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Abstract.
During the last years, argumentation has been gaining increasing

interest in modeling different reasoning tasks of an agent. Many re-
cent works have acknowledged the importance of incorporating pref-
erences or priorities in argumentation. However, relatively little is
known about the theoretical and computational implications of pref-
erences in argumentation.

In this paper we introduce and study an abstract preference-based
argumentation framework that extends Dung’s formalism by impos-
ing a preference relation over the arguments. Under some reasonable
assumptions about the preference relation, we show that the new
framework enjoys desirable properties, such as coherence. We also
present theoretical results that shed some light on the role that prefer-
ences play in argumentation. Moreover, we show that although some
reasoning problems are intractable in the new framework, it appears
that the preference relation has a positive impact on the complexity
of reasoning.

1 Introduction

Argumentationhas become an Artificial Intelligence keyword for the
last fifteen years, especially in sub-fields such as non monotonic
reasoning [8] and agent technology (e.g. [4]). Argumentation is a
promising reasoning model based on the interaction of different ar-
guments for and against some statement. This interaction between
arguments is typically based on a notion ofattack, which can take
different forms according to the form that the arguments have. For
example, when an argument takes the form of a logical proof, ar-
guments for and against a statement can be put across and in this
case the attack relation expresses logical inconsistency. Argumen-
tation can therefore be considered as a reasoning process implying
construction and evaluation of interacting arguments.

Several interesting argumentation frameworks have been proposed
in the literature (see e.g. [3, 14, 12]). The majority of these systems is
based on the abstract argumentation framework of Dung [8], where
no assumption is made about the nature of arguments or the proper-
ties of the attack relation (i.e. the attack relation can be any binary
relation on the set of arguments).

Some recent works have proposed argumentation systems (see e.g.
[2, 1, 5]) that are based on adefeatrelation (corresponding to the
attack relation in Dung’s framework), that is composed from acon-
flict relation on the set of arguments and apreferencerelation be-
tween arguments, reflecting the fact that arguments may not have
equal strengths. However till now, relatively little is known about the
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theoretical and computational properties of abstract preference-based
argumentation systems.

This paper is an attempt towards understanding the effects of a
preference relation on an argumentation system. More precisely, it
investigates the impact of the preference relation between arguments
within a new abstract argumentation framework. The attack relation
is the composition of a conflict relation with the preference relation,
both defined on the set of arguments. The framework is abstract and
general in the sense that the only assumptions made are that thecon-
flict relation is symmetricand irreflexive, and the preference rela-
tion is apartial pre-order(i.e. reflexiveandtransitive). Under these
reasonable and general assumptions, we show that the new frame-
work enjoys desirable properties for an argumentation system, such
as coherence. It turns out that the preference relation on the argu-
ments translates into a preference relation on the powerset of these
arguments. Moreover, the stable extensions of the preference-based
argumentation theories correspond to the most preferred sets of ar-
guments that are conflict-free.

We also investigate the computational properties of the new frame-
work and demonstrate that a transitive preference relation on the set
of arguments can mitigate the computational burden of some reason-
ing tasks. Indeed, computing a stable extension of a preference-based
argumentation theory can be performed in polynomial time. Further-
more, enumerating all stable extensions of such a theory without in-
comparability between arguments can be carried out withpolynomial
delay. Moreover, if in addition the theory does not contain indiffer-
ent arguments, finding its unique stable extension is also a polyno-
mial computation. On the negative side, some other reasoning tasks
are intractable. More specifically, deciding whether an argument is a
credulous conclusionof a preference-based argumentation theory is
NP-hard, while deciding whether it is askepticalone iscoNP-hard.

The paper is organized as follows. We first review the basics of
argumentation as introduced in [8]. Then, we present the abstract
preference-based argumentation framework we propose, and investi-
gate some of its properties. We then present algorithms for reasoning
in the new framework, along with some complexity results. The last
section concludes with some remarks and perspectives.

2 Basics of argumentation

Argumentation is a reasoning model based on the following main
steps: i) constructingargumentsand counter-arguments, ii) defining
thestrengthsof those arguments, and iii) concluding or defining the
justified conclusions. Argumentation systems are built around an un-
derlying logical language and an associated notion of logical conse-
quence, defining the notion of argument. The argument construction
is a monotonic process: new knowledge cannot rule out an argument



but only gives rise to new arguments which may interact with the first
argument. Arguments may be conflicting for different reasons.

Definition 1 (Argumentation system [8]) An argumentation sys-
tem is a pairT = (A,R).A is a set of arguments andR ⊆ A × A
is an attack relation. We say that an argumenta attacks an argument
b iff (a, b) ∈ R.

Among all the arguments, it is important to know which arguments
to keep for inferring conclusions. In [8], different acceptability se-
mantics have been proposed. The basic idea behind these semantics
is the following: for a rational agent, an argumentai is acceptable if
he can defendai against all attacks. All the arguments acceptable for
a rational agent will be gathered in a so-calledextension. An exten-
sion must satisfy a consistency requirement and must defend all its
elements.

Definition 2 (Conflict-free, Defence [8]) LetB ⊆ A, andai ∈ A.

• B is conflict-freeiff @ ai, aj ∈ B s.t.(ai, aj) ∈ R.
• B defendsai iff ∀ aj ∈ A, if (aj , ai) ∈ R, then∃ ak ∈ B s.t.

(ak, aj) ∈ R.

The main semantics introduced by Dung are summarized in the fol-
lowing definition.

Definition 3 (Acceptability semantics [8]) LetB be a conflict-free
set of arguments.

• B is admissibleiff it defends any argument inB.
• B is a preferredextension iff it is a maximal (w.r.t⊆) admissible

extension.
• B is a stableextension iff it is a preferred extension that attacks

any argument inA\B.

Now that the acceptability semantics are defined, we are ready to
define the status of any argument.

Definition 4 (Argument status) Let T = (A, R) be an argumen-
tation system, andE1, . . . , Ex its stable extensions. Leta ∈ A.

• a is skeptical conclusionof T iff a ∈ Ei, ∀Ei=1,...,x 6= ∅.
• a is credulous conclusionof T iff ∃Ei such thata ∈ Ei.

3 A Preference-based Argumentation Framework

In [1] the basic argumentation framework of Dung has been extended
into preference-based argumentation theory (PBAT). The basic idea
of a PBAT is to consider two binary relations between arguments:

1. A conflictrelation, denoted byC, that is based on the logical links
between arguments.

2. A preferencerelation, denoted byº, that captures the idea that
some arguments are stronger than others. Indeed, for two argu-
mentsa, b ∈ A, a º b means thata is at least as good asb. The
relationº is assumed to be a partial pre-order (that isreflexive
and transitive). The relationÂ denotes the corresponding strict
relation. That is,a Â b iff a º b andb 6º a.

The two relations are combined into a unique attack relation, de-
noted byR, and the Dung’s semantics are applied on the result-
ing framework. In what follows, we will study a particular class of
PBATs, where the conflict relationC is irreflexiveandsymmetric.

Definition 5 (Preference-based Argumentation Theory (PBAT))
Given an irreflexive and symmetric conflict relationC and a pref-
erence relationº on a set of argumentsA, a preference-based
argumentation theory(PBAT) on A is an argumentation system
T = (A,R), where(a, b) ∈ R iff (a, b) ∈ C andb 6Â a.

It follows directly from the definition that if(a, b) ∈ C anda º b
andb 6º a, then(a, b) ∈ R. Moreover, if(a, b) ∈ C anda, b are
either indifferent or incompatible inº, then(a, b) ∈ R and(b, a) ∈
R. Also note that if(a, b) ∈ C, then either(a, b) ∈ R or (b, a) ∈ R.
Finally, if (a, b) ∈ R and(b, a) /∈ R, thena Â b. The following
example illustrates some features of PBATs.

Example 1 Let A = {a, b, c, d} be a set of argu-
ments, and C the conflict relation on A defined as
C = {(a, b), (b, a), (b, c), (c, b), (c, d), (d, c)}. Moreover, let
the preference relationº contain transitive closure of the set of
pairs a º b, b º c, c º d, andd º c. The corresponding PBAT is
T = (A,R), whereR = {(a, b), (b, c), (c, d), (d, c)}. TheoryT
has two stable extensions,E1 = {a, c} andE2 = {a, d}.

We note here that, although it seems that combining the conflict
and preference relations can be done in many different ways other
than the one proposed in definition 5, all of these combinations lead
to counterintuitive results and properties. A detailed analysis of these
possibilities will appear in an extended version of this paper.

4 Basic Properties of PBATs

In this section we present some basic properties of PBATs. To facili-
tate the discussion and the presentation of the results of this section as
well as those of other part in the remainder of this paper, we use some
basic notions from graph theory. Indeed, as with every binary rela-
tion on a set, an argumentation systemT is associated with a directed
graph (digraph)GT whose nodes are the different arguments, and the
edges represent the attack relation defined on them. The identifica-
tion of graph theoretical structures has led to useful results regarding
the properties of argumentation systems (e.g. [9]).

Let G = (N, E) be a digraph andn ∈ N a node ofG. The in-
degree ofn in G is the number of nodesn′ of G such that(n′, n) ∈
E. A (strongly connected) componentC of a digraphG is a maximal
subgraphC of G such that for every pair of nodesx, y ∈ C, there
is a path fromx to y in C. If each component of a digraphG is
contracted to a single node, the resulting graph is a directed acyclic
one, and is called thecomponents graphof G. A topcomponent of a
digraphG is one that has in-degree 0 in the components graph ofG.
Our first result characterizes the cycles of the graph of a PBAT.

Proposition 1 Let GT be the graph associated with a PBATT =
(A,R). Every cycle ofGT has at least two symmetric edges.

Proof We prove by case analysis that a cycle ofGT cannot have no
or one symmetric edges. Leta1, a2, . . . , an be a cycle ofGT . This
means that∀i < n, (ai, ai+1) ∈ R and(an, a1) ∈ R.

Let us assume that this cycle has no symmetric edges, ie.∀i < n,
(ai+1, ai) 6∈ R and (a1, an) 6∈ R. Since∀i < n, (ai, ai+1) ∈ R
and(ai+1, ai) 6∈ R, it holds that∀i < n, ai º ai+1 . By transitivity,
a1 º an, meaning(a1, an) ∈ R, contradiction.
Assume now thata1, a2, . . . , an is a cycle ofGT such that(an, a1)
is the only symmetric edge of the cycle. Assume first that the two
argumentsan, a1 are incomparable wrt the underlying preference
relation º. The transitivity of the preference relation requires that



a1 º an, which contradicts the incomparability of the two argu-
ments. Assume now thata1 º an and an º a1. Sincean º a1

anda1 º a2, by transitivityan º a2. On the other hand we have
a2 º a3, . . ., an−1 º an, and by transitivitya2 º an. Hence the
cycle must also contain a symmetric edge betweena2 andan. There-
fore every cycle ofGT has at least two symmetric edges.

Doutre [6] has shown that the kernels of the associated graph of
an argumentation theory correspond exactly to its stable extensions.
A kernelof a directed graphG = (N, E) is a set of nodesK ⊆ N
such that (a)K is anindependent set, that is, there is no pair of nodes
ni, nj ∈ K s.t.(ni, nj) ∈ E or (nj , ni) ∈ E (b) for all n ∈ N \K
there is a noden′ ∈ K s.t.(n′, n) ∈ E. Moreover, Duchet [7] proved
that every graph with at least two symmetric edges has a kernel. By
combining these two results we obtain the following theorem.

Theorem 1 Every PBAT has a stable extension.

We show now that the graph associated with a PBAT has noel-
ementary cyclesof length greater than 2. The notion of elementary
cycle is defined as follows.

Definition 6 (Elementary cycle) LetT = (A,R) be a PBAT andX
= {a1, . . ., an} be a set of arguments ofA. X is anelementary cycle
of T iff:

1. ∀i ≤ n− 1, (ai, ai+1) ∈ R and(an, a1) ∈ R
2. @X ′ ⊂ X such thatX ′ satisfies condition 1.

Proposition 2 Let T = (A,R) be a PBAT on an underlying pre-
order º. Then,R has no elementary cycle of length greater than
2.

Proof Let a1, . . . , an be arguments ofA, with n > 2, and assume
that they form an elementary cycle, i.e.∀i ≤ n, (ai, ai+1) ∈ R, and
(an, a1) ∈R. Since the cycle is elementary, then@ai, ai+1 such that
(ai, ai+1) ∈ R and (ai+1, ai) ∈ R. Thus,ai Â ai+1, ∀i < n.
Therefore,a1 Â a2 Â . . . an Â a1, contradiction.

A direct consequence of the above property is that PBATs do not
have elementaryodd-lengthcycles. By the results of [10], this im-
plies that PBATs are coherent, i.e., their preferred and stable exten-
sions coincide.

Theorem 2 Every PBAT is coherent.

In the remaining of this section we investigate the impact of the
preference relation on an argumentation system. We first define a
relation¤ on the powerset of the arguments of a PBATT = (A,R)
(we denote byP(A) the powerset ofA), and then show that the
stable extensions ofT correspond to the most preferred elements of
P(A) wrt this relation.

Definition 7 LetT = (A,R) be a PBAT built on an underlying pre-
orderº. If A1, A2 ∈ P(A), with A1 6= A2, thenA1 ¤ A2 iff one of
following holds:

• A1 ⊃ A2

• for all a, b such thata ∈ A1 \ A2 andb ∈ A2 \ A1, it holds that
a Â b

The following result states the relation between¤ and stable ex-
tensions, and hence sheds some light on the connection between pref-
erence and argumentation.

Theorem 3 Let T = (A,R) be a PBAT built on an underlying pre-
orderº and a conflict relationC. E is a stable extension ofT iff there
are no argumentsa, b ∈ E s.t. (a, b) ∈ C, and for all A ∈ P(A)
such thatA ¤ E, there area1, a2 ∈ A such that(a1, a2) ∈ C.

Proof LetE be a stable extension ofT . Then, by definition, it con-
tains no pair of argumentsa, b s.t. (a, b) ∈ R. Hence,E can not
contain argumentsa, b s.t.(a, b) ∈ C. We prove by case analysis that
for all A ∈ P(A) such thatA ¤ E there exists a pair of arguments
a1, a2 ∈ A s.t.(a1, a2) ∈ C.

Assume first a setA with A ⊃ E. SinceE is a stable extension,
for all a ∈ A \ E, there isb ∈ E, and becauseA ⊃ E, b ∈ A s.t.
(b, a) ∈ R. Therefore there exista, b ∈ A, s.t.(a, b) ∈ C.

Assume now thatA¤E andA 6⊃ E. Again, for alla ∈ A\E, there
is b ∈ E s.t.(b, a) ∈ R. SinceA¤E, by definition 7 follows that for
all a ∈ A \ E andc ∈ E \ A, it holdsa Â c and hence(c, a) 6∈ R.
Therefore, it must be the case thatb ∈ E ∩ A, which means thatA
contains a paira, b such that(b, a) ∈ R, and therefore(a, b) ∈ C.

Let nowE be a set of arguments that contains no pair of elements
a, b s.t. (a, b) ∈ C, and for all A ∈ P(A) such thatA ¤ E, there
are a1, a2 ∈ A such that(a1, a2) ∈ C. We prove thatE is a stable
extension. We show first thatE is admissible. Observe that sinceE
contains no pair of elementsa, b s.t. (a, b) ∈ C, it can not contain
a pair a, b s.t. (a, b) ∈ R. Assume that there exista ∈ E and b ∈
A \ E s.t. (b, a) ∈ R and there is noc ∈ E such that(c, b) ∈ R.
Henceb Â a. Then defineD(b) = {d|(b, d) ∈ R and d ∈ E},
and construct the setE′ = (E \ D(b)) ∪ {b}. Then, it is the case
that E′ ¤ E and furthermore there is no paira1, a2 ∈ E′ such that
(a1, a2) ∈ R, and therefore(a1, a2) ∈ C, contradiction.
Assume now that there existsb ∈ A \ E s.t. for all a ∈ E it holds
that (a, b) 6∈ R. Clearly, (b, a) 6∈ R, because otherwiseE is not
admissible. Then again,E ∪ {b} ¤ E and furthermore there is no
pair a1, a2 ∈ E ∪ {b} such that(a1, a2) ∈ C, contradiction.

The example below highlights the link between the relation¤ and
the stable extensions.

Example 2 Let T = (A,R) be a PBAT withA = {a, b, c} andR
composed from the conflict relationC = {(a, b), (b, a)(a, c), (c, a)}
and preference relation that contains the pairsa º b anda º c. The
relation ¤ onP(A) induced byº is depicted in figure 1. Since the
sets{a, b, c}, {a, b}, {a, c} are ruled out byC, the setE = {a} is
the stable extension ofT .

5 Reasoning in PBATs

This section contains a preliminary investigation of the computa-
tional properties of the new argumentation framework. We start by
presenting below the algorithmstable extensionthat computes a sta-
ble extension of a PBAT inpolynomial time. Recall that finding a
stable extension of a general argumentation system is an intractable
task (see eg. [9]).

stable extension(A,R)
A′ = A; E = ∅
While (A′ 6= ∅) do

Compute a top componentC of theory(A,R)
Select a noden ∈ C such that for alln′ ∈ A with
(n′, n) ∈ R it holds that(n, n′) ∈ R
E = E ∪ {n};
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Figure 1. Ranking relation where an edge from A to B means thatA ¤ B.

A′ = A′ − ({n} ∪ {n′|(n, n′) ∈ R})
end do
ReturnE

Notice that by construction the setE returned by the above al-
gorithm does not contain two elementsx, y such that(x, y) ∈ R.
Moreover, again by construction, for each elementx ∈ A that is
not included inE, there must by some elementy ∈ E such that
(y, x) ∈ R. Therefore, the setE returned by the algorithm is a sta-
ble extension of the input theory(A,R).

The key point of thestable extensionalgorithm is that at each iter-
ation it finds a noden from a top component of the input theory such
that for alln′ ∈ A for which (n′, n) ∈ R, it holds that(n, n′) ∈ R.
An informal justification of the existence of such elements is the fol-
lowing. Assume that the algorithm reaches a point where there is a
top componentC of the theory that contains no node with the above
property. This means that for every noden ∈ C there exists some
other noden′ ∈ C such that(n′, n) ∈ R and(n, n′) 6∈ R. Remove
from C all symmetric edges (the edge(x, y) ∈ R is symmetric if
(y, x) ∈ R also holds). Then, in the resulting graph all nodes ofC
must have an incoming edge, which means thatC contains a cycle
with no symmetric edges, which contradicts proposition 1.

Although computing a stable extension of a PBAT can be per-
formed in polynomial time, we prove below that credulous and skep-
tical reasoning in the new framework are intractable.

Theorem 4 Let T = (A,R) be a PBAT anda ∈ A. Deciding
whethera is a credulous conclusion ofT is NP-hard.

Proof We prove the claim by a reduction from 3SAT. LetS =
{c1, . . . cn} be a 3SAT theory on a set of clausesc1, . . . cn. From
S we construct a PBATST = (A,R). The set of argumentsA of ST

contains the following elements:

• An argumentli for each literalli that appears inS.
• An argumentcj for each clausecj of S, 1 ≤ j ≤ n.
• An additional argumentt that corresponds to the whole theoryS.

The underlying conflict relationC of ST contains the following
(symmetric) pairs:

• (li,¬li), for each argumentli that corresponds to a literalli of S

• (li, cj), if literal li appears in clausecj .
• (ci, t), for 1 ≤ i ≤ n.

Finally, the underlying preference relationº of ST , is defined as
º= {(a, b)|a, b ∈ A, a 6= b} − {(t, ci)|ci is the argument that cor-
responds to clauseci}, that is, each argument that corresponds to
clauses is preferred to the argument that corresponds to the theory,
whereas all other arguments are indifferent to each other. Therefore,
R coincides with its underlying conflict relation, with the only differ-
ence that it does not contain the pairs(t, ci), for 1 ≤ i ≤ n.

We now prove thatS is satisfiable iffST has a stable (admissible)
extension that contains argumentt.
LetM be a satisfying truth assignment ofS. We show that the set of
argumentsE = M ∪ {t} is an extension ofST . First note that for
any pair of argumentsai, aj ∈ E, it holds that(ai, aj) 6∈ R. Fur-
thermore, it holds that for eachci ∈ A that corresponds to a clause
of S, there must be some argumentlj ∈ E that corresponds to some
literal of S such that(lj , ci) ∈ R (otherwiseM is not satisfying).
Therefore,E is a stable extension ofST .

Let nowE be a stable extension ofST such thatt ∈ E. We
prove that the assignment that corresponds to the arguments ofE
is a satisfying one forS. This assignment does not contain any pairs
of complementary literals because these pairs of literals belong to
R. Furthermore, sincet ∈ E, it must be the case thatci 6∈ E for
1 ≤ i ≤ n. Therefore it must be the case that for each clauseci of S
at least one of its literals must belong toE, therefore the assignment
that corresponds toE is satisfying.

Proposition 3 Let T = (A,R) be a PBAT anda ∈ A. Deciding
whethera is a skeptical conclusion ofT is coNP-hard.

Proof Given a propositional theoryS we construct a PBATTS =
(A,R) in a way similar to that of the previous proof with the dif-
ference thatA contains an additional argumentt′ such that pair
(t, t′) ∈ C, (t′, t) ∈ C, and t º t′, t′ 6º t. It is not difficult to
prove thatt′ is a skeptical conclusion ofTS iff S is unsatisfiable.

6 Theories without incomparability

In this section we turn our attention to PBATs without incompara-
bility, i.e. theoriesT = (A,R) such that for each pair of arguments
ai, aj ∈ A, eitherai º aj or aj º ai. More specifically we present
an algorithm that enumeratesall stable extensions of a theory in this
class withpolynomial delay. An algorithm that enumerates the ele-
ments of a setS is said to be a polynomial delay one, if it computes
the first element of the set within polynomial time in the size of the
input, and furthermore the time taken by the algorithm between com-
puting two consecutive elements of this set is also bounded by some
polynomial in the size of the input.

The key property of PBATs without incomparability that is ex-
ploited by the stable extensions computation algorithm, is that the
strongly connected components of the graphGT of such a theoryT
contain only symmetric edges, and therefore these components are
essentially undirected (sub)graphs. This useful property is proved in
the following result.

Proposition 4 LetT = (A,R) be a PBAT without incomparability,
andGT its associated digraph. Ifa, b ∈ A are arguments that belong
to the same component ofGT and(a, b) ∈ R, then(b, a) ∈ R.

Proof Let a, b ∈ A be arguments that belong to the same compo-
nent ofGT and(a, b) ∈ R. Therefore(b, a) ∈ C, anda º b. Since



a, b belong to same component there must be a path fromb toa. Since
there is no incomparability, by transitivity we get thatb º a. From
this and the fact(b, a) ∈ C we conclude that(b, a) ∈ R.

The kernels (recall that kernels correspond to stable extensions) of
a graph that contains only symmetric edges are exactly itsmaximal
(w.r.t. set inclusion) independent sets (MISs). To see this, note that
it follows from the definition, that every kernel is an MIS. On the
other hand, since in this case all edges are symmetric, an MIS is
also a kernel. This connection between stable models, kernels and
MISs, allows us to employ well-known procedures that enumerate
all maximal independent sets of a graph with polynomial delay [11].

Algorithm all stable extensions, that is presented below, enumer-
ates the stable extensions of the input theory by traversing the theory
from its top components downwards. Singleton components are han-
dled separately by the first iteration of the algorithm. To enumerate
the elements that belong to stable extensions and at the same time
to components with more than one nodes, the algorithm utilizes a
procedure that performs MISs computation with polynomial delay.

all stable extensions(A,R)
A′ = A; E = ∅
While (A′ 6= ∅) do

While (A′ has nodes with in-degree 0) do
E = E ∪ {a|a ∈ A′ and has in-degree 0}
A′ = A′ − (E ∪ {a′|a ∈ E and(a, a′) ∈ R})

end do
Select a top componentC of (A,R)
For each MISM of C computed with polynomial delay do

E = E ∪M ;
A′ = A′ − (M ∪ {a′|a ∈ M and(a, a′) ∈ R})
call stable extension(A′,R)

end do
end do
ReturnE

It is known [13] that the number of MISs of a graph withn nodes
is at mostnn/3. Therefore, if a PBAT hasm components each of
which has at least 2 nodes and at mostk nodes, then the theory has at
mostnmk/3 stable extensions. Hence, the run time of the algorithm
is exponential inmk. For ”small” values ofm andk, the above algo-
rithm can be also used to perform credulous and skeptical reasoning.
The idea is to simply enumerate all stable extensions of the input
theory, and terminate as soon as the given argument belongs (cred-
ulous reasoning) or does not belong (skeptical reasoning) to one of
the stable extensions.

Consider now a PBATT = (A,R) where the underlying pref-
erenceº relation contains neither incomparability nor indifference.
Therefore, for all pairs of argumentsai, aj ∈ A, eitherai º aj or
aj º ai holds, but not both. In this case the graph ofT is acyclic
andT has exactly one stable extension. The first iteration of the al-
gorithmall stable extensionsabove computes this unique stable ex-
tension in polynomial time. Obviously, the same procedure can be
used for credulous and skeptical reasoning in this restricted class of
PBATs.

7 Conclusion and Future Work

In this paper we presented an abstract preference-based argumen-
tation framework. Although other works in the literature (see e.g.
[2, 1, 5] ) have also acknowledged the importance of incorporat-

ing preferences in argumentation systems, very little have been said
about the theoretical and computational properties of such systems.

This paper is a work in the direction of filling this gap by proposing
a new preference-based argumentation framework and studying its
basic properties. We have shown that the theories of the new frame-
work have always stable extensions and are coherent. We also char-
acterized the structure of preference-based argumentation theories by
extending previous works that attempted to link argumentation and
graph theory (see eg. [9] for a recent example). Moreover, it seems
that the transitivity of the underlying preference relation imposes a
strong structure on the preference-based argumentation theories that
can be exploited computationally. Indeed, some computational prob-
lems become easier in the new framework, whereas others remain
intractable.

There are many directions for future research. We plan to investi-
gate more deeply the structural properties of PBATs and further ex-
tend the link with graph theory. Moreover, we intend to study the
properties of the¤ relation and identify its effects on argumentation.
Finally, the computational properties of the new framework will be
explored more fully in the future.
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