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Abstract. This paper investigates the outputs of abstract logic-based argumenta-
tion systems under stable semantics. We delimit the number of stable extensions a
system may have. We show that in the best case, an argumentation system infers
exactly the common conclusions drawn from the maximal consistent subbases
of the original knowledge base. This output corresponds to that returned by a
system under the naive semantics. In the worst case, counter-intuitive results are
returned. In the intermediary case, the system forgets intuitive conclusions. These
two latter cases are due to the use of skewed attack relations. The results show
that stable semantics is either useless or unsuitable in logic-based argumentation
systems. Finally, we show that under this semantics, argumentation systems may
inherit the problems of coherence-based approaches.

1 Introduction

An argumentation system for reasoning with inconsistent knowledge is built from a
knowledge base using a monotonic logic. It consists of a set of arguments, attacks
among them and a semantics for evaluating the arguments (see [4, 10,7, 12] for some
examples of such systems).

Stable semantics is one of the prominent semantics proposed in [8]. A set of argu-
ments is acceptable (or an extension) under this semantics, if it is free of conflicts and
attacks any argument outside the set. Note that this semantics does not guarantee the
existence of extensions for a system. In [6], the author studied the kind of outputs that
may be returned under this semantics. However, the focus was on one particular argu-
mentation system: it is grounded on propositional logic and uses ‘assumption attack’
[9]. The results show that each stable extension of the system is built from one maximal
consistent subbase of the original knowledge base. However, it is not clear whether this
is true for other attack relations or other logics. It is neither clear whether systems that
have stable extensions return intuitive results. It is also unclear what is going wrong
with systems that do not have stable extensions. Finally, the number of stable exten-
sions that a system may have is unknown.

In this paper, we conduct an in-depth study on the outputs of argumentation sys-
tems under stable semantics. We consider abstract logic-based systems, i.e., systems
that use Tarskian logics [15] and any attack relation. For the first time, the maximum
number of stable extensions a system may have is delimited. It is the number of maxi-
mal (for set inclusion) consistent subbases of the knowledge base. Moreover, we show
that stable semantics is either useless or unsuitable for these systems. Indeed, in the best



case, such systems infer exactly the conclusions that are drawn from all the maximal
consistent subbases. This corresponds exactly to the output of the same systems under
naive semantics. In the worst case, counter-intuitive results are returned. There is a third
case where intuitive conclusions may be forgotten by the systems. These two last cases
are due to the use of skewed attack relations. Finally, we show that argumentation sys-
tems that use stable semantics inherit the problems of coherence-based approaches [14].

The paper is organized as follows: Section 2 defines the logic-based argumentation
systems we are interested in. Section 3 recalls three basic postulates that such systems
should obey. Section 4 investigates the outcomes that are computed under stable seman-
tics. Section 5 compares our work with existing ones and Section 6 concludes.

2 Logic-based argumentation systems

Argumentation systems are built on an underlying monotonic logic. In this paper, we
focus on Tarski’s monotonic logics [15]. Indeed, we consider logics (£, CN) where L is
a set of well-formed formulas and CN is a consequence operator. It is a function from
2% to 2 which returns the set of formulas that are logical consequences of another set
of formulas according to the logic in question. It satisfies the following basic properties:

1. X CCN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) = Uyc, x CN(Y)! (Finiteness)
4. CN({z}) = L forsome z € L (Absurdity)
5. CN(D) # L (Coherence)

A CN that satisfies the above properties is monotonic. The associated notion of consis-
tency is defined as follows:

Definition 1 (Consistency) A ser X C L is consistent wrt a logic (L, CN) iff CN(X) #
L. It is inconsistent otherwise.

Arguments are built from a knowledge base 3) C L as follows:

Definition 2 (Argument) Let X' be a knowledge base. An argument is a pair (X, x)
s.t. X C X, X is consistent, and x € CN(X )?. An argument (X, x) is a sub-argument
of (X', 2")iff X C X'.

Notations: Supp and Conc denote respectively the support X and the conclusion x of
an argument (X, x). For all S C ¥, Arg(S) denotes the set of all arguments that can
be built from S by means of Definition 2. Sub is a function that returns all the sub-
arguments of a given argument. For all £ C Arg(X), Concs(€) = {Conc(a) | a € £}

'Y C; X means that Y is a finite subset of X.
2 Generally, the support X is minimal (for set inclusion). In this paper, we do not need to make
this assumption.



and Base(&) = J,c Supp(a). Max(X) is the set of all maximal (for set inclusion) con-
sistent subbases of X. Finally, Free(Y) = [ S; where S; € Max(X), and Inc(X) =
X\ Free(X).

An argumentation system is defined as follows.

Definition 3 (Argumentation system) An argumentation system (AS) over a knowl-
edge base X is a pair T = (Arg(X), R) such that R C Arg(X) x Arg(X) is an attack
relation. For a,b € Arg(X), (a,b) € R (or aRb) means that a attacks b.

The attack relation is left unspecified in order to keep the system very general. It is also
worth mentioning that the set Arg(X’) may be infinite even when the base X' is finite.
This would mean that the argumentation system may be infinite’. Finally, arguments
are evaluated using stable semantics.

Definition 4 (Stable semantics [8]) Let T = (Arg(X'), R) be an AS over a knowledge
base X, and € C Arg(X) s.t. fa,b € & s.t. aRb.

— & is a naive extension iff £ is maximal (for set inclusion).
— & is a stable extension iff Va € Arg(X) \ &, 3b € € s.t. bRa.

It is worth noticing that each stable extension is a naive one but the converse is false.
Let Ext,(7) denote the set of all extensions of 7 under semantics = (n and s will
stand respectively for naive and stable semantics). When we do not need to specify the
semantics, we use the notation Ext(7") for short.

The extensions are used in order to define the conclusions to be drawn from 2’ according
to an argumentation system 7. The idea is to infer a formula x from X iff z is the
conclusion of an argument in each extension. Output(7) is the set of all such formulas.

Definition 5 (Output) Ler T = (Arg(X),R) be an AS over a knowledge base X.
Output(7) ={z € L | V€ € Ext(T), Ja € & s.t. Conc(a) = x}.

Output(7) coincides with the set of common conclusions of the extensions. Indeed,
Output(7) = [Concs(E;), & € Ext(T). Note also that when the base X contains
only inconsistent formulas, then Arg(3)) = (). Consequently, Exts(7) = {0} and
Output(7) = (. Without loss of generality, throughout the paper, we assume that X' is
finite and contains at least one consistent formula.

3 Postulates for argumentation systems

In [5], it was argued that logic-based argumentation systems should obey to some ra-
tionality postulates, i.e., desirable properties that any reasoning system should enjoy.
The three postulates proposed in [5] are revisited and extended to any Tarskian logic
in [1]. The first one concerns the closure of the system’s output under the consequence
operator CN. The idea is that the formalism should not forget conclusions.

3 An AS is finite iff each argument is attacked by a finite number of arguments. It is infinite
otherwise.



Postulate 1 (Closure under CN) Ler T = (Arg(X),R) be an AS over a knowledge
base X. T satisfies closure iff for all £ € Ext(T ), Concs(E) = CN(Concs(&)).

The second rationality postulate ensures that the acceptance of an argument should
imply also the acceptance of all its sub-arguments.

Postulate 2 (Closure under sub-arguments) Let T = (Args(X), R) be an AS over a
knowledge base Y. T is closed under sub-arguments iff for all £ € Ext(T), ifa € &,
then Sub(a) C £.

The third rationality postulate ensures that the set of conclusions supported by each
extension is consistent.

Postulate 3 (Consistency) Let T = (Arg(X), R) be an AS over a knowledge base ..
T satisfies consistency iff for all £ € Ext(T), Concs(&) is consistent.

In [1], the conditions under which these postulates are satisfies/violated are investigated.
It is shown that the attack relation should be grounded on inconsistency. This is an
obvious requirement especially for reasoning about inconsistent information.

Definition 6 (Conflict-dependent) Let 7 = (Arg(X), R) be an AS. The attack rela-
tion R is conflict-dependent iff Va,b € Arg(X), if aRb then Supp(a) U Supp(b) is
inconsistent.

4 The outcomes of argumentation systems

As seen before, the acceptability of arguments is defined without considering neither
their internal structure nor their origin. In this section, we fully characterize for the first
time the "concrete’ outputs of an argumentation system under stable semantics. For that
purpose, we consider only systems that enjoy the three rationality postulates introduced
in the previous section. Recall that systems that violate them return undesirable outputs.
Before presenting our study, we start first by analyzing the outputs of argumentation
systems under the naive semantics. One may wonder why especially since this particular
semantics is not used in the literature for evaluating arguments. The reason is that the
only case where stable semantics ensures an intuitive output is where an argumentation
system returns exactly the same output under stable and naive semantics.

4.1 Naive semantics

Before characterizing the outputs of an AS under naive semantics, let us start by show-
ing some useful properties. The next result shows that if each naive extension returns a
consistent subbase of X, then the AS is certainly closed under sub-arguments.

Proposition 1 Ler T = (Arg(X), R) be an AS over a knowledge base X such that R
is conflict-dependent. If VE € Ext, (T ), Base(&) is consistent, then T is closed under
sub-arguments (under naive semantics).



A consequence of the previous result is that under naive semantics, the satisfaction of
both consistency and closure under sub-arguments is equivalent to the satisfaction of a
stronger version of consistency.

Theorem 1. Let T = (Arg(X), R) be an AS over a knowledge base X such that R
is conflict-dependent. ‘T satisfies consistency and closure under sub-arguments (under
naive semantics) iff VE € Ext,, (T ), Base(E) is consistent.

In case of naive semantics, closure under the consequence operator CN is induced from
the two other postulates: closure under sub-arguments and consistency.

Proposition 2 Let T = (Arg(X), R) be an AS over a knowledge base X such that R is
conflict-dependent. If T satisfies consistency and is closed under sub-arguments (under
naive semantics), then it is also closed under CN.

An important question now is: what is hidden behind naive semantics? We show that the
naive extensions of any argumentation system that satisfies Postulates 2 and 3 always
return maximal (for set inclusion) consistent subbases of 3.

Theorem 2. Let T = (Arg(X), R) be an AS over a knowledge base X such that R is
conflict-dependent. If T satisfies consistency and is closed under sub-arguments (under
naive semantics), then:

— Forall £ € Ext,(T), Base(&) € Max(X).
— Forall&;,E; € Ext,(T), if Base(&;) = Base(E;) then & = &;.

The previous result does not guarantee that all the maximal consistent subbases of '
are captured. The next theorem confirms that any maximal consistent subbase of Y/
defines a naive extension of an AS which satisfies consistency and closure under sub-
arguments.

Theorem 3. Let T = (Arg(X), R) be an AS over a knowledge base X such that R is
conflict-dependent. If T satisfies consistency and is closed under sub-arguments (under
naive semantics), then:

— Forall § € Max(X)), Arg(S) € Ext,(T).
— Forall §;,S; € Max(X), if Arg(S;) = Arg(S;) then S; = S;.

It follows that any argumentation system that satisfies the two postulates 2 and 3 enjoy
a full correspondence between the maximal consistent subbases of X' and the naive
extensions of the system.

Theorem 4. Let T = (Arg(X), R) be an AS over a knowledge base X such that R is
conflict-dependent. T satisfies consistency and is closed under sub-arguments (under
naive semantics) iff the naive extensions of Ext,, (T ) are exactly the Arg(S) where S
ranges over the elements of Max(X).

A direct consequence of the previous result is that the number of naive extensions is
finite. This follows naturally from the finiteness of the knowledge base .



Theorem 5. Let T = (Arg(X), R) be an AS over a knowledge base X such that R
is conflict-dependent and ‘T satisfies consistency and is closed under sub-arguments
(under naive semantics). If X is finite, then T has a finite number of naive extensions.

Let us now characterize the set Output(7) of inferences that may be drawn from a
knowledge base X' by an argumentation system 7 under naive semantics. It coincides
with the set of formulas that are drawn by all the maximal consistent subbases of .

Theorem 6. Ler T = (Arg(X), R) be an AS over a knowledge base X such that R is
conflict-dependent, T satisfies consistency and is closed under sub-arguments (under
naive semantics). Qutput(7T) = [ CN(S;) where S; € Max(X).

In short, under naive semantics, any ‘good’ instantiation of Dung’s abstract framework
returns exactly the formulas that are drawn (with CN) by all the maximal consistent
subbases of the base Y. So whatever the attack relation that is chosen, the result will
be the same. It is worth recalling that the output set contains exactly the so-called uni-
versal conclusions in the approach developed in [14] for reasoning about inconsistent
propositional bases.

4.2 Stable semantics

As for naive semantics, we show that under stable semantics, strong consistency induce
closure under sub-arguments.

Proposition 3 Let T = (Arg(X), R) be an AS over a knowledge base X such that R
is conflict-dependent. IfVE € Ext(T), Base(E) is consistent, then T is closed under
sub-arguments (under stable semantics).

The following theorem shows that satisfying consistency and closure under sub-arguments
amounts exactly to satisfying the strong version of consistency.

Theorem 7. Let T = (Arg(X), R) be an AS over a knowledge base X such that R
is conflict-dependent. T satisfies consistency and closure under sub-arguments (under
stable semantics) iff VE € Ext(T), Base(E) is consistent.

Like for naive semantics, in case of stable semantics, closure under the consequence
operator CN follows from closure under sub-arguments and consistency.

Proposition 4 Ler T = (Arg(X), R) be an AS over a knowledge base X such that R is
conflict-dependent. If T satisfies consistency and is closed under sub-arguments (under
stable semantics), then it is also closed under CN (under stable semantics).

We now show that the stable extensions of any argumentation system, which satisfies
Postulates 2 and 3, return maximal consistent subbases of Y. This means that if one
instantiates Dung’s system and does not get maximal consistent subbases with stable
extensions, then the instantiation certainly violates one or both of the two key postu-
lates: consistency and closure under sub-arguments.



Theorem 8. Ler T = (Arg(X), R) be an AS over a knowledge base X such that R is
conflict-dependent. If T satisfies consistency and closure under sub-arguments (under
stable semantics), then:

— Forall £ € Exts(T), Base(€) € Max(X).
— Forall £ € Ext4(T), £ = Arg(Base(E)).
— Forall§;,E; € Exty(T), if Base(&;) = Base(&;) then & = &;.

This result is strong as it characterizes the outputs under stable semantics of a large
class of argumentation systems, namely, those grounded on Tarskian logics.

The previous result does not guarantee that each maximal consistent subbase of ) has
a corresponding stable extension in the argumentation system 7. To put it differently, it
does not guarantee the equality |[Extg(7)| = |Max(X')|. However, it shows that in case
stable extensions exist, then their bases are certainly elements of Max(X). This enables
us to delimit the number of stable extensions that an AS may have.

Proposition 5 Let T = (Arg(X), R) be an AS over a base X s.t. R is conflict-dependent
and T satisfies consistency and closure under sub-arguments (under stable semantics).
It holds that 0 < |Exts(T)| < [Max(X)].

From this property, it follows that when the knowledge base is finite, the number of
stable extensions is finite as well.

Property 1 If X is finite, then VT = (Arg(X),R) s.t. T satisfies consistency and
closure under sub-arguments (under stable semantics), |Exts(T)| is finite.

The fact that an argumentation system 7 verifies or not the equality [Exts(7)| =
[Max(X)| depends broadly on the attack relation that is chosen. Let R, be the set of
all attack relations that ensure Postulates 2 and 3 under stable semantics (Rs = {R C
Arg(X) x Arg(X) | R is conflict-dependent and (Arg(X'), R) satisfies Postulates 2 and
3 under stable semantics} for all X). This set contains three disjoints subsets of attack
relations: f; = g1 U Reo U a3t

— g1 the relations which lead to |Ext(7T)| = 0.
— Rso: the relations which ensure 0 < [Ext,(7)| < [Max(X)].
— Rg3: the relations which ensure [Ext,(7)| = [Max(X)).

Let us analyze separately each category of attack relations. We start with relations of
the set $43. Those relations induce a one to one correspondence between the stable
extensions of the argumentation system and the maximal consistent subbases of 2.

Property 2 Let T = (Arg(X), R) be an AS over a knowledge base X such that R €
Rs3. Forall S € Max(XY), Arg(S) € Exts(T).

An important question now is: do such attack relations exist? We are not interested in
identifying all of them since they lead to the same result. It is sufficient to show whether
they exist. Hopefully, such relations exist and assumption attack [9] is one of them.



Theorem 9. The set Rs3 is not empty.

We show now that argumentation systems based on this category of attack relations
always have stable extensions.

Theorem 10. For all T = (Arg(X), R) such that R € Rss, Exts(T) # 0.
Let us now characterize the output set of a system under stable semantics.

Theorem 11. Letr T = (Arg(X), R) be an AS over a knowledge base X such that
R € Rgs. Output(T) = (CN(S;) where S; € Max(X).

Note that this category of attack relations leads exactly to the same result as naive se-
mantics. Thus, stable semantics does not play any particular role. Moreover, argumen-
tation systems return the universal conclusions (of the coherence-based approach [14])
under any monotonic logic, not only under propositional logic as in [14].

Let us now analyze the first category (Rs1) of attack relations that guarantee the postu-
lates. Recall that these relations prevent the existence of stable extensions.

Theorem 12. Let T = (Arg(X), R) be an AS over a knowledge base X such that
R € Rg1. It holds that Output(T) = 0.

These attack relations are skewed, and may prevent intuitive conclusions from being
drawn from a knowledge base. This is particularly the case of free formulas, i.e. in
Free(X), as shown next.

Property 3 Let T = (Arg(X), R) be an AS over a knowledge base X such that Free(X)) #
0. If R € Rs1, thenVx € Free(X), x ¢ Output(T).

What about the remaining attack relations, i.e., those of 4o that ensure the existence of
stable extensions? Systems that use these relations choose a proper subset of maximal
consistent subbases of X' and make inferences from them. Their output sets are defined
as follows:

Theorem 13. Let T = (Arg(X), R) be an AS over a knowledge base X such that
R € Rso. Output(7T) = [CN(S;) where S; € Max(X) and S; = Base(&;) with
E; € Exty(T).

These attack relations lead to an unjustified discrimination between the maximal con-
sistent subbases of a knowledge base. Unfortunately, this is fatal for the argumentation
systems which use them as they return counter-intuitive results (see Example 1).

Example 1 Assume that (L,CN) is propositional logic and let X contain three intu-
itively equally preferred formulas: ¥ = {x,x — y, —y}. This base has three maximal
consistent subbases:

-8 = {33,33 - y}’ So = {33, _‘y}’ Sz = {33 - yv_'y}'



The arguments that may be built from X may have the following supports: {x}, {x —
y}, {~y} {z,x — y}, {z,~wy}, and {x — y,—~y}. Assume now the attack relation
shown in the figure below. For the sake of readability, we do not represent the conclu-
sions of the arguments in the figure. An arrow from X towards Y is read as follows:
any argument with support X attacks any argument with supportY .

{ﬁTy}
T}x, T — yk
{w,;y —{= e -y}
{z =y} {z}

This argumentation system has two stable extensions:

- & ={a € Arg(X) | Supp(a) = {x,x — y} or Supp(a) = {z} or Supp(a) =
{z =y}t

- & = {a € Arg(Y) | Supp(a) = {z,~y}orSupp(a) = {z} or Supp(a) =
{-y}h

It can be checked that this argumentation system satisfies consistency and closure under
sub-arguments. The two extensions capture respectively the subbases Sy and Ss.

It is worth noticing that the third subbase Ss = {x — y,—~y} is not captured by any
stable extension. Indeed, the set Arg(S3) = {a € Arg(X) | Supp(a) = {~y,z —
y} or Supp(a) = {—y} or Supp(a) = {x — y}} is not a stable extension. Ss is dis-
carded due to the definition of the attack relation. Note that this leads to non-intuitive
outputs. For instance, it can be checked that x € Qutput(T) whereas —y ¢ Output(T)
and x — y ¢ Output(T). Since the three formulas of X are assumed to be equally
preferred, then there is no reason to privilege one compared to the others!

The example showed a skewed attack relation which led to ‘artificial’ priorities among
the formulas of a base X: x is preferred to =y and « — y. The following result confirms
this observation.

Theorem 14. Let T = (Arg(X), R) be an AS over a knowledge base X.. If R € Rso,
then 3z, 2" € Inc(X) such that x € Output(T) and ' ¢ Output(T).

To sum up, there are three categories of attack relations that ensure the three rationality
postulates. Two of them (R4 and R42) should be avoided as they lead to undesirable
results. It is worth mentioning that we are not interested here in identifying those re-
lations. Indeed, if they exist, they certainly lead to bad results and thus, should not be
used. The third category of relations (Rs3) leads to “correct” results, but argumentation
systems based on them return exactly the same results under naive semantics. Thus, sta-
ble semantics does not play any particular role in the logic-based argumentation systems
we studied in the paper. Moreover, the outputs of the systems coincide with those of the
coherence-based approach [14]. As a consequence, argumentation systems inherit the
drawbacks of this approach. Let us illustrate this issue by the following example.

Example 2 Assume that (L,CN) is propositional logic and let X = {z,—~x A y}. This
base has two maximal consistent subbases:



- &1 ={z}
- S ={-xAy}

According to the previous results, any instantiation of Dung’s framework falls in one of
the following cases:

— Instantiations that use attack relations in Vg1 will lead to Output(T) = 0. This
result is undesirable since y should be inferred from X since it is not part of the
conflict.

— Instantiations that use attack relations in o will lead either to Output(7T) =
CN({z}) or to Output(T) = CN({—x A y}). Both outputs are undesirable since
they are unjustified. Why x and not —x and vice versa?

— Instantiations that use attack relations in Rss will lead to Output(T) = (. Like
the first case, there is no reason to not conclude y.

5 Related work

This paper investigated the outputs of an argumentation system under stable semantics.
There are some works in the literature which are somehow related to our. In [11, 13], the
authors studied whether some particular argumentation systems satisfy some of the ra-
tionality postulates presented in this paper. By particular system, we mean a system that
is grounded on a particular logic and/or that uses a specific attack relation. In our paper
the objective is different. We assumed abstract argumentation systems that satisfy the
desirable postulates, and studied their outputs under stable semantics. Two other works,
namely [6] and [3], share this objective. In [6], the author studied one particular sys-
tem: the one that is grounded on propositional logic and uses the “assumption attack™
relation [9]. The results got show that assumption attack belongs to our set Rg3. In [3],
these results are generalized to argumentation systems that use the same attack relation
but grounded on any Tarskian logic. Our work is more general since it completely ab-
stracts from the attack relation. Moreover, it presents a complete view of the outputs
under stable semantics.

6 Conclusion

This paper characterized for the first time the outputs (under stable semantics) of any
argumentation system that is grounded on a Tarskian logic and that satisfies very basic
rationality postulates. The study is very general since it keeps all the parameters of a
system unspecified. Namely, Tarskian logics are abstract and no requirement is imposed
on the attack relation except the property of conflict-dependency which is mandatory
for ensuring the consistency postulate. We identified the maximum number of stable ex-
tensions a system may have. We discussed three possible categories of attack relations
that may make a system satisfies the postulates. Two of them lead to counter-intuitive
results. Indeed, either ad hoc choices are made or interesting conclusions are forgotten
like the free formulas. Argumentation systems based on attack relations of the third cat-
egory enjoy a one to one correspondence between the stable extensions and the maximal



consistent subbases of the knowledge base. Consequently, their outputs are the common
conclusions drawn from each maximal consistent subbase. This means that stable se-
mantics does not play any particular role for reasoning with inconsistent information
since the same result is returned by naive semantics. Moreover, the argumentation ap-
proach is equivalent to the coherence-based one. Consequently, it suffers from, the same
drawbacks as this latter.
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Appendix

Proof of Proposition 1. Let T = (Arg(X), R) be an AS over a knowledge base X
such that R is conflict-dependent. Assume that 7 violates closure under sub-arguments.
Thus, 3€ € Ext, (T ) such that da € £ and 3b € Sub(a) with b ¢ £. This means that
E U{b} is conflicting, i.e. dc € & such that bRc or ¢Rb. Since R is conflict-dependent,



then Supp(b) U Supp(c) is inconsistent. However, Supp(b) C Supp(a) C Base(€) and
thus, Supp(b) U Supp(c) C Base(E). This means that Base(€) is inconsistent. This
contradicts the assumption. [ ]

Proof of Theorem 1. Assume that an AS T satisfies Postulates 2 and 3, then from
Proposition 5 (in [1]) it follows that VE € Ext,, (T ), Base(£) is consistent.

Assume now that V€ € Ext, (7 ), Base(€) is consistent. Then, 7 satisfies con-
sistency (Proposition 4, [1]). Moreover, from Proposition 1, 7 is closed under sub-
arguments. [ ]

Proof of Proposition 2. Let T = (Arg(X), R) be an AS over a knowledge base X' such
that R is conflict-dependent. Assume that 7 is closed under sub-arguments and satis-
fies consistency. Assume also that 7 violates closure under CN. Thus, 3€ € Ext,(T)
such that Concs(€) # CN(Concs(€)). This means that 3x € CN(Concs(£)) and
x ¢ Concs(€). Besides, CN(Concs(E)) C CN(Base(£)). Thus, z € CN(Base(E)).
Since CN verifies finiteness, then 3X C Base(&) such that X is finite and z € CN(X).
Moreover, from Proposition 5 (in [1]), Base(€) is consistent. Then, X is consistent as
well (from Property 2 in [2]). Consequently, the pair (X, x) is an argument. Besides,
since x ¢ Concs(€) then (X, z) ¢ £. This means that Ja € £ such that aR (X, x) or
(X, z)Ra. Finally, since R is conflict-dependent, then Supp(a) U X is inconsistent and
consequently Base(&) is inconsistent. This contradicts the assumption. ]

Proof of Theorem 2. Let T = (Arg(X), R) be an AS over a knowledge base 3 such
that R is conflict-dependent. Assume that 7 satisfies consistency and is closed under
sub-arguments. Let £ € Ext,, (7). From Proposition 5 (in [1]), Base(€) is consistent.

Assume now that Base(&) is not maximal for set inclusion. Thus, 3z € X'\Base(&)
such that Base(€) U {z} is consistent. This means that {z} is consistent. Thus, Ja €
Arg(X)) such that Supp(a) = {z}. Since x ¢ Base(E), then a ¢ &. Since € is a
naive extension, then 3b € & such that aRb or bRa. Since R is conflict-dependent,
then Supp(a) USupp(b) is inconsistent. But, Supp(b) C Base(&), this would mean that
Base(&) U {x} is inconsistent. Contradiction.

Let £ € Ext, (7). It is obvious that £ C Arg(Base(£)) since the construction of
arguments is monotonic. Let a € Arg(Base(£)). Thus, Supp(a) C Base(E). Assume
that @ ¢ &, then 3b € & such that aRb or bRa. Since R is conflict-dependent, then
Supp(a)USupp(b) is inconsistent. Besides, Supp(a) USupp(b) C Base(&). This means
that Base(€) is inconsistent. Contradiction.

Letnow &;, &; € Exty,(T). Assume that Base(&;) = Base(E;). Then, Arg(Base(&;)) =
Arg(Base(&;)). Besides, from the previous bullet, & = Arg(Base(&;)) and &; =
Arg(Base(&;)). Consequently, & = &;. |

Proof of Theorem 3. Let T = (Arg(X), R) be an AS over a knowledge base X' s.t. R
is conflict-dependent. Assume that 7 satisfies Postulates 2 and 3.

LetS € Max(Y), and assume that Arg(S) ¢ Ext, (7). Since R is conflict-dependent
and S is consistent, then it follows from Proposition 5 in [2] that Arg(S) is conflict-free.
Thus, Arg(S) is not maximal for set inclusion. So, Ja € Arg(X') such that Arg(S)U{a}
is conflict-free. There are two possibilities: i) S U Supp(a) is consistent. But since
S € Max(X), then Supp(a) C S, and this would mean that a € Arg(S). ii) SUSupp(a)



is inconsistent. Thus, 3C' € Cyx such that C' C SUSupp(a). Let X; = CNS and Xo =
C N Supp(a). From Lemma 3 in [1], 327 € CN(X7) and Jzo € CN(X>) such that the
set {x1,x2} is inconsistent. Note that (X7, 1) and (Xs, x2) are arguments. Moreover,
(X1,21) € Arg(S) and (X2, x2) € Sub(a). Besides, since Arg(S) U {a} is conflict-
free, then 3€ € Ext(T) such that Arg(S) U {a} C &. Thus, (X1,21) € &. Since T
is closed under sub-arguments then (X2, z2) € €. Thus, {z1,22} C Concs(E). From
Property 2 in [2], it follows that Concs(E) is inconsistent. This contradicts the fact that
T satisfies consistency.

Let now S;, S; € Max(X) be such that Arg(S;) = Arg(S;). Assume that S; # S,
thus dx € S; and x ¢ S;. Besides, S; is consistent, then so is the set {« }. Consequently,
da € Arg(X) such that Supp(a) = {x}. It follows also that a € Arg(S;) and thus
a € Arg(S;). By definition of an argument, Supp(a) C S;. Contradiction. [ |

Proof of Theorem 4. Let T = (Arg(X), R) be an AS over a knowledge base 3 such
that R is conflict-dependent.

Assume that 7 satisfies Postulates 2 and 3. Them from Theorems 2 and 3, it follows
that there is a full correspondence between Max(X) and Ext,, (7).

Assume now that there is a full correspondence between Max(X) and Ext, (7).
Then, V€ € Ext(T), Base(E) is consistent. Consequently, 7 satisfies consistency.
Moreover, from Proposition 1, 7 is closed under sub-arguments. [ |

Proof of Theorem 5.Let T = (Arg(X), R) be an AS over a knowledge base X' such that
R is conflict-dependent and 7 satisfies consistency and is closed under sub-arguments.
From Theorem 4, it follows that |Ext,, (7)| = [Max(X')|. Since X is finite, then it has a
finite number of maximal consistent subbases. Thus, the number of naive extensions is
finite as well. [ |

Proof of Theorem 6. Let T = (Arg(X), R) be an AS over a knowledge base X' such that
R is conflict-dependent. Assume that T satisfies consistency and is closed under sub-
arguments. Then, from Proposition 2, 7 enjoys closure under CN. Then, from Property 5
in [1], forall £ € Ext,(7T), Concs(€) = CN(Base(E)). Finally, from Theorem 4, there
is a full correspondence between elements of Max(X') and the naive extensions. Thus,
forall & € Ext,(7), 3IS; € Max(X) such that Base(&;) = S;. Thus, Concs(&;) =
CN(S;). By definition, Output(7) = () Concs(&;) , thus Output(7) = (CN(S;). =

Proof of Proposition 3. Let T = (Arg(X), R) be an AS over a knowledge base X
such that R is conflict-dependent. Assume that VE € Ext,(7 ), Base(E) is consistent.
Assume also that 7 violates closure under sub-arguments. Thus, 3€ € Ext, (7T ) such
that da € £ and Jb € Sub(a) with b ¢ £. Since £ is a stable extension, then Jc € &
such that ¢Rb. Since R is conflict-dependent, then Supp(b) U Supp(c) is inconsistent.
However, Supp(b) C Supp(a) C Base(&). Then, Supp(b) U Supp(c) C Base(£). This
means that Base(€) is inconsistent. This contradicts the assumption. |

Proof of Theorem 7. Assume that an AS T satisfies Postulates 2 and 3, then from
Proposition 5 (in [1]) it follows that V€ € Ext,(7T ), Base(£) is consistent.

Assume now that VE € Exty(7), Base(&) is consistent. Then, 7 satisfies con-
sistency (Proposition 4, [1]). Moreover, from Proposition 3, 7 is closed under sub-
arguments. [ ]



Proof of Proposition 4. Let T = (Arg(X'), R) be an AS over a knowledge base X' such
that R is conflict-dependent. Assume that 7 is closed under sub-arguments and satis-
fies consistency. Assume also that 7 violates closure under CN. Thus, 3€ € Ext4(T)
such that Concs(€) # CN(Concs(€)). This means that 3z € CN(Concs(£)) and
x ¢ Concs(€). Besides, CN(Concs(E)) C CN(Base(€)). Thus, z € CN(Base(£)).
Since CN verifies finiteness, then 3X C Base(€) such that X is finite and z € CN(X).
Moreover, from Proposition 5 (in [1]), Base(£) is consistent. Then, X is consistent as
well (from Property 2 in [2]). Consequently, the pair (X, x) is an argument. Besides,
since x ¢ Concs(&) then (X, x) ¢ £. This means that Ja € £ such that aR (X, z). Fi-
nally, since R is conflict-dependent, then Supp(a) U X is inconsistent and consequently
Base(&) is inconsistent. This contradicts the assumption. [ |

Proof of Theorem 8. Let T = (Arg(X), R) be an AS over a knowledge base X such that
R is conflict-dependent. Let £ € Ext (7). Since T satisfies Postulates 1, 2 and 3, then
Base(&) is consistent (from Proposition 3). Assume now that Base(£) is not maximal
for set inclusion. Thus, 3z € X' \ Base(E) such that Base(£) U {z} is consistent.
This means that {z} is consistent. Thus, Ja € Arg(X) such that Supp(a) = {x}.
Since = ¢ Base(£), then a ¢ E. Since £ is a stable extension, then 3b € & such
that bRa. Since R is conflict-dependent, then Supp(a) U Supp(b) is inconsistent. But,
Supp(b) C Base(&), this would mean that Base(£)U{x} is inconsistent. Contradiction.

Let £ € Extg(T). It is obvious that £ C Arg(Base(E)) since the construction
of arguments is monotonic. Let a € Arg(Base(£)). Thus, Supp(a) C Base(E). As-
sume that a ¢ &, then 3b € & such that bRa. Since R is conflict-dependent, then
Supp(a)USupp(b) is inconsistent. Besides, Supp(a)USupp(b) C Base(£). This means
that Base(€) is inconsistent. Contradiction.

Letnow &;, &; € Ext,s(T). Assume that Base(&;) = Base(&;). Then, Arg(Base(&;)) =
Arg(Base(&;)). Besides, from bullet 2 of this proof, & = Arg(Base(&;)) and &; =
Arg(Base(&;)). Consequently, & = &;. |

Proof of Proposition 5. Let T = (Arg(X), R) be an AS over a knowledge base X s.t.
R is conflict-dependent and T satisfies consistency and closure under sub-arguments.
If Ext,(7) = 0, then [Exts(T)| = 0. If Exts(T) # 0, then |[Exty(7)| < [Max(X)
(from Theorem 8). [ |

Proof of Property 2.Let T = (Arg(X), R) be an AS over a knowledge base X' such that
R € Res. Let S € Max(X). Since [Ext(7T)| = [Max(X)|, then from Theorem 8, I€ €
Ext,(7) such that Base(€) = S. Besides, from the same theorem, £ = Arg(Base(£)),
thus £ = Arg(S). Consequently, Arg(S) € Extg (7). ]

Proof of Theorem 9. It was shown under any Tarskian logic that the attack relation
proposed in [9] and called assumption attack verifies the correspondence between stable
extensions and maximal subbases. Thus, assumption attack belongs to 3. [ ]

Proof of Theorem 10. Let T = (Arg(X), R) be an AS over a knowledge base X' such
that R € Rs3. Then, |Exts(7)| = |Max(X)|. There are two cases: i) X contains only
inconsistent formulas, thus Max(X') = {0} and Exts(7) = {0} since Arg(X) = 0. ii)
X contains at lest one consistent formula z. Thus, 3§ € Max(X) such z € S. Since
R € Rgs, then Arg(S) € Extq(T). [




