Gpro are compatible. From Proposition 12, we
have for any x ∈ Inst, Lae(x) ⊆ Gpro(c). Let us now show that Gpro(c) ⊆⋃
x∈Inst s.t. F(x)=c

Lae(x). LetH ∈ Gpro(c). By Definition 9, ∃〈H, c〉 ∈ Pros(c).

From item 3 of Proposition 1, ∃x ∈ Inst such that F(x) = c. Thus, from
Definition 11, H ∈ Lae(x).

Proof of Proposition 14 Let x ∈ Inst such that F(x) = c.
The first implication follows straightforwardly from Definition 12.
Assume that Lcf (x) = ∅. So, Cons(c) = ∅. From Propositions 1 and

9, ∀y ∈ Inst, F(y) = c. Assume now that ∀y ∈ Inst, F(y) = c. From
Proposition 1, Pros(c) = {〈∅, c〉}. From Proposition 9, Cons(c) = ∅. Hence,
Lcf (x, c) = ∅.

Assume that ∅ ∈ Lcf (x, c). Thus, 〈∅, c〉 ∈ Cons(c). From Proposition 9,
Pros(c) = ∅. From Proposition 1, ∀y ∈ Inst, F(y) 6= c. This contradicts the
fact F(x) = c.

Proof of Proposition 15 Example 3 shows that the instance explainer
Lcf violates coherence. Note that F(x1) = c1 and F(x2) = c2 while the set
{(f1, 1)} is a common counterfactual to both instances.

If the classifier F is surjective, then ∀c ∈ C, ∃x ∈ Inst such that F(x) = c.
Hence, from Proposition 14 Lcf (x) 6= ∅.

Proof of Proposition 16 Let T = 〈F , dom, C〉 be a theory, C = {c, c′}, and
x ∈ Inst such that F(x) = c. From Theorem 3, H ∈ Lcf (x) iff H ⊆ Lit is
subset-minimal such that F(x↓H) 6= F(x). Since C = {c, c′}, it follows that
F(x↓H) = c′. Hence, H ∈ Lco(x, c

′).
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Proof of Proposition 17 Example 3 shows that the instance explainer
Lco violates coherence. Note that F(x1) = c1 and F(x2) = c2 while the set
{(f1, 1)} is a common contrastive to (x1, c3) and (x2, c3). If the classifier F

is surjective, then ∀c ∈ C, ∃x ∈ Inst such that F(x) = c. Hence, Lco(x) 6= ∅.

Proof of Proposition 18 A plausible explanation is a part of an instance.
Every instance is consistent, then its subparts are all consistent. The second
property is straightforward. The last property is straightforward.

Proof of Proposition 19 Let x ∈ Y. Since x is consistent, then ∃H ⊆ x
such that H is minimal (for set inclusion) such that ∀y ∈ Y, if H ⊆ y, then
F(y) = F(x). Hence, Lpe(x) 6= ∅.

In order to show that Lpe violates coherence, let us consider again Exam-
ple 2. Recall that there are two classes in the theory: c0, c1. Their arguments
are given below:

• a1 = 〈U1, c0〉 U1 = {(V, 0)}

• a2 = 〈U2, c0〉 U2 = {(M, 1)}

• a3 = 〈U3, c0〉 U3 = {(C, 1), (E, 0)}

• a4 = 〈U4, c1〉 U4 = {(V, 1)}

• a5 = 〈U5, c1〉 U5 = {(M, 0)}

It can be checked that:

• Lpe(x1) = {U1, U2}

• Lpe(x5) = {U1, U2, U3}

• Lpe(x2) = Lpe(x4) = Lpe(x7) = {U4, U5}

Note that U1 ∪ U5 is consistent while F(x1) 6= F(x2) is consistent.

Proof of Proposition 20 Assume that Y = Inst and x ∈ Inst. The
inclusion L∗(x) ⊆ Lpe(x) follows from Definition 20.

By Definition 14, arg(Y) = arg+(T). Furthermore, from Proposition 3,
for all c, c′ ∈ C with c 6= c′, for all 〈H, c〉, 〈H ′, c′〉 ∈ arg+(T), the set H ∪H ′
is inconsistent. Hence, the attack relation is empty and thus there exists a
single stable extension E = arg+(T). Then, L∗(x) = Lae(x).
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Proof of Proposition 21 Example 2 shows that success is violated. Indeed,
L∗(x1) = ∅. Assume now that L∗ violates Coherence. Thus, there exist
x, x′ ∈ Y, there exist H ∈ L∗(x) and H ′ ∈ L∗(x′) such that F(x) 6= F(x′)
and H ∪H ′ is consistent. Note that a = 〈H, F(x)〉, b = 〈H ′, F(x′)〉 ∈ arg(Y)
(by definition of L∗). Furthermore, a and b attack each other, and a, b ∈⋂
E∈σ(AS)

E , where AS = 〈arg(Y),R〉. This contradicts the fact every stable

extension is conflict-free.

Proof of Proposition 22 Let Y ⊆ Inst, AS = 〈arg(Y ),R〉 and AS′ =
〈arg(Y ), Def〉.

Assume that AS′ contains an elementary odd-length cycle, which is a
sequence A = {a1, . . . , a2k+1} ⊆ arg(Y) such that:

i) ∀i ∈ {1, . . . , 2k}, ai defeats ai+1,

ii) a2k+1 defeats a1,

iii) ∀i ∈ {1, . . . , 2k + 1}, |{x ∈ A | x defeats ai}| = 1.

From i), a1 attacks a2, a2 attacks a3, . . ., a2k attacks a2k+1. From iii),
St(a1) > St(a2) > . . . , St(a2k+1). Thus, a1 > a2k+1, which contradicts ii)
(i.e., the fact that a2k+1 defeats a1 while St(a2k+1) > St(a1) due to iii)).
Thus, AS does not contain odd-length cycles. From [33], it follows that AS
has a non-empty set of stable extensions.

Let us now show the inclusion σ(AS′) ⊆ σ(AS). Let E ∈ σ(AS′). By
definition of stable extensions, E is conflict-free and ∀a ∈ arg(Y) \ E , ∃b ∈ E
such that b defeats a. Thus, b attacks a. Let us show that E is conflict-free
wrt R. Assume a, b ∈ E such that a attacks b. Thus, either St(a) > St(b)
and so a defeats b, or St(b) > St(a) and b defeats a, or St(a) = St(b). The
three cases contradicts the conflict-freeness of E in AS′. Then, E ∈ σ(AS).

Proof of Proposition 23 Let Y ⊆ Inst and x ∈ Y.
Assume H ∈ wL∗(x), then by definition of wL∗, H ⊆ x and 〈H, F(x)〉 ∈

arg(Y). So, H ∈ Lpe(x), which shows the inclusion wL∗(x) ⊆ Lpe(x).
Assume now H ∈ L∗(x). Then, H ⊆ x and 〈H, F(x)〉 ∈

⋂
Ei∈σ(AS)

Ei, where

AS = 〈arg(Y),R〉. Let AS′ = 〈arg(Y), Def〉. From the second property in
Proposition 22, σ(AS′) ⊆ σ(AS), so

⋂
Ei∈σ(AS)

Ei ⊆
⋂

Ej∈σ(AS′)

Ej . It follows

that 〈H, F(x)〉 ∈
⋂

Ej∈σ(AS′)

Ej and H ∈ wL∗(x), which shows the inclusion

L∗(x) ⊆ wL∗(x).
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Proof of Proposition 24 Example 7 shows that success is violated as
L∗(x3) = ∅. Assume now that wL∗ violates Coherence. Thus, there exist
x, x′ ∈ Y such that F(x) 6= F(x′) and there existH ∈ wL∗(x) andH ′ ∈ wL∗(x′)
such that H ∪H ′ is consistent. Let a = 〈H, F(x)〉 and b = 〈H ′, F(x′)〉. Note
that a, b ∈ arg(Y) (by definition of wL∗) and a attacks b and b attacks a.
There are three cases: i) St(a) > St(b), then a defeats b, ii) St(b) > St(a),
then b defeats a, or iii) St(a) = St(b), then a defeats b and b defeats a.
By Definition 26. {a, b} ⊆

⋂
Ei∈σ(AS)

Ei, where AS = 〈arg(Y), Def〉. This

contradicts the fact that every stable extension is conflict-free.

Proof of Theorem 1 Let T = 〈F , dom, C〉 be a theory and c ∈ C. Let
Supp(c) = {H1, . . . ,Hk} be such that for every Hi ∈ Supp(c), the following
hold:

• Hi ⊆ Lit

• Hi is consistent

• ∀H ∈ Gcon(c), Hi ∪H is inconsistent,

• @H ′ ⊆ Lit such that H ′ ⊂ Hi and H ′ satisfies the third condition.

Let us first show that Supp(c) ⊆ Gpro(c). Let H ∈ Supp(c), we show that
〈H, c〉 ∈ Pros(c) (hence, H ∈ Gpro(c)). From definition of Supp(c), H ⊆ Lit

and H is consistent.
We show now that for any x ∈ Inst such that H ⊆ x, F(x) = c. Assume
that for some x ∈ Inst, H ⊆ x and F(x) 6= c. From item 3 of Proposition 8,
∃〈H ′, c〉 ∈ arg−(T) such that H ′ ⊆ x. Thus, H ∪H ′ ⊆ x. By definition of
Supp(c), H∪H ′ is inconsistent, which contradicts the fact that x is consistent
(from item 1 of Property 1).
Let us show the minimality condition of an argument. Assume that ∃H ′ ⊂ H
such that ∀x ∈ Inst, if H ′ ⊆ x then F(x) = c. Due to the minimality
condition in the definition of Supp(c), ∃〈H ′′, c〉 ∈ arg−(T) such that H ′′ ∪H
is consistent. From item 2b in Property 1, ∃x ∈ Inst such that H ′′∪H ⊆ x.
Hence, F(x) = c (due to H ′) and F(x) 6= c (due to 〈H ′′, c〉). This contradicts
the fact that F assigns a single class to every instance.

Let us now show that Gpro(c) ⊆ Supp(c). Let 〈H, c〉 ∈ Pros(c) and we
show that H ∈ Supp(c). There are two cases: i) H = ∅ and ii) H 6= ∅. If
H = ∅, then from Proposition 9, Cons(c) = ∅. Obviously, ∅ ⊆ Lit and ∅ is
consistent. Furthermore, the third condition of the definition of Supp(c) is
satisfied in a vacuous way, and ∅ is the minimal set that satisfies it. Hence,
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∅ ∈ Supp(c). If H 6= ∅, then from Proposition 9, Cons(c) 6= ∅. From
Proposition 7, for any 〈Hi, c〉 ∈ Cons(c), H ∪ Hi is inconsistent. Finally,
assume that ∃H ′ ⊂ H such that H ′ is the smallest subset such that for
any 〈Hi, c〉 ∈ Cons(c), H ′ ∪ Hi is inconsistent. Then, H ′ ∈ Supp(c). From
the above implication, 〈H ′, c〉 ∈ Pros(c). This contradicts the fact that
〈H, c〉 ∈ Pros(c) as H would violate minimality.

Proof of Theorem 2 Let T = 〈F , dom, C〉 be a theory and c ∈ C. Let
Att(c) = {H1, . . . ,Hk} be such that for every i = 1, . . . , k,

• Hi ⊆ Lit

• Hi is consistent

• ∀H ∈ Gpro(c), H ∪Hi is inconsistent

• @H ′ ⊆ Lit such that H ′ ⊂ Hi and H ′ satisfies the third condition.

We start by showing that Att(c) ⊆ Gcon(c). Let H ∈ Att(c), and we
show that 〈H, c〉 ∈ Cons(c) (thus H ∈ Gcon(c)). From the definition of
Att(c), H ⊆ Lit and H is consistent. We show now that for any x ∈ Inst

such that H ⊆ x, F(x) 6= c. Assume that for some x ∈ Inst, H ⊆ x and
F(x) = c. From item 2 of Proposition 1, ∃〈H ′, c〉 ∈ Pros(c) and H ′ ⊆ x.
Thus, H ∪ H ′ ⊆ x. By the definition of Att(c), H ∪ H ′ is inconsistent,
which contradicts the fact that x is consistent. Let us show the minimality
condition of an argument. Assume that ∃H ′ ⊂ H such that H ′ is the
smallest subset such that ∀x ∈ Inst, if H ′ ⊆ x, F(x) 6= c. From definition
of Att(c), ∃〈H ′′, c〉 ∈ Pros(c) such that H ′′ ∪ H ′ is consistent. From item
2b of Property 1, ∃x ∈ Inst such that H ′′ ∪H ′ ⊆ x. Hence, F(x) = c (due
to 〈H ′′, c〉 ∈ Pros(c)) and F(x) 6= c (due to H ′).

We now show that Gcon(c) ⊆ Att(c). We consider 〈H, c〉 ∈ Cons(c), and
show that H ∈ Att(c). If H = ∅, then from Proposition 9, Pros(c) = ∅.
Obviously, ∅ ⊆ Lit and ∅ is consistent. Furthermore, the third condition of
the definition of Att(c) is satisfied in a vacuous way, and ∅ is the minimal
set that satisfies it. Hence, ∅ ∈ Att(c). If H 6= ∅, then from Proposition 9,
Pros(c) 6= ∅. From Proposition 7, for any 〈Hi, c〉 ∈ Pros(c), H ∪ Hi is
inconsistent. Finally, assume that ∃H ′ ⊂ H such that H ′ is the smallest
subset such that for any 〈Hi, c〉 ∈ Pros(c), H ′ ∪ Hi is inconsistent. Then,
H ′ ∈ Att(c). From the above implication, 〈H ′, c〉 ∈ Cons(c). This contra-
dicts the fact that 〈H, c〉 ∈ Cons(c) as H would violate minimality.

Proof of Theorem 3 Let x ∈ Inst such that F(x) = c.
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Let H ∈ Lcf (x), thus ∃U ∈ Cons(c) s.t. H = U \x (a) and @U ′ ∈ Cons(c)
such that U ′ \ x ⊂ H (b). Since by definition U is consistent, then from
Property 1H is consistent. From Property 2, y = x↓H ∈ Inst. Furthermore,
F(y) 6= c since U ⊆ y. Let us now assume some H ′ ⊂ H such that F(x↓H′) 6=
c. Let z = x↓H′ . From Proposition 8, ∃U ′ ∈ Cons(c) such that H ′ ⊆ z.
Let U ′1 = U ′ ∩ H ′ and U ′2 = U ′ \ H ′. Since U ′2 ⊆ x, then H ′1 6= ∅. Hence,
U ′ \ x = U ′1 ⊂ H ′ ⊂ U \ x, which contradicts the assumption (b).

Let H ⊆ Lit be a minimal for set inclusion such that H is consistent
and F(x↓H) 6= F(x). Let y = x↓H . From Proposition 8, ∃U ∈ Cons(F(x))
such that U ⊆ y. Since F(x) = c, then H ∩ U 6= ∅. Let U = U1 ∪ U2 such
that U1 = H ∩ U and U2 = U \ H. Assume that H 6= U1 (i.e., U1 ⊂ H).
From Property 1, U1 is consistent (being a subset of a consistent set U),
then ∃z ∈ Inst such that z = x↓U1 . Note that U2 ⊆ z since U2 ⊆ x, hence
U ⊆ z and so F(z) 6= c. This contradicts the minimality of H.

Proof of Theorem 4 Recall that Coherence and Success are compatible
iff there exists a plausible explainer, say  L, which satisfies both properties.
Recall also that  L satisfies Coherence (resp. Success) iff the property holds
for every theory, every dataset and every classifier. To show that Coherence
and Success are not compatible, it is sufficient to show that such a function
 L does not exist.

Assume that L is a plausible explainer that satisfies both Coherence and
Success. Consider the theory below made of two binary features f1, f2, and
a binary classifier F. The table below summarizes the predictions made by
the classifier for the simple dataset Y.

Y f1 f2 F(Ii)

x1 0 1 0
x2 1 0 1

The function Lpe returns the following plausible explanations.

• Lpe(x1) = {L1} L1 = {(f2, 1)}

• Lpe(x2) = {L2} L2 = {(f1, 1)}

Since L is a plausible explainer, then from Definition 16 it holds that:

∀i ∈ {1, 2}, L(xi) ⊆ Lpe(xi) (A1).

Since L satisfies Success, then L(x1) 6= ∅ and L(x2) 6= ∅. Thus, ∀i ∈
{1, 2}, L(xi) = Lpe(xi). However, L1 ∪ L2 is consistent while F(x1) 6= F(x2),
thus L violates Coherence.
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Let us now start by coherence. From coherence of L, @L,L′ ∈ L(x1) ∪
L(x2) such that L∪L′ is consistent, L ∈ L(xi), L

′ ∈ L(xj), and F(xi) 6= F(xj)
(A2). From (A1), L(x1)∪L(x2) ⊆ Lpe(x1)∪Lpe(x2). But, Lpe(x1)∪Lpe(x2) =
{L1, L2}, then from (A2) either L1 /∈ L(x1)∪L(x2)), in which case L(x1) = ∅,
or L3 /∈ L(x1) ∪ L(x2), in which case L(x2) = ∅. Thus, L violates Success.

Proof of Theorem 5 Let Y ⊆ Inst and x ∈ Y. Let AS = 〈arg(Y),R〉
be the argumentation system built from Y. From Property 5, the attack
relation R is symmetric and irreflexive. So from [43], ∀a ∈ arg(Y ),

a ∈
⋂

E∈σ(AS)

E iff {b ∈ arg(Y) | (b, a) ∈ R} = ∅.

Recall that {b ∈ arg(Y) | (b, a) ∈ R} = arg∗(Y). So, from Definition 20,
L∗(x) = {H | ∃〈H, F(x)〉 ∈ arg∗(Y) and H ⊆ x}.

Proof of Corollary 1 Let Y ⊆ Inst, H ⊆ Lit and x ∈ Y.
Assume that H ∈ L∗(x). Then, from Theorem 5 〈H, F(x)〉 ∈ arg∗(Y)

(A1). From Proposition 20, H ∈ Lpe(x). Let x′ ∈ Y such that F(x) 6=
F(x′). Assume that ∃H ′ ∈ Lpe(x

′) such that H ∪ H ′ is consistent. From
Definition 15, 〈H ′, F(x′)〉 ∈ arg(Y). Clearly, 〈H ′, F(x′)〉 attacks 〈H, F(x)〉,
which contradicts (A1).

Assume now that H satisfies the following conditions:

i) H ∈ Lpe(x), and

ii) ∀x′ ∈ Y such that F(x) 6= F(x′), @H ′ ∈ Lpe(x
′) with H ∪H ′ is consistent.

From Definition 15 of Lpe, H ⊆ x and 〈H, F(x)〉 ∈ arg(Y).
Assume that 〈H, F(x)〉 /∈ arg∗(Y). Thus, ∃〈H ′, c〉 ∈ arg(Y) such that

〈H, F(x)〉 attacks 〈H ′, c〉, i.e., H ∪ H ′ is consistent and F(x) 6= c. By Def-
inition 14, ∃y ∈ Y such that H ′ ⊆ y and F(y) = c. Thus, H ′ ∈ Lpe(y),
which contradicts the condition ii). Hence, 〈H, F(x)〉 ∈ arg∗(Y) and from
Theorem 5, H ∈ L∗(x).
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