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Abstract

Practical reasoning PR), which is concerned with the generic question of what
to do, is generally seen as a two steps processidlieration in which an agent
decides what state of affairs it wants to reach —that igjetsres and (2)means-
ends reasoningin which the agent looks for plans for achieving these @ssir
The agent’'sntentionsare a consistent set of desires that are achievable together

This paper proposes the first argumentation system for PRctimaputes in
one step the possible intentions of an agent, avoiding theisitawbacks of the
existing systems. The proposed system is grounded on atreoek on con-
strained argumentation systems, and satisfies the ratypabtulates identified
in argumentation literature, namely thensistencyand thecompletenessf the
results.

Keywords: Practical reasoning, Argumentation theory.

1. Introduction

Practical reasonindPR) [2] is concerned with the generic question of what to
do for a rational agent in a given situation. In his seminak@3], Wooldridge
defines PR as a two step process. The first step, cdéiélderation consists of
identifying the states of affairs an agent wants to reaehthedesire3. This step
is decomposed into two distinct components: i)ogion generatiorcomponent

1This paper extensively develops and extends the contefteofanference paper [1]. The
language of representation is refined and more results csyHtem are proposed.
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in which the agent generates a set of possible desires, Jadiltering compo-
nent in which the agent chooses between competing desirése second step of
PR, calledneans-end reasoninthe agent looks for plans for reaching the chosen
desires. If such plans exist, those desires will be caliezhtionsand the agent
commits to achieving them. Thus, an intention is a desireisjastifiedandfea-
sible In [4], it has been argued that generating options is amenfee problem,
while filtering those options is a decision making one. Regy the means-
end-reasoning step, the authors argue that it involves telolgms: an inference
problem in which an agent checks the feasibility of sets ahp| and a decision
making problem in which the agent chooses among severabfegsans, the
exact ones to carry out. The authors have then proposedearadghomposition
of a PR process as follows: i) option generation, ii) chegkime feasibility of
the options,.e. to find sets of plans that are compatible in the sense that they
are achievable together, and iii) filtering the options al asthe plans. The two
decision problems are thus combined in a unique step. Thelaesmposition of-
fers at least two advantages: First, it avoids that theifiigecomponent selects an
option for which no plan can be formed, and in so doing migletude an option
which could be carried out. The second advantage consisite dink that exists
between the two decision problems. In [4], the authors hawpgsed different
principles for choosing among competing and feasible ogtid-or instance, an
agent may choose a desire that has more plans for achievingis clear that
such a decision principle can only be applied after the meansprinciple. In
this paper, we follow this decomposition of PR process.

Besides, what is worth noticing in most works on practicalsening is the
use of arguments for providing reasons for choosing or ditieg a desire as an
intention. These works can be divided into two groups: wakled are interested
in identifying argument schemes that are used in PR (e.d@]]band works that
propose concrete argumentation-based systems for PR[{e 4}, 8, 9, 10]) fol-
lowing the process proposed in [4]. Recall that an arguntiemigaystem consists
mainly of a set of conflicting arguments, and the crucial éssuthe selection of
acceptable sets of arguments. Works of the second categtiey fom three
main drawbacks.

= The first problem is that the properties of the systems arénmestigated;
it is thus unclear whether the results of these systems auigive.

» The second one concerns the use of a skeptical acceptat®liantics,
namely grounded semantics, for evaluating arguments. Henvskeptical
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semantics are not suitable in practical reasoning as rdited by the fol-
lowing example of an agent who has three equally preferrettetel;, —d;
andd,. Assume thatl; and—d; are not conditional whilé, depends o,

(in [9] this is denoted byl; = d,). According to the system proposed, for
instance, in [9], there are three argumenits(in favor of d,), J, (in favor

of —d;) andds (in favor of d;) such that), andd, attack each other ang
attacksds. It is clear that the grounded extension of this system istgmp
meaning that no desire will be pursued by this agent everegdldesires
are feasible. This is clearly counter-intuitive. Now, if @dulous seman-
tics, like preferred semantics, is considered, then twéepred extensions
are returned{d;, 05} and{d, } meaning that this agent can either pursue the
two desiresi; andd, together, or the desired; alone.

The third drawback of existing approaches concerns thetlfeattthe first
and second steps of PR are modeled in terms of two separagmsysin
such an approach, some desires that are not feasible maycepted at
the option generation step to the detriment of other justifind feasible
desires, or may prevent some justified and feasible deswes lfieing ac-
cepted. Let us consider again the previous example, andnasthat the
desire—d; is more important than the two others. However, this desire i
not feasible since there is no plan for carrying it out while agent has
two plans:m; for achieving desirel; andn, for achievingd,. According

to the system proposed in [9], the arguménattacks bothy; andds. The
grounded semantics is empty in this case as well. Let us nosider pre-
ferred semantics. It can be checked that this system hagjaeupreferred
extension which is the séb,}. The system concludes that the set of inten-
tions is empty. This result is not desirable since the desihepreventsd;
andd, from being accepted while it is itself not feasible.

This paper proposes the first argumentation system thatw@s fhe possible

sets of intentions of an agent in one step. In other wordsp#per presents a
system that combines option generation and checking tretbieey of options.
There are two motivations for this. The first one is optim@matf resources: a
unified process could be more effective, because it doesastewesources in the
attempt to select desires among a large pool of desireshway not all turn out
to be feasible after all. The second one is completenessifiaduiprocess would
prevent selecting an unfeasible desire at the expense a@isibfe one, in which
case the agent may end up not realizing that there is after &ty to achieve
at least some of its desires. Moreover, the use of argumemnttteory presents
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another advantage: the choice of each set of intentions eaxgained by the
corresponding arguments.

The proposed system is grounded on a recent workomstrainedargumen-
tation systems [11]. These systems extend the general irarkgroposed by
Dung [12] by adding a constraint on arguments. This cortraill serve to fil-
ter the results returned by Dung’s acceptability semantitdeed, among all the
extensions, only the ones that satisfy the constraint got ke

Our system takes as input i) three categories of argumepistemicargu-
ments that support beliefexplanatoryarguments that show that a desire holds in
the current state of the world, amstrumentalarguments that show that a desire
is feasible, ii) different conflicts among those argumeantsl iii) a particular con-
straint on arguments that captures the idea that for a dedire pursued it should
be both feasible and justified. This is translated by thetfztin a given exten-
sion each instrumental argument for a desire should be guamoled by at least
one explanatory argument in favor of that desire and eaclaeamry argument
for a desire should be accompanied by at least one instrarengument for that
desire. Two outputs are returned by the system: The firstoaset of extensions
of arguments. Due to the constraint, only the “interestiogés {.e. the ones that
support desires that are both justified and feasible) are Kepe second output
is different sets of intentions. The agent should selectafribem. In [4], it has
been argued that this is a pure decision making problem, eretal criteria have
been proposed for rank-ordering sets of intentions. Thpudwdf our system can
then be an input to those criteria. In this paper, we do nosicien this step. The
properties of this system are deeply investigated. In @agr, we show that the
results of such a system are safe, and satisfy the ratiprmdgtulates identified
in [13], namely consistency and completeness.

The paper is organized as follows: Section 2 recalls thebadian argumen-
tation system. Section 3 introduces an example of praateaoning. Section 4
presents the language used for representing the main sgbetfiefs, desires and
actions). Section 5 studies the different types of argumamnlved in a prac-
tical reasoning problem, and Section 6 investigates thdéictsnthat may exist
between them. Section 7 presents the constrained argumenggstem for PR.
The properties of the system are studied in Section 8. Seéticompares our
approach with existing systems of practical reasoningthlproofs are given in
an appendix at the end of the document.



2. Constrained argumentation systems: fundamentals

Argumentation is an established approach for reasonirgimébnsistent knowl-
edge (like clinical knowledge [14]), based on the constamcand the comparison
of arguments.

An argumentation formalism is built around an underlyingi¢éal language
and an associated notion of logical consequence, definengdtion of argument.
Argument construction is a monotonic process: new knowdezhnnot rule out
an argument but only gives rise to new arguments which magrant with the
first argument. Since knowledge bases may give rise to inst@ms conclusions,
the arguments may be conflicting too. Consequently, it isoirigmt to determine
among all the available arguments the ones that are ultipt@eceptable”.

In [12], an abstract argumentation system is defined as/stlo

Definition 1. (Basic argumentation system [12])An argumentation systerm a
pair AS = (A, R) with A is a set of arguments, ar& is an attack relation
(R C Ax A). Fora, 8 € A, writing oR 3 means that the argumeatattacks the
arguments.

In a recent study [15], this system was extended in such a wagke into
account attacks on attacks. However, for the purpose of aperp we focus on
Dung’s version of argumentation systems.

It is also worth noticing that in the previous definition, their the origin nor
the structure of arguments are specified. Indeed, the maoope of Dung in [12]
was to propose semantics for evaluating arguments whdtesiestructure is. The
main semantics are based on two requiremesusflict-freenesanddefence

Definition 2. (Conflict-free, Defence [12])LetAS = (A, R) and& C A.
« £ is conflict-freeiff A o, B € £s.t.aR B.
« £ defendsan argumentviff V 3 € A, if B R o, thend d € £s.t.0 R 5.

Different semantics were proposed in [12] and compared @&). [IFor the
purpose of our paper, we only need to recall two of them: stabld preferred
semantics since they are the ones that are more suitablesfctiqal reasoning as
already explained in the introduction.

Definition 3. (Acceptability semantics [12])LetAS = (A, R) and& C A.
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» £ is anadmissibleset iff it is conflict-free and defends every elemerdt.in

= £ is apreferred extensioirff it is a maximal (w.r.t. set-inclusion) admissible
set.

= £ is astable extensiofff it is a preferred extension that attacks all argu-
ments in4\E.

Note that every stable extension is also a preferred on¢hbuonverse is not
always true.

Example 1. LetAS; be an argumentation system such that {«a, 8,71, 72,0}
andR = {(9,72), (71,8), (72, 5), (B,a)}. The systemh\S, is depicted in the
following figure:

ORORORO,

It can be checked that this argumentation system has sixsathte sets&; = &,
52 = {(5}, 53 = {’}/1}, 84 = {5, ’}/1}, 55 = {C(,’)/l} and86 = {5, ’}/1,&}. Among
the six sets, only; is a preferred extension. In this exampdg,is also a stable
extension.

The basic argumentation system is extended in [11] by addiognstraint
on arguments. This constraint should be satisfied by Dunggémneions (under a
given semantics). In Example 1, one may imagine a consirduith requires that
the two argumenta: and~, belong to the same stable extension. It is clear that
this constraint can be satisfied neither by the stable exte&s, nor by any other
admissible set of the systeA§;.

The constraint is a formula of a propositional langudgevhose alphabet.é.
propositional variables) is exactly the sébf arguments. Thus, each argument in
A is a literal of £ 4. Note thatZ 4 contains all the formulas that can be built using
the usual logical operatorg [V, —, —, «») and the constant symbol$ @nd_L).

Definition 4. (Constraint, Completion [11]) Let A be a set of arguments and
L 4 its corresponding propositional language.



« C'Is aconstrainon arguments ofd iff C'is a formula ofL 4.
- Thecompletionof asetf C Ais€ = {a |a € EYU{-a|ac A\ E}.
- Asete C A satisfiex iff € is a model of” (€ + O).

The completion of a sef of arguments is a set in which each argumentlof
appears either as a positive literal if the argument beldagSor as a negative
one otherwise. Thus| = | Al.

Example 1 (Continued): In the argumentation systewS;, one may want to
exclude the extensions that contain both argumerasd . This requirement is
translated into the constraint’’ = § — —a. In this case, the completion of the
admissible extensiofs = {0, 71, o} is the set€s = {9, 71, @, =3, 7. }. Note that
&g does not satisfg’ since the sefﬁ does not infeC.

A constrained argumentation system is defined as follows:

Definition 5. (Constrained argumentation system [11]A constrained argumen-
tation systemis a triple CAS = (A, R,C) where A is a set of arguments,
R C A x Ais an attack relation and” is a constraint on arguments of the
setA.

Note that, each argument may be a constraint. However, dreored argu-
mentation system has exactly one constraint. Thus, if thnstraint is reduced
to one argument, this means that all extensions of the systeud contain this
argument.

Let us now recall how Dung’s extensions are extended to tee c& con-
strained argumentation systems. As said before, the ideadempute Dung’s
extensions, and to keep among those extensions only thetatesatisfy the con-
straintC'.

Definition 6. (C-admissible set [11])Let CAS = (A, R,C) and€ C A. The
set€ is C-admissiblan CAS iff

1. £ is admissible,
2. & satisfies the constrairdt?.

°Note that the constraint on arguments corresponds to aradmtsin extensions.
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In [12], it has been shown that the empty set is always adbiesdiowever, it
is not alwaysC-admissible since the set does not always implg'.

Definition 7. (C-preferred extension,C-stable extension [11]L.etCAS = (A,
R,C)and€& C A.

» £ is a C-preferred extensiowf CAS iff £ is maximal for set-inclusion
among the”-admissible sets.

» £ is aC-stable extensionf CAS iff £ is a C-preferred extension that at-
tacks all arguments i1\ €.

Example 1 (Continued): The constrained version S, isCAS; = (4, R, —
). The se€; = {0,71, a} is not aC-admissible extension since its completion
& = {8, 71, @, =3, =2} does not infer the formula — —«. However, the ad-
missible extension§, = {J,v:} and& = {a, 7} are bothC-admissible and
C-preferred extensions. Note th@AS; has noC'-stable extensions.

The following result summarizes the links between the esiters of aCAS =
(A, R, C) and those of its basic versi#t = (A4, R).

Proposition 1. [11]Let CAS = (A, R,C) andAS = (A, R) be its basic ver-
sion.

= For eachC-preferred extensioéi of CAS, there exists a preferred extension
&' of AS such thatt C &'.

= Every(C'-stable extension @ZAS is a stable (hence preferred) extension of
AS. The converse does not hold.

Now that the acceptability semantics are defined, we areyreedkfine the status
of any argument.

Definition 8. (Argument status)LetCAS = (A, R,C), &, ..., &, itsC-extensions
under a given semantics, ande A.

1. « is sceptically accepte(br accepted for short) iftv € &;, VE; with ¢ =
1,...,x.
2. ais rejectedff A&, such thaty € &;.



3. a is credulously accepteftbr undecided) iffa is neither accepted nor re-
jected. This means thatis in some extensions and not in others.

One can easily check that if an argument is rejected in a laagiamentation
systemAS under a given semantics, then it will also be rejected in dreespond-
ing CAS under the same semantics.

Proposition 2. LetCAS = (A, R, C) andAS = (A, R) be its basic version. For
anya € A, if ais rejected inAS under semantics (wherez is either preferred
or stable), then is also rejected irCAS under the same semantics

Example 1 (Continued): Under preferred semantics, the argumefits; and«
are accepted while, and 5 are rejected iPAS;. Under the same semanties,is
accepted;y, and 5 are rejected;) and« are undecided ifCAS;. Finally, all the
arguments are rejected under stable semanti€aA%$, since there is no C-stable
extension irCAS;.

3. Motivating example

Let us consider the case of Paula, a PhD student, who haslésinesand
would like to know whether she can reach them and with whiemgl The four
desires are:

= To be in central Africa for holidaysj¢a)
« To have her publication finisheg%)
= To be a lectureriéc)

= To have visited her friend Carlad) if Carla is at home

What is worth noticing is that the three first desires are ndd®nal, whereas
the fourth one depends on whether the friend is at home or\hoteover, as ar-
gued in [17] a desire is atate of the worldhat an agent wants to reach in the
future.

In addition to desires, Paula has beliefs on the way of mofrimg a state of
the world to another one, namely:



« In order to have the paper finished, Paula should waik (

= In order to be a lecturer, Paula should defend her thégjgp(ovided that
her thesis is finishedf{)

= In order to visit her friend, Paula can go by car)if it is in good state §s)

= In order to have ticketst), Paula can either go to an agenay) or ask a
friend who may bring thema(fr);

« In order to be vaccinatedc), Paula can go either to a hospitabp) or to
a doctor (r).

Paula has also some information about either the curretet stdéhe world:

Actually, Paula’s car is in good states

Carla is not at homeHch)

= Paula’s thesis is not finisheé ()

= Paula is not vaccinated-{ac) and does not have her ticketst]
« Paula’s paper is not yet finished fp)

or the consequences of some actions or some states of the @xat her
desires:

= If Paula passes to an agency or goes to a doctor, then shet demstoher
paper

« |f Paula has tickets and is vaccinated, then she can be inateftica for
holidays.

Note that the term “belief” is a generic word representinipiimations be-
lieved by the agent about:

= the current state of the world,
« the way of moving from a state of the world to another one,

= the consequences of some actions or some states of the werlther de-
sire.
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The aim of this example is not to present a realistic situatbwt to illustrate
our ideas. Thus, it may be possible that more informationbsaadded either as
integrity constraints or even as conditional desires.

From the above information, it is clear that the desire ofob&og a lecturer
is not yet feasible. The desire of visiting Carla is feas#tee there is a plan for
reaching it; however, according to the current state of thddythis desire is not
justified. Indeed, for Paula to consider this desire, shelshoe in a state where
Carla is at home and this is not the case. Regarding the twalésiresice. jca
and fp) things are different. Both desires are justified and fdasiHowever, in
some cases, it is not possible to reach both desires as the# gonflict with each
other. Of course, it would be ideal if all the desires can beemtentions. As our
example illustrates, this may not always be the case. Iptper we will answer
the following questions: which desires will become iientionsof the agent and
with which plans?

Next sections will give the formal material necessary faraghng this exam-
ple of PR and computing the intentions of Paula.

4. Language of representation

The example discussed in the previous section shows theg thotions are
involved in a PR problemdesires actionsandbeliefs For encoding them, we
will use a setX of propositional variables (atoms). From this set, two stdbs
are distinguished,. and X,,,. with X,. U X,,,. = X andX,. N X,,,. = @. The
subsett,. will be used for encoding actions whik,,. will be used for encoding
non-actionsi(e. beliefs and desires).

Let £,.. be apropositional languagéuilt from X,,,. using the classical log-
ical operators\, v, —, -, <+ and the constant symbols, 1. Note that’Z,,. is
completely different fronC 4, defined in Section® L,,,. will be used for encod-
ing both desires and beliefs. As already said, a desire ista sf the world that
an agent wants to reach. Thus, the main difference betweehed &nd a desire

3Their meaning and their use are different;,,. will be used for representing beliefs and
desires andor building arguments and interactions — see Sections 5 and 6 £ganalill be used
for representing a constraint between arguments andatistrithe set of the extensions — see
Section 7 —.
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is that the former is already true (or false) while the lattey only be true in the
future (after the execution of an action). In [17], it hasheegued that a desire
can be encoded as a preference between two states of the thertshe in which
the desire is satisfied and the one in which it is not satisfed.instance, Paula
prefers the state in which her publication is finished to thathich it is not yet
finished. In our setting, desires are distinguished fronebeby storing desires
in a distinct setD C L,,.. Moreover, desires arierals and are denoted by
di,ds, ... * Ontheir side, beliefs are propositional formulas of the lghanguage
Lae-

Now regarding its source, a desire may be either unconaitimnconditional.
An unconditional desire does not depend on anything, it sessed by an agent
without justification. Some desires may depend on beliefss i, for instance,
the case with the fourth desire of Paula. Indeed, visitingeGepends on whether
Carla is at home or not. Similarly, a desire may depend onrathsires. For
example, if there is a conference in India, and | have therelésiattend, then
| desire also to attend the tutorials. In this example, tr&rdeof attending the
tutorials depends on my belief about the existence of a cenée in India, and
on my desire to attend that conference. These three sourdesices are captured
by the notion odesire rules

Definition 9. (Desire Rules)A desire ruldés an expression of the forgh, d;, .. .,
dym—1) < d, such thatb is a propositional formula of,,,. and eachd; is an
element of the sé?.

(b,dy,...,d,_1) is called thebody of the rule andi,, its consequentNote that
the body may be empty; in this case, the degjrds saidunconditionaland the
desire rule is denoted bYy — d,,,.

The meaning of a ruléb, d;, ..., d,,—1) — d,, is “if the agentbelieves and
desiresdy, . . ., d,,—1, then she willdesired,,, as well”. Note that the same desire
d; may appear in the consequent of several rules. This mearnthésame desire
may depend on different beliefs or desires.

Example 2. (Paula’s example) In the motivating exampleY,,.. = {jca, fp, lec,
ve, gs, ch, ft,vac, t}, and the set of desiresT® = {jca, —jca, fp, = fp, lec, —lec,
ve, —we}. The desire rules of Paula akg <— jca, () — fp, () < lec, (ch) — ve.

“Note that this notation will not be respected in the motivgéxample. We prefer to use more
explicit strings of lowercase letters.

12



An agent is also equipped with a set of actions she can perfbhese actions
are provided by a correct and sound planning system (foamest[18, 19]) (not
discussed in this paper). Note that the actions may not saxdgssucceed since
the environment is changing. In what follows, an action isndel as a triple: i) a
setS of pre-conditions that should be satisfied before executirgaction, ii) a
setT of post-conditions that hold after executing the actioml @hthe nameu of
the action. Thus, an action allows to move from one stateefwbrld to another.
An action may either be atomic or a conjunction of atomicaxi Thus, each
action is considered asgan for reaching a state of the woPldLet £,. be the
propositional language built from,. using only the classical operator Thus,
formulas ofZ,. are either atoms or conjunctions of atoms.

Definition 10. (Action) Anaction(or a plan) is a triple (S, T, a) such that:

« S andT are twoconsistensets of propositional formulas df,,,,.

»a € Ly

The set of pre-conditions may be empty£ @), which means that the action
can be carried out. It is also worth mentioning that therstexa link betweery
andT’. This link is not made explicit in this paper since we are matly inter-
ested by the exact definition of actions. We assume that tieegi@en. Note also
that a desirel may appear either in the pre-conditions or in the post-damrd of
an action. Whem is in the post-conditions of an action, this means that thiemc
leads to the satisfaction of the desire. Wlida in the pre-condition of an action,
this means that in order to perform the action, we should laesitate of the world
in whichd is already reached. Let us illustrate this notion of actinrnre running
example.

Example 2 (Continued): In this exampleX,. = {dr, hop,ag,afr, gc,w,dt}
and the actions that are available for Paula are the follgwin

5The setS only describes the elements of the world which are manddtorne execution of
the action.

SFor simplicity reasons, actions are encoded in a restrjgtedositional language.

’In the sense, that the formulasihare obtained using the formulass$h
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{=fp}, {fp} w) ({—t} {t, ~fp}, ag)
({ft}, {lec},dt) ({—wac}, {vac}, hop)
({—wac,—t}, {jca,vac,t,~fp},dr A ag) ({—wvac}, {vac, - fp},dr)
({—wac,—t}, {jca,vac,t,~fp},dr A afr) ({gs}, {vc}, ge)

({-wac, =t}, {jca, vac,t, = fp}, hop Aag) — ({—t},{t},afr)

({—wac, —t}, {jca,vac,t}, hop A\ afr)

Note that the information “If Paula passes to an agengydqr goes to a doctor
(dr), then she cannot finish her paper” is directly captured kypibst-conditions
of the two actionsig anddr. Similarly, the information “If Paula has tickets) (
and is vaccinatedv.c), then she can be in central africa for holidays” is indiyecl
captured by the post-conditions of the compound actiansA afr, hop A ag,
dr A afr,anddr A ag.

In the remaining of the paper, we assume that an agent isgepijwith the
following three finite bases.
Definition 11. (Agent’'s basesAn agent is equipped with thréimite bases

1. K, C L,.. containing itsbasic beliefabout the current state of the world,
2. K4 containing its desire rules,
3. K, containing its actions.

Example 2 (Continued): Paula is equipped with the following bases:
= Ky ={gs, —ch, ~ft, ~wac, —t, - fp},
= Ka={() = jea, () = [p,{) < lec,(ch) = vc},

» K=
{ofptAfetw), ({ft} {lect, di),
({gs}. {vct,ge), ({~t},{t, ~fp}, ag),
({-wac, =t} {jca, vac, t, = fp} hop Nag), ({~t},{t}, afr),
({—wvac, —t}, {jca,vac, t,~fp},dr A ag), ({—wvac},{vac,—fp},dr),
({—wac, —t}, {jca,vac, t,~fp},dr Nafr), ({—wvac},{vac},hop),
({—wac, —t}, {jca,vac,t}, hop A afr)}.

FromC,, the set opotential desire®f an agent can be identified as follows:
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Definition 12. (Potential Desires)Let K, (resp. ;) be the belief base (resp.
the set of desire rules) of an agent. The sepoftential desiresf this agent is
PD = {d,|3 (b,dy,...,dp-1) — dy € KgandC, ¥ d, }.

These are “potential” desires because, when the body otithesrnot empty, the
agent does not know yet whether the antecedemtshiodies) of the correspond-
ing rules are true or not. Moreover, throughout the paperassime that each
potential desire of an agent is not yet reached in the custate of the world.

This assumption is natural as a desire that is satisfied isngel a desire.

Example 3. Assume that Paula wants to be rich and, in the current statbef
world, Peter is rich. In this case, the desire “to be rich” doeot belong to Paula’s
set of potential desires.

Example 2 (Continued): The set of potential desires of Paulai® = {jca,
fp, lec, ve}.

The following schema gives a synthesis of the presentedmotand their
representation (from vocabulary to bases).

. X .
actlcﬁs/ \no\n—actlons
X nac

ac
$ bellest %fes

nae _ DIC Luae)
¢ / } ¢
\ ¢

In the following sections, we propose different kinds oflargents (one for
each notion introduced here: belief, desire and actionj@ad we study the con-
flicts between these arguments.

5. Typology of arguments

The aim of this section is to present the different kinds glianents involved
in a practical reasoning problem. Three categories of aeguisrare distinguished.
The first category justifies/attacks beliefs of the knowkelgseC,, while the two
others justify the adoption of the potential desires of ##®. Throughout the
paper, arguments will be denoted with lowercase Greekrette
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5.1. Justifying beliefs

The first category of arguments is that studied in argumiemiéiterature, es-
pecially for handling inconsistency in knowledge baseslekd, arguments are
built from a knowledge base in order to support or to attadkepital conclusions
or inferences. These arguments are cadipstemidn [20]. In our application,
such arguments are built from the baSge In what follows, we will use the defi-
nition proposed in [21].

Definition 13. (Epistemic Argument) Let IC, be a beliefs base. Aepistemic
argumenty is a paira = (H, h) such that:

1. HC Kyandh € L.,

2. H is consistent,

3. H+ hand

4. H is minimal (for setC) among the sets satisfying conditions 1, 2, 3.

Thesupportof the argument is given by the functi8opPP(«) = H, whereas
its conclusiornis returned byCONC(«) = h.

Definition 14. (Set of epistemic Arguments)A4, stands for the set of all epis-
temic arguments that can be built from the b&se

Remark: Due to the assumption that each potential desire is not yet
true in the current state of the world, it is clear that theatesion/

of an epistemic argument cannot be a potential deseeah element

of PD). Thus,fa € A, such that ©Nc(a) € PD.

Example 2 (Continued): Recall that the knowledge base of PaulaKig =

{gs, ~ch, —ft,—wac, —t, = fp}. The table below contains some epistemic argu-
ments of the se#l,. Other arguments, not presented here, can also be built from
K.

= ({gs}, 95) as = ({~t}, 1)

— ({=ch}, =ch) ag = ({~fp}, ~fp)

= ({~ft}, —ft) ay = ({—wac A =t}, —vac A —t)
= ({—wac}, —wac) ag = ({gs, ~ch}, ch — gs)
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5.2. Justifying desires

A desire may be pursued by an agent only if this desipesfiedandfeasible
Thus, two kinds ofeasonsare needed for adopting a desire:

» the conditions underlying the desire hid the current state of world; such
reasons will be calledxplanatory arguments

= and there is a plan (an action) for reaching the desire; seedons will be
calledinstrumental arguments

The definition of the first kind of arguments involves two msthe belief
basek’, and the base of desire rulég;. In what follows, we will use a tree-
style definition of arguments [22]. This choice is not adyrbut imposed by the
logical language at hand. In particular, desire rules atenmagerial implications,
thus it is important to show how such rules are chained.

Before presenting that definition, let us first introduce sameful functions
that will be used throughout the paper:

Notations: The functions ELIEFS(J), DESIRES ), CONC(J) and
SuB(d) return respectively, for a given explanatory argumgnthe
beliefs used i, the desires supported by the conclusion and the
set of sub-arguments of the argumeént

Definition 15. (Explanatory Argument) Let IC;,, IC; be two bases. Aaxplana-
tory argument is a paiv = (S, d) whered € PD and S is defined recursively as
follows:

« If 3() — d € KythenS'is () and

- BELIEFS() = 2,
. DESIREYY) = {d},
. CONC(6) = d,
- SUB(0) = {0}.
= If « is an epistemic argument, anl, . . . | 9,, are explanatory arguments,

and3 (CoNc(a), CONC(dy), ..., CONC(d,,)) < d € K4 thenS' is («, 1,
., 0m) and

8In the sense that the conditions are inferred from the baste agent.
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.« BELIEFS(§) = SUPP(a) U BELIEFS(d1) U ... U BELIEFS(6,y),
. DESIRES§) = DESIREYd;) U ... U DESIRES(6,,) U {d},
. CONC(6) =d,
. SUB(0) = {a} USUB(d1) U...USUB(d,,) U{0}.
Definition 16. (Set of explanatory Arguments).4, stands for the set of all ex-

planatory arguments that can be built fronkC, and/C,; such that the SEDESIRES6)
is consisterft

Example 2 (Continued): Recall that, = {gs, =ch, ~ft, ~vac, —t, - fp} and
Kq=1() < jea,() = fp,() — lec,{ch) — wvc}. The setd; = {d1,02,03}
where:

01 = () gea) 02 = (0, fp) 93 = (0, lec)

Note that there is no explanatory argument in favor of desiraince the
pre-condition ¢h) of the corresponding desire rule in not satisfied. Worse yet
—ch € .

The same desire may be supported by several explanatomnangs since a
desire may be the consequent of different desire rules. @hBEsIRES§) of an
explanatory argumeimtcontains the desiré (the conclusion of) and, in the case
of a conditional desiregll the desiresused for justifyingd. The following trivial
proposition follows from the previous definitions.

Proposition 3. Letd € A,.
» The seDESIRESOf J is a subset oPD (DESIRESd) C PD).

= The seBELIEFS of § is a subset of the knowledge basg(BELIEFS(d) C
ICh).

°The fact that the desires of a desire rule are not conflicngoit sufficient to ensure the
consistency of the set B5IRES0) of an explanatory argument Consider, for instance, the
following example:Cy = {{) < d1; () — —dy; (d1) < da; (=d1) — d3; (da,d3) < da}. Itis
easy to check that only one explanatory argumé&ntan be built fromiC, for the desirei,, and
that DESIRES)) contains bothl; and—d;. Such arguments are forbidden in our system.
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The last category of arguments claims that “a desire may bsupd since it has a
plan for achieving it”. The definition of this kind of arguntennvolves the belief
basel’;, the base of actions/plaig,, and the sePD.

Definition 17. (Instrumental Argument) Let K, K., PD be three bases, and
d € PD. Aninstrumentabrgument is a paitr = ((S, T, =), d) where:

« (ST, z) € K,
ndeT,
» S C K.

The functionCoNc will return for an argumentr the desired. Similarly, the
functionsPLAN,, PREC and POoSTC will return respectively the actiofS, T', d) of
the argument, the pre-conditiorssof the action, its post-conditiors.

Definition 18. (Set of instrumental Arguments).A, stands for the set of all in-
strumental arguments that can be built fr@fg,, IC,, PD).

The second condition of the above definition ensures thatékee is reached
when the action is executed. The third condition ensurdghigre-conditions of
the action hold in the current state of the world. In otherdgothe action can be
executed. Note that it may be the case that the kgs®ntains actions whose pre-
conditions are not true. Such actions cannot be executethairccorresponding
instrumental arguments do not exist.

Example 2 (Continued): Let us recall here the three bases of Paula.
= Ky ={gs, —ch, ~ft, ~wac, —t, = fp},
» Ka={() = jea, ) = fp, () = lec, {ch) — vc},

» K=
{ofptASfedw), ({ft} {lect, di),
({gs}t, {vet ge), ({—t} {t, ~fp}, ag),
({-wac, =t} {jca, vac, t, = fp} hop Nag), ({~t},{t}, afr),
({—wvac, —t}, {jca,vac, t,~fp},dr A ag), ({—wvac},{vac,—fp},dr),
({—wac, —t}, {jca,vac, t,~fp},dr Nafr), ({—wvac},{vac},hop),
({—wac, —t}, {jca,vac,t}, hop A afr)}.
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The only action that allows Paula to be a lecturer consiseténding her
thesis (.e. ({ft},{lec},dt)). However, the pre-condition of this actiorfitj is
not satisfied in the current state of the world, namely thsithie not finished yet
(—ft € K). The other desires are all feasible. Their instrument@ments are
gathered in the sed,, = {m, ma, 73, ™4, 75, 76 } Where:

71 : ({({—wac, —t}, {jca,vac,t, = fp}, dr A ag), jca)
o ({{—wac, —t}, {jca,vac, t,~fp},dr A af), jca)
73 ({{—wac, —t}, {jca,vac,t,~fp}, hop A ag), jea)

s : (({~fp}, {fp},w), fp)

(€
(€
(€
Ty gé{—'vac, —t}, {jea,vac,t}, hop A\ af), jca)
76 : (({gs}, {ve}, ge), ve)

Remark: In what follows, A = A4, U A; U A,. Note thatA is finite
since the three initial basek(, IC; andC,) are finite.

5.3. Summary

The following table summarizes the different argumentoived in a PR
problem.

| Type of argument Type of its conclusior] Set| Bases involved

Epistemic belief Ay Ky
Explanatory desire Ay Ky, Ky
Instrumental desire A, | Ky, K., PD

The next section presents the different conflicts betwddhede arguments.

6. Interactions between arguments

Arguments built from a knowledge base cannot generally bsidered sep-
arately in an inference problem. Indeed, an argument datesi a reason for
believing, or adopting a desire. However, it is not a proat the belief is true, or
in our case that the desire should be adopted. The reasaat igrttargument can
be attacked by other arguments. In this section, we willstigate the different
kinds of conflicts among the arguments identified in the pnesisection.
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6.1. Conflicts among epistemic arguments

An argument can be attacked by another argument for three reasons:
i) they have contradictory conclusions (this is knownrelsuttal) [23], ii) the
conclusion of an argument contradicts a premise of anotigen@ent &ssumption
attack [23], iii) the conclusion of an argument contradicts arenmeihce rule used
in order to build the other argumentr{dercutting [24].

Since the bas&, contains propositional formulas, it has been shown in [25]
that the notion of assumption attack is sufficient to captor&licts between epis-
temic arguments.

Definition 19. Let oy, as € A,. The conflict relatioriR, on A, is defined as
follows:
a1 Ry o iff 3h € SUPP(ay) such thatCoNC(a;) = —h.

Example 2 (Continued): In our running example, the bade, = {gs, —ch,
- ft, —wac, —t, - fp} is clearly consistent. Thus, epistemic arguments are not
conflicting andR, = @.

Let us now consider another knowledge base.

Example 4. Let £, = {a,-b,a — b} be a propositional knowledge base. The
argument{a, —b}, aA—b) attacks in the sense &, the argumen{{a, a — b}, b).

Note that the assumption attack is a binary relation thatot symmetric
Moreover, it can be shown that there are no self-attackiggraents.

Proposition 4. Let A, be the set of all epistemic arguments that can be built from
a beliefs baséC,. It holds thatfa € A, such thainx R, a.

In [26], the argumentation systefw,, R;) has been applied for handling in-
consistency in a knowledge base, €3y In this particular case, a full correspon-
dence has been established between the stable extensithessyfstem and the
maximal consistent subsets of the b&ge Before presenting formally the result,
let us introduce two useful functions:

Notations:

= Let€ C A, BASE(E) = H; such that H;, h;) € £.
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» LetT C Ky, ARG(T) = {(H;, h;) is an epistemic argument; C T'}.
Proposition 5. [26]Let& be a stable extension G, Ry).

= BASE(E) is a maximal (for set inclusion) consistent subsetpf

= ARG(BASE(E)) = €.

Proposition 6. [26]Let T" be a maximal (for set inclusion) consistent subset of
K-

= ARG(T) is a stable extension @f4,, R;).
» BASE(ARG(T))=T.

A direct consequence of the above result is that if the gsis not reduced
to L, then the systemi4,, R;,) has at least one non-empty stable extension.

Proposition 7. If IC, # @ andC, # { L}, thenthe argumentation systém,, R,)
has non-empty stable extensions.

In addition, it has been shown in [27] that each preferredresibn of( A, R;,)
returns a consistent subset/of.

Proposition 8. [27]Let& be preferred extension fd,, R;). It holds thatBASE(E)
is a consistent subset &f,.

6.2. Conflicts among explanatory arguments

Two explanatory arguments may also be conflicting, in paldic when they
are based on contradictory desires. This kind of conflicagared by the follow-
ing relation:

Definition 20. Let §;, 62 € A;. The conflict relationfR,; on A, is defined as
follows:
01 Ry 69 iff 3d, € DESIRES6;), dy € DESIRES(d2) such thatd; = —ds.

Proposition 9. The relationk; is symmetric and irreflexive.
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Example 2 (Continued): The three explanatory argumeits= ((), jca), 62 =
((), fp) andds = ((), lec) are not conflicting. Thusk, = @.

Let us consider another example in which two explanatoryragnts are con-
flicting.

Example 5. Let ; = {() — di,() < —dy, (d1) — dy}. The following three
explanatory arguments are built from this base:

= 01 = ((),d)

02 = ((), ~dy)

= 03 = ((01), da)

Itis clear thatdoR ;03 anddiz R 402 SINCEDESIRES d2) = {—d; } andDESIRESd3) =
{dy, ds}. Similarly,0; R 402 anddsR 40, SInCeDESIRESd1) = {d1}

It can also be checked that any two explanatory argumentadpaonflicting
desires are conflicting in the sense of the relafign Formally:

Proposition 10. Letdy, dy € PD. If d; = —ds, thenVdy, d, € A, such that:

1. 37 € SuB(d;) with CONC(6]) = d;, and
2. 36, € SUB(d9) with CONC(d)) = do,

then51 Ra 52.

Note that, from the definition of an explanatory argumgfie set [ESIRESJ)
cannot be inconsistent. However, the seiLEFS(5) may be inconsistent. The
union of the beliefs of two explanatory arguments may alsmbensistent. Later
in the paper we will show that it is unnecessary to consideserkinds of conflict,
since they are captured by conflicts between explanatorgpistemic arguments
(see Propositions 13 and 14).
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6.3. Conflicts among instrumental arguments
Two actions (or plans) may be conflicting for three main reaso

1. incompatibility of their pre-conditions (indeed, botlaps cannot be exe-
cuted at the same time).

2. incompatibility of their post-conditions (the executiof both plans will
lead to contradictory states of the world). This capturse #ie case of two
plans leading to contradictory desires.

3. incompatibility between the post-conditions of a plad #re pre-conditions
of the other (this means that the execution of a plan will pré¥he execu-
tion of the second plan in the future).

The above reasons are captured in the following definitioattzfick among
instrumental arguments.

Definition 21. Letm, m € A, andm, # m,. The conflict relatiori?, on A, is
defined as followsir; R, m iff

= PREC(m;) A PREC(m3) = L, oOr
= POSTC(m;) A POSTC(ms) = L, Or
» POSTC(m;) A PREC(72) = L or PREC(m;) A POSTC(m3) = L

It is clear from the above definition th&, is symmetric and irreflexivé

Proposition 11. The relationk,, is symmetric and irreflexive.

Example 2 (Continued): Some instrumental arguments are conflicting. These
conflicts are summarized in the figure below.

10The fact that the post-conditions of a plan are inconsistéhtits pre-conditions is not consid-
ered as a conflict. In this case, after the execution of the, pla must have an update mechanism
which will modify the beliefs. It is also for this reason thiaere is no conflict between epistemic
arguments and instrumental arguments on the post-consglitiba plan (see Definition 22).
Note also that the order in which plans are executed is natidered in this paper. This order
may be very important, for instance when we must manage resepgonsumed by plans. So, this
will be the subject of future work.
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From the above definition, it can be shown that if two planszeaonflicting
desires, then their corresponding instrumental argunaetsonflicting too.

Proposition 12. Letd,, dy € PD. If d; = —d,, thenVry, my € A, s.t. CONC(my)
= d1 andCONC(ﬂ'Q) = dz, then7r1 Rp 9.

Assumption 1. In this section, we have considered obipary con-
flicts between plans, and consequently between their corresppndi
instrumental arguments. However, in every-day life, ong imave
for instance three plans such that any pair of them is notictinfi,
but the three together are incompatible. For simplicitpgoees, in this
paper we suppose that we do not have such conflicts.

6.4. Conflicts among mixed arguments

In the previous sections we have shown how arguments of the sategory
can interact with each other. In this section, we will shoattarguments of
different categories can also interact. Namely, epistemgaments play a key role
in defining the status of explanatory and instrumental agns An epistemic
argument can attack both types of arguments. The basicsdeanvalidate any
belief used in an explanatory argument and any belief usdaeipre-conditions
of an instrumental one. The end goal is to ensure that onlyraméed” beliefs are
used in explanatory and instrumental arguments.

It is worth mentioning that an epistemic argument cannoalidate a state
of the world that is not yet reached like for instance desaed post-conditions
of actions. Indeed, epistemic arguments support beligfshbld in the current
state of the world. Thus, if they attack a state of the worldcihs true in the
future, they will forbid desires to be reached. Let us coasitie case of Paula
who thinks that she is not rich and would like to be rich. Thiig,= {—rich}
andC; = {() — rich}. If the epistemic argument = ({—rich}, —rich) attacks
the explanatory argument= ((), rich), then this latter will never be pursued by
Paula even if we can imagine that she has a good plan for it.
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Similarly, let us assume that Paula has the following adpiam for reach-
ing her desire:({}, {rich},z). Thus, she has an instrumental argument
({({}, {rich},x),rich). If « attacksr, then the plan can never be executed. Con-
sequently, Paula will not consider her desire as an intentio

Finally, let us note that explanatory arguments and inséntal arguments are
not allowed to attack epistemic arguments. In fact, a desireot invalidate a
belief. Let us illustrate this issue by an example borrowedf[28]. An agent
thinks that it will be raining, and that when it is raining,espets wet. It is clear
that this agent does not desire to be wet when it is raininmitlvely, we should
get one extensiokrain,wet}. The idea is that if the agent believes that it is
raining, and she will get wet if it rains, then she should déedi that she will get
wet, regardless what she wants. To do otherwise would bedtdge inwishful
thinking

Definition 22 summarizes all these remarks and gives theustiva list of
allowed mixed conflicts in our settihy

Definition 22. Leta € A, 0 € Ay, m € A,. The conflict relations between
mixed arguments are defined as follows:

» a Ry 6 iff 3 € BELIEFS(§) S.t. h = ~CONC(«).
» a Ry, 7 iff 3h € PREC(7), S.t.h = ~CONC(«).
» § Rpap mANdT R, 6 iff CONC(7) = —d with d € DESIRESH)*2.

Example 2 (Continued): In this example, the relatiorB,,, R;, and’R,,, are
emptysince the beliefs bagdé, is consistent and there is no contradictory desires.
The absence of conflict betweeg = ({—fp}, —~fp) anddy, = ((), fp) illustrates
the previous remarks about the temporal difference betweecurrent state of
the world () and the future state of the worlé,].

A trivial consequence of this definition is the following kitbetweerR, and
Reg.

Consequence 1letay, as € A, andd € A, such thaty; € SUB(9). If aaRyan
thenOészd(s.

UR .y (resp.R.,.) denotes conflicts (resp. symmetric conflicts) emanatiognfarguments of
A, towards arguments od,,.
12Note that if§; R a,m2 and there exists, such that @Nc(d52) = CONC(72) thend; R 6.
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Moreover, as already said, the set of beliefs of an explapa@ument may
be inconsistent. In such a case, the explanatory argumeettenly attacked (in
the sense oR,;,;) by an epistemic argument. Formally:

Proposition 13. Letd € A,. If BELIEFS(d) F L, thenda € A, S.t.a Ryq 9.

Similarly, when the beliefs of two explanatory arguments iaconsistent, it
can be checked that there exist epistemic arguments thakatte two explana-
tory arguments.

Proposition 14. Let 4, 6, € Ay with BELIEFS(6;) I/ L and BELIEFS(d2) / L.
If BELIEFS(61) UBELIEFS(dy) - L, thenday, ay € A, S.t.ap Ryg 61 andas Ry
s.

Conflicts may also exist between an instrumental argumehaamexplanatory
one since the beliefs of the explanatory argument may beictmd with the pre-
conditions of the instrumental one. Here again, we will shibat there exist
epistemic arguments that attack the two arguments. Notertllais case, the set
of pre-conditions of the instrumental argument is not empty

Proposition 15. Leté € A; andw € A, with BELIEFS(0) I/ L. If BELIEFS(0) U
PREC(7) - L thenday, as € Ay S.t.aq Rpq 6 @anday Ry, .

Later in the paper, it will be shown that the three above psdpms are suf-
ficient for ignoring these conflicts (between two explama@mguments, and be-
tween an explanatory argument and an instrumental one).

6.5. Summary of conflict relations between arguments
The following table summarizes the possible conflicts betwarguments.

| Conflict relation| From | To | Symmetric]|
Ry epistemic arg. 4;) epistemic arg. no
Rq explanatory arg.A4,;) | explanatory arg. yes
R, instrumental arg.4,) | instrumental arg yes
R epistemic arg. explanatory arg. no
Rup epistemic arg. instrumental arg no
R pap instrumental arg. | explanatory arg. yes
explanatory arg. | instrumental arg

Now, all the mandatory pieces are ready for the definitiomaigumentation
system for practical reasoning.
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7. Argumentation system for PR

The notion of constraint forms the backbone of constraimgdiraentation
systems. In a practical reasoning context, it encodes twoitant points:

« First, it gives the link between the justification of a desirel the plan for
achieving it. The basic idea is the following: as alreadylstor a desire
to be pursued, it should be both justifiece( supported by an explanatory
argument) and feasible€. supported by an instrumental argument). Thus,
explanatory arguments that are not accompanied by instriaierguments
for their conclusions will not be considered (see Part 2 diiriteon 23).
Similarly, instrumental arguments that cannot be accornepidoy explana-
tory arguments in favor of their desires will also be disear¢see Part 1 of
Definition 23).

« Secondly, it takes into account the recursive form of thelamgitory ar-
guments. Indeed, because this particular form, each exfganargument
must be accompanied by all its subarguments (see Part 3 ofifiefi23).

So, the constraint is formalized as follows:

Definition 23. (Constraint for PR) Let A; and 4, be two sets of arguments
and £ 4,04, be the propositional language defined usidg U A, as the set of
propositional variables. Aconstraint for PRs a constraintC' on arguments of
A4 U A, such that:

C = (N (m—( \V 9;)))
Ti€Ap 5,€{6e A4/ CONC(r;)=CONC(5)}
VAN
(A (G —( \V )))
op€Aq me{reA,JCONC(5,)=CONC(n)}
VAN

(ANC A =5

oreAd BeSUB ()

with the convention(\/, ., z) = Lif X = &.

28



Example 2 (Continued): In the example on Paula, the constraihts on argu-
ments of4, U A, U A,. Itis defined as follows:

C= ( (m — &)
N(my — 67)
N(ms — 1)
Ny — 67)
N(ms — O2)
N(mg — 1))
A (07 = (m Ve Vg V my)
N(bg — T5)
A0z — 1))
A( (61 = 1)
A9y — 92)
A(d3 — 93))

Note the particular cases &f andng: for 03 (resp.ng) there is no correspond-
ing instrumental (resp. explanatory) argument.

Example 5 (Continued): In this example, there are three explanatory arguments
01 = ((),dyr), 62 = ((), ~dy) andds = ({1), ds). Suppose that there exists only one
instrumental argument = ((S, T, x), dy). The constraint is thus:
C= ( (m—93))
/\((53 — 7T)
/\( ((51 — 51)
/\((52 — (52)
/\(((53 — 51) A (53 — (53)))
Let A = {01, 09,03, 7}. The constrained argumentation system of this exam-
ple has only one C-preferred extension which is the empty set

A constrained argumentation system for PR is defined asasllo
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Definition 24. (Constrained argumentation system for PR)A constrained ar-
gumentation systerfor practical reasoning is the tripl&€ASpr = (A, R, C)
with:

] A:AbUAdUAp,
s R=Ry URGUR, U Rpqg URipp U Rpap,
= (' a constraint on arguments defined dp U A, as in Definition 23.

Remember that the aim of this paper is to compute the intesitmbe pursued
by an agenti.e. the desires that are both justified and feasible togethisriflone
of the purposes of a practical reasoning problem). Thesatioins are defined as
follows:

Definition 25. (Set of intentions)Let ICy,, Ky, K, be three bases an@ASkr be
the corresponding constrained system. Eet..., &, be theC-extensions of
CASpr under a given semantics.

A setZ C PD is aset of intention®f CASpr under the given semantics iff
there exists a’-extensiore; such that for eacld € Z, there existsr € A, N &,
such thail = CoNC(m).

Different intention sets may be returned by @ASpr. INndeed, each exten-
sion gives birth to a set of intentions, the state of the waittch justifies these
intentions and the plans which can realize them. The exat¢haean agent de-
cides to pursue is merely a decision problem as argued in T#js choice is
beyond the scope of this paper. Recall that the aim of thisipiamnly to identify
the different possibilities for an agent.

Example 2 (Continued): The constrained argumentation system that will help
Paula to define her intentions is thO&Spr = (A, U A; U A, R, C) whereC
is the constraint defined above.

The systemASpr has two stable and preferred extensidns

BRecall thatRy, R4, Red, Rep, andR,q, are all empty.

Note that the notion of defence has two different semanti®R context. When we consider
only epistemic or explanatory arguments, the defence sporeds exactly to the notion defined
in Dung’s argumentation systems and in its constrainednsida: an attacked argument must
be “reinstated” by a defender. Things are different withtrinsental arguments because of the
symmetry of the conflict relation. In this case, it would bé#isient to take into account the notion
of conflict-free in order to identify the plans which belomgan admissible set.
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. 51 = Ab U {6175275377T177T277T377T477T6} and
" 52 = Ab U {5175275377T477T577T6}

Note that the above extensions contain the explanatoryragts; in favor
of the desirelec even if this desire is not feasible. Similarly, they conttie
instrumental argument; while the desirevc is not justified. If now, we apply the
systemCASeg, then we will get twoC'-preferred extensions (there is Gbstable
extensions in this example):

u 5{ :Ab U {51,77'1,71'2,71'3,77'4} and
w &= Ay U {01, 0, Ty, 5}

It is worth mentioning that thé'-preferred extensions contain only useful in-
formation. Thus, the use of the constraininakes it possible to remove uninter-
esting information from the extensions (likgandg).

Now that theC-extensions are defined, we are able to define Paula’s sets of
intentions. She has two sets of intentions under the pexfesemantics:

» 7, = {jca}
. Z-2 = {jCCL, fp}

Our framework does not make choice between these two seésclidice of
the exact set is a decision problem and is beyond the scopgasopaper. For
instance, one may think that since the two desires may b&fisdtiit is natural to
assume that Paula will choose the second set. Consequsrglghould choose
the plansr, andrs;. Assume now that Paula is very cautious, and she does not
want to miss her journey to central Africa. In this case, weeasily imagine that
she chooses the sétsince she has four plans for reaching this desire, and if for
any reason one of them fails, she can still satisfy her désienother plan.

Note: In this example CASpr does not haveé'-stable extensions. This means
that at least one of the potential desires of the agent cdoelooth justified
and feasible, whereas its justification or its feasibility aot attacked in this
state of the world. Here, it is the case for the delgogto be a lecturer) and
for the desirevc (to have visited her friend Carla); the first one is justified
(argumentds) but not feasible and the second one is feasible (argument
me) but not justified. However botb; andng are not attacked iICASkg,
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so the justification otec and the feasibility ofvc are “compatible” with
the current state of the world. Stable semantics emphatizesind of
“compatibility” to the detriment of the constraint (desires must be both
justified and feasible). So, in these cases, it is naturabtsider that there
is noC'-stable extensions and the set of intentions remains empty.

With preferred semantics, things are different becausesb®f set-inclusion
maximality allows more flexibility: even if an argument istradtacked, it
can be rejected in order to satisfy the constréirdf the system.

Example 5 (Continued): Inthis example, we have shown thatdf= {4, 45, 03, 7},
then the onlyC'-preferred extension of the corresponding constrainetgsyis the
empty set. Consequently, the empty set is also the uniqus sgentions.

Let us now consider a more elaborate version of this exarmpparticular the
one discussed in [9]. Recall that this version is not handtedectly by existing
systems for PR, namely the one proposed in [9].

In the elaborate version, the agent has three potentialedesi, —d; andd,
suchthatd;) — d,. The explanatory arguments are gathered jn= {4, d,, 03 }
with CONC(d;) = dy, CONC(d2) = —dy, and GNC(d3) = dp. The relationR,
is defined as followsR ; = {(01, d2), (92, 01), (02, 03), (93, d2) }. Assume that there
are two instrumental arguments, thds = {m;, m} with ConC(7;) = d; and
CONC(my) = dy. Letus assume th&R, = @, R, = &, R,, = @ with z # v,
andR,q, = {(02,m), (71, 02)}. The constraint of the correspondi@#\Ser is:

C = ( (’7T1 —>(51)/\(7T2 —)53))
/\( ((51 — 7T1) A (52 — J_> A (53 — 7T2))
/\( ((51 — (51) A (52 — (52) N (((53 — 51) A ((53 — (53)))
It can be checked that the corresponding CAS has one C-prdfextension
E = A, U {61,03,m,m}. This agent has thus one intention set whiclf is-

{di,d>}. Remind that according to the system proposed in [9], théesxaigas no
intentions meaning that she will abandon her three desires.

8. Properties of the system

The aim of this section is to study the properties of the psegoargumenta-
tion system for PRGASpr = (A, R, C)). At some places, we will refer b&Spr
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to the corresponding basic argumentation systdniR) (i.e. the system without
the constraint).

The first results concern the extensions of the system, acamly direct
consequences of results obtained in [11]. The first projooséstablishes a link
betweenC-admissible sets an@-preferred extensions, and shows the impact of
applying the constraint on the notion of admissibility.

Proposition 16. Let CASpr = (A, R, C). Let(2 be the set of’-admissible sets
of CASpRg.

1. Let& € Q. There exists &'-preferred extensiofi’ of CASpg s.t.£ C &',
2. LetCASpr' = (A, R, (") s.t. C' |= C. LetQ) be the set of’-admissible
sets ofCASpr’. The inclusiorf)’ C Q holds.

The two following properties show that the constrained argntation system
is more general than its basic version. However, the tweesysimay coincide in
some circumstances.

Proposition 17. Let CASpr = (A, R, C). For eachC-preferred extensio# of
CASkpR, there exists a preferred extensiéhof ASpr such thatt C &'.

This proposition is illustrated in the running example. dad,&; C &, and
&y C &,

Proposition 18. LetCASpr = (A, R, C') be such that is a valid formula onA.
Then the preferred extensionsAfbpr are theC-preferred extensions @ASpr.

As already said, due to the constrafiteachC-extensiont of CASpr con-
tains, among the instrumental arguments, only the ones liichathere exists at
least one explanatory argument in the same set for theilesinas. Similarly, it
contains, among the explanatory arguments, only the omeghich we can find
at least one instrumental argument in favor of their conchs This means that
the constraint makes it possible to filter the content of ttteresions and to keep
only useful information. Formally

Consequence 2Let CASpr = (A, R,C) and & be itsC-extension under pre-
ferred or stable semantics.

«» Forall § € £n Ay, 3 € €N A, such thatCoNc(d) = CoNC().
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«» Forallme £N A, 36 € €N Ay such thatCoNc(d) = CoNC().

Due to the particular constraint used in our system, the gregitis always
C-admissible and the system has at leastOrn@eferred extension.

Proposition 19. = The empty set is &'-admissible of the practical system
CASpr.

» The practical syster@ASpr has at least on€’-preferred extension.

Recall thaTASpR = <Ab U .Ad U .Ap, Ry UR4 U Rp U Rpqg U Rbp U dep>. An
important proposition shows that the set of epistemic aryumin a given stable
extension ofASer is itself a stable extension of the systen,, R;,). Knowing
that the argumentation systed,, R, is intended to handle inconsistency in the
knowledge basdC,, the following result shows that stable extensionA&hr
are “complete” w.r.t. epistemic arguments. This means thlabexplanatory and
instrumental arguments have no impact on the status offetiad that wishful
thinking is avoided.

Proposition 20. If £ is a stable extension @&{Spg, then the sef N A4, is a stable
extension of Ay, R;).

We also show that the basic argumentation sys&Spr for PR has always
stable extensions.

Proposition 21. If K, # @ and K, # {Ll}, then the systerASpr has at least
one non-empty stable extension.

It can be shown that if an explanatory argument belongs taldesextension
of ASpR, then all its sub-arguments belong to that extension.

Proposition 22. Let& be a stable extension 8Spr. If § € €N A , thenSuB(6)
C¢.

This means that the beliefs on which this explanatory argurnsebuilt are
“warranted” and the desires on which depend its conclusiefustified?®.

Similarly, we can show that if an instrumental argument bgkto a stable
extension then all its pre-conditions are supported byekisnsion.

5Note that, in this case, Part 3 of Definition 23 is triviallytished. However, it could be not
the case under other semantics.
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Proposition 23. Let £ be a stable extension &Spr. If 7 € £ N A, then
PREC(7) C Uajegmb SUPP(a;).

In a previous section, we have shown that an explanatoryneggtimay be
based on contradictory beliefs. We have also shown that@a@rgument is at-
tacked by an epistemic argument. In what follows, we willgltoat the situation
is worse since such an argument is attacked by each stablese of the system
(Ap, Rp). That's why these arguments will be discarded.

Proposition 24. Let§ € A,. If BELIEFS(d) - L, thenVE with £ is a stable
extension of A,, R;), Ja € € such thataR,.

A direct consequence of the above result is that such exjglanargument
(with contradictory beliefs) will never belong to a stablgension of the system
ASPR.

Proposition 25. Letd € A, with BELIEFS(d) = L. Under the stable semantics,
the argumentd is rejected inASpg.

Since an explanatory argument with contradictory beligfejected imPASpg,
then it will also be rejected iIRASpR.

Proposition 26. Letd € A, with BELIEFS(d) = L. Under the stable semantics,
0 is a rejected argument iIBASpR.

Besides in Proposition 14, we have shown that when two eapbay argu-
ments are based on contradictory beliefs, then the two aggtsrare attacked by
epistemic arguments. We will show that they are even atthtiyeeach stable
extension of the systef,, Ry,).

Proposition 27. Letd;, 62 € Ay with BELIEFS(6;) I L andBELIEFS(dy) I/ L. If
BELIEFS(d;)UBELIEFS(d2) - L, thenVE with £ is a stable extension @4, Ry,),
Ja € € such thaTOéRbd51 or aRpq0s.

We go further, and we show that the two arguments cannot leptexat at the
same timej.e. they cannot belong to the same stable extension simultaheou
This guarantees that the system proposed here returnesafesi(there is no pairs
of explanatory arguments with contradictory beliefs i-@table extension).
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Proposition 28. Letd,, d, € A, with BELIEFS(d;) I/ L andBELIEFS(d,) I L.
If BELIEFS(d;) U BELIEFS(d,) L, then#€ with £ a C-stable extension of
CASpg such thaty; € £ andd, € £.

Similarly, some conflicts between explanatory and instmaearguments
were discarded. We have shown in Proposition 15 that in sutdse, the two
arguments are attacked by epistemic arguments. Here wshal that the ex-
planatory argument cannot be accepted at the same time lwatinstrumental
one. One of them will be for sure rejected in the system.

Proposition 29. Leté € A; andw € A, with BELIEFS(0) I/ L. If BELIEFS(0) U
PREC(7) - L, thenVE with £ is a stable extension @f4,, R;), Ja € £ such that
aRbdé, or O/R,bpﬂ'.

Proposition 30. Letd € A, andn € A, with BELIEFS(J) t# L. If BELIEFS(0) U
PREC(7) L then$& with £ a C-stable extension dEASpr such thaty € &
andr € &.

The next results are of great importance. They show that rihygosed argu-
mentation system for PR satisfies the “consistency” ratitynaostulate proposed
in [13]. Indeed, eacli’-stable ('-preferred) extension of our system supports a
consistent set of beliefs about the current state of thedvdvloreover, the con-
sequences of the plans of each extension are consistenartloupar, the set of
desires is consistent. Thus, eaChkstable ('-preferred) extension represents a
consistent state of the world before and after the executidhe corresponding
actions.

Notations: The following notations will be used: Lét C A.

BEL(E) = ( |J SupP(a;)U( ] BELIEFS(d;)U( | PREC(m))

a; EENAy (5‘7'650./4,1 TI'kEEf-]Ap
Des(€) = ( |J Desiregs))u( |J Conc(m))
0;€ENAg TREENAp

Theorem 1. (Consistency).et CASpr be a constrained argumentation system
for PR, and¢y, . . ., &, its C-stable extension&&;, i = 1, ..., n, it holds that:

1. The seBEL(&;) = BEL(E; N Ap).
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2. The seBEL(&;) is a maximal (for set inclusion) consistent subsetpf
3. The setJ,, c¢,4, POST () is consistent.
4. The seDES(E;) is consistent.

Consistency is also ensured with preferred semantics.

Theorem 2. (Consistency).et CASpr be a constrained argumentation system
for PR, andéy, .. ., &, its C-preferred extension&&;, i = 1,.. ., n, it holds that:

1. The seBEL(¢;) is consistent.
2. The setJ, c¢,4, POST () is consistent.
3. The seDES(&;) is consistent.

As direct consequence of the above results, a set of intentgconsistent.
Formally:

Theorem 3. Under stable and preferred semantics, each set of intestdd@ASpr
is consistent.

We have also shown that our system satisfies the rationadsyufate con-
cerning the closure of the extensions [13]. Namely, we h&wsva that the set
of arguments that can be built from the beliefs, desires,@ads involved in a
given stable extension, is that extension itself. Befovengithis result, let us first
introduce some notations:

Notations: Let £ be aC-stable extension dEASpR.

As will denote the set of all (epistemic, explanatory andrursental)
arguments that can be built fromeB(E), DES(E), the plans involved
in building arguments of and the bas&’,.

Theorem 4. (closure)LetCASpr be a constrained argumentation system for PR,
and&y, ..., &, its C-stable extensions/&;, 1 = 1, ..., n, it holds that:

= ARG(BEL(E;)) = &N A,.
- «48=5Z-.

In fact, this shows that every “good” argument is included @i+-stable exten-
sion. Thus, each desire that deserves to be pursued wiltlr@eel in an intention
set.

Note that the property of closure is not satisfied under prefesemantics as
shown in the following example:
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Example 6. ConsiderCASpg such thatR is empty and there exist two explana-
tory arguments); = ((),d;) andd, = ((d1),ds) and only one instrumental ar-
gumentr; = (({},{d1},a),d1). € = A, U {51, m} is the only one C-preferred
extension of this system.

HoweverDES(E) = {d;}. So, usindES(E), one can create the argument
(i.e. 9, € AS). In this caseAs # €.

However, it is clear that whe@ASpr is coherenti(e. its stable extensions
coincide with the preferred ones), then it satisfies closuss unde-preferred
semantics.

Property 1. Let CASpr be a constrained argumentation system for PR, &nd
..., &, its C-preferred extensions. €ASpr is coherent, theWs&;, i = 1,...,n,
it holds that:

= ARG(BEL(E;)) = &N Ay.
. AS:gi.

9. Related Work

As already mentioned in the introduction, a number of attsniyave been
made to use argumentation as a basis for practical reasonimgge attemps can
be divided into two groups of works: works that are interésteidentifying ar-
gument schemes that one may encounter in practical reas@m [5, 6]), and
works that propose concrete argumentation-based systerR&f(e.g. [7, 4, 8, 9,
10)).

The starting point of Atkinson and Bench Capon in [5] was tokoWing
practical syllogism advocated by the philosopher Waltofé]n

» (G is a goal/desire for agerk
= Doing actionA is sufficient for ageni to carry outGz

= Then, agenfX ought to do actiom

The above syllogism, which would apply to the means-endorgag step, is
in essence already an argument in favor of doing actiorHowever, this does
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not mean that the action is warranted, since other argun{eatied counter-
arguments) may be built or provided against the action. Thiecs have defined
an extended version of this syllogism as well as differenysvaf attacking it.

However, it is not clear how all these arguments can be pwthey in order to
answer the critical question of PR “what is the right thingltoin a given situa-
tion?”. It is neither clear how these arguments are evatljater which decision
principle is followed in order to choose between competirgiks or between
competing plans. It is worth mentioning that most of the sobg and attacks
suggested in [5] are already captured in our constraine@sys-or instance, to
the above syllogism the following critical questions arsaasated:

Are there alternative ways of realizidg?

Is it possible to daA?

Does the agent have other goals that can be taken intora€cou

Are there other consequences of doiigvhich should be taken into ac-
count?

Hwh P

The first question amounts to find the different instrumeatglments for the de-
sireG and to take all of them into account in the reasoniregy,when computing
the set of intentions. The second question amounts to vetiigther we are in

a state of the world wherd can be executed. In our approach this is captured
by the pre-conditions of the plans. The third question is akptured in our ap-
proach. Indeed, we start with the set of all potential desafehe agent, and then
we select the ones that will become its intentions. The lasstion is captured in
our system by the post-conditions of the plans and with ttiefisen the baséC,.
Nevertheless, in [5], agent’s preferences (redueg are taken into account while

in our system these are left for investigation.

Regarding the second category of works, it can itself batparéd into two
sub-groups of models: models that are instantiations oabisractargumenta-
tion framework of Dung [12] (e.g. [29, 7, 30]), and modelsttaee based on an
encoding of argumentative reasoning in logic programs (Bdg]). Our frame-
work builds on the former.

In [29], Amgoud was only interested by the second step of RiRgss i(e.
generating and checking the feasibility of plans). She leagldped an argumen-
tation framework for generating consistent plans from agiset of desires and
planning rules. Later in [32], she has proposed togethdr @iyrol an ATMS-
based proof theory for that framework. The framework was tie¢ended with
another argumentation framework that generates the defiemselves in [7],
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taking thus into account the first step of PR process. Foptngdose, a notion of
“desire generation rules” has been introduced. These anemeant to generate
desires from beliefs. Thus, our desire generation rulesname general since we
allow the generation of desires not only from beliefs, babdlom other desires.
Another problem with the work proposed in [7] arises becalesgres and beliefs
are not correctly distinguished in the antecedent and cpues# of the desire gen-
eration rules. This may lead to incorrect inferences wheragent may conclude
beliefs on the basis of yet-unachieved desires, henceigrigila form of wishful
thinking. Our approach resolves this by distinguishingueen beliefs and de-
sires in the rules, and refining the notion of attack amondaggtory arguments
accordingly. The problem of the logical language has beadfir [9]. In that
work, the authors considered three separate systems: oreafoning about be-
liefs, one for generating justified desires, and finally ooregenerating feasible
desires. The three systems are related with each othersauwkst Indeed, argu-
ments supporting beliefs may attack both explanatory aggisrand instrumental
ones. However, explanatory arguments do not conflict wehristrumental ones.
Once the results of the three systems are known, the intentban agent are
computed. The main drawback of this approach is the follgwihmay be the
case that two desires, sdy andd,, are supported by two conflicting explana-
tory arguments, howevet; is not feasible since there is no plan for reaching it.
What happens is that the system may discard the désisence its explanatory
argument is stronger than the one in favorlef However, when computing the
set of intentions¢; will neither be considered since it is not feasible. Thus, we
lose both desires even if it was possible to achiéveince it is both justified and
feasible. In summary, handling separately the three typasgjoments may lead
to undesirable situations.

Hulstijn and van der Torre [30], on the other hand, have aonodf “desire
rule,” which contains only desires in the consequent. Bairtapproach is still
problematic. It requires that the selected goals are stggby goal tree’§ which
contain both desire rules and belief rules that are decelgtiwonsistent. This
consistent deductive closure again does not distinguisidaa desire literals and
belief literals (see Proposition 2 in [30]). This means thrat cannot both believe
—p and desire. In our framework, on the other hand, the distinction erablke
to have an acceptable belief argument for believiipgand, at the same time, an

16similar respectively to our justified desires and our exatary arguments.
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acceptable explanatory argument for desiging

In [31], Simari et al. were interested by the first step of a P&ess, and
have developed an argumentation system for generatingededihis makes our
system more general since it tackles also the second stke.ukj they separate
in the language rules for reasoning about beliefs and rueseasoning about
desires.

In [33], a defeasible logic based on modal logic is used tsorabout mo-
tivational attitudes (such as obligations, intentions desiires). In that work, the
authors focused on the links between the different attgudéney show how to
infer information from different (nested) rules descripigither the beliefs of an
agent, or her obligations, desires and intentions. Howekiey do not take into
account the feasibility of desires. In this sense, our werkore general.

A last work which is less related to ours is that develope®# B5]. In these
two papers, the authors are interested in argumentativegdies/negotiations.
Each agent has final goal and a plan for reaching it. The actdrthe plan
are arguments that should be uttered. In our paper, we are mt@rested in
generating the final goal(s) of an agent.

10. Conclusion

The paper tackles an important aspect of the practical neagproblem using
argumentation theory. It computes the set of intentionsaghagent mat pursue.

The contribution is twofold. To the best of our knowledges faper proposes
the first argumentation system that computes the possitdations in one step,
i.e. by combining desire generation and planning. This avoidiesmable results
encountered by previous proposals in the literature. Therskcontribution con-
sists of studying deeply the properties of argumentatiased PR.

This work can be extended in different ways:

« To improve the language in such a way to take into account ¢eah@s-
pects.

= To relax the assumption that the attack relation amongunstntal argu-
ments is binary. Indeed, it may be the case that more thanlams pnay be
conflicting while each pair of them is compatible.

41



= Another urgent extension would be to introduce preferetedise system.
The idea is that beliefs may be pervaded with uncertainiree may not
have equal priorities, and plans may have different codtsisTtaking into
account these preferences will help to refine the intenids s

» In [36, 37], it has been shown that an argument may not onlyttaeked
by other arguments, but may also be supported by argumémnsuld be
interesting to study the impact of such a relation betwegoraents in the
context of PR.

= Another interesting area of future work is investigating gnoof theories of
this system. The idea is to answer the question “is a giveanpial desire
a possible intention of the agent ?” without computing th@tpreferred
extensions.

« Finally, we are planning to implement the system. For thappse, we
may take advantage of existing algorithms developed rgcen{38] for
generating arguments and counter-arguments.
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Appendix A. Proofs of propositions and theorems

Proposition 2. LetCAS = (A, R, C) andAS = (A, R) be its basic version. For
anya € A, if ais rejected inAS under semantics (wherex is either preferred
or stable), them is also rejected IICAS under the same semantics

Proof . Assume thatv € A is rejected inAS under semantics and not rejected
in CAS.

Case of stable semantics: Sineds not rejected inCAS, then there exists
£ such thatf is a C-stable extension dEAS anda € £. According to
Proposition 2.9¢ is also a stable extension. Sineés rejected iPAS, then
a & &, contradiction.

Case of preferred semantics: Sineas not rejected inCAS, then there ex-
ists€ such thatt is a C-preferred extension &AS anda € £. According
to Proposition 2.9, eacld’-preferred extension is a subset of a preferred
extension. This means thaf’ suchf&’ is a preferred extension &S and
&£ C &'. However, since is rejected iPAS, thena ¢ &', contradiction with
the fact that € €.

Proposition 3. Let) € Aj.
= The set ESIRESOf § is a subset oPD (DESIRES0) C PD).

= The set BELIEFS of § is a subset of the knowledge basg(BELIEFS(d) C
ICh).
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Proof . Letd € A,.

= Let us show thaDeSIRESd) C PD. This is a direct consequence from the
definition of an explanatory argument and the definition efsbtPD.

» Let us show thaBELIEFS(d) C K;. BELIEFS(d) = |J SUPP(«;) with «;
€ A, N SUB(4). According to the definition of an epistemic argument
SUPP(«;) C K, thusBELIEFS(d) C K.

Proposition 4. Let A, be the set of all epistemic arguments that can be built from
a beliefs basé(,. It holds thatia € A, such thatr R, a.

Proof. Leta € A,. Let us suppose that R, «. According to Definition 19,
Jh € SUuPP(a) such thatCoNC(a) = —h. Moreover, according to the definition
of an epistemic argument, it holds th@pPpr(a) H CONC(«), thus, SUPP(«) I
—h. Sinceh € SUPP(«), this means thaBuPP(«) + h, —h, thusSUPP(ar) - L.
This contradicts the fact that the support of an epistemguiarent { in our case)
should be consistent. |

Proposition 7. If IC, # { L} andC, # @, then the argumentation systém,, R;)
has non-empty stable extensions.

Proof . Sincek, # { L} andkC, # @ then the bas&’, has at least one maximal
(for set inclusion) consistent subset, dayAccording to Proposition 6ARG(T)
is a stable extension dfd,, R;). [ ]

Proposition 9. The relatiorR; is symmetric and irreflexive.

Proof . This is a direct consequence of Definition 20. [ |
Proposition 10. Letd;, d, € PD. If d; = —d,, thenVéy, 5, € A, such that: (1)
367 € SuB(d;) with CoNC(d7) = d;, and (2)39, € SuB(d2) with CONC(d5) = da,
then51 Ra 52.

Proof . Letd,, d, € PD. Suppose thal; = —d,. Letd,, d; € A, such that: (1)
367 € SuB(6;) with CoNC(d]) = dy, and (2)30), € SuB(ds) with CONC(d)) =

d». According to the definition of an explanatory argumentsitlear thatd; €
DESIRES ;) andd, € DESIRESds). Sinced; = —ds thend; Ry ds. [ |
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Proposition 11 The relatiorik, is symmetric and irreflexive.
Proof . This is a direct consequence of Definition 21. [ |

Proposition 12 Letd;, d, € PD. If d; = —ds, thenVm,, my € A, s.t. CONC(my)
= dl and (bNC(ﬂ'Q) = dg, then7r1 Rp To.

Proof. Letd;, d, € PD. Suppose that; = —d,. Let us also suppose that
m,my € A, with CONC(7;) = dy, and CONC(ms) = dy. According to Defini-
tion 17, it holds thatl;, € POSTC(m;) anddy, € POSTC(m,). Sinced; = —da,
thenPOSTC(m,) F —d;. However, the two sefBoSTC(m; ) and POSTC(7,) are
both consistent (according to Definition 10), tHsSTC(7,) U POSTC(72) - L.
Consequentlyr; R, mo. [ |

Consequence lLetay, ay € A, andd € A, such thaty, € SUB(9). If aeRpan
thenagRbd(S.

Proof . By definition, ifa; € SuB(d) thenSuPP(a;) C BELIEFS(S). Moreover,
also by definition, iftva R,y then3h € SuPP(ay) such thatCoNC(as) = —h.
Thus,3h € BELIEFS(J) such thatCONC(a,) = —h. ConsequentlyysRpq0. M

Proposition 13 Leto € A,. If BELIEFS()) F L, thenda € A, such thatx Ry
J.

Proof . Letd € A;. Suppose thaBELIEFS(d) - L. This means thafiT" that
is minimal for set inclusion among subsetsB#LIEFS(§) with 7' - L. Thusg’,
Jh € T such thatl'\{h} - —h with T\\{h} is consistent. SinCBELIEFS(J) C
Ky, (according to Prop. 3), theid\ {2} C K;. Consequently (T\{h}, -h) € A,
with h € BELIEFS(9). Thus,(T\{h}, —h) Rpq 9. n

Proposition 14 Letdy, 6, € A, with BELIEFS(6;) I L and BELIEFS(dy) I L. If
BELIEFS(6;) U BELIEFS(62) F L, thenday, ay € Ap S.t. oy Rpg 61 andas Ry
0.

17SinceT is C-minimal among inconsistent subsets afIBEFS(§), each subset df is consis-
tent; so, 37" = T \ {h} strictly included inT' s.t. 7' I/ 1;soT’ - —h (otherwiseI” U {h} =T
would be consistent).
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Proof . Letdy,d, € Ay with BELIEFS(d,) I/ L and BELIEFS(d,) I/ L. Assume
that BELIEFS(6;) U BELIEFS(d2) + L. So,377 C BELIEFS(d;) and 37, C
BELIEFS(d2) with T3 U Ty + L and 7} U T, is minimal for set inclusion, i.e.
Ty U T; is a minimal conflict. SincBELIEFS(6;) # L and BELIEFS(dy) 1/ L,
thenT; # @ andT, # @. Thus3h, € T; such that7y UTy)\ {h} F —h;. Since
T, UT5 is a minimal conflict, then each subsetlofU T, is consistent, thus the set
(T1UTy)\ {h1} is consistent. Moreover, according to PropositiorBELIEFS(d; )
C Ky and BELIEFS(d2) C K. Thus,T; € K, and Ty C K. Itis then clear that
(T UTy) \ {h1} C K. Consequently(7; UT3) \ {h1},—hq) is an argument of
Ap. Thus,((T} U Ty) \ {h1}, —h1) Req 61. Similar reasoning applies fdi, € T
(SinceT2 7£ @) Thus,((T1 U Tg) \ {hg}, _|h2> Rea 52. |

Proposition 15 Letd € A, andr € A, with BELIEFS(9) t/ L. If BELIEFS(d) U
PREC(7) I L thenday, oy € Ay S.t.aq Rpq 6 @andag Ry, 7.

Proof . Letd € A;andr € A,. Suppose thaBELIEFS(J) I/ L. SinCEBELIEFS(d) I/
1 andPREC(7) t# L, thendT; C BELIEFS(d) and3T, C PREC(7) with T} # &,
T, # @ andT; UT; is the smallest inconsistent subseB@&LIEFS(d) U PREC().
SinceT; # @, then3h; € T such thatT; U To\{hi} F —hy with T} U
T>\{h1} is consistent. SincBELIEFS(d) C K, and sincePREC(7) C K, then
T1UT, C K. Consequentlyiy UTo\{h1} C K. Thus,(ThUT2\{h1}, =h1) € A,.
Moreover,(T) U Ty\{h1}, ~h1) Rpq 6. Similar reasoning applies far, € T,. We
build an argumentT’ U T5\{h2}, —he) Ry, 7. [ |

Proposition 16 Let CASpr = (A, R, C). Let() be the set of’-admissible sets
of CASpR.

1. LetE € Q. There exists a'-preferred extensiofi’ of CASpr such that
ECE.
2. Let CASpr’ = (A, R, (") such thatC’ = C. Let Q' be the set ofC'-
admissible sets dASpr’. We have)’ C Q.
Proof . This is a direct consequence of Proposition in [11]. |

Proposition 17. Let CASpr = (A, R, C). For eachC-preferred extensioé of
CASpgR, there exists a preferred extensi@of ASpr such thatt C &',

Proof . This is a direct consequence of Proposition in [11]. [ |
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Proposition 18 Let CASpr = (A, R, C) such thatC is a valid formula onA.
Then the preferred extensionsA$pr are theC-preferred extensions @ASpr.

Proof . This is a direct consequence of Proposition in [11]. |

Consequence 2et CASpr = (A, R,C) and& be its C-extension under pre-
ferred or stable semantics.

» Foralld € £n Ay, I € £n A, such that ©NC(6) = CONC(7).
» Forallr € £ENA,, 36 € €N Ay such that ©Nc(6) = CoNc(r).

Proof . These are direct consequences of the constraint [ |

Proposition 19
« The empty set is &'-admissible of the practical systeGASpg.

» The practical syster@ASpr has at least on€'-preferred extension.

Proof . @ is admissible (as shown by Dung in [12]) and alland §,, variables
are false in@, so@ F C) (this is due to the particular form of the constraint
for practical reasoning). Thus, the empty setisadmissible, consequently, the
argumentation syste@ASpr has aC-preferred extension. [ ]

Proposition 20. If £ is a stable extension &Spg, then the sef N A, is a stable
extension of(A, Ry).

Proof . Let& be a stable extension éfSpr. Let us suppose th&f = £ N A, is
not a stable extension ¢f4,, R;). Two cases exist:

Case 1. &' is not conflict-free. This means that there exist’ € £’ such that
aRya/. Sincef’ = £ N A, thena, o’ € £. This means thaf is not conflict-free.
This contradicts the fact thét is a stable extension.

Case 2: £’ does not attack every argument that is no€in This means that
Ja € Ayanda ¢ &' and&’ does not attack (W.r.tR,) a. This means thaf’ U{a}
is conflict-free, thug U {a} is also conflict-free, and does not attack an argument
thatis not in it (because only an epistemic argument carchttaother epistemic
argument and all epistemic argumentstdbelong to€’). This contradicts the fact
that& is a stable extension. [ |
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Proposition 21 If £, # @ andC, # { L}, then the systerASpr has at least one
non-empty stable extension.

Proof . ASpr can be viewed as the union of 2 argumentation systeh$;: =
(Ap, Rp) andAS,, = (AU Ay, Ry U R, U Rpap) Plus theR,, U Ry, relation.

Sincek, # @ and K, # {L}, then the systeAS, has stable extensions
(according to Proposition 7). Lef,...,¢&, be those extensions. The system
AS,, is symmetric in the sense of [39] since the relatiBp U R, U R4, IS
symmetric. In [39], it has been shown that such a system leesextensions
which correspond to maximal (far) sets of arguments that are conflict-free. Let
&, ..., &, be those extensions.

The two systems are linked wiiy,; U R;,. Two cases can be distinguished:

» caseliRy URy, = @. VE;, &, the set; U E] is a stable extension é{Spr.
Indeed,&; U SJ’. is conflict-free since;, SJ’. are both conflict-free, and the
relation Ry U Ry, = . Moreover,E; U &) attacks every argument that is
notin&; U &}, since ifa ¢ & U &, then: i) ifa € A, thené; attacks w.rt.
Ry a sinceé; is a stable extension. Now, assume that A, U A,. Then,
& U {a} is conflicting since; is a maximal (forC) set that is conflict-free.
Thus,&; attacksa.

» case2: Ry U Ry, # 2. LetE be a maximal (for set inclusion) set of argu-
ments that is built with the following algorithm:

2. while @8 € A,UA; suchthat u{g} is conflict-free) d&€ = EU{5}

This algorithm stops after a finite number of steps (becadse) A, is
a finite set) and gives a set of arguments whickiimaximal among the
conflict-free sets which includg. It is easy to see thdt is stable because,
by constructionyy € (A4, U A,) \ €, 3y € £ such thatyR~, (because if
v € Ay, N € itis impossible thatR+' and because if’ € (A, U A,) NE

if we haveyR~’ we also have/R~) and, becaus€; C &, we also have
Va € Ay \ €, o/ € € such thai’Ra (because; is stable inAS,).

So there is always a stable extensioA&rr. [ |

Proposition 22 Let £ be a stable extension 85pr. If 6 € £N Ay, then SB(6)
C¢.
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Proof . Let £ be a stable extension éfSpr. Letd € A,;. Let us suppose that
d € £and3d’ € SuB(d) such thaty’ € £. Sinced’ ¢ &, thendz € £ such that
xR4'. There are three possible cases:

1. x € A, thuszR,.0’. This means thath € BELIEFS(d’) such thatCoNC(x)
= —h. However,’ € SuB(J), thusBELIEFS(d’) C BELIEFS(J). Thus,
Rpqe0 and consequentlyR4. This contradicts the fact that is conflict-
free.

2. v € Ay, thuszR,0". Thus,3d; € DESIRESz) and3d, € DESIRES’)
such thatl; = —d,. HoweverDESIRES ') C DESIRESS), thuszR ;4 and
consequentlyyRd. This contradicts the fact that is conflict-free.

3. z € A,, thuszR,4,¢". This means thafoNc(z) = —~d withd € DESIRES{).
HoweverDESIRES ') C DESIRES6), thuszR 4,0 and consequentlyRJ.
This contradicts the fact thdt is conflict-free.

Proposition 23 Let £ be a stable extension &Spr. If 7 € £ N A, then
PREC(7) C Uajegmb SUPP(;).

Proof . Let& be a stable extension 8iSpg, and letr € A, such thatr € £. Let
us assume thatr € PREC(7) andz ¢ U, cena, SUPP(q;). LetE' = EN A,.

According to Proposition 20, the sét is a stable extension of the system
(Ap, Ry). Moreover, according to Proposition BASE(E) = U, c¢r.a, SUPP())
is a maximal (for set inclusion) consistent subbase of treMa@dge baseC,.
Thus,BASE(E’) U {x} is inconsistent. It follows thaBASE(E') - —x.

According to Proposition 7BASE(E’) # @. Thus,3H C BASE(E’) such that
H # @, H is consistent and{ + —x. ConsequentlyH, —z) is an argument of
the set4,, and(H, —x) € ARG(BASE(E’)).

According to Proposition SARG(BASE(E’)) = £'. Thus,(H, —z) € £'. Con-
sequently{H, ~z) € £. From Definition 22(H, ~x)Rs,7. This means thaf is
not conflict free. This contradicts the fact thats a stable extension. |

Proposition 24 Leté € A,. If BELIEFS(9) - L, thenVE with £ is a stable
extension of A, R;), 3o € € such thatvRy,d.

Proof . Letd € A, with BELIEFS(9) = L. Leté&, ... &, be the stable extensions
of the systemiA,, R;). Suppose that&; such thats; does not attack, i.e. Ao €
&; such thatvRy40.
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According to Prop. 5BASE(E;) is a maximal (for set inclusion) consistent
subset offC,. SinceBELIEFS(d) - L, thendT" C BELIEFS(S) with T is the
smallest inconsistent subset®éLIEFS(0) (i.e. T+ L). Moreover, according to
Prop. 3,BELIEFS(d) C Ky, thusT C Ky,

SinceBASE(E;) is a maximal (for set inclusion) consistent subsekCpfand
T a minimal conflict ofC,, then we have two cases:

» Case 1:BASE(E;)NT = @. This means thath € T, BASE(E;) U{h} I L.
Thus,BASE(E;) = —h. ConsequentlhygH C BASE(E;) with H is minimal
for set-inclusion among subsets BASE(E;) that satisfyH + —h. The
pair (H,—h) is then an argument ofl,. However, according to Prop. 5,
ARG(BASE(E))) = &, this means thatH, —h) € & and (H, —h) Ry 6.

= Case 2: BASE(E;) N T # @. SinceBAsg(&;) I/ L andT + L, then
Jh € T andh ¢ BASE(E;) such thatBASE(E;) = —h (this is due to the
fact that BASE(E;) is a maximal consistent subset /6f). Consequently,
dH C BASE(E;) with H is minimal for set-inclusion among subsets of
BASE(E;) that satisfyH + —h. The pair(H, —h) is then an argument of
Ayp. According to Prop. 5ARG(BASE(E;)) = &, this means thatH, —h)
e & and <H, _|h> Ria 0.

Proposition 25 Letd € A, with BELIEFS(J) - L. Under the stable semantics,
the argument is rejected iPASER.

Proof . Letd € A, with BELIEFS(6) - L.

According to Proposition 21, the systeh%pr has at least one stable exten-
sion. LetE be one of these stable extensions. Suppose thaf.

According to Proposition 20, the sétn A, is a stable extension df4,, R;).
Moreover, according to Proposition 24a € £ N A, such thataR,;0. This
contradicts the fact that a stable extension is conflicg-fre [ ]

Proposition 26. Letd € A, with BELIEFS(J) F L. Under the stable semantias,
is a rejected argument @ASkR.

Proof . Leté € A, with BELIEFS(d) = L. According to Prop. 25§ is rejected
in ASpr. Moreover, according to Prop. 2; we know that each argumaat ts
rejected inASpr is also rejected IlCASpR. [ |
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Proposition 27. Letdy, d, € Ay with BELIEFS(6;) I L and BELIEFS(d,) 1 L.
If BELIEFS(6;) U BELIEFS(dy) F L, thenVE with £ is a stable extension of
<Ab, Rb>, Ja € € such thabéRbd(sl, or aRpq0s.

Proof . Letd,,dy € A, with BELIEFS(6;) I/ L, BELIEFS(d2) I/ L, BELIEFS(d,)
U BELIEFS(62) F L.

Let&, ... &, be the stable extensions of the systetn R;). Suppose thaif;
such that€; does not attack; and &; does not attacks, i.e. o € & such that
aRpad1, OF aRpqds.

BELIEFS(d;) U BELIEFS(d2) - L, so3T" C BELIEFS(d;) U BELIEFS(d2) with
T is the smallest inconsistent subseB&LIEFS(d;) UBELIEFS(ds) (i.e. T + L).

Moreover, according to Proposition BELIEFS(d;) C K, and BELIEFS(»)

C K, thusT C Ks.

According to Proposition 5BASE(E;) is a maximal (for set inclusion) con-
sistent subset of,. SinceBASE(E;) is a maximal (for set inclusion) consistent
subset ofC,, and7" a minimal conflict ofC,, then we have two cases:

» Case 1:BASE(E;)NT = @. This means thath € T, BASE(E;) U{h} I L.
Thus,BASE(E;) = —h. ConsequentlyjH C BASE(E;) with H is minimal
for set-inclusion among subsetsBASE(E;) that satisfyH = —h. The pair
(H,—h) is then an argument ofl,. However, according to Proposition 5,
ARG(BASE(E;)) = &, this means thatH, —h) € &,.

If h € T'N BELIEFS(,), then(H, —h) R 61.
If h € T'N BELIEFS(d2), then(H, —h) Ry da.

» Case 2: BASE(E;) N T # @. SinceBAsSE(E;) I/ L andT + L, then
dh € T andh ¢ BASE(E;) such thatBASE(E;) = —h (this is due to the
fact that BASE(E;) is a maximal consistent subset /6f). Consequently,
dH C BASEg(E;) with H is minimal for set-inclusion among subsets of
BASE(E;) that satisfyH + —h. The pair(H, —h) is then an argument od,.
According to Prop. 5ARG(BASE(E;)) = &;, this means thatH, —h) € &,.

If h € TNBELIEFS(6;), then and( H, —h) Ryq 61. If h € T NBELIEFS(2),
then and(H, —h) R Os.

Proposition 28 Letd;, d; € A, with BELIEFS(6;) I L and BELIEFS(d2) 1/ L.
If BELIEFS(6;) U BELIEFS(8,) F L, then A€ with £ a C-stable extension of
CASpr such thaty, € £ andé, € £.
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Proof . Letd,,d, € A, with BELIEFS(6;) I/ L, BELIEFS(d3) I L, BELIEFS(d1)
U BELIEFS(62) F L.

Assume thali€ with £ a C-stable extension a8ASpr. According to [11],€
is also a stable extension A5pr. Suppose thaf; € £ andd; € £.

According to Proposition 20, the sétn A, is a stable extension df4;, R;,).
Moreover, according to Proposition 24¢ € £NA, such thatvR 401, Or aRpqds.
Thus, there is a contradiction, and we can conclude fi@with £ a stable ex-
tension ofASpr such thaty; € € andd, € £. Thus, we have a contradiction.
[ |

Proposition 29, Letd € A, andw € A, with BELIEFS(J) t/ L. If BELIEFS(J) U
PReC(7) F L thenV€ with £ is a stable extension df4,, R;), Ja € £ such that
aRbdé, or O/R,bpﬂ'.

Proof . Leté € Ay, m € A, with BELIEFS(§) I/ L andBELIEFS(d) UPREC(7) -
1. Let us suppose thdt is a stable extension df4,, R;), and that§ € £ and
mecf.

SinceBELIEFS(d) U PREC(7) F L, BELIEFS(d) t/ L, and PREC(~w) I/ L,
then37; C BELIEFS(d) and37T, C PREC(w) such thatl; UT, - L andTy U T,
is the minimal inconsistent subsetB¥LIEFS(5) U PREC(7). We know also that
T: C K, (since according to Proposition BELIEFS(d) C k) and Ty C K,
(sincePREC(7) C k). LetT =T7 U Ts.

According to Proposition SBASE(E) is a maximal (for set inclusion) consis-
tent subset of,. Then, two cases are distinguished:

» Case 1:BASE(E) NT = @. This means thath € T', BASE() U {h} - L.
Thus,BASE(E) + —h. ConsequentlydH C BASE(E) with H is minimal
for set-inclusion among subsetsBASE(E) that satisfyH + —h. The pair
(H,—h) is then an argument ofl,. However, according to Proposition 5,
ARG(BASE(E)) = &, this means thatH, —h) € £.

If h € T, then(H, _|h> Ria 0.
If h € T, then(H, ~h) Ry 7.

» Case 2:BASE(E) N T # @. SinceBAsSE(E) f L andT + L, then
dh € T andh ¢ BASE(E) such thatBASE(E) F —h (this is due to the
fact that BASE(E) is a maximal consistent subset /6f). Consequently,

JdH C BASE(E) with H is minimal for set-inclusion among subsets of
BASE(E) that satisfyH - —h. The pair(H, —h) is then an argument ol,.
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According to Prop. 5ARG(BASE(E)) = &, this means thatH, —h) € £. If
h € T'N BELIEFS(6y), then(H, —h) Ryq 61. If h € TN BELIEFS(d3), then
(H,=h) Rpq 2.

Proposition 30 Letd € A, andr € A, with BELIEFS(9) t/ L. If BELIEFS(d) U
PREC(7) L then#€ with £ a C-stable extension aEASpg such thaty € &
andr € €£.

Proof. Leté € A; andw € A, with BELIEFS(d) I/ L and BELIEFS(J) U
PREC(7) I L. Let& be aC-stable extension dZASpg. So, according to [11],
£ is also a stable extension &Spr. Let us suppose thdt € £ andw € £.
Sincef is a stable extension &Spg, then&’ = £ N A, is a stable extension of
(Ap, Ry) (according to Proposition 20). Moreover, according to Pesjtion 29,
sinceBELIEFS(d) U PREC(w) + L then3a € &' such thataRp.d or aRy,m.
This means thaf attacksd or £ attacksm. However,y) € £ andw € £. This
contradicts the fact thaf is conflict-free. [ |

Theorem 1 Let CASpr be a constrained argumentation system for PR,&nd
..., &, its C-stable extensions/&;, i = 1, ..., n, it holds that:

1. Theset BL(E;) = BEL(E; N Ay).

2. The set BL(E;) is a maximal (for set inclusion) consistent subset’pf
3. The setJ,, c¢ 4, POST () is consistent.

4. The set [ES(&;) is consistent.

Proof . Leté&; be a stable extension of the sysSt€ASpr.

1. Let us show that the sSBEL(E;) = BEL(E; N A,).
In order to prove this, one should handle two cases:

= BEL(E; N Ay) C BEL(E;). This is a direct consequence from the fact
thatBEL(E; N Ay) = | SUPP(«y;) with o; € & N A, (cf. definition of
BEL(E)).

= BEL(E;) € BEL(E; N A,). Let us suppose thath € BEL(E;) andh ¢
BEL(&; N Ap). According to Proposition 2(; N A4, is a stable exten-
sion of (A, R;). Moreover, according to Proposition BEL(E; N A,)
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is a maximal (for set=) consistent subset &f,'. HoweverBEL(&;)

C Ky, thenh € K. Sinceh ¢ BEL(E; N Ay), thenBEL(E; N Ap) U

{h} F L (this is due to the fact thaBeL(E; N A4,) is a maximal (for

setC) consistent subset &f,). Thus,BEL(E;NA,) - —h. This means

that3H C BEL(E; N A,) such thatH is the minimal consistent subset
of BEL(E; N Ay), thusH + —h. SinceH C K, (sinceBEL(E; N Ap)

C Ky), then(H,—-h) € A,. However, according to Proposition 5,

ARG(BEL(& N Ay)) = €N A,. Besidesh € BEL(E;), there are three

possibilities:

(@) h € BELIEFS(J) with 6 € &;. In this case(H, —h) Ry; §. This
contradicts the fact thaf; is a stable extension that is conflict-
free.

(b) h € PREC(m) with 7 € &;. In this case(H, —h) Ry, m. This
contradicts the fact thaf; is a stable extension that is conflict-
free.

() h € SuPP(a) witha € &;. This is impossible since the g8t A,
is a stable extension, thus it is conflict free.

2. Let us show that the s8EL(E;) is a maximal (for set inclusion) consistent
subset ofC,.
Since€; is a C-stable extension dEASpR, thené; is also a stable exten-
sion of ASpr (according to [11]). Moreover, according to the first item
of Theorem 1BEL(&;) = BEL(E; N A,). However, according to Proposi-
tion 20,&; N A, is a stable extension ¢f4,, R;), and according to Proposi-
tion 5,BEL(&; N A,) is a maximal (for setz) consistent subset @&f;,. Thus,
BEL(&;) is a maximal (for set inclusion) consistent subsetpf

3. Let us show that the s, ., POST(m) is consistent. Assume that
Uﬂkegimp PoST () isinconsistent. This means that,, ..., 7, € & such
that POST (7;) U ... U POST (m,) is inconsistent. According to Assumption
1 given in the end of Section 6.8, is binary, and thus, by definition of
the relationR,, it holds thatm;R,m;, forall i,5 € 1...n andi # j. This
contradicts the fact thaf; is a C-stable extension, thus conflict-free.

4. Let us show that the sBXES(E;) is consistent.
Sinceé; is a C-stable extension dEASpr, thené; is also a stable exten-
sion of ASpg (according to [11]). Let us suppose thBES(E;) is inconsis-
tent, this means that) DESIRESd;,) U |J CONC(7;) - L with 6, € & and

18Because BL(E;NAp) = | SUPP(a;) with a;; € £;NAyp; S0, BEL(E;NAp) = BASE(E;NAp).
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m; € &. SinceDES(E;) C PD (according to Proposition 3), thesd,, d, €
DES(&;) such thatd; = —d,. Three possible situations may occur:

(@) Im, m € & N A, such thatCoNc(m;) = dy, and CONC(m2) = do.
This means that, R ,m,, thusm; Rm,. This is impossible sincg is a
stable extension, thus it is supposed to be conflict-free.

(b) 391,00 € &N Ay such thatd; € DESIRESd;) andd, € DESIRESds).
This means thai; R 0-, thusd; Rd,. This is impossible sincg is a
stable extension, thus it is supposed to be conflict-free.

(c) I € &N Ay, Im € & N A, such thatd, € DESIRESd) andd, =

CoNc(m).
Sinced; € DESIREYY), thus3d’ € SuB(d) such thatCoNc(d') =
d;. This means that'R 4,7, thusd"R=n. However, sincé < &;, thus
according to Proposition 22’ € &;. This is impossible sincg is a
stable extension, thus it is supposed to be conflict-free.

Theorem 2 Let CASpr be a constrained argumentation system for PR, and
&1,..., &, its C-preferred extension¥s&;, i = 1,...,n, it holds that:

1. The set BL(E;) is consistent.
2. The setJ, ¢4, POST (m:) is consistent.
3. The set [ES(E;) is consistent.

Proof . Let CASpr be a constrained argumentation system for PR.

1. Let€& be a preferred extension ASpg. Assume thaBEL(E) is inconsistent.
Thus, there exists' C BEL(E) s.t. C'is a minimal (for set inclusion) subset
of BEL(E) that is inconsistent. Sina@ - L, there exists: € C s.t. C'\
{h} - =h. SinceC is minimal, thus\H c C'\ {h} s.t. H - =h. Moreover,
BEL(E) C K, thusC \ {h} C K. ConsequentlyC \ {h}, —h) € A, and
there existg € £ such that:

(a) eithery = § C ENAyandh € BELIEFS(0). Thus,(C\{h}, —h) R o.
(b) ory=nm CENA,andh € PREC(7). Thus,(C \ {h}, —h) Ry, 7.
(c)ory=a CENA,andh € SUPP(a). Thus,(C'\ {h}, —h) Ry a.
In each situationyq = 6, y = 7, y = «), sincey € &£, thenda’ € EN A,
which attacks the attacker ¢f so s.t.o/ R, (C'\ {h}, —h). This means that
Jn' € C'\ {h} s.t. CoNc(c’) = —h'. However, sincé’ € C'\ {h} which is
included inBEL(E), thendx € £ s.t:
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(@ = € A, andh’ € SuPP(x). Thus,o/R,z. This contradicts the fact
that & is conflict-free.

(b) z € Ay andh’ € BELIEFS(z). Thus,a/Ryx. This contradicts the
fact that€ is conflict-free.

(c) x € A, andh’ € PREC(z). Thus,a’R;,z. This contradicts the fact
that & is conflict-free.

Since for each preferred extensiénof ASpr, BEL(E) is consistent, then
eachC-preferred extensiod’, BEL(E’) is consistent as well sincg is a
subset of a preferred extensién Thus,BEL(E") C BEL(E).

2. Let& be aC-preferred extension @ASpr. Assume thatyﬂk cenA, POST (1)
is inconsistent. Thus, there existsC (J,, ¢4, POST () s.t. C'is min-
imal (for set inclusion) and inconsistent. According to #sption 1 given
in Section 6.3 and Definition 1@’ = C; U Cy with C;,Cy; # @ and
E|7T1,7T2 cén Ap s.t.C; C POST(’H'l) andCQ - POST(’H'Q). ThUS,7T1Rp7T2
(andmyR,m). This contradicts the fact thatis conflict-free.

3. Let& be aC-preferred extension @@ASpr. Assume thaDes(E) is incon-
sistent. Thusid,, d; € DES(E) s.t.d; = —d,. There are three cases:

(a) d; € DESIRESd;) andd, € DESIRESdy) with d1,d, € A; N E. This
means that; R;0, and 6, R40;. This contradicts the fact thaf is
conflict-free.

(b) d, € DESIRES(§) andd, € CoNcC(m) withd € A;NE andr € A,NE.
This means thatR 4, 7. This contradicts the fact thatis conflict-free.

(c) di € CoNc(m) andd, € CONC(ms) with 7,1 € A, NE. This
means thatr; R, m,. This contradicts the fact that is conflict-free.

Theorem 3 Under the stable and preferred semantics, each set otionsrof
CASpR is consistent.

Proof . LetZ be a set of intentions €ASpr. Let us suppose th&tis inconsis-
tent. From the definition of an intention set, it is clear tdaC DES(E;) with &,

is an extension oc€ASpr. However, according to Theorem 1 and Theorem 2 the
setDES(E;) is consistent. |

Theorem 4. Let CASpr be a constrained argumentation system for PR,&nd
..., &, its C-stable extensions/&;, i = 1, ..., n, it holds that:

1. The set RG(BEL(E))) =&, N A,.
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2. As :gi-

Proof . Let&; be aC-stable extension of the syst&@ASpr. &; is also a stable
extension oASpg (according to [11]).
1. Let us show thaBRG(BEL(E;)) = & N A,.
According to Theorem 1, it is clear th&®€eL(&;) = BEL(E; N A,). More-
over, according to Proposition 2@; N A, is a stable extension @f4,, R;).
Besides, according to Proposition BRG(BEL(E; N A,)) = & N Ay, thus
ARG(BEL(&;)) = &N Ay.
2. Let us show thatds = &;.
« £ C As: This is trivial.
= AsC &;: Let us suppose thaty € As andy ¢ &;. There are three
possible situations:
(@) y € AsnA,: Sincey ¢ &;, this means thalla € & N A, such
that «Ryy. Thus,SupPP(a) U SuPP(y) - L. However,SUPP(«)
C BEL(&;) andSuPP(y) C BEL(E;), thusSuPP(«) U SUPP(y) C
BEL(E;). This means thaBEL(E;) is inconsistent. According to

Theorem 1 this is impossible.
(b) y € AsnA,: Sincey ¢ &, this means thalx € &; such that

xRy. There are three situations:

Case 1.z € A, This means thaBELIEFS(y) U SUPP(x) - L.
HoweverBELIEFS(y) U SUPP(z) C BEL(E;). ThusBEL(E;)
Is inconsistent. This contradicts Theorem 1.

Case 2.z € A; This means thaDESIRESy) U DESIRESx) -
1. However,DESIRE]y) U DESIRESz) C DES(E;). So,
DES(E;) is inconsistent. This contradicts Theorem 1.

Case 3:x € A, This means thaDESIRESy) U CONC(z) - L.
HoweverDESIRESy) U CONC(x) C DES(E;). Thus,DES(E;)
Is inconsistent. This contradicts Theorem 1.

(c) y € AsnA,: Sincey ¢ &;, this means thalz € & such that

xRy. There are three situations:

Case l:x € A, This means thatR,,y, thusSupp(z) U PREC(y)
F L. HoweversUPP(z) U PREC(y) C BEL(E;). Thus BEL(E;)
Is inconsistent. This contradicts Theorem 1.

Case 2:x € A, ThismeansthatR,q,y, SO we hav®ESIRES x)
U CoNC(y) F L. HoweverDESIRESz) U CONC(y) C DES(E;).
Thus,DES(E;) is inconsistent. This contradicts Theorem 1.
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Case 3.z € A, This means thatR,y. There are three different
cases:

- PREC(z) U PREC(y) F L.

HoweverPREC(z) U PREC(y) C BEL(E;). Thus,BEL(E;)
is inconsistent. This contradicts Theorem 1.

. POsSTC(z) U PREC(y) F L. We know thay is built using
one of the plans of;, sayp = (S,7T,a). Thus,3r € &;
such thatr = (p,d). Thus,PosSTC(z) U PREC(7) F L,
consequentlyyR7. This is impossible sincg is a stable
extension, thus it is supposed to be conflict-free.

. POSTC(z) U POSTC(y) F L. Sincey € As, thusy is built
using one of the plans &k, sayp = (S, T, a). Thus3r €
& such thatr = (p, d). Thus,POSTC(z) UPOSTC(7) - L,
consequentlyyR7. This is impossible sincg is a stable
extension, thus it is supposed to be conflict-free.
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