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Abstract—Two approaches for explaining black-box classifica-
tion models have been studied: a global approach which aims at
stressing when classes are predicted independently of instances,
and a local approach which looks for justifying individual
predictions. Besides, different types of local explanations have
been studied in the recent literature, however their links to global
explanations remain unclear.

The present paper proposes a unified setting for global
explanations and local ones. It is based on dual concepts that
provide global explanations: arguments in favour of predictions
and arguments against predictions. The former justify why a
class is suggested by a black-box classifier and the latter state
why a class is not. We investigate the properties of both types
of arguments, and provide ways for generating arguments pro a
class from arguments con the class and vice versa. Finally, we
define various notions of local explanations from the literature by
arguments pros/con, characterizing formally their relationships
and differences, and also their relations with global explanations.

Index Terms—Classification, Explainability, Arguments.

I. INTRODUCTION

Recent progress in data-driven AI has been largely due
to machine learning and in particular deep learning models.
However, the predictions of these black-box models resist
analysis due to their inherent non-linear behaviour and their
vast amount of interacting parameters. This opacity impedes
the relevance of those models from a theoretical point of
view, since their properties are difficult to investigate, and
from a practical point of view, as many applications, such
as healthcare or embedded systems need guarantees to be
deployed, and others, e.g in the legal or financial domain
require transparency to be accepted.

Explaining the functionality of complex classification sys-
tems and their rationale thus becomes a vital need. These
issues have generated a lot of effort, see [1]–[3] for recent
surveys on explanations of black-box machine learning mod-
els. Most approaches consider as input a black-box model,
and provide explanations of its predictions on given instances
(local approach), or as a whole (global approach). They can be
divided into two families: the first family opens somehow the
black-box model to provide insight into the internal decision-
making process, e.g. [4], [5]. The second family provides ex-
planations without opening the black-box. They focus mainly
on key factors that caused predictions, eg. [4], [6]–[10].
Several notions have been defined within that perspective. The
most prominent ones are prime implicants [11], called also

abductive explanations in [12], and counterfactuals [4], called
contrastive explanations in [7], [8]. These notions have been
proposed for explaining individual predictions. Their links
with global explanations remain unclear.

This paper bridges this gap by providing a formal and
unifying framework in which global/local explanations are
defined. The framework is based on two dual concepts, which
are seen as global explanations of a classifier: arguments in
favour of (or pro) predictions and arguments against (or con)
predictions. The former justifies why a class is suggested
by a black-box classifier and the latter states why a class
is not proposed. We investigate the properties of both types
of arguments, and provide ways for generating arguments
pro a class from arguments con the class and vice versa.
Finally, we define various notions of local explanations from
the literature by arguments pros/con, characterizing formally
their relationships and differences, and also their relations with
global explanations.

The paper is structured as follows: It starts by presenting
the background on classification. Then, it introduces two types
of arguments and investigates their properties and links. Then,
it defines formally existing notions of local explanations from
arguments. The two last sections are respectively devoted to
related work and concluding remarks.

II. CLASSIFICATION PROBLEM

Let F = {f1, . . . , fn} be a finite and non-empty set of fea-
tures (called also attributes) that take respectively their values
from finite domains D1, . . . ,Dn. Let D = {D1, . . . ,Dn}1. For
every feature f and every possible value v of f , the pair (f, v)
is called literal feature, or literal for short. The two functions
Feat and Val return respectively the feature f and the value
v of the literal (f, v). Let U denote the universe of all possible
literal features. The set X contains all possible n−tuples of
literal features or sets of the form {(f1, v1i), . . . , (fn, vnl)},
i.e., X contains all the possible instantiations of the n features
of F . X and its elements are called respectively feature space
and instances. Note that X is finite since F and the n domains
in D are finite. Let C = {c1, . . . , cm}, with m > 1, be a finite
and non-empty set of possible distinct classes.

1We focus here on the important case of discrete features, as is the case
in important applications (e.g. image or natural language processing). There
are well-known ways of discretizing continuous attributes, which sometimes
gives better results on some learning algorithms, see [13].



X Sky Temp. Humidity Wind Jogging
x1 Sunny Hot High Low No
x2 Sunny Hot High High No
x3 Cloudy Hot High Low Yes
x4 Rainy Mild High Low Yes
x5 Rainy Cool Medium Low Yes
x6 Rainy Cool Medium High No
x7 Cloudy Cool Medium High Yes
x8 Sunny Mild High Low No
x9 Sunny Cool Medium Low Yes
x10 Rainy Mild Medium Low Yes
x11 Sunny Mild Medium High Yes
x12 Cloudy Mild High High Yes
x13 Cloudy Hot Medium Low Yes
x14 Rainy Mild High High No

Definition 1 (Theory): A theory is a tuple T = 〈F , D, C〉 .
A classification model is a function that assigns to every

instance x ∈ X of a theory T = 〈F , D, C〉 a single prediction,
which is a class from the set C.

Definition 2 (Classification Model): Let T = 〈F , D, C〉 be
a theory. A classification model is a function f : X → C.

Let us illustrate the above sets with a classical example.
Example 1: The attributes are sky (S), tempera-

ture (T ), humidity (H) and wind (W ), thus F =
{S, T,H,W}. They respectively take their values from
the domains {Sunny, Rainy, Cloudy}, {Hot, Mild, Cool},
{Medium, High} and {Low, High}. The concept to learn is
whether to go jogging which is binary, C = {Yes, No}. Ex-
ample of instances are given in Table 1.

A set of literal features is consistent if it does not contain
two literals having the same feature but distinct values.

Definition 3 (Consistency): A set H ⊆ U is consistent iff
@(f, v), (f ′, v′) ∈ H such that f = f ′ and c 6= v′. Otherwise,
H is said to be inconsistent.

Example 1 (Cont.) {(Wind, Low), (Humidity, Medium)} is
consistent while {(Wind, Low), (Wind, High), (Humidity,
Medium)} is inconsistent.

Note that instances of X are all consistent. Furthermore, any
consistent set of literals is included in at least one instance.

Property 1: Let T = 〈F , D, C〉 be a theory.
• For any x ∈ X , x is consistent.
• For any H ⊆ U s.t. H is consistent, the following hold:

– ∀H ′ ⊂ H , H ′ is consistent.
– ∃x ∈ X s.t. H ⊆ x.

III. ARGUMENTS PRO AND CON CLASSIFICATIONS

This section aims at understanding how an arbitrary but
fixed classifier f assigns classes to instances of a (arbitrary
but fixed) theory T = 〈F , D, C〉 . The idea is to understand
the general behaviour of f independently of instances. For
that purpose, we assume the availability of an oracle of that
model that can be queried on any instance. We are interested
by the question: what is an argument in favour of labelling an
instance or a set of instances with a class c? In what follows,
we consider an argument as a set of literal features that are
minimally sufficient for labelling an instance with c. In other

words, it is the smallest set of literal features that always lead
to the class c.

Definition 4 (Argument Pro): An argument pro a class c ∈ C
is a pair 〈H, c〉 s.t.
• H ⊆ U
• H is consistent
• ∀x ∈ X s.t. H ⊆ x, f(x) = c
• @H ′ ⊂ H such that H ′ satisfies the third condition.

H is called support. Let Pros(c) denote the set of all argu-
ments pro c in theory T , and arg+(T ) =

⋃
c∈C

Pros(c).

The consistency condition is useful for discarding irrelevant
arguments of the form 〈{(f1, v1), (f1, v2)}, c〉.

Example 1 (Cont.) Assume that Table 1 contains the only
“reasonable” instances. The class No is supported by two
arguments a1 and a2 while Yes is supported by b1, b2, b3.
• a1 = 〈{(Sky, Sunny), (Humidity, High)}, No〉,
• a2 = 〈{(Sky, Rainy), (Wind, High)}, No〉.
• b1 = 〈{(Sky, Cloudy)}, Yes〉,
• b2 = 〈{(Sky, Sunny), (Humidity, Medium)}, Yes〉.
• b3 = 〈{(Sky, Rainy), (Wind, Low)}, Yes〉.

A class may have zero, one, or several arguments pro. The
first case holds when the class is not assigned by the ML
model f to any instance. When the same class is assigned to
all instances of X , then the set of arguments would contain a
single argument, which is in favour of the class and its support
is the empty set. Furthermore, from a theory T , it is possible
to generate arguments in favour of any class provided that
the latter is ascribed to at least one instance. Finally, every
argument refers to at least one instance of X . Note that from
the same instance, it is possible to generate more than one
argument in favour of a class.

Proposition 1: Let c ∈ C.
• (arg+(T ) = {〈∅, c〉}) ⇐⇒ (∀x ∈ X , f(x) = c)
• If ∃x ∈ X s.t. f(x) = c, then ∃〈H, c〉 ∈ Pros(c).

Furthermore, H ⊆ x.
• If ∃〈H, c〉 ∈ Pros(c), then ∃x ∈ X s.t. f(x) = c.
• Pros(c) = ∅ iff ∀x ∈ X , f(x) 6= c.
The following result shows that the supports of any pair of

arguments pro distinct classes are inconsistent.
Proposition 2: Let ci, cj ∈ C with ci 6= cj . For all

〈H, ci〉, 〈H ′, cj〉 ∈ arg+(T ), the set H ∪H ′ is inconsistent.
We show next that the arguments that can be generated from

a theory define a partition of the set X of instances.
Proposition 3: Let C = {c1, . . . , cm} and i ∈ {1, . . . ,m},

Xi = {x ∈ X | ∃〈H, ci〉 ∈ arg+(T ) and H ⊆ x}.

The following properties hold:
• For all i, j ∈ {1, . . . ,m} such that i 6= j, Xi ∩ Xj = ∅.
• X = X1 ∪ . . . ∪ Xm.

We now introduce the notion of argument against or con
a class, say c. It is a minimal set of literals that is sufficient
for not assigning the class c to any instance. In other terms,



it is the minimal amount of information that is sufficient for
labelling instances with any other class than c.
Notation: For c ∈ C, c denotes that c is not recommended.

Definition 5 (Argument Con): Let c ∈ C. An argument con
c is a pair 〈H, c〉 s.t.
• H ⊆ U
• H is consistent
• ∀x ∈ X s.t. H ⊆ x, f(x) 6= c
• @H ′ ⊂ H such that H ′ satisfies the third condition.

Let Cons(c) be the set of all arguments con c and arg−(T ) =⋃
c∈C

Cons(c).

It is easy to show that when the concept to learn is binary,
then the arguments pro one class are con the other.

Proposition 4: If C = {c1, c2}, then Pros(c1) =
{〈H, c1〉 | 〈H, c2〉 ∈ Cons(c2)} and Cons(c1) =
{〈H, c1〉 | 〈H, c2〉 ∈ Pros(c2)}.

Example 1 (Cont.) Since the concept to learn is binary, then
Cons(Yes) = {〈{(Sky, Sunny), (Humidity, High)}, Yes〉,
〈{(Sky, Rainy), (Wind, High)}, Yes〉} and
〈{(Sky, Cloudy)}, No〉 ∈ Cons(No).

In case of non-binary concepts, an argument that is against
a given class does not necessarily support another class. Let
us consider the following abstract example.

Example 2: Let T = 〈F , D, C〉 be such that F = {f1, f2},
D1 = D2 = {0, 1}, and C = {c1, c2, c3}. Assume the
following assignments of classes to instances by a classifier f.

X f1 f2 c
x1 0 0 c1
x2 0 1 c2
x3 1 0 c3
x4 1 1 c3

The argument 〈{(f1, 0)}, c3〉 is against c3, however the set
{(f1, 0)} is not sufficient for supporting any other class.

Naturally, the support of every argument against a class is
inconsistent with the support of any argument pro that class.

Proposition 5: Let c ∈ C. For all 〈H, c〉 ∈ Pros(c),
〈H ′, c〉 ∈ Cons(c), the set H ∪H ′ is inconsistent.

The following results show the relationship between an
argument against a class and those supporting other classes.

Proposition 6: Let c ∈ C.
• 〈∅, c〉 ∈ Cons(c) iff ∀x ∈ X , f(x) 6= c.
• If ∃〈H, c〉 ∈ Cons(c), then ∃x ∈ X s.t. f(x) 6= c.

Furthermore, H ⊆ x.
• If ∃x ∈ X s.t. f(x) 6= c, then ∃〈H, c〉 ∈ Cons(c) s.t.

H ⊆ x.
• If 〈H, c〉 ∈ Pros(c), then ∀c′ ∈ C \ {c}, ∃〈H ′, c′〉 ∈
Cons(c′) s.t. H ′ ⊆ H .

While a class that is not assigned to any instance has no
pros, we show that it has a single argument con whose support
is the empty set.

Proposition 7: Let c ∈ C.
• (Pros(c) = ∅) ⇐⇒ (Cons(c) = {〈∅, c〉})
• (Cons(c) = ∅) ⇐⇒ (Pros(c) = {〈∅, c〉})

We show next that the two notions of pros and cons are
dual. We start by the following straightforward property.

Proposition 8: Let c ∈ C. It holds that X = Y ∪ Z where

Y = {x ∈ X | ∃〈H, c〉 ∈ Cons(c) and H ⊆ x},

Z = {x ∈ X | ∃〈H, c〉 ∈ Pros(c) and H ⊆ x}.

Arguments against a class can be generated from arguments
pro the class and vice versa. Let us define the set of all minimal
and consistent subsets of literals that are inconsistent with any
argument against a given class.

Definition 6 (Supp): Let c ∈ C. We define Supp(c) =
{H1, . . . ,Hk} such that for every i = 1, . . . , k,
• Hi ⊆ U
• Hi is consistent
• ∀〈H, c〉 ∈ Cons(c), H ∪Hi is inconsistent
• @H ′ ⊂ Hi s.t. H ′ satisfies the third condition.
The following result shows that every element of the set

Supp(c) yields an argument pro the class c. In other words,
we show how to generate arguments pro a class from its cons.

Theorem 1: Let c ∈ C. Pros(c) = {〈H, c〉 | H ∈ Supp(c)}.
In Example 1, the arguments b1, b2, b3 can be generated

automatically from the two arguments a1, a2 and vice versa.
Let us now introduce the set of all minimal consistent

subsets of literals that are inconsistent with any argument pro
a class in a given theory.

Definition 7 (Att): Let c ∈ C. We define Att(c) =
{H1, . . . ,Hk} such that for every i = 1, . . . , k,
• Hi ⊆ U
• Hi is consistent
• ∀〈H, c〉 ∈ Pros(c), H ∪Hi is inconsistent
• @H ′ ⊂ Hi s.t. H ′ satisfies the third condition.
The following result shows that every element of the set

Att(c) yields an argument against the class c. Hence, we show
how to generate arguments against a class from its pros.

Theorem 2: Let c ∈ C. Cons(c) = {〈H, c〉 | H ∈ Att(c)}.
IV. GLOBAL VS. LOCAL EXPLANATIONS

This section investigates the links between global expla-
nations provided by pros/cons and different types of local
explanations, which are input-dependent. We show that ex-
planations, whatever their type, are generated from arguments
pro/con classes.

Abductive explanations answer the question: “why f(x) =
c?”, i.e., why does the outcome c hold for x? The answer
consists in highlighting factors that caused the given class. In
[11], [14]–[16], an abductive explanation, called also prime
implicant, is defined as a minimal (for set inclusion) set of lit-
erals that is sufficient for predicting a class. Such explanations
are closely tied to arguments pro classes. They are definitely
the supports of arguments pro classes.

Definition 8 (Abductive Explanation): Let x ∈ X and c ∈
C s.t. f(x) = c. An abductive explanation of (x, c) is any
member of the set:

AE(x, c) = {H ⊆ U | H ∈ Supp(c) and H ⊆ x}.



Example 1 (Cont.) The pair (x1, No) has a single abduc-
tive explanation, which is the support of the argument a1,
i.e., {(Sky, Sunny), (Humidity, High)}. Note that the sec-
ond argument pro No is not an explanation of the pair.
The pair (x7, Yes) also has a single abductive explanation:
{(Sky, Cloudy)}.

From the results presented in the previous section, it follows
that abductive explanations exist for every instance, and a class
that is assigned to all instances has a unique explanation, which
is the emptyset.

Proposition 9: Let x ∈ X and c ∈ C s.t. f(x) = c.
• AE(x, c) 6= ∅.
• AE(x, c) = {∅} iff ∀y ∈ X , f(y) = c.
• AE(x, c) ⊆ {H ⊆ U | 〈H, c〉 ∈ Pros(c)}
It is worth noticing that local explanations (for individual

instances) coincide with the global (instance-independent)
explanations of the classifier.

In [17], an abductive explanation of an instance x is defined
as the minimal set of features (instead of literals) that caused
the prediction f(x). In other words, the set of explanations of
x is: {{f ∈ F | (f, t) ∈ H} where H ∈ AE(x, c)}. This
feature-based definition is reasonable when providing local
explanations (i.e., for instances), however it may be incomplete
or explaining the classifier independently of instances.

Example 2 (Cont.) The feature f1 causes the prediction c3,
Hence {f1} is an explanation of x3 and x4. However, this is
true only when f1 gets the value 1. Indeed, if f1 receives 0,
then c3 is not recommended by the classifier.

Why-Not questions While abductive explanations answer
the question “why f(x) = c?”, why-not question looks for
“why f(x) /∈ C \ {c}?”, i.e., why x cannot be labelled by any
other class. Arguments pro a class can be seen as arguments
in favour of discarding all the other classes. Hence, abductive
explanations already answer the above why-not question.

Another type of why-not questions is “why f(x) 6= c′?”,
with c 6= c′. One looks for reasons behind avoiding c′ in case
of input x. Note that providing arguments pro f(x) = c is
not suitable since irrelevant information would be included in
explanations, namely those that concern discarding the other
classes (in case of multiple classes). The idea is them to look
for a set of literals H ⊆ x that caused avoiding c′, hence an
argument con c′.

Definition 9: Let x ∈ X and c ∈ C s.t f(x) 6= c. An
explanation for (x, c) is any member of the set:

g(x, c) = {H ⊆ U | H ⊆ x and H ∈ Cons(c′)}.

Example 2 (Cont.) The answer to the question why f(x4) 6=
c2 is unique: {(f1, 1)}. Recall that there are two arguments
against c2: {(f1, 1)} and {(f2, 0)}.

Notation: For x ∈ X , h ⊆ U s.t. h is consistent, x↓h denotes
the set of literals obtained by replacing the values of features
in x by those in h and keeping the remaining ones unchanged.

Proposition 10: Let x ∈ X and c ∈ C s.t f(x) 6= c.

• g(x, c) 6= ∅.
• ∀H ∈ g(x, c), ∃H ′ ∈ Pros(f(x)) s.t. H ⊆ H ′.
• ∀H ∈ g(x, c), ∃y ∈ X \ {x} s.t. y = x↓H and f(y) = c.
Note that such explanations do not shed light on how to get

the desired outcome, especially in case of non-binary features.

Counterfactuals, called also contrastive explanations, are
widely used for interpreting predictions of black-box ML
models, see eg. [4], [9], [18]. They state how the instance
would have to be different for getting another outcome. In
other words, they look for information capable of altering
the prediction of an input. They are of two kinds: those that
look for information capable of altering the prediction of an
input to whatever class, and those that focus on altering the
prediction to a target one. We call the first kind general coun-
terfactuals and the second specific counterfactuals. General
counterfactuals of (x, c) corresponds to arguments against c.

Definition 10 (General Counterfactuals): Let T = 〈F , D,
C〉 be a theory, x ∈ X and c ∈ C s.t. f(x) = c. A general
counterfactual of (x, c) is any member of the set:

CF(x, c) = {H \ x | 〈H, c〉 ∈ Cons(c)}.

Unlike abductive explanations, counterfactuals may not ex-
ist. This is particularly the case when the class of the input at
hand is assigned to all instances of the feature space. However,
a counterfactual can never be the empty set.

Proposition 11: Let T = 〈F , D, C〉 be a theory and x ∈ X
s.t. f(x) = c. The following hold:
• CF(x, c) ⊆ {H \ x | 〈H, c〉 ∈ Cons(c)},
• CF(x, c) = ∅ iff ∀y ∈ X , f(y) = c,
• ∅ /∈ CF(x, c)

General counterfactuals provide all the possible changes for
an instance that lead to another outcome. In what follows, we
provide a function which returns only the minimal adjusting
of features in an instance.

Definition 11 (Minimal Counterfactuals): Let x ∈ X . A
minimal counterfactual of (x, f(x)) is a set H ⊆ U s.t.
• H is consistent
• f(x↓H) 6= f(x)
• @H ′ ⊂ H s.t. H ′ satisfies the above conditions.
The following result relates minimal counterfactuals with

arguments con a class.
Proposition 12: Let x ∈ X s.t f(x) = c.
• If H is a minimal counterfactual of (x, c), then ∃〈H ′, c〉 ∈
Cons(c) s.t. H = H ′ \ x.

• If 〈H, c〉 ∈ Cons(c), then ∃H ′ ⊆ H \ x s.t. H ′ is a
minimal counterfactual of x.

Remark: In [17], a counterfactual is defined as a set of
features. Such a definition is suitable only when features are
all binary since the modified value of each attribute is implicit.
This is however not true in the general case.

Specific counterfactual provide the changes that should
minimally occur for being classified in an expected class c.

Definition 12 (Specific Counterfactuals): Let x ∈ X , c ∈ C
s.t. f(x) 6= c. A specific counterfactual of (x, c) is a set H ⊆ U
s.t.



• ∃y ∈ X s.t. f(y) = c and y = x↓H
• @H ′ ⊂ H s.t. H ′ satisfies the above conditions.
Obviously, every specific counterfactual is also a minimal

counterfactual. The converse does not hold.

V. RELATED WORK

Most work on finding explanations in the ML literature
is experimental, focusing on specific models, exposing their
internal representations to find correlations post hoc between
these representations and the predictions, and is thus more
about the arguably vaguer notion of interpretability.

There haven’t been a lot of formal characterizations of
explanations in AI, with the exception of [12], which defines
abductive explanations, counterexamples and adversarial ex-
amples in a fragment of first order logic or [11]. Both works
focused on local explanations, and proposed specific notions
that are suitable in the case of binary classifiers with binary
features. Furthermore, they did not relate the proposed notions
to global behaviour, thus global explanations, of classifiers.

Unlike our work, which explains existing Black-box models,
[19], [20] proposed novel classification models that are based
on arguments. Their explanations are defined in dialectical
way as fictitious dialogues between a proponent (supporting
an output) and an opponent (attacking the output) following
[21]. The authors in [22]–[25] followed the same approach
for defining explainable multiple decision systems, recommen-
dation systems, or scheduling systems. In the above papers
an argument is simply an instance and its label while our
arguments pro/con are much richer. This shows that they are
proposed for different purposes.

VI. CONCLUSION

This paper investigates the different notions of (local,
global) explanation that have been discussed in the literature
for interpreting black-box classifiers without ”opening” them.
It proposes the first formal framework for defining, generating,
and comparing the most prominent notions. The framework is
based on two dual types of arguments for justifying predic-
tions, and used them as building blocks of existing explana-
tions. This work lays the foundations for formal comparisons
with other types of explanation.
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