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ABSTRACT

Practical reasoning (PR), which is concerned with the generic ques-

tion of what to do, is generally seen as a two steps process: (1) de-

liberation, in which an agent decides what state of affairs it wants to

reach –that is, its desires; and (2) means-ends reasoning, in which

the agent looks for plans for achieving these desires. A desire is jus-

tified if it holds in the current state of the world, and feasible if there

is a plan for achieving it. The agent’s intentions are thus a consis-

tent subset of desires that are both justified and feasible. This paper

proposes the first argumentation system for PR that computes in

one step the intentions of an agent, allowing thus to avoid the draw-

backs of the existing systems. The proposed system is grounded

on a recent work on constrained argumentation systems, and satis-

fies the rationality postulates identified in argumentation literature,

namely the consistency and the completeness of the results.

Categories and Subject Descriptors

I.2.3 [Deduction and Theorem Proving]: Nonmonotonic reason-

ing and belief revision; I.2.11 [Distributed Artificial Intelligence]:

Intelligent agents

General Terms

Human Factors, Theory
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1. INTRODUCTION
Practical reasoning (PR) [15], is concerned with the generic

question “what is the right thing to do for an agent in a given situ-

ation”. In [21], it has been argued that PR is a two steps process.

The first step, often called deliberation, consists of identifying the

desires of an agent. In the second step, called means-end reason-

ing, one looks for ways for achieving those desires, i.e. for actions

or plans. A desire is justified if it holds in the current state of the

world, and is feasible if it has a plan for achieving it. The agent’s

intentions, what the agent decides to do, is a consistent subset of

desires that are both justified and feasible.
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What is worth noticing in most works on practical reasoning is

the use of arguments for providing reasons for choosing or discard-

ing a desire as an intention. Indeed, several argumentation-based

systems for PR have been proposed in the literature [3, 13, 14].

However, in most of these works, the problem of PR is modeled

in terms of at least two separate systems, each of them capturing

a given step of the process. Such an approach may suffer from a

serious drawback. In fact, some desires that are not feasible may be

accepted at the deliberation step to the detriment of other justified

and feasible desires. Moreover, the properties of those systems are

not investigated.

This paper proposes the first argumentation system that com-

putes the intentions of an agent in one step. The system is grounded

on a recent work on constrained argumentation systems [9]. These

last extend the well-known general system of Dung [10] by adding

constraints on arguments that need to be satisfied by the extensions

returned by the system. Our system takes then as input i) three

categories of arguments: epistemic arguments that support beliefs,

explanatory arguments that show that a desire holds in the current

state of the world, and instrumental arguments that show that a de-

sire is feasible, ii) different conflicts among those arguments, and

iii) a particular constraint on arguments that captures the idea that

for a desire to be pursued it should be both feasible and justified.

This is translated by the fact that in a given extension each instru-

mental argument for a desire should be accompanied by at least an

explanatory argument in favor of that desire. The output of our sys-

tem is different sets of arguments as well as different sets of inten-

tions. The use of a constrained systemmakes it possible to compute

directly the intentions from the extensions. The properties of this

system are deeply investigated. In particular, we show that its re-

sults are safe, and satisfy the rationality postulates identified in [5],

namely consistency and completeness.

The paper is organized as follows: Section 2 recalls the basics

of a constrained argumentation system. Section 3 presents the log-

ical language. Section 4 studies the different types of arguments

involved in a practical reasoning problem, and Section 5 investi-

gates the conflicts that may exist between them. Section 6 presents

the constrained argumentation system for PR, and its properties are

given in Section 7. The system is then illustrated in Section 8.

2. BASICSOFCONSTRAINEDARGUMEN-

TATION
Argumentation is an established approach for reasoning with in-

consistent knowledge, based on the construction and the compari-

son of arguments. Many argumentation formalisms are built around

an underlying logical language and an associated notion of logi-

cal consequence, defining the notion of argument. The argument



construction is a monotonic process: new knowledge cannot rule

out an argument but gives rise to new arguments which may inter-

act with the first argument. Since knowledge bases may give rise

to inconsistent conclusions, the arguments may be conflicting too.

Consequently, it is important to determine among all the available

arguments, the ones that are ultimately “acceptable”. In [10], an

abstract argumentation system has been proposed, and different ac-

ceptability semantics have been defined.

DEF. 1. ([10] – Basic argumentation system) An argumenta-

tion system is a pair AF = 〈A,R〉 with A is a set of arguments,

andR is an attack relation (R ⊆ A×A).

Before recalling the acceptability semantics of Dung [10], let us

first introduce some useful concepts.

DEF. 2. ([10] – Conflict-free, Defence) Let E ⊆ A. E is con-

flict-free iff @ α, β ∈ E such that α R β. E defends an argument α

iff ∀ β ∈ A, if β R α, then ∃ δ ∈ E such that δ R β.

Dung’s semantics are all based on a notion of admissibility.

DEF. 3. ([10] – Acceptability semantics) Let E be a set of ar-

guments. E is an admissible set iff it is conflict-free and defends

every element in E . E is a preferred extension iff it is a maximal

(w.r.t. set-inclusion) admissible set. E is a stable extension iff it is

a preferred extension that attacks all arguments in A\E .

Note that every stable extension is also a preferred one, but the

converse is not always true.

The above argumentation system has been generalized in [9].

The basic idea is to explicit constraints on arguments that should

be satisfied by the above Dung’s extensions. For instance, one may

want that the two arguments α and β belong to the same stable

extension. These constraints are generally expressed in terms of a

propositional formula built from a language usingA as an alphabet.

DEF. 4. ([9] – Constraints on arguments, Completion of a

set of arguments) LetA be a set of arguments and LA be a propo-

sitional language defined using A as the set of propositional vari-

ables. C is a constraint on A iff C is a formula of LA. The com-

pletion of a set E ⊆ A is: Ê = {α | α ∈ E} ∪ {¬α | α ∈ A \ E}.

A set E ⊆ A satisfies C iff Ê is a model of C (Ê ` C).

A constrained system is defined as follows:

DEF. 5. ([9] – Constrained argumentation system) A con-

strained argumentation system is a triple CAF = 〈A,R, C〉 with
C is a constraint on arguments of A.

Let us recall how Dung’s extensions are extended in constrained

systems. As said before, the basic idea is to compute Dung’s exten-

sions, and then to keep among those extensions the ones that satisfy

the constraint C.

DEF. 6. ([9] –C-admissible set) Let E ⊆ A. E isC-admissible

iff i) E is admissible, ii) E satisfies the constraint C.

Note that the empty set is admissible, however, it is not always

C-admissible since ∅̂ does not always imply C.

DEF. 7. ([9] – C-extensions) Let E ⊆ A. E is a C-preferred

extension iff E is maximal for set-inclusion among theC-admissible

sets. E is a C-stable extension iff E is a C-preferred extension that

attacks all arguments in A\E .

Now that the acceptability semantics are defined, we are ready to

define the status of any argument.

DEF. 8. (Argument status) Let CAF be a constrained argu-

mentation system, and E1, . . . , Ex its extensions under a given se-

mantics. Let α ∈ A. α is accepted iff α ∈ Ei, ∀Ei with i =
1, . . . , x. α is rejected iff @Ei such that α ∈ Ei. α is undecided iff

α is neither accepted nor rejected.

One can easily check that if an argument is rejected in the basic

system AF, then it will also be rejected in CAF.

PROP. 1. Let α ∈ A. If α is rejected in AF, then α is also

rejected in CAF.

PROOF. Let α ∈ A. Assume that α is rejected in AF, and that α is not
rejected in CAF.
Case of stable semantics: Since α is not rejected in CAF, then there exists
Ei that is a C-stable extension of CAF, and α ∈ Ei. In [9], it has been
shown (Prop. 6) that every C-stable extension is also a stable extension.
Consequently, Ei is also a stable extension. Since α is rejected in AF, then
α 6∈ Ei, contradiction.
Case of preferred semantics: Since α is not rejected in CAF, then there
exists Ei that is a C-preferred extension of CAF, and α ∈ Ei. In [9], it
has been shown (Prop. 4) that each C-preferred extension is a subset of
a preferred extension. This means that ∃E such E is a preferred extension
of AF and Ei ⊆ E . However, since α is rejected in AF, then α 6∈ E ,
contradiction with the fact that α ∈ Ei.

3. LOGICAL LANGUAGE
This section presents the logical language that will be used through-

out the paper. LetL be a propositional language, and≡ be the clas-

sical equivalence relation. >From L, a subset D is distinguished

and is used for encoding desires. By desire we mean a state of af-

fairs that an agent wants to reach. Elements of D are literals. We

will write d1, . . . , dn to denote desires and the lowercase letters

will denote formulas of L.
>From the above sets, desire-generation rules can be defined. A

desire-generation rule expresses under which conditions an agent

may adopt a given desire. A desire may come from beliefs. For

instance, “if the weather is sunny, then I desire to go to the park”.

In this case, the desire of going to the park depends on my belief

about the weather. A desire may also come from other desires. For

example, if there is a conference in India, and I have the desire to

attend, then I desire also to attend the tutorials. Finally, a desire

may be unconditional, this means that it depends on neither beliefs

nor desires. These three sources of desires are captured by the fol-

lowing desire-generation rules.

DEF. 9. (Desire-Generation Rules) A desire-generation rule

(or a desire rule) is an expression of the form

b ∧ d1 ∧ · · · ∧ dm−1 ↪→ dm, where

b is a propositional formula of L and ∀di, di ∈ D. Moreover,

@di, dj with i, j ≤ m such that di ≡ dj . b ∧ d1 ∧ · · · ∧ dm−1 is

called the body of the rule (this body may be empty; this is the case

of an unconditional desire), and dm is its consequent.

The meaning of the rule is “if the agent believes b and desires

d1, . . . , dm−1, then the agent will desire dm as well”. Note that

the same desire di may appear in the consequent of several rules.

This means that the same desire may depend on different beliefs or

desires. In what follows, a desire rule is consistent if it depends on

consistent beliefs and on non contradictory desires.

DEF. 10. (Consistent Desire Rule) A desire rule b∧d1∧· · ·∧
dm−1 ↪→ dm is consistent iff b 0 ⊥, ∀i = 1 . . . m, b 0 ¬di and

@di, dj with i, j ≤ m such that di ≡ ¬dj . Otherwise, the rule is

said inconsistent.



An agent is assumed to be equipped with plans provided by a given

planning system. The generation of such plans is beyond the scope

of this paper. A plan is a way of achieving a desire. It is defined as a

triple: i) a set of pre-conditions that should be satisfied before exe-

cuting the plan, ii) a set of post-conditions that hold after executing

the plan, and iii) the desire that is reached by the plan.

DEF. 11. (Plan) A plan is a triple 〈S, T, x〉 such that

S and T are consistent sets of formulas of L,

x ∈ D,

T ` x and S 6` x.

Of course, there exists a link between S and T . But this link is not

explicitly defined here because we are not interested by this aspect

of the process. We just consider that the plan is given by a correct

and sound planning system (for instance [11, 16]).

In the remaining of the paper, we suppose that an agent is equipped

with three finite bases: i) a base K 6= ∅ and K 6= {⊥} containing
its basic beliefs about the environment (elements of K are propo-

sitional formulas of the language L), ii) a base Bd containing its

“consistent” desire rules, iii) a base P containing its plans. Using

Bd, we can characterize the potential desires of an agent as follows:

DEF. 12. (Potential Desires) The set of potential desires of an

agent is PD = {dm|∃b ∧ d1 ∧ · · · ∧ dm−1 ↪→ dm ∈ Bd}.

These are “potential” desires because it is not yet clear whether

these desires are justified and feasible or not.

4. TYPOLOGY OF ARGUMENTS
The aim of this section is to present the different kinds of ar-

guments involved in practical reasoning. There are mainly three

categories of arguments: one category for supporting/attacking be-

liefs, and two categories for justifying the adoption of desires. Note

that the arguments will be denoted with lowercase greek letters.

4.1 Justifying beliefs
The first category of arguments is that studied in argumenta-

tion literature, especially for handling inconsistency in knowledge

bases. Indeed, arguments are built from a knowledge base in order

to support or to attack potential conclusions or inferences. These

arguments are called epistemic in [12]. In our application, such ar-

guments are built from the baseK. In what follows, we will use the
definition proposed in [17].

DEF. 13. (Epistemic Argument) Let K be a knowledge base.

An epistemic argument α is a pair α = 〈H, h〉 s.t: 1) H ⊆ K, 2)

H is consistent, 3) H ` h and 4) H is minimal (for set ⊆) among

the sets satisfying conditions 1, 2, 3.

The support of the argument is given by the function SUPP(α) = H ,

whereas its conclusion is returned by CONC(α) = h. Ab stands for

the set of all epistemic arguments that can be built from the baseK.

4.2 Justifying desires
A desire may be pursued by an agent only if it is justified and

feasible. Thus, there are two kinds of reasons for adopting a desire:

i) the conditions underlying the desire hold in the current state of

world; ii) there is a plan for reaching the desire. The definition of

the first kind of arguments involves two bases: the belief base K
and the base of desire rules Bd. In what follows, we will use a tree-

style definition of arguments [19]. Before presenting that defini-

tion, let us first introduce the functions BELIEFS(δ), DESIRES(δ),
CONC(δ) and SUB(δ) that return respectively, for a given argument
δ, the beliefs used in δ, the desires supported by δ, the conclusion

and the set of sub-arguments of the argument δ.

DEF. 14. (Explanatory Argument) Let 〈K,Bd〉 be two bases.

If ∃ ↪→ d ∈ Bd then −→ d is an explanatory argument (δ)

with BELIEFS(δ) = ∅, DESIRES(δ) = {d}, CONC(δ) = d,

SUB(δ) = {δ}.

If α is an epistemic argument, and δ1, . . . , δm are explana-

tory arguments, and ∃ CONC(α)∧ CONC(δ1)∧ . . .∧CONC(δm)
↪→ d ∈ Bd then α, δ1, . . . , δm −→ d is an explanatory ar-

gument (δ) with BELIEFS(δ) = SUPP(α) ∪ BELIEFS(δ1) ∪
. . . ∪ BELIEFS(δm), DESIRES(δ) = DESIRES(δ1) ∪ . . . ∪
DESIRES(δm)∪{d}, CONC(δ) = d, SUB(δ) = {α}∪SUB(δ1)∪
. . . ∪ SUB(δm) ∪ {δ}.

Ad stands for the set of all explanatory arguments that can be built

from 〈K,Bd〉 with a consistent DESIRES set.

One can easily show that the set BELIEFS of an explanatory argu-

ment is a subset of the knowledge baseK, and that the set DESIRES
is a subset of PD.

PROP. 2. Let δ ∈ Ad. BELIEFS(δ) ⊆ K, DESIRES(δ) ⊆ PD.

PROOF. Let δ ∈ Ad. Let us show that BELIEFS(δ) ⊆K. BELIEFS(δ)
=

⋃
SUPP(αi) with αi ∈ Ab ∩ SUB(δ). According to the definition of an

epistemic argument αi, SUPP(αi) ⊆ K, thus BELIEFS(δ) ⊆ K.
Let us show that DESIRES(δ) ⊆PD. This is a direct consequence from the
definition of an explanatory argument and the definition of the setPD.

Note that a desire may be supported by several explanatory argu-

ments since it may be the consequent of different desire rules.

The last category of arguments claims that “a desire may be pur-

sued since it has a plan for achieving it”. The definition of this kind

of arguments involves the belief base K and the base of plans P .

DEF. 15. (Instrumental Argument) Let 〈K,P〉 be two bases,

and d ∈ PD. An instrumental argument is a pair π = 〈〈S, T, x〉, d〉
where 1) 〈S, T, x〉 ∈ P , 2) S ⊆ K, 3) x ≡ d.

Ap stands for the set of all instrumental arguments that can be

built from 〈K,P,PD〉. The function CONC returns for an argument
π the desire d. The function Prec returns the pre-conditions S of

the plan, whereas Postc returns its post-conditions T .

The second condition of the above definition says that the pre-

conditions of the plan hold in the current state of the world. In

other words, the plan can be executed. Indeed, it may be the case

that the base P contains plans whose pre-conditions are not true.

Such plans cannot be executed and their corresponding instrumen-

tal arguments do not exist.

In what follows, A = Ab ∪ Ad ∪ Ap. Note that A is finite since

the three initial bases (K, Bd and P) are finite.

5. INTERACTIONSAMONGARGUMENTS
An argument constitutes a reason for believing, or adopting a de-

sire. However, it is not a proof that the belief is true, or in our case

that the desire should be adopted. The reason is that an argument

can be attacked by other arguments. In this section, we will investi-

gate the different kinds of conflicts among the arguments identified

in the previous section.

5.1 Conflicts among epistemic arguments
An argument can be attacked by another argument for three main

reasons: i) they have contradictory conclusions (this is known as

rebuttal), ii) the conclusion of an argument contradicts a premise

of another argument (assumption attack), iii) the conclusion of an

argument contradicts an inference rule used in order to build the

other argument (undercutting). Since the base K is built around



a propositional language, it has been shown in [2] that the notion

of assumption attack is sufficient to capture conflicts between epis-

temic arguments.

DEF. 16. Let α1, α2 ∈ Ab. α1 Rb α2 iff ∃h′ ∈ SUPP(α2) such
that CONC(α1) ≡ ¬h′.

Note that the relationRb is not symmetric. Moreover, one can show

that there are no self-defeating arguments.

In [6], the argumentation system 〈Ab,Rb〉 has been applied for
handling inconsistency in a knowledge base, say K. In this partic-
ular case, a full correspondence has been established between the

stable extensions of the system and the maximal consistent subsets

of the base K. Before presenting formally the result, let us intro-
duce some useful notations. Let E ⊆ Ab, Base(E) =

⋃
Hi such

that 〈Hi, hi〉 ∈ E . Let T ⊆ K, Arg(T ) = {〈Hi, hi〉|Hi ⊆ T}.

PROP. 3 ([6]). Let E be a stable extension of 〈Ab,Rb〉.
Base(E) is a maximal (for set ⊆) consistent subset of K and

Arg(Base(E)) = E .

PROP. 4 ([6]). Let T be a maximal (for set⊆) consistent sub-

set of K.

Arg(T ) is a stable extension of 〈Ab,Rb〉 and Base(Arg(T )) = T .

A direct consequence of the above result is that if the base K is not

reduced to⊥, then the system 〈Ab,Rb〉 has at least one non-empty
stable extension.

PROP. 5. The argumentation system 〈Ab,Rb〉 has non-empty

stable extensions.

PROOF. Since K 6= {⊥} and K 6= ∅ then the base K has at least one
maximal (for set inclusion) consistent subset, say T . According to Prop. 4,
Arg(T ) is a stable extension of 〈Ab,Rb〉.

5.2 Conflicts among explanatory arguments
Explanatory arguments may also be conflicting. Indeed, two ex-

planatory arguments may be based on two contradictory desires.

DEF. 17. Let δ1, δ2 ∈ Ad. δ1 Rd δ2 iff ∃d1 ∈ DESIRES(δ1),
d2 ∈ DESIRES(δ2) such that d1 ≡ ¬d2.

PROP. 6. The relationRd is symmetric and irreflexive.

PROOF. The proof follows directly from the definition ofRd.

Note that from the definition of an explanatory argument, its set

DESIRES cannot be inconsistent. However, it is worth noticing that

the set BELIEFS may be inconsistent, or even the union of the be-

liefs of two explanatory arguments is inconsistent. However, later

in the paper, we will show that it is useless to explicit this kind of

conflicts, since they are captured by conflicts between the explana-

tory arguments and epistemic ones (see Prop. 9 and Prop. 10).

5.3 Conflicts among instrumental arguments
Two plans may be conflicting for four main reasons:

their pre-conditions are incompatible (i.e. the two plans can-

not be executed at the same time),

their post-conditions are incompatible (the execution of the

two plans will lead to contradictory states of the world),

the post-conditions of a plan and the preconditions of the

other are incompatible (i.e. the execution of a plan will pre-

vent the execution of the second plan in the future),

their supporting desires are incompatible (indeed, plans for

achieving contradictory desires are conflicting; their execu-

tion will in fact lead to a contradictory state of the world).

The above reasons are captured in the following definition of

attack among instrumental arguments. Note that a plan cannot be

incompatible with itself.

DEF. 18. Let π1, π2 ∈ Ap with π1 6= π2. π1 Rp π2 iff:

Prec(π1) ∧ Prec(π2) |= ⊥, or

Postc(π1) ∧ Postc(π2) |= ⊥, or

Postc(π1) ∧ Prec(π2) |= ⊥ or Prec(π1) ∧ Postc(π2) |= ⊥.

PROP. 7. The relation Rp is symmetric and irreflexive.

PROOF. The proof follows directly from the definition ofRp.

One can show that if two plans realize conflicting desires, then

their corresponding instrumental arguments are conflicting too.

PROP. 8. Let d1, d2 ∈ PD. If d1 ≡ ¬d2, then ∀π1, π2 ∈ Ap

s.t. CONC(π1) = d1 and CONC(π2) = d2, then π1 Rp π2.

PROOF. Let d1, d2 ∈ PD. Suppose that d1 ≡ ¬d2. Let us also
suppose that ∃ π1, π2 ∈ Ap with CONC(π1) = d1, and CONC(π2) = d2.
According to Definition 15, it holds that Postc(π1) ` d1 and Postc(π2)
` d2. Since d1 ≡ ¬d2, then Postc(π2) ` ¬d1. However, the two
sets Postc(π1) and Postc(π2) are both consistent (according to Defini-
tion 11), thus Postc(π1) ∪ Postc(π2) ` ⊥. Thus, π1 Rp π2.

In this section, we have considered only binary conflicts between

plans, and consequently between their corresponding instrumental

arguments. However, in every-day life, one may have for instance

three plans such that any pair of them is not conflicting, but the

three together are incompatible. For simplicity reasons, in this pa-

per we suppose that we do not have such conflicts.

5.4 Conflicts among mixed arguments
In the previous sections we have shown how arguments of the

same category can interact with each other. In this section, we will

show that arguments of different categories can also interact. In-

deed, epistemic arguments play a key role in ensuring the accept-

ability of explanatory or instrumental arguments. Namely, an epis-

temic argument can attack both types of arguments. The idea is to

invalidate any belief used in an explanatory or instrumental argu-

ment. An explanatory argument may also conflict with an instru-

mental argument when this last achieves a desire whose negation is

among the desires of the explanatory argument.

DEF. 19. Let α ∈ Ab, δ ∈ Ad, π ∈ Ap.

α Rbd δ iff ∃h ∈ BELIEFS(δ) s.t. h ≡ ¬CONC(α).

α Rbp π iff ∃h ∈ Prec(π), s.t. h ≡ ¬CONC(α).

δRpdpπ and πRpdpδ iff CONC(π) ≡ ¬d and d ∈ DESIRES(δ)1.

As already said, the set of beliefs of an explanatory argument may

be inconsistent. In such a case, the explanatory argument is at-

tacked (in the sense ofRbd) for sure by an epistemic argument.

PROP. 9. Let δ ∈ Ad. If BELIEFS(δ) ` ⊥, then ∃α ∈ Ab such

that α Rbd δ.

PROOF. Let δ ∈ Ad. Suppose that BELIEFS(δ) ` ⊥. This means
that ∃T that is minimal for set inclusion among subsets of BELIEFS(δ)
with T ` ⊥. Thus2, ∃h ∈ T such that T\{h} ` ¬h with T\{h} is
consistent. Since BELIEFS(δ) ⊆ K (according to Prop. 2), then T\{h} ⊆
K. Consequently, ∃ 〈T\{h},¬h〉 ∈ Ab with h ∈ BELIEFS(δ). Thus,
〈T\{h},¬h〉 Rbd δ.

1Note that if δ1Rpdpπ2 and there exists δ2 such that CONC(δ2) =
CONC(π2) then δ1Rdδ2.
2Since T is⊆-minimal among inconsistent subsets of BELIEFS(δ),
then each subset of T is consistent.



Similarly, when the beliefs of two explanatory arguments are in-

consistent, it can be checked that there exists an epistemic argument

that attacks at least one of the two explanatory arguments.

PROP. 10. Let δ1, δ2 ∈ Ad respecting BELIEFS(δ1) 6` ⊥ and

BELIEFS(δ2) 6` ⊥. If BELIEFS(δ1) ∪ BELIEFS(δ2) ` ⊥, then

∃α ∈ Ab such that α Rbd δ1, or α Rbd δ2.

PROOF. Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6` ⊥ and BELIEFS(δ2)
6` ⊥. Suppose that BELIEFS(δ1) ∪ BELIEFS(δ2) ` ⊥. So, ∃T1 ⊆
BELIEFS(δ1) and ∃T2 ⊆ BELIEFS(δ2) with T1 ∪ T2 ` ⊥ and T1 ∪ T2

is minimal for set inclusion, i.e. T1 ∪ T2 is a minimal conflict. Since
BELIEFS(δ1) 6` ⊥ and BELIEFS(δ2) 6` ⊥, then T1 6= ∅ and T2 6= ∅.
Thus, ∃h ∈ T1 ∪ T2 such that (T1 ∪ T2) \ {h} ` ¬h. Since T1 ∪ T2 is
a minimal conflict, then each subset of T1 ∪ T2 is consistent, thus the set
(T1∪T2)\{h} is consistent. Moreover, according to Prop. 2, BELIEFS(δ1)
⊆ K and BELIEFS(δ2) ⊆ K. Thus, T1 ⊆ K and T2 ⊆ K. It is then clear
that (T1 ∪ T2) \ {h} ⊆ K. Consequently 〈(T1 ∪ T2) \ {h},¬h〉 is an
argument ofAb.

If h ∈ T1, then 〈(T1 ∪ T2) \ {h},¬h〉 Rbd δ1, and if h ∈ T2, then

〈(T1 ∪ T2) \ {h},¬h〉 Rbd δ2.

Conflicts may also exist between an instrumental argument and an

explanatory one since the beliefs of the explanatory argument may

be conflicting with the preconditions of the instrumental one. Here

again, we’ll show that there exists an epistemic argument that at-

tacks at least one of the two arguments.

PROP. 11. Let δ ∈ Ad and π ∈ Ap with BELIEFS(δ) 6` ⊥. If

BELIEFS(δ) ∪ Prec(π) ` ⊥ then ∃α ∈ Ab such that α Rbd δ, or

α Rbp π.

PROOF. Let δ ∈ Ad and π ∈ Ap. Suppose that BELIEFS(δ) 6` ⊥.
Since BELIEFS(δ) 6` ⊥ and Prec(π) 6` ⊥, then ∃T ⊆ BELIEFS(δ) ∪
Prec(π) with BELIEFS(δ) ∩ T 6= ∅, Prec(π) ∩ T 6= ∅ and T is the
smallest inconsistent subset of BELIEFS(δ) ∪ Prec(π).

Since T ` ⊥, then ∃h ∈ T such that T\{h} ` ¬h with T\{h} is
consistent. Since BELIEFS(δ) ⊆ K and since Prec(π) ⊆ K, then T ⊆ K.
Consequently, T\{h} ⊆ K. Thus, 〈T\{h},¬h〉 ∈ Ab.

If h ∈ BELIEFS(δ), then 〈T\{h},¬h〉 Rbd δ. If h ∈ Prec(π), then
〈T\{h},¬h〉 Rbp π.

Later in the paper, it will be shown that the three above propositions

are sufficient for ignoring these conflicts (between two explanatory

arguments, and between an explanatory argument and an instru-

mental one). Note also that explanatory arguments and instrumen-

tal arguments are not allowed to attack epistemic arguments. In

fact, a desire cannot invalidate a belief. Let us illustrate this issue

by an example borrowed from [18]. An agent thinks that it will be

raining, and that when it is raining, she gets wet. It is clear that this

agent does not desire to be wet when it is raining. Intuitively, we

should get one extension {rain, wet}. The idea is that if the agent
believes that it is raining, and she will get wet if it rains, then she

should believe that she will get wet, regardless of her likings. To

do otherwise would be to indulge in wishful thinking.

6. ARGUMENTATION SYSTEM FOR PR
The notion of constraint which forms the backbone of constrained

argumentation systems allows, in the context of PR, the represen-

tation of the link between the justification of a desire and the plan

for achieving it (so between the explanatory argument in favor of a

given desire and the instrumental arguments in favor of that desire).

A constrained argumentation system for PR is defined as follows:

DEF. 20. (Constrained argumentation system for PR) The

constrained argumentation system for practical reasoning is the

triple CAFPR = 〈A,R, C〉 with:

A = Ab ∪ Ad ∪ Ap,

R = Rb ∪Rd ∪Rp ∪Rbd ∪Rbp ∪Rpdp

and C a constraint on arguments defined on A respecting

C = ∧i(πi ⇒ (∨jδj)) for each πi ∈ Ap and δj ∈ Ad such

that CONC(πi) ≡ CONC(δj).

Note that the satisfaction of the constraint C implies that each

plan of a desire must be taken into account only if this desire is

justified. Note also that we consider that there may be several plans

for one desire but only one desire for each plan. Nevertheless, for

each desire there may exist several explanatory arguments.

An important remark concerns the notion of defence. This no-

tion has two different semantics in a PR context. When we consider

only epistemic or explanatory arguments, the defence corresponds

exactly to the notion defined in Dung’s argumentation systems and

in its constrained extension: an argument α attacks the attacker of

another argument β; so α “reinstates” β; without the defence, β

cannot be kept in an admissible set. Things are different with in-

strumental arguments: when an instrumental argument attacks an-

other argument, this attack is always symmetric (so, each argument

defends itself against an instrumental argument). In this case, it

would be sufficient to take into account the notion of conflict-free

in order to identify the plans which belong to an admissible set.

However, in order to keep an homogeneous definition of admissi-

bility, the notion of defence is also used for instrumental arguments

knowing that it is without impact when conflicts from an instru-

mental argument are concerned.

Note that ∅ is always a C-admissible set of CAFPR (since ∅ is

admissible and all πi variables are false in ∅̂, so ∅̂ ` C)3. Thus,

CAFPR has at least one C-preferred extension. Moreover, the ex-

tensions do not contain the “good” plans of non-justified desires.

The use of a constraint makes it possible to filter the content of the

extensions and to keep only useful information.

At some places of the paper, we will refer by AFPR = 〈A,R〉 to
a basic argumentation system for PR, i.e. an argumentation system

without the constraint, and A andR are defined as in Def. 20.

Remember that the purpose of a practical reasoning problem is

to compute the intentions to be pursued by an agent, i.e. the desires

that are both justified and feasible.

DEF. 21 (SET OF INTENTIONS). Let I ⊆ PD. I is a set of

intentions iff there exists aC-extension E (under a given semantics)

of CAFPR such that for each d ∈ I, there exists π ∈ Ap ∩ E such

that d = CONC(π).

Our system provides an interesting solution to the PR problem.

It computes directly sets of intentions, and identifies the state of the

world as well as the plans necessary for achieving these intentions.

7. PROPERTIES OF THE SYSTEM
The aim of this section is to study the properties of the proposed

argumentation system for PR. The system inherits most of the re-

sults got in [9]. However, the following result, whose proof is

obvious, holds in the context of PR but not in the general case.

PROP. 12. LetCAFPR = 〈A,R, C〉. The setΩ ofC-admissible

sets defines a complete partial order for ⊆.

An important property shows that the set of epistemic arguments

in a given stable extension of AFPR is itself a stable extension of

the system 〈Ab,Rb〉. This shows clearly that stable extensions are
“complete” w.r.t. epistemic arguments.

3This is due to the particular form of the constraint for PR. This is
not true for any constraints (see Section2 and [9]).



PROP. 13. If E is a stable extension ofAFPR, then the set E∩Ab

is a stable extension of 〈Ab,Rb〉.

PROOF. Let E be a stable extension of AFPR. Let us suppose that E
′

= E ∩ Ab is not a stable extension of 〈Ab,Rb〉. Two cases exist:
Case 1: E ′ is not conflict-free. This means that there exist α, α′ ∈ E ′ such
that αRbα

′. Since E ′ = E ∩ Ab, then α, α′ ∈ E . This means that E is not
conflict-free. This contradicts the fact that E is a stable extension.
Case 2: E ′ does not attack every argument that is not in E ′. This means that
∃α ∈ Ab and 6∈ E ′ and E ′ does not attack (w.r.t. Rb) α. This means that
E ′ ∪ {α} is conflict-free, thus E ∪ {α} is also conflict-free, and does not
attack an argument that is not in it (because only an epistemic argument can
attack another epistemic argument and all epistemic arguments of E belong
to E ′). This contradicts the fact that E is a stable extension.

Another important property of AFPR is that it has stable extensions.

PROP. 14. The system AFPR has at least one non-empty stable

extension.

PROOF. (Sketch) AFPR can be viewed as the union of 2 argumenta-
tion systems: AFb = 〈Ab, Rb〉 and AFdp = 〈Ad ∪ Ap, Rd ∪ Rp ∪
Rpdp〉 plus theRbd ∪Rbp relation. The system AFb has stable extensions
(according to Prop. 5). Let E1, . . . , En be those extensions. The system
AFdp is symmetric in the sense of [8] since the relationRd ∪Rp ∪Rpdp

is symmetric. In [8], it has been shown that such a system has stable ex-
tensions which correspond to maximal (for ⊆) sets of arguments that are
conflict-free. Let E ′

1
, . . . , E ′

m be those extensions.
These two systems are linked with the Rbd ∪ Rbp relation. Two cases

can be distinguished:

case1: Rbd∪Rbp =∅. ∀Ei, E
′
j , the set Ei∪E

′
j is a stable extension

of AFPR. Indeed, Ei ∪ E ′
j is conflict-free since Ei, E

′
j are both

conflict-free, and the relation Rbd ∪ Rbp = ∅. Moreover, Ei ∪ E ′
j

defeats every argument that is not in Ei ∪ E ′
j , since if α /∈ Ei ∪ E ′

j ,

then: i) if α ∈ Ab, then Ei defeats w.r.t. Rb α since Ei is a stable
extension. Now, assume that α ∈ Ad ∪ Ap. Then, E ′

j ∪ {α} is

conflicting since E ′
j is a maximal (for ⊆) set that is conflict-free.

Thus, E ′
j defeats α.

case2: Rbd ∪Rbp 6= ∅. Let E be a maximal (for set inclusion) set
of arguments that is built with the following algorithm:

1. E = Ei

2. while (∃β ∈ Ap ∪ Ad such that E ∪ {β} is conflict-free) do
E = E ∪ {β}

This algorithm stops after a finite number of steps (becauseAp∪Ad

is a finite set) and gives a set of arguments which is ⊆-maximal
among the conflict-free sets which include Ei. It is easy to see that
E is stable because, by construction, ∀γ ∈ (Ap ∪Ad)\E , ∃γ′ ∈ E
such that γ′Rγ, and, because Ei ⊆ E , we also have ∀α ∈ Ab \ E ,
∃α′ ∈ E such that α′Rα.

So there is always a stable extension of AFPR.

It is easy to check that explanatory argument with contradictory

beliefs are rejected in the system CAFPR.

PROP. 15. Let δ ∈ Ad with BELIEFS(δ) ` ⊥. The argument δ

is rejected in CAFPR.

PROOF. (Sketch) Let δ ∈ Ad with BELIEFS(δ) ` ⊥. According to
Prop. 14, the system AFPR has at least one stable extension. Let E be one
of these stable extensions. Suppose that δ ∈ E . According to Prop. 13,
the set E ∩ Ab is a stable extension of 〈Ab,Rb〉. Moreover, we can show
that ∃α ∈ E ∩ Ab such that αRbdδ. This contradicts the fact that a stable
extension is conflict-free. Thus, δ is rejected in AFPR. According to Prop.
1, δ is also rejected in CAFPR.

Similarly, it can be checked that if two explanatory arguments have

conflicting beliefs, then they will never belong to the same stable

extension at the same time.

PROP. 16. Let δ1, δ2 ∈ Ad respecting BELIEFS(δ1) 6` ⊥ and

BELIEFS(δ2) 6` ⊥. If BELIEFS(δ1) ∪ BELIEFS(δ2) ` ⊥, then @E
C-stable extension of CAFPR such that δ1 ∈ E and δ2 ∈ E .

PROOF. (Sketch) Let δ1, δ2 ∈ Ad respecting BELIEFS(δ1) 6` ⊥,
BELIEFS(δ2) 6` ⊥, and BELIEFS(δ1) ∪ BELIEFS(δ2) ` ⊥. Let E be a
C-stable extension of CAFPR. Thus, E is also a stable extension of AFPR.
Suppose that δ1 ∈ E and δ2 ∈ E . According to Property 13, the set
E ∩ Ab is a stable extension of 〈Ab,Rb〉. Moreover, we can easily show
that ∃α ∈ E ∩Ab such that αRbdδ1, or αRbdδ2. This contradicts the fact
that a stable extension is conflict-free.

Similarly, if the beliefs of an explanatory argument and an instru-

mental one are conflicting, the two arguments will not appear in the

same stable extension.

PROP. 17. Let δ ∈ Ad and π ∈ Ap with BELIEFS(δ) 6` ⊥. If

BELIEFS(δ)∪ Prec(π) `⊥ then @E with E is aC-stable extension

of CAFPR such that δ ∈ E and π ∈ E .

PROOF. (Sketch) Let δ ∈ Ad and π ∈ Ap with BELIEFS(δ) 6` ⊥ and
BELIEFS(δ) ∪ Prec(π) ` ⊥. Let E be a C-stable extension of CAFPR.
Thus, E is also a stable extension of AFPR. Let us assume that δ ∈ E and
π ∈ E . Since E is a stable extension of AFPR, then E

′ = E ∩Ab is a stable
extension of 〈Ab,Rb〉 (according to Prop. 13). Moreover, it can easily be
checked that when BELIEFS(δ) ∪ Prec(π) ` ⊥ then ∃α ∈ E ′ such that
αRbdδ or αRbpπ. This means that E attacks δ or E attacks π. However,
δ ∈ E and π ∈ E . This contradicts the fact that E is conflict free.

The next results are of great importance. They show that the pro-

posed argumentation system for PR satisfies the “consistency” ra-

tionality postulate identified in [5]. Indeed, we show that each sta-

ble extension of our system supports a consistent set of desires

and a consistent set of beliefs. Let E ⊆ A, the following no-

tations are defined: Bel(E) = (
⋃

αi∈E∩Ab
SUPP(αi)) ∪ (

⋃
δj∈E∩Ad

BELIEFS(δj)) ∪ (
⋃

πk∈E∩Ap
Prec(πk)) and Des(E) = (

⋃
δj∈E∩Ad

DESIRES(δj)) ∪ (
⋃

πk∈E∩Ap
CONC(πk)).

THEOREM 1. (Consistency) Let E1, . . . , En be the C-stable ex-

tensions of CAFPR. ∀Ei, i = 1, . . . , n, it holds that:

Bel(Ei) = Bel(Ei ∩ Ab),

Bel(Ei) is a ⊆-maximal consistent subset of K and

Des(Ei) is consistent.

PROOF. Let E be a C-stable extension of CAFPR. Thus, E is also a
stable extension of AFPR.
1. Let us show that the set Bel(Ei) = Bel(Ei ∩Ab). In order to prove this,
one should handle two cases:
1.1. Bel(Ei ∩ Ab) ⊆ Bel(Ei). This is implied by Bel(Ei ∩ Ab) =⋃

SUPP(αi) with αi ∈ Ei ∩ Ab (cf. definition of Bel(E)).
1.2. Bel(Ei) ⊆ Bel(Ei ∩ Ab). Let us suppose that ∃h ∈ Bel(Ei) and
h 6∈ Bel(Ei ∩ Ab). According to Property 13, Ei ∩ Ab is a stable exten-
sion of 〈Ab,Rb〉. Moreover, according to [6], Bel(Ei ∩Ab) is a maximal
(for set-⊆) consistent subset of K4. However, Bel(Ei) ⊆ K, then h ∈ K.
Since h 6∈ Bel(Ei ∩ Ab), then Bel(Ei ∩ Ab) ∪ {h} ` ⊥ (this is due to
the fact that Bel(Ei ∩Ab) is a maximal (for set-⊆) consistent subset ofK).
Thus, Bel(Ei ∩ Ab) ` ¬h. This means that ∃H ⊆ Bel(Ei ∩ Ab) such
that H is the minimal consistent subset of Bel(Ei ∩ Ab), thus H ` ¬h.
Since H ⊆ K (since Bel(Ei ∩ Ab) ⊆ K), then 〈H,¬h〉 ∈ Ab. However,
according to [6], Arg(Bel(Ei ∩ Ab)) = Ei ∩ Ab. Besides, h ∈ Bel(Ei),
there are three possibilities:

h ∈ BELIEFS(δ) with δ ∈ Ei. In this case, 〈H,¬h〉 Rbd δ. This
contradicts the fact that Ei is a stable extension that is conflict-free.

h ∈ Prec(π) with π ∈ Ei. In this case, 〈H,¬h〉 Rbp π. This
contradicts the fact that Ei is a stable extension that is conflict-free.

4Because Bel(Ei ∩ Ab) =
⋃
SUPP(αi) with αi ∈ Ei ∩ Ab; so,

Bel(Ei ∩ Ab) = Base(Ei ∩ Ab).



h ∈ SUPP(α)with α ∈ Ei. This is impossible since the set Ei∩Ab

is a stable extension, thus it is conflict free.

2. Let us show that the set Bel(Ei) is a maximal (for set inclusion) con-
sistent subset of K. According to the first item of Theorem 1, Bel(Ei) =
Bel(Ei ∩ Ab). However, according to Property 13, Ei ∩ Ab is a stable
extension of 〈Ab,Rb〉, and according to [6], Bel(Ei ∩ Ab) is a maximal
(for set-⊆) consistent subset of K. Thus, Bel(Ei) is a maximal (for set in-
clusion) consistent subset of K.
3. Let us show that the set Des(Ei) is consistent. Let us suppose that
Des(Ei) is inconsistent, this means that

⋃
DESIRES(δk) ∪

⋃
CONC(πj)

` ⊥ with δk ∈ Ei and πj ∈ Ei. Since Des(Ei) ⊆ PD (according to
Property 2), then ∃d1, d2 ∈ Des(Ei) such that d1 ≡ ¬d2. Three possible
situations may occur:
a. ∃π1, π2 ∈ Ei ∩Ap such that CONC(π1) = d1, and CONC(π2) = d2. This
means that π1Rpπ2, thus π1Rπ2. This is impossible since Ei is a stable
extension, thus it is supposed to be conflict-free.
b. ∃δ1, δ2 ∈ Ei∩Ad such that d1 ∈ DESIRES(δ1) and d2 ∈ DESIRES(δ2).
This means that δ1Rdδ2, thus δ1Rδ2. This is impossible since Ei is a sta-
ble extension, thus it is supposed to be conflict-free.
c. ∃δ ∈ Ei ∩ Ad, ∃π ∈ Ei ∩ Ap such that d1 ∈ DESIRES(δ) and d2 =
CONC(π). Since d1 ∈ DESIRES(δ), thus ∃δ′ ∈ SUB(δ) such that CONC(δ′)
= d1. This means that δ′Rpdpπ, thus δ′Rπ. However, since δ ∈ Ei, thus
δ′ ∈ Ei. This is impossible since Ei is a stable extension, thus it is supposed
to be conflict-free.

As direct consequence of the above result, an intention set is con-

sistent. Formally:

THEOREM 2. Under the stable semantics, each set of intentions

of CAFPR is consistent.

PROOF. Let I be a set of intentions of CAFPR. Let us suppose that I
is inconsistent. From the definition of an intention set, it is clear that I ⊆
Des(Ei) with Ei is a C-stable extension of CAFPR. However, according to
Theorem 1 the set Des(Ei) is consistent.

Our system satisfies also the rationality postulate concerning the

closedness of the extensions [5]. Namely, the set of arguments that

can be built from the beliefs, desires, and plans involved in a given

stable extension, is that extension itself. Let Ei be a C-stable ex-

tension. As is the set of arguments built from Bel(Ei), Des(Ei),
the plans involved in building arguments of Ei, and the base Bd.

THEOREM 3. (Closedness) Let E1, . . . , En be the C-stable ex-

tensions ofCAFPR. ∀Ei, i = 1, . . . , n, it holds that: Arg(Bel(Ei))
= Ei ∩ Ab and As = Ei.

PROOF. Let Ei be a C-stable extension of the system CAFPR. Ei is
also a stable extension of AFPR (according to [9]).
1. Let us show that Arg(Bel(Ei)) = Ei ∩ Ab. According to Theorem 1,
it is clear that Bel(Ei) = Bel(Ei ∩ Ab). Moreover, according to Prop-
erty 13, Ei ∩ Ab is a stable extension of 〈Ab,Rb〉. Besides, according to
[6] Arg(Bel(Ei ∩ Ab)) = Ei ∩ Ab, thus Arg(Bel(Ei)) = Ei ∩ Ab.
2. Let us show that As = Ei. The case Ei ⊆ As is trivial. Let us show
that As ⊆ Ei. Let us suppose that ∃y ∈ As and y /∈ Ei. There are three
possible situations:
2.1. y ∈ As ∩Ab: Since y /∈ Ei, this means that ∃α ∈ Ei ∩ Ab such that
αRby. Thus, SUPP(α) ∪ SUPP(y) ` ⊥. However, SUPP(α) ⊆ Bel(Ei)
and SUPP(y) ⊆ Bel(Ei), thus SUPP(α)∪SUPP(y) ⊆ Bel(Ei). This means
that Bel(Ei) is inconsistent. According to Theorem 1 this is impossible.
2.2. y ∈ As ∩Ad: Since y /∈ Ei, this means that ∃x ∈ Ei such that xRy.
There are three situations:
2.2.1. x ∈ Ab This means that BELIEFS(y) ∪ SUPP(x) ` ⊥. However,
BELIEFS(y) ∪ SUPP(x) ⊆ Bel(Ei). Thus, Bel(Ei) is inconsistent. This
contradicts Theorem 1.
2.2.2 x ∈ AdThis means that DESIRES(y) ∪ DESIRES(x) ` ⊥. However,
DESIRES(y) ∪ DESIRES(x) ⊆ Des(Ei). Thus, Des(Ei) is inconsistent.
This contradicts Theorem 1.
2.2.3. x ∈ Ap This means that DESIRES(y) ∪ CONC(x) ` ⊥. However,
DESIRES(y) ∪ CONC(x) ⊆ Des(Ei). Thus, Des(Ei) is inconsistent. This
contradicts Theorem 1.
2.3. y ∈ As ∩Ap: Since y /∈ Ei, this means that ∃x ∈ Ei such that xRy.
There are three situations:

2.3.1. x ∈ Ab This means that xRbpy, thus SUPP(x) ∪ Prec(y) ` ⊥.
However, SUPP(x) ∪ Prec(y) ⊆ Bel(Ei). Thus, Bel(Ei) is inconsistent.
This contradicts Theorem 1.
2.3.2. x ∈ Ad This means that xRpdpy, thus DESIRES(x) ∪ CONC(y)
` ⊥. However, DESIRES(x) ∪ CONC(y) ⊆ Des(Ei). Thus, Des(Ei) is
inconsistent. This contradicts Theorem 1.
2.3.3. x ∈ Ap This means that xRpy. There are three different cases:

Prec(x)∪ Prec(y)` ⊥. However, Prec(x)∪ Prec(y)⊆ Bel(Ei).
Thus, Bel(Ei) is inconsistent. This contradicts Theorem 1.

Postc(x) ∪ Prec(y) ` ⊥. We know that y is built using one of
the plans of Ei, say p = 〈S, T, d〉. Thus, ∃π ∈ Ei such that π =
〈p, d′〉. Thus, Postc(x) ∪ Prec(π) ` ⊥, consequently, xRπ. This
is impossible since Ei is a stable extension, thus it is supposed to be
conflict-free.

Postc(x) ∪ Postc(y) ` ⊥. Since y ∈ As, thus y is built using one
of the plans of Ei, say p = 〈S, T, d〉. Thus, ∃π ∈ Ei such that π
= 〈p, d′〉. Thus, Postc(x) ∪ Postc(π) ` ⊥, consequently, xRπ.
This is impossible since Ei is a stable extension, thus it is supposed
to be conflict-free.

8. ILLUSTRATIVE EXAMPLE
In this section, we illustrate the above system on a simple exam-

ple.

α2
α1α3

α0

π1

δ1

π2

δ2

The meaning of these arguments is the following:

α0: My AAMAS paper is accepted and AAMAS conference

is in Portugal so I go to AAMAS in Portugal

α1: My AAMAS paper is accepted and it is scheduled Day

D so I am not available Day D

α2: My sister’s wedding is scheduled Day D

α3: My sister’s wedding is scheduled Day D so I must be

available Day D

δ1: I go to AAMAS in Portugal so I desire to visit Portugal

δ2: My sister’s wedding is scheduled Day D so I desire to go

to my sister’s wedding Day D

π1: My AAMAS paper is accepted, my institute pays my

AAMAS mission, AAMAS is in Portugal so I can realize

my desire to visit Portugal

π2: I am available Day D, my sister’s wedding is scheduled

Day D, I know where and how to go to my sister’s wedding

Day D so I can realize my desire to go to my sister’s wedding

Day D

So, we have:

the constraint: C = (π1 ⇒ δ1) ∧ (π2 ⇒ δ2);

the C-preferred and C-stable extensions are E1 = {α2, α0,

α3, π2, δ2, δ1}, E2 = {α2, α0, α3, π1, δ1, δ2}, E3 = {α2, α0,

α1, π1, δ1, δ2},

the sets of intentions are { visit Portugal }, { go to my sister’s
wedding }.



9. RELATEDWORKS
A number of attempts have been made to use formal models of

argumentation as a basis for PR. In fact the use of arguments for

justifying an action has already been advocated by philosophers

like Walton [20] who proposed the famous practical syllogism:

G is a goal for agent X

Doing action A is sufficient for agent X to carry out G

Then, agent X ought to do action A

The above syllogism, which would apply to the means-end reason-

ing step, is in essence already an argument in favor of doing action

A. However, this does not mean that the action is warranted, since

other arguments (called counter-arguments) may be built or pro-

vided against the action.

In [1], an argumentation system is presented for generating con-

sistent plans from a given set of desires and planning rules. This

was later extended with argumentation systems that generate the

desires themselves [3]. This system suffers from three main draw-

backs: i) exhibiting a form of wishful thinking, ii) desires may de-

pend only on beliefs, and iii) some undesirable results may be re-

turned due to the separation of the two steps of PR. Due to lack of

space, we will unfortunately not give an example where anomalies

occur using that approach. In [14], the problem of wishful think-

ing has been solved. However, the separation of the two steps was

kept. Other researchers in AI like Atkinson and Bench Capon [4]

are more interested in studying the different argument schemes that

one may encounter in practical reasoning. Their starting point was

the above practical syllogism of Walton. The authors have defined

different variants of this syllogism as well as different ways of at-

tacking it. However, it is not clear how all these arguments can be

put together in order to answer the critical question of PR “what is

the right thing to do in a given situation?”. Our work can be viewed

as a way for putting those arguments all together.

10. CONCLUSION
The paper has tackled the problem of practical reasoning, which

is concerned with the question “what is the best thing to do at a

given situation?” The approach followed here for answering this

question is based on argumentation theory, in which choices are ex-

plained and justified by arguments. The contribution of this paper is

two-fold. To the best of our knowledge, this paper proposes the first

argumentation system that computes the intentions in one step, i.e.

by combining desire generation and planning. This avoids unde-

sirable results encountered by previous proposals in the literature.

This has been possible due to the use of constrained argumentation

systems developed in [9]. The second contribution of the paper

consists of studying deeply the properties of argumentation-based

practical reasoning.

This work can be extended in different ways. First, we are cur-

rently working on relaxing the assumption that the attack relation

among instrumental arguments is binary. Indeed, it may be the case

that more than two plans may be conflicting while each pair of them

is compatible. Another important extension would be to introduce

preferences to the system. The idea is that beliefs may be pervaded

with uncertainty, desires may not have equal priorities, and plans

may have different costs. Thus, taking into account these prefer-

ences will help to reduce the intention sets into more relevant ones.

In [7], it has been shown that an argument may not only be attacked

by other arguments, but may also be supported by arguments. It

would be interesting to study the impact of such a relation between

arguments in the context of PR. Another area of future work is in-

vestigating the proof theories of this system. The idea is to answer

the question “is a given potential desire a possible intention of the

agent ?” without computing the whole preferred extensions. Fi-

nally, an interesting area of future work is investigating the rela-

tionship between our framework and axiomatic approaches to BDI

agents.
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