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Abstract. This paper studies the possibilities and limits of applying a Dung-style
argumentation framework in a decision making problem. This study is motivated
by the fact that many examples in the literature use this setting for illustrating
advantages or drawbacks of Dung’s argumentation framework or one of its en-
hancements (such as PAFs, VAFs, ADFs, AFRAs). We claim that it is important
to clarify the concept of argumentation-based decision making, i.e., to precisely
define and consider all its components (e.g. options, arguments, goals). We show
that a Dung-style argumentation framework cannot be simply “attached” to a set
of options. Indeed, such a construct does not provide a sophisticated decision-
making environment. Finally, we discuss the points that must be taken into ac-
count if argumentative-based decision making is to reach its full potential.

1 Introduction

A multiple criteria decision problem amounts to selecting the ‘best’ or sufficiently
‘good’ option(s) among different alternatives. The goodness of an option is judged by
estimating by means of several criteria how much its possible consequences fit the pref-
erences of the decision maker. Fargier and Dubois ([6]) proposed an abstract framework
for qualitative bipolar multiple criteria decision. It assumes that each option may have
positive and negative features. Various efficient decision rules that compare pairs of
options were proposed and axiomatized in the same paper.

Besides, several attempts have recently been made for explaining and suggesting
choices in decision making problems on the basis of arguments [3, 8, 2]. Moreover, it is
very common in argumentation literature that an argumentation process is illustrated by
informal examples of decision problems. However, it is not clear which decision rule
is used for comparing options in those argument-based decision frameworks. Thus, it
is difficult to formally evaluate the quality of those works and to compare them with
existing works on non-argumentative decision theory.

Starting from the decision problem studied in [6], the aim of this paper is to investi-
gate the kind of decision rules that may be encoded within Dung’sargumentation frame-
work [7]. We study three argumentation frameworks: The first and second frameworks
assume that the options are evaluated and compared on the basis only of arguments
pros (respectively arguments cons). In the third framework, both types of arguments are
involved in the comparison process. For each framework we study two cases: the case
where all the criteria in the decision problem have the same importance and the case
where some of them may be more important than others. The results show that in this



setting (i.e. when a Dung-style argumentation framework is attached to a set of options)
there is no added value of argumentation. Furthermore, the framework proposed in [6]
performs better than its simple argumentative counterpart.

The paper is organized as follows: We start by recalling the fundamentals of argu-
mentation theory, then we describe the formal framework for qualitative bipolar multi-
criteria decision that was proposed in [6]. In a next section, we study the different argu-
mentation frameworks that may encode the decision problem discussed in [6]. The last
section is devoted to some concluding remarks and some ideas of future work.

2 Basics of argumentation

Dung has developed the most abstract argumentation framework in the literature [7]. It
consists of a set of arguments and an attack relation between them.

Definition 1 (Argumentation framework) An argumentation framework (AF) is a pair
F = (A, R) where Ais a set of arguments and R is an attack relation (R C A x A).
The notation o'R 3 means that argument o attacks argument [3.

Different acceptability semantics for evaluating arguments are proposed in the same
paper [7]. Each semantics amounts to define sets of acceptable arguments, called exten-
sions. Before recalling those semantics, let us first introduce the two basic properties
underlying them, namely conflict-freeness and defence.

Definition 2 (Conflict-free, Defence) Let 7 = (A, R) be an AF and £ C A.

— & is conflict-free iff A o, B € € s.t. ARB.
— & defends an argument a iff for all B € A s.t. SR, there exists 6 € € s.t. IRS.

The following definition recalls some acceptability semantics proposed in [7]. Note
that other semantics refining them are proposed in the literature. However, we do not
need to recall them for the purpose of our paper.

Definition 3 (Acceptability semantics) Let F = (A, R) be an AF and € C A.

— & is an admissible set iff it is conflict-free and defends its elements.
— & is a preferred extension iff it is a maximal (for set C) admissible set.
— & is a stable extension iff it is conflict-free and attacks any argument in A\ E.

A status is assigned for each argument as follows.

Definition 4 (Status of arguments) Let F = (A, R) be an AF and &1, . .., &y, its ex-
tensions (under a given semantics). Let o € A.

— « is skeptically accepted iff a € &;, Vi € {1,...,n}.
— ais credulously accepted iff 3i € {1,...,n} s.t. a € &;.
— aisrejected iff Vi € {1,...,n}, a ¢ &;.



Example 1 Assume a framework Fi = (A, R) where A = {a,3,8,7} and aRS,
BRY, YRS and 6Ra. Fy has two preferred and stable extensions: {a, v} and {8, 6}
The four arguments are credulously accepted under stable and preferred semantics.

When the attack relation is symmetric, the corresponding argumentation framework
is called symmetric. It has been shown [4] that such a framework is coherent (i.e. its
stable extensions coincide with the preferred ones). These extensions are exactly the
maximal (for set inclusion) sets of arguments that are conflict-free. Moreover, each ar-
gument belongs to at least one extension which means that it cannot be rejected.

It was argued in [ 1] that arguments may not have the same intrinsic strength. Preference-
based argumentation frameworks (PAF) have thus been defined. They evaluate argu-
ments on the basis of their strengths and interactions with other arguments.

Definition 5 (PAF) A PAF is a tuple T = (A, R, >) where A is a set of arguments, R
is an attack relation and > C A x Ais a (partial or total) preorder (i.e. reflexive and
transitive). The notation o > 3 means that av is at least as strong as 3. The extensions
of T under a given semantics are the extensions of the AF (A, Def) where for o, 8 € A,
aDef B iff aR 3 and not(f > o).

3 Qualitative bipolar multiple criteria decisions

In [6], an abstract framework for qualitative bipolar multiple criteria decision consists
of a finite set D of potential decisions (or options) d1, . .., dy; a finite set C of criteria
c1,...,Cm, viewed as attributes ranging on a bipolar scale S = {—,0, +}. With this
scale, a criterion is either completely against (—), totally irrelevant (0), or totally in
favor of each decision in D. The set C of criteria is ordered using a totally ordered scale
L expressing the relative importance of each criterion or of a group of criteria. This
scale has a top element 1. (full importance) and a bottom one 0, (no importance). Let
7 : 2+ L be a function that returns the importance value of a group of criteria. We
assume that () = 0. In addition to the two sets D and C, a base K is available.
It contains information of the form ¢t (d) or ¢~ (d) about the behavior of a decision
d towards a criterion c. In fact, ¢t (d) means that decision d satisfies criterion ¢ while
¢~ (d) means that d violates c. Two functions T and F~ that return respectively the
criteria that are satisfied (violated) by each decision are assumed. Formally:

- FT D= 20st. Fr(d) ={ceC|ct(d) € K}
- F iD= 2st. F(d)={ceC|c(d) € K}

A multiple criteria decision problem consists of defining a decision rule for rank-
ordering the options. The authors in [6] proposed and investigated different rules. Ac-
cording to those rules, comparing two decisions d; and d; amounts to comparing the
pairs (F(d;), F~(d;)) and (F*(d;), F~(d;)). The criteria that got value 0 by a de-
cision are not taken into account in the comparison process since they are neutral.

! The relation > is the strict version of >. Indeed, for @, 8 € A, a > B iff « > 8 and not
(B = a).



Definition 6 (Decision problem) A decision problem is a tuple (D,C,m, K, Ft, F7).
Let us illustrate the above concepts on the following example borrowed from [6].

Example 2 Luc hesitates between two destinations for his next holidays: D = {dy,ds}.
Assume that C = {landscape, price, airline reputation, governance, tennis, pool, disco}
such that T({landscape}) = ({price}) = m({airline}) = 7({governance}) = A and
w({tennis}) = w({pool}) = m({disco}) = § with A\ > § > 0. Assume also that option
dy has landscape, but it is very expensive and the local airline has a terrible reputation.
Option ds is in a non-democratic region. On the other hand, this region has a tennis
court, a disco, and a swimming pool. Thus,

FT(dy) = {landscape} F~(dy) = {airline, price}
FT(dy) = {tennis, pool, disco} F~(d2) = {governance}

An example of a relation that compares the two destinations is Pareto Dominance rule
defined as follows:

di = dj iff maxyer+ g T({x}) = maxgeFeam({a}) and
Mmazze r-(a,)m({2}) < mazger-(q,)m({x}). (PDR)

According to this rule, Luc will choose option d; since w({landscape}) > w({tennis}),
w({pool}), m({disco}) and max(w({airline}), m({price})) = w({governance}).

4 Argument-based decisions

The backbone of an argumentation framework is the notion of argument. In a multiple
criteria decision context, it can be defined in two ways: an atomic way and a cumulative
one. In the former case, an argument pro an option d is any information c*(d). We say
that there is a reason to select d since it satisfies criterion c. Similarly, an argument cons
d is any information ¢~ (d), i.e. the fact that d violates criterion c. Hence, an option may
have several arguments pros and several arguments cons. The total number of arguments
would not exceed the total number of available criteria (i.e. |C|). The cumulative way
of defining an argument consists of accruing all the atomic arguments into a single one.
Thus, an argument pro an option d would be the set of all criteria satisfied by that option
(i.e. {ct(d) | ¢*(d) € K}), and an argument cons is the set of all criteria violated by
that option (i.e. {¢™(d) | ¢~ (d) € K}). With this definition, an argument may have at
most one argument pro and at most one argument cons.

Notation: Whatever the definition of an argument is, the function Conc returns for a
given argument, the option that is supported or attacked by this argument.

Next, we will show that if we attach a Dung’s abstract framework to a set of options,
we can encode some decision rules that are proposed in [6]. We will discuss three cases:
In the first case, we assume that only arguments pros are considered for comparing
options. In the second case, we assume that options are compared on the basis of their
arguments cons. In the third case, both types of arguments are taken into account.



4.1 Handling arguments pros

Let (D,C,m, K, F*,F~) be a decision problem such that for all d € D, F~(d) = 0.
This means that options in D may only have arguments pros. In what follows, we will
discuss two cases: the case where all the criteria have the same importance (called flat
case) and the case where they may have different degrees of importance (prioritized
case).

Flat case We assume that criteria in C have the same level of importance (i.e. 7({c1 }) =
... = 7({cm }) with m = |C|). The argumentation framework corresponding to this de-
cision problem is a pair of the set of all arguments pros, and an attack relation which
expresses that two arguments support distinct options. Note that this is the only mean-
ingful definition of an attack relation in this case. Let us first consider the atomic defi-
nition of argument pro.

Definition 7 Let (D,C,w, K, F T, F~) be a decision problem s.t. ¥d € D, F~(d) = 0,
and n({c1}) = ... = 7({em}) with m = |C|. The corresponding AF is a pair F,, =
(Ap, Rp,) where:

- Ap =Ugep ct(d) where ct(d) € K.
- Rp={(a,B) | o, p € A, and Conc(cr) # Conc(f)}.

It is clear from the above definition that the attack relation is symmetric. Moreover,
it does not contain self-attacking arguments.

Property 1. R, is symmetric and does not contain self-attacking arguments.

The argumentation framework F,, = (A,, R,) is thus coherent. We show that it has
as many extensions as decisions that are supported by at least one argument. Moreover,
each extension contains the arguments of the same option.

Proposition 1 Let F, = (A,, R,) be the AF corresponding to a decision problem (D,
C,m K, Fr, F).

— F, has n extensions where n = |{d € D s.t. F*(d) # 0}|.

— For each extension €, £ = {aq,...,an} with Conc(ay) = ... = Conc(ayy,) and
m = |F*(Conc(ay))].

— Forall o € Ay, ais credulously accepted in F.

Since all arguments are credulously accepted, all options that are supported by at
least one argument pro are equally preferred, and they are preferred to the decisions
that are supported only by neutral arguments. This shows that F,, does not allow any
efficient comparison between decisions.

Example 2 (Cont): Let us re-consider the decision problem of Luc. There are four ar-
guments: « = landscape™ (d), ay = tennist(dz), as = pool™*(dz) and a3 = disco™ (dz).
Moreover, the attack relation is as depicted in the figure below.
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This framework has two extensions: & = {a} and &3 = {1, as, as}. The two destina-
tions are thus equally preferred which is certainly not realistic. Even if the four criteria
are equally preferred, Luc still can make a choice and select the option that satisfies
more criteria, i.e. da.

The above result is not due to the atomic definition of an argument. The result is
obtained by the following framework which defines arguments pros in a cumulative
way.

Definition 8 Let (D,C,w, K, F T, F ™) be a decision problem s.t. ¥d € D, F~(d) = 0,
and m({c1}) = ... = 7({cm}) with m = |C|. The corresponding AF is a pair F, =
(A, R;) where: Ay = {{c}f (d) | ¢} (d) € K} s.t.d e D}y and R, ={(o, 8) | o, B €
A’, and Conc(a) # Conc(f3)}.

It is worth noticing that each option is supported by exactly one argument which
may be the empty set in case the option does not satisfy any criterion. Thus, |.A7| = [D|.

Proposition 2 Let 7], = (A}, R},) be the AF corresponding to a decision problem (D,
C,m K, Fr, F).

— F,, has n extensions where n = |D|.
— For each extension &, |E| = 1.
— All arguments of A;, are credulously accepted.

The fact that F;,, and 7, do not capture correctly Example 2 does not mean that
there is no instantiation of Dung’s framework which computes the expected result. We
propose a PAF which prefers the option(s) satisfying the highest number of criteria. This
PAF considers cumulative arguments and assumes that arguments do not necessarily
have the same strength. The strongest arguments are those referring to more criteria.

Definition 9 Let (D,C,m, K, Ft, F~) be adecision problem s.t. ¥d € D, F~(d) = {.
The corresponding PAF is (A, R, >1) where >, C Al x A7 and for o, € A},
a >y, Biffla] = |Bl.

Note that the relation >7 is a total preorder. Moreover, this PAF is coherent and
it has non-empty extensions. Let us now recall the decision rule which privileges the
options which satisfy more criteria: d; = d; iff |[F*(d;)| > |F*(d;)].

Notation: We denote by Max (D, ) the top elements of D according to a preference
relation =, i.e. Max(D, =) = {d € Ds.t.Vd' € D,d = d'}.

Proposition 3 Let (D,C,m, K, F T, F~) be a decision problem s.t. ¥d € D, F~(d) =
0 and T" = (A}, R, >}) its corresponding PAF. d € Max(D, ) iff there exists a
stable extension € of T s.t. £ = {a s.t. a € A}, and Conc(a) = d}.



Example 2 (Cont): The PAF corresponding to the decision problem of Luc has A}, =
{6,7}, 6 = {landscape™(dy)}, v = {tennisT(dz), pool™t(dz), discot(dz)}, R}, =
{(8,7),(v,9)}, and v >}, 0 since |y| = 3 and |§| = 1. This PAF has one extension:
& = {~}, thus Luc would choose destination ds.

Note that the previous PAF returns only the best options and says nothing on the
remaining ones. In this sense, a non argumentative-approach is richer since it compares
any pair of options. This latter is also simpler since it does not need to pass through
different concepts (like attacks and extensions) in order to get the solution.

Prioritized case Let us now assume that the criteria are not equally important. It is
clear that in this case arguments may not have the same strength. We propose a sim-
ple preference-based argumentation framework which encodes the well-known Wald’s
optimistic ordering [12]. This PAF considers an atomic definition of arguments, and
compares arguments wrt the importance of the criteria to which they refer.

Definition 10 Let (D,C,w, K, F T, F~) be adecision problem s.t. ¥d € D and F~(d) =
(). The corresponding PAF is T, = (A,, Ry, >,) where for two arguments c; (d) and

ey (d), ¢ (d) 2p ¢ (d) iff n({ei}) = 7({c;}).

It is easy to check that the preference relation >, is a complete preorder. Besides,
we show that the number of extensions of the PAF (A,, R,, >,) is the number of
options that satisfy the most important criteria. Moreover, each extension contains all
the arguments in favor of the same option.

Proposition 4 Let (D,C,w, K, Ft, F~) be a decision problem s.t. ¥d € D, F~(d) =
0 and T, = (Ap, Rp, >p) its corresponding PAF.

— Ty has exactly n stable extensions s.t. n = |{d € Ds.t. 3¢ € Ft(d) andVc €
C,m({c}) = m({ DY

— For each stable extension € of Ty, 3¢t (d) € € s.t. V' € C,w({c}) > w({c'}).

— For each stable extension € of Ty, 3d € D s.t. £ = {ct(d) | ¢t (d) € K}.

The following result shows that this PAF privileges the decisions that are supported
by at least one strong argument. This relation is a simplified version of the Pareto Dom-
inance Rule (PDR) when arguments cons are not available. It collapses to Wald’s opti-
mistic ordering [12].

di =o dj iff maz e+ q)T({x}) 2 mazzer+q;)m({x})

Proposition 5 Ler 7, = (Ay, Rp, >p) be the PAF corresponding to a decision problem
(D,C,m, K, Ft,F)st.¥d € D, F~(d) =0 and A, # 0. Let d € D.
d € Max(D, =,) iff there exists a stable extension £ of T, s.t. 3¢ (d) € €.

Example 2 (Cont): The PAF corresponding to the decision problem of Luc is 7, =
(Ap, Ry, >p) where A, = {a, a1, ao, as}, aRpaq, ay Rpa, aRpas, asRpya, aRpas,



asRpa, and o >, a1, @ >, a2, a >, as. This PAF has one stable extension:
& = {a}, thus Luc would choose destination dj .

The PAF 7T, returns only the best options wrt >=,. However, the qualitative approach
of [6] compares any pair of options. This is suitable in negotiation dialogs where agents
are sometimes constrained to make concessions, i.e. to propose/accept less preferred
options in order to reach an agreement.

4.2 Handling arguments cons

In the previous section, we have investigated the case where only arguments pros are
taken into account for comparing options. In what follows, we assume that options are
compared on the basis of their arguments cons. Let (D, C, 7, K, F 7, F ) be a decision
problem such that for all d € D, F*(d) = (. This means that the different decisions may
only have arguments cons. Note that this case is dual to the previous case where only
arguments pro are considered. Thus, it is easy to check that the framework F. (dual
version of F,,) does not say anything about options that do not have arguments cons.
Moreover, it considers options having at least one argument cons as equally preferred.
This framework is thus not decisive since an option that has no argument cons is cer-
tainly better than one that has at least one argument cons, and in case two options have
both arguments cons, it is more natural to choose the one that has less arguments. For
instance, it is more natural for Luc to choose the option that violates less criteria, i.e. do.

Contrarily to the PAF 7, which returns the best options, its dual 7, returns the
worst ones. Indeed, it computes the decisions that violate the most important criteria.
The following result shows that these decisions are the worse elements of the Wald’s
pessimistic ordering defined as follows [12]:

di =p dj iff mazyer-(aym({r}) < mavper-(q,)m{z})

It is worth noticing that this relation is a complete preorder. In what follows, we
denote by Min(D, =), the bottom elements of D according to the preference relation
=p-Min(D, =,) = {d € Ds.t.Vd' € D,d », d}.

Proposition 6 Let T, = (Ac, Re, >c) be the PAF corresponding to a decision problem
(D,C,m, K, F*, F7)st.Vd e D, F*(d) =0, and A. # 0. Let d € D.
d € Min(D, »,,) iff there exists an extension € of T, s.t. 3¢~ (d) € €.

This result shows that the framework 7, is poor compared to the qualitative model
of [6]. Indeed, not only it does not compare all the options but it does not even return the
best ones. Note that if the preference relation >, is defined in such a way to prefer the
argument violating the less important criterion, then the corresponding PAF will return
the best option(s). However, such a preference relation would not be intuitive since it is
intended to reflect the strengths of arguments.



4.3 Bipolar argumentation frameworks

In the previous section, we have considered only arguments pros for comparing deci-
sions in D. In what follows, we assume that the comparison is made on the basis of both
types. We start with the case where all criteria in C have the same importance level.
The argumentation framework corresponding to a decision problem s a pair (Ap, Rp)

consisting of the sets of arguments pros and cons each decision. The definition of the
attack relation Ry is not obvious. While it is natural to assume that arguments support-
ing (pros) or attacking (cons) distinct options are conflicting, it is not always natural
to assume that an argument pros an option conflicts with an argument cons the same
option. Let us consider the case of Luc who wants to choose his future destination. The
fact that destination d; has beautiful landscape does not necessarily attack the fact that
the airline company that deserves that destination has a bad reputation. In what follows,
we will study two cases: the case where arguments pros and cons conflict, and the case
where they do not.

Definition 11 (Bipolar AF) Ler (D,C, 7, K, F*,F~) be adecision problem s.t. w({c1}) =
... = w({cm}) withm = |C|. The corresponding AF is a pair Fy» = (Ap, Ry) where:
- Ay ={ct(d) | ct(d) e K}U{c (d) |c(d) € K}.
- Ry = {(a,b) |Conc(a) # Conc(b)} U {(a,b), (b,a)|a=c(d), b= c; (d') and
d=d'}.

The framework F} is symmetric. Consequently, its stable and preferred extensions
are exactly the maximal conflict-free subsets of A;. Moreover, each decision is sup-
ported at most by two extensions: one containing its arguments pros and another con-
taining its arguments cons.

Proposition 7 Let 7, = (Ap, Rp) be the AF corresponding to a decision problem
(D7C77T7 ’C7 ‘F+7‘F_)‘

— Foralld € D, if F(d) # 0 (resp. F~(d) # 0), then Fy, has an extension £ =
{ct(d) | ¢T(d) € K} (resp. an extension & = {c(d) | ¢ (d) € K}).

— The number of extensions of Fy is n where n = |{d € D s.t. F*(d) # 0} +
{d € D s.t. F~(d) # 0}

Example 2 (Cont): The bipolar framework corresponding to Luc’s decision problem
has four extensions: &1 = {a}, & = {B1, B2}, E3 = {a1, as,as} and &4, = {5}.

With such a framework, all the arguments are credulously accepted. Consequently,
the different options supported at least by one argument (either pros or cons) are equally
preferred. This means that F;, is not decisive and even useless. Moreover, this result is
not intuitive as illustrated by the following example.

Example 3 Carla wants to buy a mobile phone. The seller proposes two options, say
dy and ds. The first option has a large screen while the second has 2 bands only. Thus,
K = {screen™(dy), bands™(d2)}. According to the above framework, there are two
extensions: £1 = {screen™(dy)} and €3 = {bands™(d2)}. Consequently, the two op-
tions are equally preferred. However, it is more rational for Carla to choose option dq
which has only arguments pros rather than ds which has only arguments cons.



Let us now study the more interesting case, namely when criteria have different
levels of importance.

Definition 12 (Bipolar PAF) Let (D,C,m, K, F T, F~) be adecision problem. The cor-
responding PAF is Ty = (Ap, Rp, >p) where >, C Ay X A

According to [5], the PAF F, is coherent. Moreover, it has as many extensions
as strong criteria that are satisfied or violated by decisions. Moreover, each extension
contains all the arguments pros (or cons) the same decision.

Proposition 8 Ler (D,C,w, K, Ft,F~) be adecision problem and T, = (Ap, Rp, >p)
its corresponding PAF.

— For each stable extension € of Tp, Ac*(d) € € s.t. V' € C, w({c}) > w({c'})

— For each stable extension € of Tp, 3d € D s.t. £ = {c*(d)|cT(d) € K} or & =
{c(d)|c™(d) € K}

— Ty has n stable extensions s.t. n = |d € D s.t. 3¢ € F(d)s.t.vc € C,w({c}) >
7({c'})| + |d € Ds.t. Ie € F~(d)s.t.V € C,w({c}) > w({c'})|.

From the previous result, it follows that Dung’s framework cannot be used for de-
cision making since it simply selects groups of arguments containing at least one of the
strongest (positive or negative) arguments of the corresponding PAF. It does not encode
any meaningful decision relation, and it does not capture the Pareto Dominance rule as
shown by the following example.

Example 2 (Cont): The bipolar PAF has three stable extensions: &1 = {a}, & =
{B} and & = {1, B2}. &1 and E3 concern option dy and &> concerns do. Thus, it is
impossible to compare the two options.

Note that this negative result holds also when arguments pros and cons the same
option are not conflicting. In this case, the corresponding argumentation framework
has as many extensions as decisions that satisfy or violate at least one criterion (in
the flat case). In the prioritized case, the corresponding PAF has as many extensions as
decisions that satisfy at least one of the most important criteria plus the ones that violate
at least one of such criteria.

5 Discussion

It is very common that an argumentation process is illustrated through a multiple criteria
decision problem where arguments pros an option are advanced and then attacked by
arguments cons that option. Our aim in this paper is to show that things are not so
simple and one should be careful when choosing examples of argumentation since they
may not be modelled correctly by a simple instantiation of Dung’s system. The main
reason is that decision making is different from theoretical reasoning since in the latter
we look for the truth while in the former one looks for the best option to choose which
is generally a sort of compromise. Moreover, the aim in a decision making problem is
to rank order options.



In this paper, we have shown that simply attaching a Dung-style argumentation
system (i.e. the graph of arguments and attacks between them) and using its extensions
for decision making, in the best case leads to encoding a particular decision rule while
in the worst case the system equally prefers all options, thus it is not decisive. It is worth
noticing that in the best case, only the best option(s) are returned and nothing is said
about the remaining ones. We have also shown that the qualitative model proposed in
[6] performs better than the argumentative approach since it returns more results (an
ordering on the whole set of options). Moreover, that approach is simpler since it does
not need to compute extensions as in Dung’s system.

It should be noted that we do not claim that it is impossible to create an argument-
based decision making system; on the contrary, we believe that this is an important and
feasible task. Our main message is that using argumentation for decision making is not
easy, and that one should abstain from giving ad hoc decision-making examples which
are supposed to illustrate the benefits or drawbacks of an argumentation framework,
since without knowing what the set of options and the set of goals are, and how the set
of arguments relates to those two sets, it is not possible to know how a decision-making
system works. And we showed that “the simplest” way of relating those sets it is not a
good way to do it.

In order to build a good argumentation-based decision making system, one should
take into account the fact that acceptance in almost all argumentation frameworks in
the literature is crisp (i.e. an argument can be in a given extension or not) rather than
fuzzy. This prevents those systems of being good candidates for capturing the notion of
compromise, which is indispensable in decision making.

Another important point is that we cannot speak about capturing decision making
without accrual of arguments [10]. Unfortunately, this notion has not received enough
attention in the argumentation literature.

Also, an important conceptual question is whether and when an argument attacks
another one in a decision-making problem. We believe that the conception between this
issue must be clarified.

A possible extension of this work consists of studying whether it is possible (and
how) to encode in argumentation the efficient decision rule based on Choquet Integral
[9] and that based on Sugeno Integral [11].
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