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Abstract. theoretical and computational properties of abstract preference-based

During the last years, argumentation has been gaining increasingrgumentation systems.
interest in modeling different reasoning tasks of an agent. Many re- This paper is an attempt towards understanding the effects of a
cent works have acknowledged the importance of incorporating prefpreference relation on an argumentation system. More precisely, it
erences or priorities in argumentation. However, relatively little isinvestigates the impact of the preference relation between arguments
known about the theoretical and computational implications of pref-within a new abstract argumentation framework. The attack relation
erences in argumentation. is the composition of a conflict relation with the preference relation,

In this paper we introduce and study an abstract preference-basébth defined on the set of arguments. The framework is abstract and
argumentation framework that extends Dung’s formalism by impos-general in the sense that the only assumptions made are thatrthe
ing a preference relation over the arguments. Under some reasonalfliet relation is symmetricand irreflexive and the preference rela-
assumptions about the preference relation, we show that the netion is apartial pre-order (i.e. reflexiveandtransitive). Under these
framework enjoys desirable properties, such as coherence. We alseasonable and general assumptions, we show that the new frame-
present theoretical results that shed some light on the role that prefework enjoys desirable properties for an argumentation system, such
ences play in argumentation. Moreover, we show that although somas coherencelt turns out that the preference relation on the argu-
reasoning problems are intractable in the new framework, it appean®ients translates into a preference relation on the powerset of these
that the preference relation has a positive impact on the complexitarguments. Moreover, the stable extensions of the preference-based
of reasoning. argumentation theories correspond to the most preferred sets of ar-
guments that are conflict-free.

We also investigate the computational properties of the new frame-
work and demonstrate that a transitive preference relation on the set

Argumentatiorhas become an Artificial Intelligence keyword for the Of arguments can mitigate the computational burden of some reason-
last fifteen years, especially in sub-fields such as non monotonithd tasks. Indeed, computing a stable extension of a preference-based
reasoning [8] and agent techno|ogy (eg [4]) Argumentation is aargumentation theory can be performed in polynomial time. Further-
promising reasoning model based on the interaction of different armore, enumerating all stable extensions of such a theory without in-
guments for and against some statement. This interaction betwedi®mparability between arguments can be carried outpatjinomial
arguments is typically based on a notionatfack which can take delay. Moreover, if in addition the theory does not contain indiffer-
different forms according to the form that the arguments have. Fofnt arguments, finding its unique stable extension is also a polyno-
example, when an argument takes the form of a logical proof, armial computation. On the negative side, some other reasoning tasks
guments for and against a statement can be put across and in tti&e intractable. More specifically, deciding whether an argument is a
case the attack relation expresses logical inconsistency. Argumegredulous conclusionf a preference-based argumentation theory is
tation can therefore be considered as a reasoning process implyif¢-hard while deciding whether it is akepticalone iscoNP-hard
construction and evaluation of interacting arguments. The paper is organized as follows. We first review the basics of

Several interesting argumentation frameworks have been proposédgumentation as introduced in [8]. Then, we present the abstract
in the literature (see e.g. [3, 14, 12]). The majority of these systems igreference-based argumentation framework we propose, and investi-
based on the abstract argumentation framework of Dung [8], wher@ate some of its properties. We then present algorithms for reasoning
no assumption is made about the nature of arguments or the propdp the new framework, along with some complexity results. The last
ties of the attack relation (i.e. the attack relation can be any binargection concludes with some remarks and perspectives.
relation on the set of arguments).

Some recent works have proposed argumentation systems (see
[2, 1, 5]) that are based ondefeatrelation (corresponding to the

attack relation in Dung’s framework), that is composed froooe- Argumentation is a reasoning model based on the following main

I“Ct relation on tthe S‘?lt oft.argtjhmefntst etll:cttneeference:elatmn bet-h steps: i) constructingrgumentsand counter-arguments, ii) defining
Ween arguments, refiecting the fact that arguments may no aVt‘fﬁestrengthsof those arguments, and iii) concluding or defining the
equal strengths. However till now, relatively little is known about the

justified conclusionsArgumentation systems are built around an un-
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1 Introduction

*? Basics of argumentation




but only gives rise to new arguments which may interact with the firstDefinition 5 (Preference-based Argumentation Theory (PBAT))

argument. Arguments may be conflicting for different reasons. Given an irreflexive and symmetric conflict relatiGnand a pref-
erence relation= on a set of argumentsd, a preference-based

Definition 1 (Argumentation system [8]) An argumentation sys- argumentation theoryPBAT) on A is an argumentation system

temis apair7’ = (A, R). Aisasetofargumentsa® C Ax A T = (4 R), where(a, b) € R iff (a,b) € C andb ¥ a.

is an attack relation. We say that an argumersgttacks an argument

biff (a,b) € R. It follows directly from the definition that ifa, b)) € C anda > b

o ] andb ¥ a, then(a,b) € R. Moreover, if(a,b) € C anda,b are
Among all the arguments, itis important to know which argumentsgjiner indifferent or incompatible i, then(a, b) € R and(b, a) €

to keep for inferring conclusions. In [8], different acceptability se- 1 a|so note that if(a, b) € C, then eithex(a, b) € R or (b,a) € R.
mantics have been proposed. The basic idea behind these semantisay, if (a,5) e R and * 'a) ¢ R thena - b. The ’following

is the following: for a rational agent, an argumentis acceptable if

c example illustrates some features of PBATS.
he can defend; against all attacks. All the arguments acceptable for

a rational agent will be gathered in a so-caleedensionAn exten-  Example 1 Let A = {a,b,c,d} be a set of argu-
sion must satisfy a consistency requirement and must defend all ithents, and ¢ the conflict relation on A defined as
elements. C = {(a,b),(b,a),(d,c),(c,b),(c,d),(d,c)}. Moreover, let

the preference relation contain transitive closure of the set of
pairsa = b,b = ¢, ¢ = d, andd = c. The corresponding PBAT is
T = (A,R), whereR = {(a,b),(b,c), (c,d),(d,c)}. TheoryT
has two stable extension8; = {a,c} andE; = {a, d}.

Definition 2 (Conflict-free, Defence [8]) LetB C A, anda; € A.

o Bis conflict-freeiff 3 a;, a; € Bs.t.(a;,a;) € R.
e B defendsa; iff V a; € A, if (aj,a;) € R, then3 ax € B s.t.

(ax, a5) € R. We note here that, although it seems that combining the conflict

The main semantics introduced by Dung are summarized in the fol2"d Preference relations can be done in many different ways other

lowing definition. than the one proposed in definition 5, all of these combinations lead
to counterintuitive results and properties. A detailed analysis of these

Definition 3 (Acceptability semantics [8]) Let B be a conflict-free  possibilities will appear in an extended version of this paper.

set of arguments.

e B isadmissiblgff it defends any argument i. 4 Basic Properties of PBATs
o Bis apreferredextension iff it is a maximal (w.r€) admissible  In this section we present some basic properties of PBATs. To facili-

extension. tate the discussion and the presentation of the results of this section as
e 3 is astableextension iff it is a preferred extension that attacks well as those of other part in the remainder of this paper, we use some
any argument ind\ 5. basic notions from graph theory. Indeed, as with every binary rela-

- . i tion on a set, an argumentation systéris associated with a directed
Now that the acceptability semantics are defined, we are ready tﬁraph (digraph¥i whose nodes are the different arguments, and the
define the status of any argument. edges represent the attack relation defined on them. The identifica-
o tion of graph theoretical structures has led to useful results regarding
Definition 4 (Argument status) LetT = (A, R) be an argumen- 4 properties of argumentation systems (e.g. [9]).
tation system, ands, .. ., &, its stable extensions. Letc A. Let G = (N, E) be a digraph and. € N a node ofG. The in-
degree ofn in G is the number of nodes’ of G such that(n’,n) €
E. A (strongly connected) componefitof a digraphG is a maximal
subgraphC' of G such that for every pair of nodesy € C, there
is a path fromz to y in C. If each component of a digrapfd is
3 A Preference-based Argumentation Framework contracted to a single node, the resulting graph is a directed acyclic
one, and is called theomponents grapbf G. A top component of a
In [1] the basic argumentation framework of Dung has been extendegigrath is one that has in-degree 0 in the components gray of
into preference-based argumentation theory (PBARe basic idea oy first result characterizes the cycles of the graph of a PBAT.
of a PBAT is to consider two binary relations between arguments:
Proposition 1 Let Gr be the graph associated with a PBAT =
1. A conflictrelation, denoted bg, that is based on the logical links (4, R). Every cycle ofjr has at least two symmetric edges.
between arguments.

2. A preferencerelation, denoted by, that captures the idea that Proof We prove by case analysis that a cyclgjefcannot have no

e aisskeptical conclusionf T iff a € £;,VEi=1,...o # 0.
e a iscredulous conclusioaf T iff 3&; such thata € &;.

some arguments are stronger than others. Indeed, for two argwr one symmetric edges. Let, aq, ..., a, be a cycle olGr. This

mentsa, b € A, a >~ b means that is at least as good d&s The = means thaVi < n, (ai,ai+1) € R and(an,a1) € R.

relation > is assumed to be a partial pre-order (thateiiexive Let us assume that this cycle has no symmetric edges, ie.n,

andtransitive. The relation>- denotes the corresponding strict (ait+1,a:;) ¢ R and (a1,an) € R. SinceVi < n, (ai,ai+1) € R

relation. That isa > biff a = bandb ¥ a. and(ai+1,a;) € R, itholds thatvi < n, a; = a;+1 . By transitivity,
ay = an, meaning(ai, a,) € R, contradiction.

The two relations are combined into a unique attack relation, deAssume now thati, as, . . ., a» is a cycle ofGr such that(a,, a1)

noted byR, and the Dung’s semantics are applied on the resultis the only symmetric edge of the cycle. Assume first that the two
ing framework. In what follows, we will study a particular class of argumentsa,,,a: are incomparable wrt the underlying preference
PBATSs, where the conflict relatiaf is irreflexiveandsymmetric relation >=. The transitivity of the preference relation requires that



a1 = an, Which contradicts the incomparability of the two argu- Theorem 3 LetT = (A, R) be a PBAT built on an underlying pre-
ments. Assume now that > a, anda, = ai. Sincea, > a1 order > and a conflict relatiorC. E is a stable extension @f iff there
anda: > a, by transitivitya, > a2. On the other hand we have are no arguments,b € E s.t. (a,b) € C, and for all A € P(A)

az > as, ..., Gn_1 = Gy, and by transitivityaz > a,. Hence the  such thatd > F, there area;, a> € A such that(ai,as2) € C.
cycle must also contain a symmetric edge betwgesmda,,. There-
fore every cycle ofir has at least two symmetric edges. | Proof LetE be a stable extension @f. Then, by definition, it con-

tains no pair of argumenta, b s.t. (a,b) € R. Hence,E can not

Doutre [6] has shown that the kernels of the associated graph qfontain arguments, b s.t.(a, b) € C. We prove by case analysis that
an argumentation theory correspond exactly to its stable extensiongy il 4 < P(A) such thatd > E there exists a pair of arguments
A kernelof a directed graplis = (N, E) is a set of noded&’ C N a1,az € Ast.(a1,az2) €C.
such that (a)< is anindependent sethat is, there is no pair of nodes Assume first a set with A O E. SinceE is a stable extension,
ni,n; € Ks.t.(ni,n;) € Eor(nj,ni) € E(b)foralln e N\K  forallq € A\ E, there isb € E, and becausel > E, b € As.t.
thereisanode’ € K s.t.(n’,n) € E. Moreover, Duchet [7] proved (b,a) € R. Therefore there exist, b € A, s.t.(a,b) € C.
that every graph with at least two symmetric edges has a kernel. By Assume now that> E and A 2 E.Again, foralla € A\E, there
combining these two results we obtain the following theorem. isb € Es.t.(b,a) € R.SinceA > E, by definition 7 follows that for
allae A\ Eandc € E\ A4, itholdsa > cand hencdc,a) ¢ R.
Therefore, it must be the case that E N A, which means tha#
contains a paita, b such that(b, a) € R, and thereforga, b) € C.

Let nowFE be a set of arguments that contains no pair of elements
a,bs.t.(a,b) € C,and for all A € P(A) such thatA > F, there
areai,az € Asuchthat(ai,a2) € C. We prove that is a stable

Definition 6 (Elementary cycle) LetT = (A, R) be a PBAT and{ extension. We show first that is admissible. Observe that sinée

Theorem 1 Every PBAT has a stable extension.

We show now that the graph associated with a PBAT haslno
ementary cyclesf length greater than 2. The notion of elementary
cycle is defined as follows.

= {ai, ..., an} be aset of arguments of. X is anelementary cycle contains no pair of elements b s.t. (a,b) € C, it can not contain
of T iff: apaira,bs.t. (a,b) € R. Assume that there existc £ andb €
A\ E s.t.(b,a) € R and there is na: € E such that(c,b) € R.
1. Vi <n-—1, (aiai+1) € Rand(an,a1) €R Henceb > a. Then defineD(b) = {d|(b,d) € R andd € E},
2. $X’ C X such thatX’ satisfies condition 1. and construct the set’ = (E \ D(b)) U {b}. Then, it is the case

- . that E' > E and furthermore there is no pair;, a2 € E’ such that
Proposition 2 Let T = (A, R) be a PBAT on an underlying pre- (a1,a2) € R, and therefordas , az) € C, contradiction.

order . Then,R has no elementary cycle of length greater than assume now that there exigtc A \ E st foralla € E it holds
2. that (a,b) ¢ R. Clearly, (b,a) ¢ R, because otherwis# is not
admissible. Then agairy U {b} > E and furthermore there is no

Proof Letas,...,a, be arguments ofd, withn > 2, and assume paif a1, as € E U {b} such that(a, az) € C, contradiction.

that they form an elementary cycle, ¥8.< n, (a;,a:+1) € R, and
(an,a1) € R. Since the cycle is elementary, thim, a;+1 such that
(ai, ai+1) € R and (ai+1, ai) € R. Thus,a; > ait1, Vi < n.
Thereforea, > a2 > ...a, = a1, contradiction. |

The example below highlights the link between the relatioand
the stable extensions.

A direct consequence of the above property is that PBATs do not : .
have elementarpdd-lengthcycles. By the results of [10], this im- =x@mple 2 LetT = (A, R) be a PBAT with4 = {a,b,c} andR

plies that PBATS are coherent, i.e., their preferred and stable exterpPmposed from the ponflict relaticﬁ_h: {(a, b)_’ (b, a)(a,c), (¢, a)}
sions coincide. and preference relation that contains the pairg- b anda > c. The

relation > on P(A) induced by~ is depicted in figure 1. Since the
Theorem 2 Every PBAT is coherent. sets{a, b, c}, {a, b}, {a, c} are ruled out byC, the sett> = {a} is
the stable extension af.

In the remaining of this section we investigate the impact of the
preference relation on an argumentation system. We first define L
relationt> on the powerset of the arguments of a PBEFE (A4, R) g Reasoning in PBATs
(we denote byP(.A) the powerset ofd), and then show that the Thjs section contains a preliminary investigation of the computa-
stable extensions aF correspond to the most preferred elements oftional properties of the new argumentation framework. We start by
P(A) wrt this relation. presenting below the algorithstable extensiothat computes a sta-
ble extension of a PBAT impolynomial time Recall that finding a
stable extension of a general argumentation system is an intractable
task (see eg. [9]).

Definition 7 LetT = (A, R) be a PBAT built on an underlying pre-
order>. If A, A> € P(A), with A; # Az, thenA, > A, iff one of
following holds:

o A1 D A stable extensiofi.A, R)
o forall a,bsuchthai € A, \ A, andb € A \ Ay, itholdsthat A=A E=90
a>b While (A’ # @) do
Compute a top compone6t of theory (A, R)
The following result states the relation betwaerand stable ex- Select a node € C such that for alh’ € A with

tensions, and hence sheds some light on the connection between pref-(n’,n) € R it holds that(n,n’) € R
erence and argumentation. E =EU{n};
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Figure 1. Ranking relation where an edge from A to B means that B.

A =
end do
ReturnE

A" = ({n}u{n|(n,n") € R})

Notice that by construction the sét returned by the above al-
gorithm does not contain two elementsy such that(z,y) € R.
Moreover, again by construction, for each element A that is
not included inE, there must by some elemente E such that
(y,z) € R. Therefore, the sel returned by the algorithm is a sta-
ble extension of the input theo(4, R).

The key point of thestable extensioalgorithm is that at each iter-

ation it finds a node: from a top component of the input theory such (A,R)

that for alln’ € A for which (n’,n) € R, it holds that(n,n’) € R.

e (l;,c;), ifliteral I; appears in clause;.

e (¢;,t),forl <i<m.

Finally, the underlying preference relation of S, is defined as
== {(a,b)|a,b € A,a # b} — {(t, c;)|c; is the argument that cor-
responds to clause;}, that is, each argument that corresponds to
clauses is preferred to the argument that corresponds to the theory,
whereas all other arguments are indifferent to each other. Therefore,
R coincides with its underlying conflict relation, with the only differ-
ence that it does not contain the paiis ¢;), for1 < i < n.

We now prove tha$ is satisfiable iffS has a stable (admissible)
extension that contains argument
Let M be a satisfying truth assignment.&f We show that the set of
argumentsE = M U {t} is an extension of . First note that for
any pair of arguments;, a; € E, it holds that(a;,a;) ¢ R. Fur-
thermore, it holds that for each, € A that corresponds to a clause
of S, there must be some arguméntc E that corresponds to some
literal of S such that(l;,c;) € R (otherwiseM is not satisfying).
Therefore F is a stable extension ¢fr.

Let now E be a stable extension ifr such thatt € E. We
prove that the assignment that corresponds to the argumenis of
is a satisfying one fof. This assignment does not contain any pairs
of complementary literals because these pairs of literals belong to
‘R. Furthermore, sinceé € E, it must be the case that ¢ E for
1 <7 < n. Therefore it must be the case that for each clauysef S
at least one of its literals must belong kg therefore the assignment
that corresponds td is satisfying. |

Proposition 3 LetT = (A, R) be a PBAT and: € A. Deciding
whethera is a skeptical conclusion &f is coNP-hard.

Proof Given a propositional theorng we construct a PBATs =
in a way similar to that of the previous proof with the dif-
ference thatA4 contains an additional argumerit such that pair

An informal justification of the existence of such elements is the fol-(t7 ) € C, (1) € C,andt = ', ¢ ¥ t. Itis not difficult to

lowing. Assume that the algorithm reaches a point where there is Br
top component of the theory that contains no node with the above

property. This means that for every nodec C there exists some
other noden’ € C such thafn’,n) € R and(n,n’) ¢ R. Remove
from C all symmetric edges (the edde,y) € R is symmetric if
(y,z) € R also holds). Then, in the resulting graph all nodeg’of
must have an incoming edge, which means thatontains a cycle
with no symmetric edges, which contradicts proposition 1.

ove thatt’ is a skeptical conclusion dfs iff S is unsatisfiable.ll

6 Theories without incomparability

In this section we turn our attention to PBATs without incompara-
bility, i.e. theoriesT’ = (A, R) such that for each pair of arguments
ai,a; € A, eithera; >~ a; ora; > a;. More specifically we present
an algorithm that enumeratel stable extensions of a theory in this

Although computing a stable extension of a PBAT can be perjass withpolynomial delayAn algorithm that enumerates the ele-
formed in polynomial time, we prove below that credulous and skepypents of a sef is said to be a polynomial delay one, if it computes

tical reasoning in the new framework are intractable.

Theorem 4 LetT = (A, R) be a PBAT andz € A. Deciding
whethera is a credulous conclusion @f is NP-hard.

Proof We prove the claim by a reduction from 3SAT. l%t=
{c1,...cn} be a 3SAT theory on a set of clausss. .. c,. From
S we construct a PBAFr = (A, R). The set of argument4 of St
contains the following elements:

e An argument; for each literall; that appears irS.
e An argument; for each clause; of S, 1 < j < n.
e An additional argument that corresponds to the whole theasy

The underlying conflict relatio@ of St contains the following
(symmetric) pairs:

e (I;,l;), for each argumenk; that corresponds to a literdl; of S

the first element of the set within polynomial time in the size of the
input, and furthermore the time taken by the algorithm between com-
puting two consecutive elements of this set is also bounded by some
polynomial in the size of the input.

The key property of PBATs without incomparability that is ex-
ploited by the stable extensions computation algorithm, is that the
strongly connected components of the graph of such a theory”
contain only symmetric edges, and therefore these components are
essentially undirected (sub)graphs. This useful property is proved in
the following result.

Proposition 4 LetT = (A, R) be a PBAT without incomparability,
andGr its associated digraph. i, b € A are arguments that belong
to the same component@fr and(a, b) € R, then(b,a) € R.

Proof Leta,b € A be arguments that belong to the same compo-
nent of Gr and(a,b) € R. Therefore(b,a) € C, anda = b. Since



ing preferences in argumentation systems, very little have been said
about the theoretical and computational properties of such systems.
This paper is a work in the direction of filling this gap by proposing
a new preference-based argumentation framework and studying its
The kernels (recall that kernels correspond to stable extensions) dfasic properties. We have shown that the theories of the new frame-
a graph that contains only symmetric edges are exactipésimal  work have always stable extensions and are coherent. We also char-
(w.r.t. set inclusion) independent sets (MISE) see this, note that acterized the structure of preference-based argumentation theories by
it follows from the definition, that every kernel is an MIS. On the extending previous works that attempted to link argumentation and
other hand, since in this case all edges are symmetric, an MIS igraph theory (see eg. [9] for a recent example). Moreover, it seems
also a kernel. This connection between stable models, kernels artdat the transitivity of the underlying preference relation imposes a
MISs, allows us to employ well-known procedures that enumeratestrong structure on the preference-based argumentation theories that
all maximal independent sets of a graph with polynomial delay [11].can be exploited computationally. Indeed, some computational prob-
Algorithm all stable extensionghat is presented below, enumer- lems become easier in the new framework, whereas others remain
ates the stable extensions of the input theory by traversing the theoigtractable.
from its top components downwards. Singleton components are han- There are many directions for future research. We plan to investi-
dled separately by the first iteration of the algorithm. To enumerateyate more deeply the structural properties of PBATs and further ex-

a, b belong to same component there must be a pathértam. Since
there is no incomparability, by transitivity we get that- a. From
this and the factb, a) € C we conclude thatb, a) € R. |

the elements that belong to stable extensions and at the same tirtend the link with graph theory. Moreover, we intend to study the

to components with more than one nodes, the algorithm utilizes @roperties of the> relation and identify its effects on argumentation.

procedure that performs MISs computation with polynomial delay. Finally, the computational properties of the new framework will be
explored more fully in the future.

all stable extension§A, R)
A=AE=0
While (A’ # @) do
While (4" has nodes with in-degree 0) do
E = EU{ala € A" and has in-degree p
A=A —(FEU{d|a € Eand(a,a’) € R})
end do
Select a top component of (A, R)
For each MISM of C' computed with polynomial delay do
E=FUM,;

(1]

A=A —(MU{dl|a € Mand(a,a’) € R}) [2]
call stable extensidM’, R)
end do
end do 3]
ReturnE
It is known [13] that the number of MISs of a graph wittodes ~ [4]
is at mostn™/?. Therefore, if a PBAT hasn components each of 5]

which has at least 2 nodes and at mosbdes, then the theory has at
mostn™*/3 stable extensions. Hence, the run time of the algorithm
is exponential inmk. For "small” values ofn andk, the above algo-  [6]
rithm can be also used to perform credulous and skeptical reasoning.
The idea is to simply enumerate all stable extensions of the inpug7
theory, and terminate as soon as the given argument belongs (cre
ulous reasoning) or does not belong (skeptical reasoning) to one of8]
the stable extensions.

Consider now a PBAT" = (A, R) where the underlying pref-
erence> relation contains neither incomparability nor indifference.
Therefore, for all pairs of arguments, a; € A, eithera;, = a; or
a; > a; holds, but not both. In this case the graphlofs acyclic
andT has exactly one stable extension. The first iteration of the allt1]
gorithmall stable extensionabove computes this unique stable ex-
tension in polynomial time. Obviously, the same procedure can bgi 2]
used for credulous and skeptical reasoning in this restricted class of
PBATSs.

(9]
(10]

[13]

7 Conclusion and Future Work [14]
In this paper we presented an abstract preference-based argumen-
tation framework. Although other works in the literature (see e.g.
[2, 1, 5] ) have also acknowledged the importance of incorporat-
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