
Generating possible intentions with constrained
argumentation systems1

Leila Amgoud⋆ Caroline Devred+ Marie-Christine Lagasquie-Schiex⋆

⋆ IRIT – CNRS, UPS, Toulouse, France
+ LERIA – UFR Sciences, Angers, France

Abstract

Practical reasoning(PR), which is concerned with the generic question of what
to do, is generally seen as a two steps process: (1)deliberation, in which an agent
decides what state of affairs it wants to reach –that is, itsdesires; and (2)means-
ends reasoning, in which the agent looks for plans for achieving these desires.
The agent’sintentionsare a consistent set of desires that are achievable together.

This paper proposes the first argumentation system for PR that computes in
one step the possible intentions of an agent, avoiding thus the drawbacks of the
existing systems. The proposed system is grounded on a recent work on con-
strained argumentation systems, and satisfies the rationality postulates identified
in argumentation literature, namely theconsistencyand thecompletenessof the
results.
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1. Introduction

Practical reasoning(PR) [2] is concerned with the generic question of what to
do for a rational agent in a given situation. In his seminal book [3], Wooldridge
defines PR as a two step process. The first step, calleddeliberation, consists of
identifying the states of affairs an agent wants to reach (i.e. thedesires). This step
is decomposed into two distinct components: i) anoption generationcomponent

1This paper extensively develops and extends the content of the conference paper [1]. The
language of representation is refined and more results on thesystem are proposed.
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in which the agent generates a set of possible desires, and ii) a filtering compo-
nent in which the agent chooses between competing desires. In the second step of
PR, calledmeans-end reasoning, the agent looks for plans for reaching the chosen
desires. If such plans exist, those desires will be calledintentionsand the agent
commits to achieving them. Thus, an intention is a desire that is justifiedandfea-
sible. In [4], it has been argued that generating options is an inference problem,
while filtering those options is a decision making one. Regarding the means-
end-reasoning step, the authors argue that it involves two problems: an inference
problem in which an agent checks the feasibility of sets of plans, and a decision
making problem in which the agent chooses among several feasible plans, the
exact ones to carry out. The authors have then proposed another decomposition
of a PR process as follows: i) option generation, ii) checking the feasibility of
the options,i.e. to find sets of plans that are compatible in the sense that they
are achievable together, and iii) filtering the options as well as the plans. The two
decision problems are thus combined in a unique step. The newdecomposition of-
fers at least two advantages: First, it avoids that the filtering component selects an
option for which no plan can be formed, and in so doing might exclude an option
which could be carried out. The second advantage consists ofthe link that exists
between the two decision problems. In [4], the authors have proposed different
principles for choosing among competing and feasible options. For instance, an
agent may choose a desire that has more plans for achieving it. It is clear that
such a decision principle can only be applied after the means-end-principle. In
this paper, we follow this decomposition of PR process.

Besides, what is worth noticing in most works on practical reasoning is the
use of arguments for providing reasons for choosing or discarding a desire as an
intention. These works can be divided into two groups: worksthat are interested
in identifying argument schemes that are used in PR (e.g. [5,6]), and works that
propose concrete argumentation-based systems for PR (e.g.[7, 4, 8, 9, 10]) fol-
lowing the process proposed in [4]. Recall that an argumentation system consists
mainly of a set of conflicting arguments, and the crucial issue is the selection of
acceptable sets of arguments. Works of the second category suffer from three
main drawbacks.

The first problem is that the properties of the systems are notinvestigated;
it is thus unclear whether the results of these systems are intuitive.

The second one concerns the use of a skeptical acceptabilitysemantics,
namely grounded semantics, for evaluating arguments. However, skeptical
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semantics are not suitable in practical reasoning as illustrated by the fol-
lowing example of an agent who has three equally preferred desiresd1, ¬d1
andd2. Assume thatd1 and¬d1 are not conditional whiled2 depends ond1
(in [9] this is denoted byd1 ⇒ d2). According to the system proposed, for
instance, in [9], there are three arguments:δ1 (in favor of d1), δ2 (in favor
of ¬d1) andδ3 (in favor of d2) such thatδ1 andδ2 attack each other andδ2
attacksδ3. It is clear that the grounded extension of this system is empty
meaning that no desire will be pursued by this agent even if these desires
are feasible. This is clearly counter-intuitive. Now, if a credulous seman-
tics, like preferred semantics, is considered, then two preferred extensions
are returned:{δ1, δ3} and{δ2} meaning that this agent can either pursue the
two desiresd1 andd2 together, or the desire¬d1 alone.

The third drawback of existing approaches concerns the factthat the first
and second steps of PR are modeled in terms of two separate systems. In
such an approach, some desires that are not feasible may be accepted at
the option generation step to the detriment of other justified and feasible
desires, or may prevent some justified and feasible desires from being ac-
cepted. Let us consider again the previous example, and assume that the
desire¬d1 is more important than the two others. However, this desire is
not feasible since there is no plan for carrying it out while the agent has
two plans:π1 for achieving desired1 andπ2 for achievingd2. According
to the system proposed in [9], the argumentδ2 attacks bothδ1 andδ3. The
grounded semantics is empty in this case as well. Let us now consider pre-
ferred semantics. It can be checked that this system has a unique preferred
extension which is the set{δ2}. The system concludes that the set of inten-
tions is empty. This result is not desirable since the desire¬d1 preventsd1
andd2 from being accepted while it is itself not feasible.

This paper proposes the first argumentation system that computes the possible
sets of intentions of an agent in one step. In other words, thepaper presents a
system that combines option generation and checking the feasibility of options.
There are two motivations for this. The first one is optimization of resources: a
unified process could be more effective, because it does not waste resources in the
attempt to select desires among a large pool of desires, which may not all turn out
to be feasible after all. The second one is completeness: a unified process would
prevent selecting an unfeasible desire at the expense of a feasible one, in which
case the agent may end up not realizing that there is after alla way to achieve
at least some of its desires. Moreover, the use of argumentation theory presents
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another advantage: the choice of each set of intentions can be explained by the
corresponding arguments.

The proposed system is grounded on a recent work onconstrainedargumen-
tation systems [11]. These systems extend the general framework proposed by
Dung [12] by adding a constraint on arguments. This constraint will serve to fil-
ter the results returned by Dung’s acceptability semantics. Indeed, among all the
extensions, only the ones that satisfy the constraint are kept.

Our system takes as input i) three categories of arguments:epistemicargu-
ments that support beliefs,explanatoryarguments that show that a desire holds in
the current state of the world, andinstrumentalarguments that show that a desire
is feasible, ii) different conflicts among those arguments,and iii) a particular con-
straint on arguments that captures the idea that for a desireto be pursued it should
be both feasible and justified. This is translated by the factthat in a given exten-
sion each instrumental argument for a desire should be accompanied by at least
one explanatory argument in favor of that desire and each explanatory argument
for a desire should be accompanied by at least one instrumental argument for that
desire. Two outputs are returned by the system: The first one is a set of extensions
of arguments. Due to the constraint, only the “interesting”ones (i.e. the ones that
support desires that are both justified and feasible) are kept. The second output
is different sets of intentions. The agent should select oneof them. In [4], it has
been argued that this is a pure decision making problem, and several criteria have
been proposed for rank-ordering sets of intentions. The output of our system can
then be an input to those criteria. In this paper, we do not consider this step. The
properties of this system are deeply investigated. In particular, we show that the
results of such a system are safe, and satisfy the rationality postulates identified
in [13], namely consistency and completeness.

The paper is organized as follows: Section 2 recalls the basics of an argumen-
tation system. Section 3 introduces an example of practicalreasoning. Section 4
presents the language used for representing the main notions (beliefs, desires and
actions). Section 5 studies the different types of arguments involved in a prac-
tical reasoning problem, and Section 6 investigates the conflicts that may exist
between them. Section 7 presents the constrained argumentation system for PR.
The properties of the system are studied in Section 8. Section 9 compares our
approach with existing systems of practical reasoning. Allthe proofs are given in
an appendix at the end of the document.
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2. Constrained argumentation systems: fundamentals

Argumentation is an established approach for reasoning with inconsistent knowl-
edge (like clinical knowledge [14]), based on the construction and the comparison
of arguments.

An argumentation formalism is built around an underlying logical language
and an associated notion of logical consequence, defining the notion of argument.
Argument construction is a monotonic process: new knowledge cannot rule out
an argument but only gives rise to new arguments which may interact with the
first argument. Since knowledge bases may give rise to inconsistent conclusions,
the arguments may be conflicting too. Consequently, it is important to determine
among all the available arguments the ones that are ultimately “acceptable”.

In [12], an abstract argumentation system is defined as follows:

Definition 1. (Basic argumentation system [12])An argumentation systemis a
pair AS = 〈A,R〉 with A is a set of arguments, andR is an attack relation
(R ⊆ A×A). For α, β ∈ A, writing αRβ means that the argumentα attacks the
argumentβ.

In a recent study [15], this system was extended in such a way to take into
account attacks on attacks. However, for the purpose of our paper, we focus on
Dung’s version of argumentation systems.

It is also worth noticing that in the previous definition, neither the origin nor
the structure of arguments are specified. Indeed, the main purpose of Dung in [12]
was to propose semantics for evaluating arguments whatevertheir structure is. The
main semantics are based on two requirements:conflict-freenessanddefence.

Definition 2. (Conflict-free, Defence [12])Let AS = 〈A,R〉 andE ⊆ A.

E is conflict-freeiff ∄ α, β ∈ E s.t.α R β.

E defendsan argumentα iff ∀ β ∈ A, if β R α, then∃ δ ∈ E s.t. δ R β.

Different semantics were proposed in [12] and compared in [16]. For the
purpose of our paper, we only need to recall two of them: stable and preferred
semantics since they are the ones that are more suitable for practical reasoning as
already explained in the introduction.

Definition 3. (Acceptability semantics [12])Let AS = 〈A,R〉 andE ⊆ A.
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E is anadmissibleset iff it is conflict-free and defends every element inE .

E is apreferred extensioniff it is a maximal (w.r.t. set-inclusion) admissible
set.

E is a stable extensioniff it is a preferred extension that attacks all argu-
ments inA\E .

Note that every stable extension is also a preferred one, butthe converse is not
always true.

Example 1. Let AS1 be an argumentation system such thatA = {α, β, γ1, γ2, δ}
andR = {(δ, γ2), (γ1, β), (γ2, β), (β, α)}. The systemAS1 is depicted in the
following figure:

γ1

δ γ2 β α

It can be checked that this argumentation system has six admissible sets:E1 = ∅,
E2 = {δ}, E3 = {γ1}, E4 = {δ, γ1}, E5 = {α, γ1} andE6 = {δ, γ1, α}. Among
the six sets, onlyE6 is a preferred extension. In this example,E6 is also a stable
extension.

The basic argumentation system is extended in [11] by addinga constraint
on arguments. This constraint should be satisfied by Dung’s extensions (under a
given semantics). In Example 1, one may imagine a constraintwhich requires that
the two argumentsα andγ2 belong to the same stable extension. It is clear that
this constraint can be satisfied neither by the stable extension E6, nor by any other
admissible set of the systemAS1.

The constraint is a formula of a propositional languageLA whose alphabet (i.e.
propositional variables) is exactly the setA of arguments. Thus, each argument in
A is a literal ofLA. Note thatLA contains all the formulas that can be built using
the usual logical operators (∧, ∨, →, ¬, ↔) and the constant symbols (⊤ and⊥).

Definition 4. (Constraint, Completion [11]) Let A be a set of arguments and
LA its corresponding propositional language.
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C is a constrainton arguments ofA iff C is a formula ofLA.

Thecompletionof a setE ⊆ A is Ê = {α | α ∈ E} ∪ {¬α | α ∈ A \ E}.

A setE ⊆ A satisfiesC iff Ê is a model ofC (Ê ⊢ C).

The completion of a setE of arguments is a set in which each argument ofA
appears either as a positive literal if the argument belongsto E or as a negative
one otherwise. Thus,|Ê | = |A|.

Example 1 (Continued): In the argumentation systemAS1, one may want to
exclude the extensions that contain both argumentsα andδ. This requirement is
translated into the constraint:C = δ → ¬α. In this case, the completion of the
admissible extensionE6 = {δ, γ1, α} is the setÊ6 = {δ, γ1, α,¬β,¬γ2}. Note that
E6 does not satisfyC since the set̂E6 does not inferC.

A constrained argumentation system is defined as follows:

Definition 5. (Constrained argumentation system [11])Aconstrained argumen-
tation systemis a triple CAS = 〈A,R, C〉 whereA is a set of arguments,
R ⊆ A × A is an attack relation andC is a constraint on arguments of the
setA.

Note that, each argument may be a constraint. However, a constrained argu-
mentation system has exactly one constraint. Thus, if this constraint is reduced
to one argument, this means that all extensions of the systemshould contain this
argument.

Let us now recall how Dung’s extensions are extended to the case of con-
strained argumentation systems. As said before, the idea isto compute Dung’s
extensions, and to keep among those extensions only the onesthat satisfy the con-
straintC.

Definition 6. (C-admissible set [11])Let CAS = 〈A,R, C〉 andE ⊆ A. The
setE isC-admissiblein CAS iff

1. E is admissible,
2. E satisfies the constraintC2.

2Note that the constraint on arguments corresponds to a constraint on extensions.
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In [12], it has been shown that the empty set is always admissible; however, it
is not alwaysC-admissible since the set̂∅ does not always implyC.

Definition 7. (C-preferred extension,C-stable extension [11])LetCAS = 〈A,
R, C〉 andE ⊆ A.

E is a C-preferred extensionof CAS iff E is maximal for set-inclusion
among theC-admissible sets.

E is a C-stable extensionof CAS iff E is a C-preferred extension that at-
tacks all arguments inA\E .

Example 1 (Continued):The constrained version ofAS1 is CAS1 = 〈A,R, δ →
¬α〉. The setE6 = {δ, γ1, α} is not aC-admissible extension since its completion
Ê6 = {δ, γ1, α,¬β,¬γ2} does not infer the formulaδ → ¬α. However, the ad-
missible extensionsE4 = {δ, γ1} and E5 = {α, γ1} are bothC-admissible and
C-preferred extensions. Note thatCAS1 has noC-stable extensions.

The following result summarizes the links between the extensions of aCAS =
〈A,R, C〉 and those of its basic versionAS = 〈A,R〉.

Proposition 1. [11] Let CAS = 〈A,R, C〉 and AS = 〈A,R〉 be its basic ver-
sion.

For eachC-preferred extensionE of CAS, there exists a preferred extension
E ′ of AS such thatE ⊆ E ′.

EveryC-stable extension ofCAS is a stable (hence preferred) extension of
AS. The converse does not hold.

Now that the acceptability semantics are defined, we are ready to define the status
of any argument.

Definition 8. (Argument status)LetCAS = 〈A,R, C〉, E1, . . . , Ex itsC-extensions
under a given semantics, andα ∈ A.

1. α is sceptically accepted(or accepted for short) iffα ∈ Ei, ∀Ei with i =
1, . . . , x.

2. α is rejectediff ∄Ei such thatα ∈ Ei.
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3. α is credulously accepted(or undecided) iffα is neither accepted nor re-
jected. This means thatα is in some extensions and not in others.

One can easily check that if an argument is rejected in a basicargumentation
systemAS under a given semantics, then it will also be rejected in the correspond-
ing CAS under the same semantics.

Proposition 2. LetCAS = 〈A,R, C〉 andAS = 〈A,R〉 be its basic version. For
anyα ∈ A, if α is rejected inAS under semanticsx (wherex is either preferred
or stable), thenα is also rejected inCAS under the same semanticsx.

Example 1 (Continued): Under preferred semantics, the argumentsδ, γ1 andα
are accepted whileγ2 andβ are rejected inAS1. Under the same semantics,γ1 is
accepted;γ2 andβ are rejected;δ andα are undecided inCAS1. Finally, all the
arguments are rejected under stable semantics inCAS1, since there is no C-stable
extension inCAS1.

3. Motivating example

Let us consider the case of Paula, a PhD student, who has fourdesiresand
would like to know whether she can reach them and with which plans. The four
desires are:

To be in central Africa for holidays (jca)

To have her publication finished (fp)

To be a lecturer (lec)

To have visited her friend Carla (vc) if Carla is at home

What is worth noticing is that the three first desires are unconditional, whereas
the fourth one depends on whether the friend is at home or not.Moreover, as ar-
gued in [17] a desire is astate of the worldthat an agent wants to reach in the
future.

In addition to desires, Paula has beliefs on the way of movingfrom a state of
the world to another one, namely:
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In order to have the paper finished, Paula should work (w)

In order to be a lecturer, Paula should defend her thesis (dt) provided that
her thesis is finished (ft)

In order to visit her friend, Paula can go by car (gc) if it is in good state (gs)

In order to have tickets (t), Paula can either go to an agency (ag) or ask a
friend who may bring them (afr);

In order to be vaccinated (vac), Paula can go either to a hospital (hop) or to
a doctor (dr).

Paula has also some information about either the current state of the world:

Actually, Paula’s car is in good state (gs)

Carla is not at home (¬ch)

Paula’s thesis is not finished (¬ft)

Paula is not vaccinated (¬vac) and does not have her tickets (¬t)

Paula’s paper is not yet finished (¬fp)

or the consequences of some actions or some states of the world over her
desires:

If Paula passes to an agency or goes to a doctor, then she cannot finish her
paper

If Paula has tickets and is vaccinated, then she can be in central africa for
holidays.

Note that the term “belief” is a generic word representing informations be-
lieved by the agent about:

the current state of the world,

the way of moving from a state of the world to another one,

the consequences of some actions or some states of the world over her de-
sire.

10



The aim of this example is not to present a realistic situation, but to illustrate
our ideas. Thus, it may be possible that more information canbe added either as
integrity constraints or even as conditional desires.

From the above information, it is clear that the desire of becoming a lecturer
is not yet feasible. The desire of visiting Carla is feasiblesince there is a plan for
reaching it; however, according to the current state of the world, this desire is not
justified. Indeed, for Paula to consider this desire, she should be in a state where
Carla is at home and this is not the case. Regarding the two first desires (i.e. jca
andfp) things are different. Both desires are justified and feasible. However, in
some cases, it is not possible to reach both desires as their plans conflict with each
other. Of course, it would be ideal if all the desires can become intentions. As our
example illustrates, this may not always be the case. In thispaper we will answer
the following questions: which desires will become theintentionsof the agent and
with whichplans?

Next sections will give the formal material necessary for encoding this exam-
ple of PR and computing the intentions of Paula.

4. Language of representation

The example discussed in the previous section shows that three notions are
involved in a PR problem:desires, actionsandbeliefs. For encoding them, we
will use a setX of propositional variables (atoms). From this set, two subsets
are distinguished:Xac andXnac with Xac ∪ Xnac = X andXac ∩ Xnac = ∅. The
subsetXac will be used for encoding actions whileXnac will be used for encoding
non-actions (i.e. beliefs and desires).

Let Lnac be apropositional languagebuilt from Xnac using the classical log-
ical operators∧, ∨, →, ¬, ↔ and the constant symbols⊤, ⊥. Note thatLnac is
completely different fromLA defined in Section 23. Lnac will be used for encod-
ing both desires and beliefs. As already said, a desire is a state of the world that
an agent wants to reach. Thus, the main difference between a belief and a desire

3Their meaning and their use are different:Lnac will be used for representing beliefs and
desires andfor buildingarguments and interactions – see Sections 5 and 6 – andLA will be used
for representing a constraint between arguments and restricting the set of the extensions – see
Section 7 –.
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is that the former is already true (or false) while the lattermay only be true in the
future (after the execution of an action). In [17], it has been argued that a desire
can be encoded as a preference between two states of the world: the one in which
the desire is satisfied and the one in which it is not satisfied.For instance, Paula
prefers the state in which her publication is finished to thatin which it is not yet
finished. In our setting, desires are distinguished from beliefs by storing desires
in a distinct setD ⊆ Lnac. Moreover, desires areliterals and are denoted by
d1, d2, . . .

4 On their side, beliefs are propositional formulas of the whole language
Lnac.

Now regarding its source, a desire may be either unconditional or conditional.
An unconditional desire does not depend on anything, it is expressed by an agent
without justification. Some desires may depend on beliefs. This is, for instance,
the case with the fourth desire of Paula. Indeed, visiting Carla depends on whether
Carla is at home or not. Similarly, a desire may depend on other desires. For
example, if there is a conference in India, and I have the desire to attend, then
I desire also to attend the tutorials. In this example, the desire of attending the
tutorials depends on my belief about the existence of a conference in India, and
on my desire to attend that conference. These three sources of desires are captured
by the notion ofdesire rules.

Definition 9. (Desire Rules)A desire ruleis an expression of the form〈b, d1, . . . ,
dm−1〉 →֒ dm such thatb is a propositional formula ofLnac and eachdi is an
element of the setD.
〈b, d1, . . . , dm−1〉 is called thebodyof the rule anddm its consequent. Note that
the body may be empty; in this case, the desiredm is saidunconditionaland the
desire rule is denoted by〈〉 →֒ dm.

The meaning of a rule〈b, d1, . . . , dm−1〉 →֒ dm is “if the agentbelievesb and
desiresd1, . . . , dm−1, then she willdesiredm as well”. Note that the same desire
di may appear in the consequent of several rules. This means that the same desire
may depend on different beliefs or desires.

Example 2. (Paula’s example) In the motivating example,Xnac = {jca, fp, lec,
vc, gs, ch, ft, vac, t}, and the set of desires isD = {jca,¬jca, fp,¬fp, lec,¬lec,
vc,¬vc}. The desire rules of Paula are〈〉 →֒ jca, 〈〉 →֒ fp, 〈〉 →֒ lec, 〈ch〉 →֒ vc.

4Note that this notation will not be respected in the motivating example. We prefer to use more
explicit strings of lowercase letters.
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An agent is also equipped with a set of actions she can perform. These actions
are provided by a correct and sound planning system (for instance [18, 19]) (not
discussed in this paper). Note that the actions may not necessarily succeed since
the environment is changing. In what follows, an action is defined as a triple: i) a
setS of pre-conditions that should be satisfied before executingthe action5, ii) a
setT of post-conditions that hold after executing the action, and iii) the namea of
the action. Thus, an action allows to move from one state of the world to another.
An action may either be atomic or a conjunction of atomic actions. Thus, each
action is considered as aplan for reaching a state of the world6. Let Lac be the
propositional language built fromXac using only the classical operator∧. Thus,
formulas ofLac are either atoms or conjunctions of atoms.

Definition 10. (Action) An action(or a plan) is a triple 〈S, T, a〉 such that:

S andT are twoconsistentsets of propositional formulas ofLnac

a ∈ Lac

The set of pre-conditions may be empty (S = ∅), which means that the action
can be carried out. It is also worth mentioning that there exists a link betweenS
andT 7. This link is not made explicit in this paper since we are not really inter-
ested by the exact definition of actions. We assume that they are given. Note also
that a desired may appear either in the pre-conditions or in the post-conditions of
an action. Whend is in the post-conditions of an action, this means that the action
leads to the satisfaction of the desire. Whend is in the pre-condition of an action,
this means that in order to perform the action, we should be ina state of the world
in whichd is already reached. Let us illustrate this notion of action on the running
example.

Example 2 (Continued): In this example,Xac = {dr, hop, ag, afr, gc, w, dt}
and the actions that are available for Paula are the following:

5The setS only describes the elements of the world which are mandatoryfor the execution of
the action.

6For simplicity reasons, actions are encoded in a restrictedpropositional language.
7In the sense, that the formulas inT are obtained using the formulas inS.
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〈{¬fp}, {fp}, w〉 〈{¬t}, {t,¬fp}, ag〉
〈{ft}, {lec}, dt〉 〈{¬vac}, {vac}, hop〉
〈{¬vac,¬t}, {jca, vac, t,¬fp}, dr ∧ ag〉 〈{¬vac}, {vac,¬fp}, dr〉
〈{¬vac,¬t}, {jca, vac, t,¬fp}, dr ∧ afr〉 〈{gs}, {vc}, gc〉
〈{¬vac,¬t}, {jca, vac, t,¬fp}, hop ∧ ag〉 〈{¬t}, {t}, afr〉
〈{¬vac,¬t}, {jca, vac, t}, hop ∧ afr〉

Note that the information “If Paula passes to an agency (ag) or goes to a doctor
(dr), then she cannot finish her paper” is directly captured by the post-conditions
of the two actionsag anddr. Similarly, the information “If Paula has tickets (t)
and is vaccinated (vac), then she can be in central africa for holidays” is indirecly
captured by the post-conditions of the compound actionshop ∧ afr, hop ∧ ag,
dr ∧ afr, anddr ∧ ag.

In the remaining of the paper, we assume that an agent is equipped with the
following three finite bases.

Definition 11. (Agent’s bases)An agent is equipped with threefinite bases:

1. Kb ⊆ Lnac containing itsbasic beliefsabout the current state of the world,
2. Kd containing its desire rules,
3. Ka containing its actions.

Example 2 (Continued): Paula is equipped with the following bases:

Kb = {gs,¬ch,¬ft,¬vac,¬t,¬fp},

Kd = {〈〉 →֒ jca, 〈〉 →֒ fp, 〈〉 →֒ lec, 〈ch〉 →֒ vc},

Ka = {
〈{¬fp}, {fp}, w〉, 〈{ft}, {lec}, dt〉,
〈{gs}, {vc}, gc〉, 〈{¬t}, {t,¬fp}, ag〉,

〈{¬vac,¬t}, {jca, vac, t,¬fp}, hop ∧ ag〉, 〈{¬t}, {t}, afr〉,
〈{¬vac,¬t}, {jca, vac, t,¬fp}, dr ∧ ag〉, 〈{¬vac}, {vac,¬fp}, dr〉,

〈{¬vac,¬t}, {jca, vac, t,¬fp}, dr ∧ afr〉, 〈{¬vac}, {vac}, hop〉,
〈{¬vac,¬t}, {jca, vac, t}, hop ∧ afr〉}.

FromKd, the set ofpotential desiresof an agent can be identified as follows:
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Definition 12. (Potential Desires)Let Kb (resp. Kd) be the belief base (resp.
the set of desire rules) of an agent. The set ofpotential desiresof this agent is
PD = {dm|∃ 〈b, d1, . . . , dm−1〉 →֒ dm ∈ Kd andKb 0 dm}.

These are “potential” desires because, when the body of the rule is not empty, the
agent does not know yet whether the antecedents (i.e. bodies) of the correspond-
ing rules are true or not. Moreover, throughout the paper, weassume that each
potential desire of an agent is not yet reached in the currentstate of the world.
This assumption is natural as a desire that is satisfied is no longer a desire.

Example 3. Assume that Paula wants to be rich and, in the current state ofthe
world, Peter is rich. In this case, the desire “to be rich” does not belong to Paula’s
set of potential desires.

Example 2 (Continued): The set of potential desires of Paula isPD = {jca,
fp, lec, vc}.

The following schema gives a synthesis of the presented notions and their
representation (from vocabulary to bases).

Xactions
xxqqqqqq non-actions

&&NNNNNN

Xac

��

Xnac

beliefs ��

desires
))RRRRRRR

Lac

��

Lnac

ttiiiiiiiiiiiiii

��
))RRRRRRRRRR D(⊆ Lnac)

��

Ka Kb

))SSSSSSSSSS Kd

��

PD

In the following sections, we propose different kinds of arguments (one for
each notion introduced here: belief, desire and action/plan) and we study the con-
flicts between these arguments.

5. Typology of arguments

The aim of this section is to present the different kinds of arguments involved
in a practical reasoning problem. Three categories of arguments are distinguished.
The first category justifies/attacks beliefs of the knowledge baseKb, while the two
others justify the adoption of the potential desires of thePD. Throughout the
paper, arguments will be denoted with lowercase Greek letters.
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5.1. Justifying beliefs

The first category of arguments is that studied in argumentation literature, es-
pecially for handling inconsistency in knowledge bases. Indeed, arguments are
built from a knowledge base in order to support or to attack potential conclusions
or inferences. These arguments are calledepistemicin [20]. In our application,
such arguments are built from the baseKb. In what follows, we will use the defi-
nition proposed in [21].

Definition 13. (Epistemic Argument) Let Kb be a beliefs base. Anepistemic
argumentα is a pairα = 〈H, h〉 such that:

1. H ⊆ Kb andh ∈ Lnac,
2. H is consistent,
3. H ⊢ h and
4. H is minimal (for set⊆) among the sets satisfying conditions 1, 2, 3.

Thesupportof the argument is given by the functionSUPP(α) = H, whereas
its conclusionis returned byCONC(α) = h.

Definition 14. (Set of epistemic Arguments)Ab stands for the set of all epis-
temic arguments that can be built from the baseKb.

Remark: Due to the assumption that each potential desire is not yet
true in the current state of the world, it is clear that the conclusionh
of an epistemic argument cannot be a potential desire (i.e. an element
of PD). Thus,∄α ∈ Ab such that CONC(α) ∈ PD.

Example 2 (Continued): Recall that the knowledge base of Paula isKb =
{gs,¬ch,¬ft,¬vac,¬t,¬fp}. The table below contains some epistemic argu-
ments of the setAb. Other arguments, not presented here, can also be built from
Kb.

α1 = 〈{gs}, gs〉 α5 = 〈{¬t},¬t〉
α2 = 〈{¬ch},¬ch〉 α6 = 〈{¬fp},¬fp〉
α3 = 〈{¬ft},¬ft〉 α7 = 〈{¬vac ∧ ¬t},¬vac ∧ ¬t〉
α4 = 〈{¬vac},¬vac〉 α8 = 〈{gs,¬ch}, ch → gs〉
. . . . . .
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5.2. Justifying desires

A desire may be pursued by an agent only if this desire isjustifiedandfeasible.
Thus, two kinds ofreasonsare needed for adopting a desire:

the conditions underlying the desire hold8 in the current state of world; such
reasons will be calledexplanatory arguments;

and there is a plan (an action) for reaching the desire; such reasons will be
calledinstrumental arguments.

The definition of the first kind of arguments involves two bases: the belief
baseKb and the base of desire rulesKd. In what follows, we will use a tree-
style definition of arguments [22]. This choice is not arbitrary but imposed by the
logical language at hand. In particular, desire rules are not material implications,
thus it is important to show how such rules are chained.

Before presenting that definition, let us first introduce some useful functions
that will be used throughout the paper:

Notations: The functions BELIEFS(δ), DESIRES(δ), CONC(δ) and
SUB(δ) return respectively, for a given explanatory argumentδ, the
beliefs used inδ, the desires supported byδ, the conclusion and the
set of sub-arguments of the argumentδ.

Definition 15. (Explanatory Argument) LetKb, Kd be two bases. Anexplana-
tory argument is a pairδ = 〈S, d〉 whered ∈ PD andS is defined recursively as
follows:

If ∃〈〉 →֒ d ∈ Kd thenS is 〈〉 and

BELIEFS(δ) = ∅,

DESIRES(δ) = {d},

CONC(δ) = d,

SUB(δ) = {δ}.

If α is an epistemic argument, andδ1, . . . , δm are explanatory arguments,
and∃ 〈CONC(α), CONC(δ1), . . ., CONC(δm)〉 →֒ d ∈ Kd thenS is 〈α, δ1,
. . . , δm〉 and

8In the sense that the conditions are inferred from the bases of the agent.
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BELIEFS(δ) = SUPP(α) ∪ BELIEFS(δ1) ∪ . . . ∪ BELIEFS(δm),

DESIRES(δ) = DESIRES(δ1) ∪ . . . ∪ DESIRES(δm) ∪ {d},

CONC(δ) = d,

SUB(δ) = {α} ∪ SUB(δ1) ∪ . . . ∪ SUB(δm) ∪ {δ}.

Definition 16. (Set of explanatory Arguments)Ad stands for the set of all ex-
planatory argumentsδ that can be built fromKb andKd such that the setDESIRES(δ)
is consistent9.

Example 2 (Continued): Recall thatKb = {gs,¬ch,¬ft,¬vac,¬t,¬fp} and
Kd = {〈〉 →֒ jca, 〈〉 →֒ fp, 〈〉 →֒ lec, 〈ch〉 →֒ vc}. The setAd = {δ1, δ2, δ3}
where:

δ1 = 〈〈〉, jca〉 δ2 = 〈〈〉, fp〉 δ3 = 〈〈〉, lec〉

Note that there is no explanatory argument in favor of desirevc since the
pre-condition (ch) of the corresponding desire rule in not satisfied. Worse yet,
¬ch ∈ Kb.

The same desire may be supported by several explanatory arguments since a
desire may be the consequent of different desire rules. The set DESIRES(δ) of an
explanatory argumentδ contains the desired (the conclusion ofδ) and, in the case
of a conditional desire,all the desiresused for justifyingd. The following trivial
proposition follows from the previous definitions.

Proposition 3. Let δ ∈ Ad.

The setDESIRESof δ is a subset ofPD (DESIRES(δ) ⊆ PD).

The setBELIEFS of δ is a subset of the knowledge baseKb (BELIEFS(δ) ⊆
Kb).

9The fact that the desires of a desire rule are not conflicting is not sufficient to ensure the
consistency of the set DESIRES(δ) of an explanatory argumentδ. Consider, for instance, the
following example:Kd = {〈〉 →֒ d1; 〈〉 →֒ ¬d1; 〈d1〉 →֒ d2; 〈¬d1〉 →֒ d3; 〈d2, d3〉 →֒ d4}. It is
easy to check that only one explanatory argument,δ, can be built fromKd for the desired4, and
that DESIRES(δ) contains bothd1 and¬d1. Such arguments are forbidden in our system.
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The last category of arguments claims that “a desire may be pursued since it has a
plan for achieving it”. The definition of this kind of arguments involves the belief
baseKb, the base of actions/plansKa, and the setPD.

Definition 17. (Instrumental Argument) Let Kb,Ka,PD be three bases, and
d ∈ PD. An instrumentalargument is a pairπ = 〈〈S, T, x〉, d〉 where:

〈S, T, x〉 ∈ Ka,

d ∈ T ,

S ⊆ Kb.

The functionCONC will return for an argumentπ the desired. Similarly, the
functionsPLAN , PREC andPOSTC will return respectively the action〈S, T, d〉 of
the argument, the pre-conditionsS of the action, its post-conditionsT .

Definition 18. (Set of instrumental Arguments)Ap stands for the set of all in-
strumental arguments that can be built from〈Kb,Ka,PD〉.

The second condition of the above definition ensures that thedesire is reached
when the action is executed. The third condition ensures that the pre-conditions of
the action hold in the current state of the world. In other words, the action can be
executed. Note that it may be the case that the baseKa contains actions whose pre-
conditions are not true. Such actions cannot be executed andtheir corresponding
instrumental arguments do not exist.

Example 2 (Continued): Let us recall here the three bases of Paula.

Kb = {gs,¬ch,¬ft,¬vac,¬t,¬fp},

Kd = {〈〉 →֒ jca, 〈〉 →֒ fp, 〈〉 →֒ lec, 〈ch〉 →֒ vc},

Ka = {
〈{¬fp}, {fp}, w〉, 〈{ft}, {lec}, dt〉,
〈{gs}, {vc}, gc〉, 〈{¬t}, {t,¬fp}, ag〉,

〈{¬vac,¬t}, {jca, vac, t,¬fp}, hop ∧ ag〉, 〈{¬t}, {t}, afr〉,
〈{¬vac,¬t}, {jca, vac, t,¬fp}, dr ∧ ag〉, 〈{¬vac}, {vac,¬fp}, dr〉,

〈{¬vac,¬t}, {jca, vac, t,¬fp}, dr ∧ afr〉, 〈{¬vac}, {vac}, hop〉,
〈{¬vac,¬t}, {jca, vac, t}, hop ∧ afr〉}.
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The only action that allows Paula to be a lecturer consists ofdefending her
thesis (i.e. 〈{ft}, {lec}, dt〉). However, the pre-condition of this action (ft) is
not satisfied in the current state of the world, namely the thesis is not finished yet
(¬ft ∈ Kb). The other desires are all feasible. Their instrumental arguments are
gathered in the setAp = {π1, π2, π3, π4, π5, π6} where:

π1 : 〈〈{¬vac,¬t}, {jca, vac, t,¬fp}, dr ∧ ag〉, jca〉
π2 : 〈〈{¬vac,¬t}, {jca, vac, t,¬fp}, dr ∧ af〉, jca〉
π3 : 〈〈{¬vac,¬t}, {jca, vac, t,¬fp}, hop ∧ ag〉, jca〉
π4 : 〈〈{¬vac,¬t}, {jca, vac, t}, hop ∧ af〉, jca〉
π5 : 〈〈{¬fp}, {fp}, w〉, fp〉
π6 : 〈〈{gs}, {vc}, gc〉, vc〉

Remark: In what follows,A = Ab ∪ Ad ∪ Ap. Note thatA is finite
since the three initial bases (Kb, Kd andKa) are finite.

5.3. Summary

The following table summarizes the different arguments involved in a PR
problem.

Type of argument Type of its conclusion Set Bases involved

Epistemic belief Ab Kb

Explanatory desire Ad Kb,Kd

Instrumental desire Ap Kb,Ka,PD

The next section presents the different conflicts between all these arguments.

6. Interactions between arguments

Arguments built from a knowledge base cannot generally be considered sep-
arately in an inference problem. Indeed, an argument constitutes a reason for
believing, or adopting a desire. However, it is not a proof that the belief is true, or
in our case that the desire should be adopted. The reason is that an argument can
be attacked by other arguments. In this section, we will investigate the different
kinds of conflicts among the arguments identified in the previous section.
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6.1. Conflicts among epistemic arguments

An argument can be attacked by another argument for three main reasons:
i) they have contradictory conclusions (this is known asrebuttal) [23], ii) the
conclusion of an argument contradicts a premise of another argument (assumption
attack) [23], iii) the conclusion of an argument contradicts an inference rule used
in order to build the other argument (undercutting) [24].

Since the baseKb contains propositional formulas, it has been shown in [25]
that the notion of assumption attack is sufficient to captureconflicts between epis-
temic arguments.

Definition 19. Let α1, α2 ∈ Ab. The conflict relationRb on Ab is defined as
follows:
α1 Rb α2 iff ∃h ∈ SUPP(α2) such thatCONC(α1) ≡ ¬h.

Example 2 (Continued): In our running example, the baseKb = {gs, ¬ch,
¬ft, ¬vac, ¬t, ¬fp} is clearly consistent. Thus, epistemic arguments are not
conflicting andRb = ∅.

Let us now consider another knowledge base.

Example 4. Let Kb = {a,¬b, a → b} be a propositional knowledge base. The
argument〈{a,¬b}, a∧¬b〉 attacks in the sense ofRb the argument〈{a, a → b}, b〉.

Note that the assumption attack is a binary relation thatis not symmetric.
Moreover, it can be shown that there are no self-attacking arguments.

Proposition 4. LetAb be the set of all epistemic arguments that can be built from
a beliefs baseKb. It holds that∄α ∈ Ab such thatα Rb α.

In [26], the argumentation system〈Ab,Rb〉 has been applied for handling in-
consistency in a knowledge base, sayKb. In this particular case, a full correspon-
dence has been established between the stable extensions ofthe system and the
maximal consistent subsets of the baseKb. Before presenting formally the result,
let us introduce two useful functions:

Notations:

Let E ⊆ Ab, BASE(E) =
⋃

Hi such that〈Hi, hi〉 ∈ E .
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Let T ⊆ Kb, ARG(T ) = {〈Hi, hi〉 is an epistemic argument|Hi ⊆ T}.

Proposition 5. [26]LetE be a stable extension of〈Ab,Rb〉.

BASE(E) is a maximal (for set inclusion) consistent subset ofKb.

ARG(BASE(E)) = E .

Proposition 6. [26] Let T be a maximal (for set inclusion) consistent subset of
Kb.

ARG(T ) is a stable extension of〈Ab,Rb〉.

BASE(ARG(T )) = T .

A direct consequence of the above result is that if the baseKb is not reduced
to⊥, then the system〈Ab,Rb〉 has at least one non-empty stable extension.

Proposition 7. If Kb 6= ∅ andKb 6= {⊥}, then the argumentation system〈Ab,Rb〉
has non-empty stable extensions.

In addition, it has been shown in [27] that each preferred extension of〈Ab,Rb〉
returns a consistent subset ofKb.

Proposition 8. [27]LetE be preferred extension of〈Ab,Rb〉. It holds thatBASE(E)
is a consistent subset ofKb.

6.2. Conflicts among explanatory arguments

Two explanatory arguments may also be conflicting, in particular, when they
are based on contradictory desires. This kind of conflict is captured by the follow-
ing relation:

Definition 20. Let δ1, δ2 ∈ Ad. The conflict relationRd on Ad is defined as
follows:
δ1 Rd δ2 iff ∃d1 ∈ DESIRES(δ1), d2 ∈ DESIRES(δ2) such thatd1 ≡ ¬d2.

Proposition 9. The relationRd is symmetric and irreflexive.
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Example 2 (Continued): The three explanatory argumentsδ1 = 〈〈〉, jca〉, δ2 =
〈〈〉, fp〉 andδ3 = 〈〈〉, lec〉 are not conflicting. Thus,Rd = ∅.

Let us consider another example in which two explanatory arguments are con-
flicting.

Example 5. Let Kd = {〈〉 →֒ d1, 〈〉 →֒ ¬d1, 〈d1〉 →֒ d2}. The following three
explanatory arguments are built from this base:

δ1 = 〈〈〉, d1〉

δ2 = 〈〈〉,¬d1〉

δ3 = 〈〈δ1〉, d2〉

It is clear thatδ2Rdδ3 andδ3Rdδ2 sinceDESIRES(δ2) = {¬d1} andDESIRES(δ3) =
{d1, d2}. Similarly,δ1Rdδ2 andδ2Rdδ1 sinceDESIRES(δ1) = {d1}

It can also be checked that any two explanatory arguments having conflicting
desires are conflicting in the sense of the relationRd. Formally:

Proposition 10. Letd1, d2 ∈ PD. If d1 ≡ ¬d2, then∀δ1, δ2 ∈ Ad such that:

1. ∃δ′1 ∈ SUB(δ1) with CONC(δ′1) = d1, and
2. ∃δ′2 ∈ SUB(δ2) with CONC(δ′2) = d2,

thenδ1 Rd δ2.

Note that, from the definition of an explanatory argumentδ, the set DESIRES(δ)
cannot be inconsistent. However, the set BELIEFS(δ) may be inconsistent. The
union of the beliefs of two explanatory arguments may also beinconsistent. Later
in the paper we will show that it is unnecessary to consider these kinds of conflict,
since they are captured by conflicts between explanatory andepistemic arguments
(see Propositions 13 and 14).
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6.3. Conflicts among instrumental arguments

Two actions (or plans) may be conflicting for three main reasons:

1. incompatibility of their pre-conditions (indeed, both plans cannot be exe-
cuted at the same time).

2. incompatibility of their post-conditions (the execution of both plans will
lead to contradictory states of the world). This captures also the case of two
plans leading to contradictory desires.

3. incompatibility between the post-conditions of a plan and the pre-conditions
of the other (this means that the execution of a plan will prevent the execu-
tion of the second plan in the future).

The above reasons are captured in the following definition ofattack among
instrumental arguments.

Definition 21. Let π1, π2 ∈ Ap andπ1 6= π2. The conflict relationRp onAp is
defined as follows:π1 Rp π2 iff

PREC(π1) ∧ PREC(π2) |= ⊥, or

POSTC(π1) ∧ POSTC(π2) |= ⊥, or

POSTC(π1) ∧ PREC(π2) |= ⊥ or PREC(π1) ∧ POSTC(π2) |= ⊥

It is clear from the above definition thatRp is symmetric and irreflexive10

Proposition 11. The relationRp is symmetric and irreflexive.

Example 2 (Continued): Some instrumental arguments are conflicting. These
conflicts are summarized in the figure below.

10The fact that the post-conditions of a plan are inconsistentwith its pre-conditions is not consid-
ered as a conflict. In this case, after the execution of the plan, we must have an update mechanism
which will modify the beliefs. It is also for this reason thatthere is no conflict between epistemic
arguments and instrumental arguments on the post-conditions of a plan (see Definition 22).
Note also that the order in which plans are executed is not considered in this paper. This order
may be very important, for instance when we must manage resources consumed by plans. So, this
will be the subject of future work.
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From the above definition, it can be shown that if two plans realize conflicting
desires, then their corresponding instrumental argumentsare conflicting too.

Proposition 12. Letd1, d2 ∈ PD. If d1 ≡ ¬d2, then∀π1, π2 ∈ Ap s.t. CONC(π1)
= d1 andCONC(π2) = d2, thenπ1 Rp π2.

Assumption 1. In this section, we have considered onlybinary con-
flicts between plans, and consequently between their corresponding
instrumental arguments. However, in every-day life, one may have
for instance three plans such that any pair of them is not conflicting,
but the three together are incompatible. For simplicity reasons, in this
paper we suppose that we do not have such conflicts.

6.4. Conflicts among mixed arguments

In the previous sections we have shown how arguments of the same category
can interact with each other. In this section, we will show that arguments of
different categories can also interact. Namely, epistemicarguments play a key role
in defining the status of explanatory and instrumental arguments. An epistemic
argument can attack both types of arguments. The basic idea is to invalidate any
belief used in an explanatory argument and any belief used inthe pre-conditions
of an instrumental one. The end goal is to ensure that only “warranted” beliefs are
used in explanatory and instrumental arguments.

It is worth mentioning that an epistemic argument cannot invalidate a state
of the world that is not yet reached like for instance desiresand post-conditions
of actions. Indeed, epistemic arguments support beliefs that hold in the current
state of the world. Thus, if they attack a state of the world which is true in the
future, they will forbid desires to be reached. Let us consider the case of Paula
who thinks that she is not rich and would like to be rich. Thus,Kb = {¬rich}
andKd = {〈〉 →֒ rich}. If the epistemic argumentα = 〈{¬rich},¬rich〉 attacks
the explanatory argumentδ = 〈〈〉, rich〉, then this latter will never be pursued by
Paula even if we can imagine that she has a good plan for it.
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Similarly, let us assume that Paula has the following action/plan for reach-
ing her desire:〈{}, {rich}, x〉. Thus, she has an instrumental argumentπ =
〈〈{}, {rich}, x〉, rich〉. If α attacksπ, then the plan can never be executed. Con-
sequently, Paula will not consider her desire as an intention.

Finally, let us note that explanatory arguments and instrumental arguments are
not allowed to attack epistemic arguments. In fact, a desirecannot invalidate a
belief. Let us illustrate this issue by an example borrowed from [28]. An agent
thinks that it will be raining, and that when it is raining, she gets wet. It is clear
that this agent does not desire to be wet when it is raining. Intuitively, we should
get one extension{rain, wet}. The idea is that if the agent believes that it is
raining, and she will get wet if it rains, then she should believe that she will get
wet, regardless what she wants. To do otherwise would be to indulge inwishful
thinking.

Definition 22 summarizes all these remarks and gives the exhaustive list of
allowed mixed conflicts in our setting11.

Definition 22. Let α ∈ Ab, δ ∈ Ad, π ∈ Ap. The conflict relations between
mixed arguments are defined as follows:

α Rbd δ iff ∃h ∈ BELIEFS(δ) s.t.h ≡ ¬CONC(α).

α Rbp π iff ∃h ∈ PREC(π), s.t.h ≡ ¬CONC(α).

δ Rpdp π andπ Rpdp δ iff CONC(π) ≡ ¬d with d ∈ DESIRES(δ)12.

Example 2 (Continued): In this example, the relationsRbd, Rbp andRpdp are
emptysince the beliefs baseKb is consistent and there is no contradictory desires.
The absence of conflict betweenα6 = 〈{¬fp},¬fp〉 andδ2 = 〈〈〉, fp〉 illustrates
the previous remarks about the temporal difference betweenthe current state of
the world (α6) and the future state of the world (δ2).

A trivial consequence of this definition is the following link betweenRb and
Rbd:

Consequence 1.Letα1, α2 ∈ Ab andδ ∈ Ad such thatα1 ∈ SUB(δ). If α2Rbα1

thenα2Rbdδ.

11Rxy (resp.Rxyx) denotes conflicts (resp. symmetric conflicts) emanating from arguments of
Ax towards arguments ofAy .

12Note that ifδ1Rpdpπ2 and there existsδ2 such that CONC(δ2) = CONC(π2) thenδ1Rdδ2.
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Moreover, as already said, the set of beliefs of an explanatory argument may
be inconsistent. In such a case, the explanatory argument iscertainly attacked (in
the sense ofRbd) by an epistemic argument. Formally:

Proposition 13. Let δ ∈ Ad. If BELIEFS(δ) ⊢ ⊥, then∃α ∈ Ab s.t.α Rbd δ.

Similarly, when the beliefs of two explanatory arguments are inconsistent, it
can be checked that there exist epistemic arguments that attack the two explana-
tory arguments.

Proposition 14. Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥ and BELIEFS(δ2) 6⊢ ⊥.
If BELIEFS(δ1)∪ BELIEFS(δ2) ⊢ ⊥, then∃α1, α2 ∈ Ab s.t.α1 Rbd δ1 andα2 Rbd

δ2.

Conflicts may also exist between an instrumental argument and an explanatory
one since the beliefs of the explanatory argument may be conflicting with the pre-
conditions of the instrumental one. Here again, we will showthat there exist
epistemic arguments that attack the two arguments. Note that in this case, the set
of pre-conditions of the instrumental argument is not empty.

Proposition 15. Let δ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥. If BELIEFS(δ)∪
PREC(π) ⊢ ⊥ then∃α1, α2 ∈ Ab s.t.α1 Rbd δ andα2 Rbp π.

Later in the paper, it will be shown that the three above propositions are suf-
ficient for ignoring these conflicts (between two explanatory arguments, and be-
tween an explanatory argument and an instrumental one).

6.5. Summary of conflict relations between arguments
The following table summarizes the possible conflicts between arguments.

Conflict relation From To Symmetric

Rb epistemic arg. (Ab) epistemic arg. no
Rd explanatory arg. (Ad) explanatory arg. yes
Rp instrumental arg. (Ap) instrumental arg. yes
Rbd epistemic arg. explanatory arg. no
Rbp epistemic arg. instrumental arg. no
Rpdp instrumental arg. explanatory arg. yes

explanatory arg. instrumental arg.

Now, all the mandatory pieces are ready for the definition of an argumentation
system for practical reasoning.
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7. Argumentation system for PR

The notion of constraint forms the backbone of constrained argumentation
systems. In a practical reasoning context, it encodes two important points:

First, it gives the link between the justification of a desireand the plan for
achieving it. The basic idea is the following: as already said, for a desire
to be pursued, it should be both justified (i.e. supported by an explanatory
argument) and feasible (i.e. supported by an instrumental argument). Thus,
explanatory arguments that are not accompanied by instrumental arguments
for their conclusions will not be considered (see Part 2 of Definition 23).
Similarly, instrumental arguments that cannot be accompanied by explana-
tory arguments in favor of their desires will also be discarded (see Part 1 of
Definition 23).

Secondly, it takes into account the recursive form of the explanatory ar-
guments. Indeed, because this particular form, each explanatory argument
must be accompanied by all its subarguments (see Part 3 of Definition 23).

So, the constraint is formalized as follows:

Definition 23. (Constraint for PR) Let Ad and Ap be two sets of arguments
andLAd∪Ap

be the propositional language defined usingAd ∪ Ap as the set of
propositional variables. Aconstraint for PRis a constraintC on arguments of
Ad ∪Ap such that:

C = (
∧

πi∈Ap

(πi → (
∨

δj∈{δ∈Ad |CONC(πi)≡CONC(δ)}

δj)))

∧

(
∧

δk∈Ad

(δk → (
∨

πl∈{π∈Ap|CONC(δk)≡CONC(π)}

πl)))

∧

(
∧

δk∈Ad

(
∧

β∈SUB(δk)

(δk → β)))

with the convention:(
∨

x∈X x) = ⊥ if X = ∅.

28



Example 2 (Continued): In the example on Paula, the constraintC is on argu-
ments ofAb ∪Ad ∪ Ap. It is defined as follows:

C = ( (π1 → δ1)

∧(π2 → δ1)

∧(π3 → δ1)

∧(π4 → δ1)

∧(π5 → δ2)

∧(π6 → ⊥))

∧( (δ1 → (π1 ∨ π2 ∨ π3 ∨ π4)

∧(δ2 → π5)

∧(δ3 → ⊥))

∧( (δ1 → δ1)

∧(δ2 → δ2)

∧(δ3 → δ3))

Note the particular cases ofδ3 andπ6: for δ3 (resp.π6) there is no correspond-
ing instrumental (resp. explanatory) argument.

Example 5 (Continued): In this example, there are three explanatory arguments
δ1 = 〈〈〉, d1〉, δ2 = 〈〈〉,¬d1〉 andδ3 = 〈〈δ1〉, d2〉. Suppose that there exists only one
instrumental argumentπ = 〈〈S, T, x〉, d2〉. The constraint is thus:

C = ( (π → δ3))

∧( (δ1 → ⊥)

∧(δ2 → ⊥)

∧(δ3 → π)

∧( (δ1 → δ1)

∧(δ2 → δ2)

∧((δ3 → δ1) ∧ (δ3 → δ3)))

Let A = {δ1, δ2, δ3, π}. The constrained argumentation system of this exam-
ple has only one C-preferred extension which is the empty set.

A constrained argumentation system for PR is defined as follows:
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Definition 24. (Constrained argumentation system for PR)A constrained ar-
gumentation systemfor practical reasoning is the tripleCASPR = 〈A,R, C〉
with:

A = Ab ∪ Ad ∪ Ap,

R = Rb ∪ Rd ∪Rp ∪Rbd ∪ Rbp ∪ Rpdp,

C a constraint on arguments defined onAd ∪ Ap as in Definition 23.

Remember that the aim of this paper is to compute the intentions to be pursued
by an agent,i.e. the desires that are both justified and feasible together (this is one
of the purposes of a practical reasoning problem). These intentions are defined as
follows:

Definition 25. (Set of intentions)LetKb,Kd,Ka be three bases andCASPR be
the corresponding constrained system. LetE1, . . . , En be theC-extensions of
CASPR under a given semantics.

A setI ⊆ PD is a set of intentionsof CASPR under the given semantics iff
there exists aC-extensionEi such that for eachd ∈ I, there existsπ ∈ Ap ∩ Ei
such thatd = CONC(π).

Different intention sets may be returned by ourCASPR. Indeed, each exten-
sion gives birth to a set of intentions, the state of the worldwhich justifies these
intentions and the plans which can realize them. The exact set that an agent de-
cides to pursue is merely a decision problem as argued in [4].This choice is
beyond the scope of this paper. Recall that the aim of this paper is only to identify
the different possibilities for an agent.

Example 2 (Continued): The constrained argumentation system that will help
Paula to define her intentions is thusCASPR = 〈Ab ∪Ad ∪Ap,Rp

13, C〉 whereC
is the constraint defined above.

The systemASPR has two stable and preferred extensions14:

13Recall thatRb, Rd, Rbd, Rbp, andRpdp are all empty.
14Note that the notion of defence has two different semantics in PR context. When we consider

only epistemic or explanatory arguments, the defence corresponds exactly to the notion defined
in Dung’s argumentation systems and in its constrained extension: an attacked argument must
be “reinstated” by a defender. Things are different with instrumental arguments because of the
symmetry of the conflict relation. In this case, it would be sufficient to take into account the notion
of conflict-free in order to identify the plans which belong to an admissible set.
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E1 = Ab ∪ {δ1, δ2, δ3, π1, π2, π3, π4, π6} and

E2 = Ab ∪ {δ1, δ2, δ3, π4, π5, π6}

Note that the above extensions contain the explanatory argumentδ3 in favor
of the desirelec even if this desire is not feasible. Similarly, they containthe
instrumental argumentπ6 while the desirevc is not justified. If now, we apply the
systemCASPR, then we will get twoC-preferred extensions (there is noC-stable
extensions in this example):

E ′
1 = Ab ∪ {δ1, π1, π2, π3, π4} and

E ′
2 = Ab ∪ {δ1, δ2, π4, π5}.

It is worth mentioning that theC-preferred extensions contain only useful in-
formation. Thus, the use of the constraintC makes it possible to remove uninter-
esting information from the extensions (likeδ3 andπ6).

Now that theC-extensions are defined, we are able to define Paula’s sets of
intentions. She has two sets of intentions under the preferred semantics:

I1 = {jca}

I2 = {jca, fp}

Our framework does not make choice between these two sets. The choice of
the exact set is a decision problem and is beyond the scope of this paper. For
instance, one may think that since the two desires may be satisfied, it is natural to
assume that Paula will choose the second set. Consequently,she should choose
the plansπ4 andπ5. Assume now that Paula is very cautious, and she does not
want to miss her journey to central Africa. In this case, we can easily imagine that
she chooses the setI1 since she has four plans for reaching this desire, and if for
any reason one of them fails, she can still satisfy her desireby another plan.

Note: In this example,CASPR does not haveC-stable extensions. This means
that at least one of the potential desires of the agent cannotbe both justified
and feasible, whereas its justification or its feasibility are not attacked in this
state of the world. Here, it is the case for the desirelec (to be a lecturer) and
for the desirevc (to have visited her friend Carla); the first one is justified
(argumentδ3) but not feasible and the second one is feasible (argument
π6) but not justified. However bothδ3 andπ6 are not attacked inCASPR,
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so the justification oflec and the feasibility ofvc are “compatible” with
the current state of the world. Stable semantics emphasizesthis kind of
“compatibility” to the detriment of the constraintC (desires must be both
justified and feasible). So, in these cases, it is natural to consider that there
is noC-stable extensions and the set of intentions remains empty.
With preferred semantics, things are different because theuse of set-inclusion
maximality allows more flexibility: even if an argument is not attacked, it
can be rejected in order to satisfy the constraintC of the system.

Example 5 (Continued): In this example, we have shown that ifA = {δ1, δ2, δ3, π},
then the onlyC-preferred extension of the corresponding constrained system is the
empty set. Consequently, the empty set is also the unique setof intentions.

Let us now consider a more elaborate version of this example,in particular the
one discussed in [9]. Recall that this version is not handledcorrectly by existing
systems for PR, namely the one proposed in [9].

In the elaborate version, the agent has three potential desiresd1, ¬d1 andd2
such that〈d1〉 →֒ d2. The explanatory arguments are gathered inAd = {δ1, δ2, δ3}
with CONC(δ1) = d1, CONC(δ2) = ¬d1, and CONC(δ3) = d2. The relationRd

is defined as follows:Rd = {(δ1, δ2), (δ2, δ1), (δ2, δ3), (δ3, δ2)}. Assume that there
are two instrumental arguments, thusAp = {π1, π2} with CONC(π1) = d1 and
CONC(π2) = d2. Let us assume thatRp = ∅, Rb = ∅, Rxy = ∅ with x 6= y,
andRpdp = {(δ2, π1), (π1, δ2)}. The constraint of the correspondingCASPR is:

C = ( (π1 → δ1) ∧ (π2 → δ3))

∧( (δ1 → π1) ∧ (δ2 → ⊥) ∧ (δ3 → π2))

∧( (δ1 → δ1) ∧ (δ2 → δ2) ∧ ((δ3 → δ1) ∧ (δ3 → δ3)))

It can be checked that the corresponding CAS has one C-preferred extension
E = Ab ∪ {δ1, δ3, π1, π2}. This agent has thus one intention set which isI =
{d1, d2}. Remind that according to the system proposed in [9], this agent has no
intentions meaning that she will abandon her three desires.

8. Properties of the system

The aim of this section is to study the properties of the proposed argumenta-
tion system for PR (CASPR = 〈A,R, C〉). At some places, we will refer byASPR
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to the corresponding basic argumentation system〈A,R〉 (i.e. the system without
the constraintC).

The first results concern the extensions of the system, and are mainly direct
consequences of results obtained in [11]. The first proposition establishes a link
betweenC-admissible sets andC-preferred extensions, and shows the impact of
applying the constraint on the notion of admissibility.

Proposition 16. Let CASPR = 〈A,R, C〉. LetΩ be the set ofC-admissible sets
of CASPR.

1. LetE ∈ Ω. There exists aC-preferred extensionE ′ of CASPR s.t.E ⊆ E ′.
2. Let CASPR

′ = 〈A,R, C ′〉 s.t. C ′ |= C. LetΩ′ be the set ofC ′-admissible
sets ofCASPR

′. The inclusionΩ′ ⊆ Ω holds.

The two following properties show that the constrained argumentation system
is more general than its basic version. However, the two systems may coincide in
some circumstances.

Proposition 17. Let CASPR = 〈A,R, C〉. For eachC-preferred extensionE of
CASPR, there exists a preferred extensionE ′ of ASPR such thatE ⊆ E ′.

This proposition is illustrated in the running example. Indeed,E ′
1 ⊆ E1 and

E ′
2 ⊆ E2.

Proposition 18. LetCASPR = 〈A,R, C〉 be such thatC is a valid formula onA.
Then the preferred extensions ofASPR are theC-preferred extensions ofCASPR.

As already said, due to the constraintC, eachC-extensionE of CASPR con-
tains, among the instrumental arguments, only the ones for which there exists at
least one explanatory argument in the same set for their conclusions. Similarly, it
contains, among the explanatory arguments, only the ones for which we can find
at least one instrumental argument in favor of their conclusions. This means that
the constraint makes it possible to filter the content of the extensions and to keep
only useful information. Formally

Consequence 2.Let CASPR = 〈A,R, C〉 andE be itsC-extension under pre-
ferred or stable semantics.

For all δ ∈ E ∩ Ad, ∃π ∈ E ∩ Ap such thatCONC(δ) = CONC(π).
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For all π ∈ E ∩ Ap, ∃δ ∈ E ∩ Ad such thatCONC(δ) = CONC(π).

Due to the particular constraint used in our system, the empty set is always
C-admissible and the system has at least oneC-preferred extension.

Proposition 19. The empty set is aC-admissible of the practical system
CASPR.

The practical systemCASPR has at least oneC-preferred extension.

Recall thatASPR = 〈Ab ∪Ad ∪Ap, Rb ∪Rd ∪Rp ∪ Rbd ∪Rbp ∪Rpdp〉. An
important proposition shows that the set of epistemic arguments in a given stable
extension ofASPR is itself a stable extension of the system〈Ab,Rb〉. Knowing
that the argumentation system〈Ab,Rb〉 is intended to handle inconsistency in the
knowledge baseKb, the following result shows that stable extensions ofASPR

are “complete” w.r.t. epistemic arguments. This means alsothat explanatory and
instrumental arguments have no impact on the status of beliefs, and that wishful
thinking is avoided.

Proposition 20. If E is a stable extension ofASPR, then the setE ∩Ab is a stable
extension of〈Ab,Rb〉.

We also show that the basic argumentation systemASPR for PR has always
stable extensions.

Proposition 21. If Kb 6= ∅ andKb 6= {⊥}, then the systemASPR has at least
one non-empty stable extension.

It can be shown that if an explanatory argument belongs to a stable extension
of ASPR, then all its sub-arguments belong to that extension.

Proposition 22. LetE be a stable extension ofASPR. If δ ∈ E ∩Ad, thenSUB(δ)
⊆ E .

This means that the beliefs on which this explanatory argument is built are
“warranted” and the desires on which depend its conclusion are justified15.

Similarly, we can show that if an instrumental argument belongs to a stable
extension then all its pre-conditions are supported by thisextension.

15Note that, in this case, Part 3 of Definition 23 is trivially satisfied. However, it could be not
the case under other semantics.
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Proposition 23. Let E be a stable extension ofASPR. If π ∈ E ∩ Ap, then
PREC(π) ⊆

⋃
αj∈E∩Ab

SUPP(αj).

In a previous section, we have shown that an explanatory argument may be
based on contradictory beliefs. We have also shown that suchan argument is at-
tacked by an epistemic argument. In what follows, we will show that the situation
is worse since such an argument is attacked by each stable extension of the system
〈Ab,Rb〉. That’s why these arguments will be discarded.

Proposition 24. Let δ ∈ Ad. If BELIEFS(δ) ⊢ ⊥, then∀E with E is a stable
extension of〈Ab,Rb〉, ∃α ∈ E such thatαRbdδ.

A direct consequence of the above result is that such explanatory argument
(with contradictory beliefs) will never belong to a stable extension of the system
ASPR.

Proposition 25. Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥. Under the stable semantics,
the argumentδ is rejected inASPR.

Since an explanatory argument with contradictory beliefs is rejected inASPR,
then it will also be rejected inCASPR.

Proposition 26. Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥. Under the stable semantics,
δ is a rejected argument inCASPR.

Besides in Proposition 14, we have shown that when two explanatory argu-
ments are based on contradictory beliefs, then the two arguments are attacked by
epistemic arguments. We will show that they are even attacked by each stable
extension of the system〈Ab,Rb〉.

Proposition 27. Letδ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥ andBELIEFS(δ2) 6⊢ ⊥. If
BELIEFS(δ1)∪BELIEFS(δ2) ⊢ ⊥, then∀E withE is a stable extension of〈Ab,Rb〉,
∃α ∈ E such thatαRbdδ1 or αRbdδ2.

We go further, and we show that the two arguments cannot be accepted at the
same time,i.e. they cannot belong to the same stable extension simultaneously.
This guarantees that the system proposed here returns safe results (there is no pairs
of explanatory arguments with contradictory beliefs in aC-stable extension).
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Proposition 28. Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥ andBELIEFS(δ2) 6⊢ ⊥.
If BELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥, then∄E with E a C-stable extension of
CASPR such thatδ1 ∈ E andδ2 ∈ E .

Similarly, some conflicts between explanatory and instrumental arguments
were discarded. We have shown in Proposition 15 that in such acase, the two
arguments are attacked by epistemic arguments. Here we willshow that the ex-
planatory argument cannot be accepted at the same time with the instrumental
one. One of them will be for sure rejected in the system.

Proposition 29. Let δ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥. If BELIEFS(δ)∪
PREC(π) ⊢ ⊥, then∀E with E is a stable extension of〈Ab,Rb〉, ∃α ∈ E such that
αRbdδ, or αRbpπ.

Proposition 30. Let δ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥. If BELIEFS(δ)∪
PREC(π) ⊢ ⊥ then∄E with E a C-stable extension ofCASPR such thatδ ∈ E
andπ ∈ E .

The next results are of great importance. They show that the proposed argu-
mentation system for PR satisfies the “consistency” rationality postulate proposed
in [13]. Indeed, eachC-stable (C-preferred) extension of our system supports a
consistent set of beliefs about the current state of the world. Moreover, the con-
sequences of the plans of each extension are consistent. In particular, the set of
desires is consistent. Thus, eachC-stable (C-preferred) extension represents a
consistent state of the world before and after the executionof the corresponding
actions.

Notations: The following notations will be used: LetE ⊆ A.

BEL(E) = (
⋃

αi∈E∩Ab

SUPP(αi)) ∪ (
⋃

δj∈E∩Ad

BELIEFS(δj)) ∪ (
⋃

πk∈E∩Ap

PREC(πk))

DES(E) = (
⋃

δj∈E∩Ad

DESIRES(δj)) ∪ (
⋃

πk∈E∩Ap

CONC(πk))

Theorem 1. (Consistency)Let CASPR be a constrained argumentation system
for PR, andE1, . . . , En itsC-stable extensions.∀Ei, i = 1, . . . , n, it holds that:

1. The setBEL(Ei) = BEL(Ei ∩ Ab).
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2. The setBEL(Ei) is a maximal (for set inclusion) consistent subset ofKb.
3. The set

⋃
πk∈Ei∩Ap

POST(πk) is consistent.
4. The setDES(Ei) is consistent.

Consistency is also ensured with preferred semantics.

Theorem 2. (Consistency)Let CASPR be a constrained argumentation system
for PR, andE1, . . . , En itsC-preferred extensions.∀Ei, i = 1, . . . , n, it holds that:

1. The setBEL(Ei) is consistent.
2. The set

⋃
πk∈Ei∩Ap

POST(πk) is consistent.
3. The setDES(Ei) is consistent.

As direct consequence of the above results, a set of intentions is consistent.
Formally:

Theorem 3. Under stable and preferred semantics, each set of intentions ofCASPR

is consistent.

We have also shown that our system satisfies the rationality postulate con-
cerning the closure of the extensions [13]. Namely, we have shown that the set
of arguments that can be built from the beliefs, desires, andplans involved in a
given stable extension, is that extension itself. Before giving this result, let us first
introduce some notations:

Notations: Let E be aC-stable extension ofCASPR.
As will denote the set of all (epistemic, explanatory and instrumental)
arguments that can be built from BEL(E), DES(E), the plans involved
in building arguments ofE and the baseKd.

Theorem 4. (closure)LetCASPR be a constrained argumentation system for PR,
andE1, . . . , En itsC-stable extensions.∀Ei, i = 1, . . . , n, it holds that:

ARG(BEL(Ei)) = Ei ∩ Ab.

As = Ei.

In fact, this shows that every “good” argument is included inaC-stable exten-
sion. Thus, each desire that deserves to be pursued will be returned in an intention
set.

Note that the property of closure is not satisfied under preferred semantics as
shown in the following example:
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Example 6. ConsiderCASPR such thatR is empty and there exist two explana-
tory argumentsδ1 = 〈〈〉, d1〉 and δ2 = 〈〈δ1〉, d2〉 and only one instrumental ar-
gumentπ1 = 〈〈{}, {d1}, a〉, d1〉. E = Ab ∪ {δ1, π1} is the only one C-preferred
extension of this system.

However,DES(E) = {d1}. So, usingDES(E), one can create the argumentδ2
(i.e. δ2 ∈ As). In this case,As 6= E .

However, it is clear that whenCASPR is coherent (i.e. its stable extensions
coincide with the preferred ones), then it satisfies closureeven underC-preferred
semantics.

Property 1. Let CASPR be a constrained argumentation system for PR, andE1,
. . . , En its C-preferred extensions. IfCASPR is coherent, then∀Ei, i = 1, . . . , n,
it holds that:

ARG(BEL(Ei)) = Ei ∩ Ab.

As = Ei.

9. Related Work

As already mentioned in the introduction, a number of attempts have been
made to use argumentation as a basis for practical reasoning. These attemps can
be divided into two groups of works: works that are interested in identifying ar-
gument schemes that one may encounter in practical reasoning (e.g. [5, 6]), and
works that propose concrete argumentation-based systems for PR (e.g. [7, 4, 8, 9,
10]).

The starting point of Atkinson and Bench Capon in [5] was the following
practical syllogism advocated by the philosopher Walton in[6].

G is a goal/desire for agentX

Doing actionA is sufficient for agentX to carry outG

Then, agentX ought to do actionA

The above syllogism, which would apply to the means-end reasoning step, is
in essence already an argument in favor of doing actionA. However, this does
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not mean that the action is warranted, since other arguments(called counter-
arguments) may be built or provided against the action. The authors have defined
an extended version of this syllogism as well as different ways of attacking it.
However, it is not clear how all these arguments can be put together in order to
answer the critical question of PR “what is the right thing todo in a given situa-
tion?”. It is neither clear how these arguments are evaluated, nor which decision
principle is followed in order to choose between competing desires or between
competing plans. It is worth mentioning that most of the schemes and attacks
suggested in [5] are already captured in our constrained system. For instance, to
the above syllogism the following critical questions are associated:

1. Are there alternative ways of realizingG?
2. Is it possible to doA?
3. Does the agent have other goals that can be taken into account?
4. Are there other consequences of doingA which should be taken into ac-

count?

The first question amounts to find the different instrumentalarguments for the de-
sireG and to take all of them into account in the reasoning,i.e. when computing
the set of intentions. The second question amounts to verifywhether we are in
a state of the world whereA can be executed. In our approach this is captured
by the pre-conditions of the plans. The third question is also captured in our ap-
proach. Indeed, we start with the set of all potential desires of the agent, and then
we select the ones that will become its intentions. The last question is captured in
our system by the post-conditions of the plans and with the beliefs in the baseKb.
Nevertheless, in [5], agent’s preferences (hervalues) are taken into account while
in our system these are left for investigation.

Regarding the second category of works, it can itself be partitioned into two
sub-groups of models: models that are instantiations of theabstractargumenta-
tion framework of Dung [12] (e.g. [29, 7, 30]), and models that are based on an
encoding of argumentative reasoning in logic programs (e.g. [31]). Our frame-
work builds on the former.

In [29], Amgoud was only interested by the second step of PR process (i.e.
generating and checking the feasibility of plans). She has developed an argumen-
tation framework for generating consistent plans from a given set of desires and
planning rules. Later in [32], she has proposed together with Cayrol an ATMS-
based proof theory for that framework. The framework was then extended with
another argumentation framework that generates the desires themselves in [7],
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taking thus into account the first step of PR process. For thatpurpose, a notion of
“desire generation rules” has been introduced. These rulesare meant to generate
desires from beliefs. Thus, our desire generation rules aremore general since we
allow the generation of desires not only from beliefs, but also from other desires.
Another problem with the work proposed in [7] arises becausedesires and beliefs
are not correctly distinguished in the antecedent and consequent of the desire gen-
eration rules. This may lead to incorrect inferences where an agent may conclude
beliefs on the basis of yet-unachieved desires, hence exhibiting a form of wishful
thinking. Our approach resolves this by distinguishing between beliefs and de-
sires in the rules, and refining the notion of attack among explanatory arguments
accordingly. The problem of the logical language has been fixed in [9]. In that
work, the authors considered three separate systems: one for reasoning about be-
liefs, one for generating justified desires, and finally one for generating feasible
desires. The three systems are related with each others by attacks. Indeed, argu-
ments supporting beliefs may attack both explanatory arguments and instrumental
ones. However, explanatory arguments do not conflict with the instrumental ones.
Once the results of the three systems are known, the intentions of an agent are
computed. The main drawback of this approach is the following: it may be the
case that two desires, sayd1 andd2, are supported by two conflicting explana-
tory arguments, howeverd1 is not feasible since there is no plan for reaching it.
What happens is that the system may discard the desired2 since its explanatory
argument is stronger than the one in favor ofd1. However, when computing the
set of intentions,d1 will neither be considered since it is not feasible. Thus, we
lose both desires even if it was possible to achieved2 since it is both justified and
feasible. In summary, handling separately the three types of arguments may lead
to undesirable situations.

Hulstijn and van der Torre [30], on the other hand, have a notion of “desire
rule,” which contains only desires in the consequent. But their approach is still
problematic. It requires that the selected goals are supported by goal trees16 which
contain both desire rules and belief rules that are deductively consistent. This
consistent deductive closure again does not distinguish between desire literals and
belief literals (see Proposition 2 in [30]). This means thatone cannot both believe
¬p and desirep. In our framework, on the other hand, the distinction enables us
to have an acceptable belief argument for believing¬p and, at the same time, an

16Similar respectively to our justified desires and our explanatory arguments.
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acceptable explanatory argument for desiringp.

In [31], Simari et al. were interested by the first step of a PR process, and
have developed an argumentation system for generating desires. This makes our
system more general since it tackles also the second step. Like us, they separate
in the language rules for reasoning about beliefs and rules for reasoning about
desires.

In [33], a defeasible logic based on modal logic is used to reason about mo-
tivational attitudes (such as obligations, intentions anddesires). In that work, the
authors focused on the links between the different attitudes. They show how to
infer information from different (nested) rules describing either the beliefs of an
agent, or her obligations, desires and intentions. However, they do not take into
account the feasibility of desires. In this sense, our work is more general.

A last work which is less related to ours is that developed in [34, 35]. In these
two papers, the authors are interested in argumentative dialogues/negotiations.
Each agent has final goal and a plan for reaching it. The actions of the plan
are arguments that should be uttered. In our paper, we are more interested in
generating the final goal(s) of an agent.

10. Conclusion

The paper tackles an important aspect of the practical reasoning problem using
argumentation theory. It computes the set of intentions that an agent mat pursue.

The contribution is twofold. To the best of our knowledge, this paper proposes
the first argumentation system that computes the possible intentions in one step,
i.e. by combining desire generation and planning. This avoids undesirable results
encountered by previous proposals in the literature. The second contribution con-
sists of studying deeply the properties of argumentation-based PR.

This work can be extended in different ways:

To improve the language in such a way to take into account temporal as-
pects.

To relax the assumption that the attack relation among instrumental argu-
ments is binary. Indeed, it may be the case that more than two plans may be
conflicting while each pair of them is compatible.
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Another urgent extension would be to introduce preferencesto the system.
The idea is that beliefs may be pervaded with uncertainty, desires may not
have equal priorities, and plans may have different costs. Thus, taking into
account these preferences will help to refine the intention sets.

In [36, 37], it has been shown that an argument may not only be attacked
by other arguments, but may also be supported by arguments. It would be
interesting to study the impact of such a relation between arguments in the
context of PR.

Another interesting area of future work is investigating the proof theories of
this system. The idea is to answer the question “is a given potential desire
a possible intention of the agent ?” without computing the whole preferred
extensions.

Finally, we are planning to implement the system. For that purpose, we
may take advantage of existing algorithms developed recently in [38] for
generating arguments and counter-arguments.
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Appendix A. Proofs of propositions and theorems

Proposition 2. Let CAS = 〈A,R, C〉 andAS = 〈A,R〉 be its basic version. For
anyα ∈ A, if α is rejected inAS under semanticsx (wherex is either preferred
or stable), thenα is also rejected inCAS under the same semanticsx.

Proof . Assume thatα ∈ A is rejected inAS under semanticsx and not rejected
in CAS.

Case of stable semantics: Sinceα is not rejected inCAS, then there exists
E such thatE is a C-stable extension ofCAS andα ∈ E . According to
Proposition 2.9,E is also a stable extension. Sinceα is rejected inAS, then
α 6∈ E , contradiction.

Case of preferred semantics: Sinceα is not rejected inCAS, then there ex-
istsE such thatE is aC-preferred extension ofCAS andα ∈ E . According
to Proposition 2.9, eachC-preferred extension is a subset of a preferred
extension. This means that∃E ′ suchE ′ is a preferred extension ofAS and
E ⊆ E ′. However, sinceα is rejected inAS, thenα 6∈ E ′, contradiction with
the fact thatα ∈ E .

Proposition 3. Let δ ∈ Ad.

The set DESIRESof δ is a subset ofPD (DESIRES(δ) ⊆ PD).

The set BELIEFS of δ is a subset of the knowledge baseKb (BELIEFS(δ) ⊆
Kb).
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Proof . Let δ ∈ Ad.

Let us show thatDESIRES(δ) ⊆ PD. This is a direct consequence from the
definition of an explanatory argument and the definition of the setPD.

Let us show thatBELIEFS(δ) ⊆ Kb. BELIEFS(δ) =
⋃

SUPP(αi) with αi

∈ Ab ∩ SUB(δ). According to the definition of an epistemic argumentαi,
SUPP(αi) ⊆ Kb, thusBELIEFS(δ) ⊆ Kb.

Proposition 4. LetAb be the set of all epistemic arguments that can be built from
a beliefs baseKb. It holds that∄α ∈ Ab such thatα Rb α.

Proof . Let α ∈ Ab. Let us suppose thatα Rb α. According to Definition 19,
∃h ∈ SUPP(α) such thatCONC(α) ≡ ¬h. Moreover, according to the definition
of an epistemic argument, it holds thatSUPP(α) ⊢ CONC(α), thus,SUPP(α) ⊢
¬h. Sinceh ∈ SUPP(α), this means thatSUPP(α) ⊢ h,¬h, thusSUPP(α) ⊢ ⊥.
This contradicts the fact that the support of an epistemic argument (α in our case)
should be consistent.

Proposition 7. If Kb 6= {⊥} andKb 6= ∅, then the argumentation system〈Ab,Rb〉
has non-empty stable extensions.

Proof . SinceKb 6= {⊥} andKb 6= ∅ then the baseKb has at least one maximal
(for set inclusion) consistent subset, sayT . According to Proposition 6,ARG(T )
is a stable extension of〈Ab,Rb〉.

Proposition 9. The relationRd is symmetric and irreflexive.

Proof . This is a direct consequence of Definition 20.

Proposition 10. Let d1, d2 ∈ PD. If d1 ≡ ¬d2, then∀δ1, δ2 ∈ Ad such that: (1)
∃δ′1 ∈ SUB(δ1) with CONC(δ′1) = d1, and (2)∃δ′2 ∈ SUB(δ2) with CONC(δ′2) = d2,
thenδ1 Rd δ2.

Proof . Let d1, d2 ∈ PD. Suppose thatd1 ≡ ¬d2. Let δ1, δ2 ∈ Ad such that: (1)
∃δ′1 ∈ SUB(δ1) with CONC(δ′1) = d1, and (2)∃δ′2 ∈ SUB(δ2) with CONC(δ′2) =
d2. According to the definition of an explanatory argument, it is clear thatd1 ∈
DESIRES(δ1) andd2 ∈ DESIRES(δ2). Sinced1 ≡ ¬d2 thenδ1 Rd δ2.
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Proposition 11. The relationRp is symmetric and irreflexive.

Proof . This is a direct consequence of Definition 21.

Proposition 12. Let d1, d2 ∈ PD. If d1 ≡ ¬d2, then∀π1, π2 ∈ Ap s.t. CONC(π1)
= d1 and CONC(π2) = d2, thenπ1 Rp π2.

Proof . Let d1, d2 ∈ PD. Suppose thatd1 ≡ ¬d2. Let us also suppose that∃
π1, π2 ∈ Ap with CONC(π1) = d1, and CONC(π2) = d2. According to Defini-
tion 17, it holds thatd1 ∈ POSTC(π1) andd2 ∈ POSTC(π2). Sinced1 ≡ ¬d2,
thenPOSTC(π2) ⊢ ¬d1. However, the two setsPOSTC(π1) and POSTC(π2) are
both consistent (according to Definition 10), thusPOSTC(π1) ∪ POSTC(π2) ⊢ ⊥.
Consequently,π1 Rp π2.

Consequence 1. Letα1, α2 ∈ Ab andδ ∈ Ad such thatα1 ∈ SUB(δ). If α2Rbα1

thenα2Rbdδ.

Proof . By definition, ifα1 ∈ SUB(δ) thenSUPP(α1) ⊆ BELIEFS(δ). Moreover,
also by definition, ifα2Rbα1 then∃h ∈ SUPP(α1) such thatCONC(α2) ≡ ¬h.
Thus,∃h ∈ BELIEFS(δ) such thatCONC(α2) ≡ ¬h. Consequently,α2Rbdδ.

Proposition 13. Let δ ∈ Ad. If BELIEFS(δ) ⊢ ⊥, then∃α ∈ Ab such thatα Rbd

δ.

Proof . Let δ ∈ Ad. Suppose thatBELIEFS(δ) ⊢ ⊥. This means that∃T that
is minimal for set inclusion among subsets ofBELIEFS(δ) with T ⊢ ⊥. Thus17,
∃h ∈ T such thatT\{h} ⊢ ¬h with T\{h} is consistent. SinceBELIEFS(δ) ⊆
Kb (according to Prop. 3), thenT\{h} ⊆ Kb. Consequently,∃ 〈T\{h},¬h〉 ∈ Ab

with h ∈ BELIEFS(δ). Thus,〈T\{h},¬h〉 Rbd δ.

Proposition 14. Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥ and BELIEFS(δ2) 6⊢ ⊥. If
BELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥, then∃α1, α2 ∈ Ab s.t. α1 Rbd δ1 andα2 Rbd

δ2.

17SinceT is⊆-minimal among inconsistent subsets of BELIEFS(δ), each subset ofT is consis-
tent; so,∃T ′ = T \ {h} strictly included inT s.t.T ′ 6⊢ ⊥; soT ′ ⊢ ¬h (otherwise,T ′ ∪ {h} = T

would be consistent).
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Proof . Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥ and BELIEFS(δ2) 6⊢ ⊥. Assume
that BELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥. So,∃T1 ⊆ BELIEFS(δ1) and ∃T2 ⊆
BELIEFS(δ2) with T1 ∪ T2 ⊢ ⊥ and T1 ∪ T2 is minimal for set inclusion, i.e.
T1 ∪ T2 is a minimal conflict. SinceBELIEFS(δ1) 6⊢ ⊥ and BELIEFS(δ2) 6⊢ ⊥,
thenT1 6= ∅ andT2 6= ∅. Thus,∃h1 ∈ T1 such that(T1∪T2)\{h1} ⊢ ¬h1. Since
T1∪T2 is a minimal conflict, then each subset ofT1∪T2 is consistent, thus the set
(T1∪T2)\{h1} is consistent. Moreover, according to Proposition 3,BELIEFS(δ1)
⊆ Kb andBELIEFS(δ2) ⊆ Kb. Thus,T1 ⊆ Kb andT2 ⊆ Kb. It is then clear that
(T1 ∪ T2) \ {h1} ⊆ Kb. Consequently〈(T1 ∪ T2) \ {h1},¬h1〉 is an argument of
Ab. Thus,〈(T1 ∪ T2) \ {h1},¬h1〉 Rbd δ1. Similar reasoning applies forh2 ∈ T2

(sinceT2 6= ∅). Thus,〈(T1 ∪ T2) \ {h2},¬h2〉 Rbd δ2.

Proposition 15. Let δ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥. If BELIEFS(δ) ∪
PREC(π) ⊢ ⊥ then∃α1, α2 ∈ Ab s.t.α1 Rbd δ andα2 Rbp π.

Proof . Letδ ∈ Ad andπ ∈ Ap. Suppose thatBELIEFS(δ) 6⊢ ⊥. SinceBELIEFS(δ) 6⊢
⊥ andPREC(π) 6⊢ ⊥, then∃T1 ⊆ BELIEFS(δ) and∃T2 ⊆ PREC(π) withT1 6= ∅,
T2 6= ∅ andT1∪T2 is the smallest inconsistent subset ofBELIEFS(δ)∪PREC(π).

SinceT1 6= ∅, then∃h1 ∈ T1 such thatT1 ∪ T2\{h1} ⊢ ¬h1 with T1 ∪
T2\{h1} is consistent. SinceBELIEFS(δ) ⊆ Kb and sincePREC(π) ⊆ Kb, then
T1∪T2 ⊆ Kb. Consequently,T1∪T2\{h1} ⊆ Kb. Thus,〈T1∪T2\{h1},¬h1〉 ∈ Ab.
Moreover,〈T1 ∪ T2\{h1},¬h1〉 Rbd δ. Similar reasoning applies forh2 ∈ T2. We
build an argument〈T1 ∪ T2\{h2},¬h2〉 Rbp π.

Proposition 16. Let CASPR = 〈A,R, C〉. LetΩ be the set ofC-admissible sets
of CASPR.

1. Let E ∈ Ω. There exists aC-preferred extensionE ′ of CASPR such that
E ⊆ E ′.

2. Let CASPR
′ = 〈A,R, C ′〉 such thatC ′ |= C. Let Ω′ be the set ofC ′-

admissible sets ofCASPR
′. We haveΩ′ ⊆ Ω.

Proof . This is a direct consequence of Proposition in [11].

Proposition 17. Let CASPR = 〈A,R, C〉. For eachC-preferred extensionE of
CASPR, there exists a preferred extensionE ′ of ASPR such thatE ⊆ E ′.

Proof . This is a direct consequence of Proposition in [11].
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Proposition 18. Let CASPR = 〈A,R, C〉 such thatC is a valid formula onA.
Then the preferred extensions ofASPR are theC-preferred extensions ofCASPR.

Proof . This is a direct consequence of Proposition in [11].

Consequence 2Let CASPR = 〈A,R, C〉 andE be itsC-extension under pre-
ferred or stable semantics.

For all δ ∈ E ∩ Ad, ∃π ∈ E ∩ Ap such that CONC(δ) = CONC(π).

For allπ ∈ E ∩ Ap, ∃δ ∈ E ∩ Ad such that CONC(δ) = CONC(π).

Proof . These are direct consequences of the constraintC.

Proposition 19

The empty set is aC-admissible of the practical systemCASPR.

The practical systemCASPR has at least oneC-preferred extension.

Proof . ∅ is admissible (as shown by Dung in [12]) and allπi andδk variables
are false in∅̂, so ∅̂ ⊢ C) (this is due to the particular form of the constraint
for practical reasoning). Thus, the empty set isC-admissible, consequently, the
argumentation systemCASPR has aC-preferred extension.

Proposition 20. If E is a stable extension ofASPR, then the setE ∩ Ab is a stable
extension of〈Ab,Rb〉.

Proof . Let E be a stable extension ofASPR. Let us suppose thatE ′ = E ∩ Ab is
not a stable extension of〈Ab,Rb〉. Two cases exist:

Case 1: E ′ is not conflict-free. This means that there existα, α′ ∈ E ′ such that
αRbα

′. SinceE ′ = E ∩ Ab, thenα, α′ ∈ E . This means thatE is not conflict-free.
This contradicts the fact thatE is a stable extension.

Case 2: E ′ does not attack every argument that is not inE ′. This means that
∃α ∈ Ab andα 6∈ E ′ andE ′ does not attack (w.r.t.Rb) α. This means thatE ′∪{α}
is conflict-free, thusE ∪{α} is also conflict-free, and does not attack an argument
that is not in it (because only an epistemic argument can attack another epistemic
argument and all epistemic arguments ofE belong toE ′). This contradicts the fact
thatE is a stable extension.
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Proposition 21. If Kb 6= ∅ andKb 6= {⊥}, then the systemASPR has at least one
non-empty stable extension.

Proof . ASPR can be viewed as the union of 2 argumentation systems:ASb =
〈Ab, Rb〉 andASdp = 〈Ad ∪ Ap, Rd ∪ Rp ∪ Rpdp〉 plus theRbd ∪ Rbp relation.

SinceKb 6= ∅ and Kb 6= {⊥}, then the systemASb has stable extensions
(according to Proposition 7). LetE1, . . . , En be those extensions. The system
ASdp is symmetric in the sense of [39] since the relationRd ∪ Rp ∪ Rpdp is
symmetric. In [39], it has been shown that such a system has stable extensions
which correspond to maximal (for⊆) sets of arguments that are conflict-free. Let
E ′
1, . . . , E

′
m be those extensions.

The two systems are linked withRbd ∪Rbp. Two cases can be distinguished:

case1:Rbd∪Rbp = ∅. ∀Ei, E ′
j, the setEi∪E ′

j is a stable extension ofASPR.
Indeed,Ei ∪ E ′

j is conflict-free sinceEi, E ′
j are both conflict-free, and the

relationRbd ∪ Rbp = ∅. Moreover,Ei ∪ E ′
j attacks every argument that is

not inEi ∪ E ′
j, since ifα /∈ Ei ∪ E ′

j , then: i) ifα ∈ Ab, thenEi attacks w.r.t.
Rb α sinceEi is a stable extension. Now, assume thatα ∈ Ad ∪ Ap. Then,
E ′
j ∪ {α} is conflicting sinceE ′

j is a maximal (for⊆) set that is conflict-free.
Thus,E ′

j attacksα.

case2:Rbd ∪ Rbp 6= ∅. Let E be a maximal (for set inclusion) set of argu-
ments that is built with the following algorithm:

1. E = Ei
2. while (∃β ∈ Ap∪Ad such thatE∪{β} is conflict-free) doE = E∪{β}

This algorithm stops after a finite number of steps (becauseAp ∪ Ad is
a finite set) and gives a set of arguments which is⊆-maximal among the
conflict-free sets which includeEi. It is easy to see thatE is stable because,
by construction,∀γ ∈ (Ap ∪ Ad) \ E , ∃γ′ ∈ E such thatγ′Rγ, (because if
γ′ ∈ Ab ∩ E it is impossible thatγRγ′ and because ifγ′ ∈ (Ad ∪ Ap) ∩ E
if we haveγRγ′ we also haveγ′Rγ) and, becauseEi ⊆ E , we also have
∀α ∈ Ab \ E , ∃α′ ∈ E such thatα′Rα (becauseEi is stable inASb).

So there is always a stable extension ofASPR.

Proposition 22. Let E be a stable extension ofASPR. If δ ∈ E ∩Ad, then SUB(δ)
⊆ E .
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Proof . Let E be a stable extension ofASPR. Let δ ∈ Ad. Let us suppose that
δ ∈ E and∃δ′ ∈ SUB(δ) such thatδ′ 6∈ E . Sinceδ′ 6∈ E , then∃x ∈ E such that
xRδ′. There are three possible cases:

1. x ∈ Ab, thusxRbdδ
′. This means that∃h ∈ BELIEFS(δ′) such thatCONC(x)

≡ ¬h. However,δ′ ∈ SUB(δ), thusBELIEFS(δ′) ⊆ BELIEFS(δ). Thus,
xRbdδ and consequently,xRδ. This contradicts the fact thatE is conflict-
free.

2. x ∈ Ad, thusxRdδ
′. Thus,∃d1 ∈ DESIRES(x) and∃d2 ∈ DESIRES(δ′)

such thatd1 ≡ ¬d2. However,DESIRES(δ′) ⊆ DESIRES(δ), thusxRdδ and
consequently,xRδ. This contradicts the fact thatE is conflict-free.

3. x ∈ Ap, thusxRpdpδ
′. This means thatCONC(x)≡¬d withd ∈ DESIRES(δ′).

However,DESIRES(δ′)⊆ DESIRES(δ), thusxRpdpδ and consequently,xRδ.
This contradicts the fact thatE is conflict-free.

Proposition 23. Let E be a stable extension ofASPR. If π ∈ E ∩ Ap, then
PREC(π) ⊆

⋃
αj∈E∩Ab

SUPP(αj).

Proof . LetE be a stable extension ofASPR, and letπ ∈ Ap such thatπ ∈ E . Let
us assume that∃x ∈ PREC(π) andx /∈

⋃
αj∈E∩Ab

SUPP(αj). LetE ′ = E ∩ Ab.
According to Proposition 20, the setE ′ is a stable extension of the system

〈Ab,Rb〉. Moreover, according to Proposition 5,BASE(E ′) =
⋃

αj∈E∩Ab
SUPP(αj)

is a maximal (for set inclusion) consistent subbase of the knowledge baseKb.
Thus,BASE(E ′) ∪ {x} is inconsistent. It follows thatBASE(E ′) ⊢ ¬x.

According to Proposition 7,BASE(E ′) 6= ∅. Thus,∃H ⊆ BASE(E ′) such that
H 6= ∅, H is consistent andH ⊢ ¬x. Consequently,〈H,¬x〉 is an argument of
the setAb, and〈H,¬x〉 ∈ ARG(BASE(E ′)).

According to Proposition 5,ARG(BASE(E ′)) = E ′. Thus,〈H,¬x〉 ∈ E ′. Con-
sequently,〈H,¬x〉 ∈ E . From Definition 22,〈H,¬x〉Rbpπ. This means thatE is
not conflict free. This contradicts the fact thatE is a stable extension.

Proposition 24. Let δ ∈ Ad. If BELIEFS(δ) ⊢ ⊥, then∀E with E is a stable
extension of〈Ab,Rb〉, ∃α ∈ E such thatαRbdδ.

Proof . Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥. LetE1, . . . En be the stable extensions
of the system〈Ab,Rb〉. Suppose that∃Ei such thatEi does not attackδ, i.e. ∄α ∈
Ei such thatαRbdδ.
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According to Prop. 5,BASE(Ei) is a maximal (for set inclusion) consistent
subset ofKb. SinceBELIEFS(δ) ⊢ ⊥, then∃T ⊆ BELIEFS(δ) with T is the
smallest inconsistent subset ofBELIEFS(δ) (i.e. T ⊢ ⊥). Moreover, according to
Prop. 3,BELIEFS(δ) ⊆ Kb, thusT ⊆ Kb.

SinceBASE(Ei) is a maximal (for set inclusion) consistent subset ofKb, and
T a minimal conflict ofKb, then we have two cases:

Case 1:BASE(Ei)∩T = ∅. This means that∀h ∈ T , BASE(Ei)∪{h} ⊢ ⊥.
Thus,BASE(Ei) ⊢ ¬h. Consequently,∃H ⊆ BASE(Ei) with H is minimal
for set-inclusion among subsets ofBASE(Ei) that satisfyH ⊢ ¬h. The
pair 〈H,¬h〉 is then an argument ofAb. However, according to Prop. 5,
ARG(BASE(Ei)) = Ei, this means that〈H,¬h〉 ∈ Ei and〈H,¬h〉 Rbd δ.

Case 2: BASE(Ei) ∩ T 6= ∅. SinceBASE(Ei) 6⊢ ⊥ and T ⊢ ⊥, then
∃h ∈ T andh 6∈ BASE(Ei) such thatBASE(Ei) ⊢ ¬h (this is due to the
fact that BASE(Ei) is a maximal consistent subset ofKb). Consequently,
∃H ⊆ BASE(Ei) with H is minimal for set-inclusion among subsets of
BASE(Ei) that satisfyH ⊢ ¬h. The pair〈H,¬h〉 is then an argument of
Ab. According to Prop. 5,ARG(BASE(Ei)) = Ei, this means that〈H,¬h〉
∈ Ei and〈H,¬h〉 Rbd δ.

Proposition 25. Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥. Under the stable semantics,
the argumentδ is rejected inASPR.

Proof . Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥.
According to Proposition 21, the systemASPR has at least one stable exten-

sion. LetE be one of these stable extensions. Suppose thatδ ∈ E .
According to Proposition 20, the setE ∩ Ab is a stable extension of〈Ab,Rb〉.

Moreover, according to Proposition 24,∃α ∈ E ∩ Ab such thatαRbdδ. This
contradicts the fact that a stable extension is conflict-free.

Proposition 26. Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥. Under the stable semantics,δ
is a rejected argument inCASPR.

Proof . Let δ ∈ Ad with BELIEFS(δ) ⊢ ⊥. According to Prop. 25,δ is rejected
in ASPR. Moreover, according to Prop. 2; we know that each argument that is
rejected inASPR is also rejected inCASPR.
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Proposition 27. Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥ and BELIEFS(δ2) 6⊢ ⊥.
If B ELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥, then∀E with E is a stable extension of
〈Ab,Rb〉, ∃α ∈ E such thatαRbdδ1, orαRbdδ2.

Proof . Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥, BELIEFS(δ2) 6⊢ ⊥, BELIEFS(δ1)
∪ BELIEFS(δ2) ⊢ ⊥.

LetE1, . . . En be the stable extensions of the system〈Ab,Rb〉. Suppose that∃Ei
such thatEi does not attackδ1 andEi does not attackδ2, i.e. ∄α ∈ Ei such that
αRbdδ1, or αRbdδ2.

BELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥, so∃T ⊆ BELIEFS(δ1) ∪ BELIEFS(δ2) with
T is the smallest inconsistent subset ofBELIEFS(δ1) ∪BELIEFS(δ2) (i.e. T ⊢ ⊥).

Moreover, according to Proposition 3,BELIEFS(δ1) ⊆ Kb and BELIEFS(δ2)
⊆ Kb, thusT ⊆ Kb.

According to Proposition 5,BASE(Ei) is a maximal (for set inclusion) con-
sistent subset ofKb. SinceBASE(Ei) is a maximal (for set inclusion) consistent
subset ofKb, andT a minimal conflict ofKb, then we have two cases:

Case 1:BASE(Ei)∩T = ∅. This means that∀h ∈ T , BASE(Ei)∪{h} ⊢ ⊥.
Thus,BASE(Ei) ⊢ ¬h. Consequently,∃H ⊆ BASE(Ei) with H is minimal
for set-inclusion among subsets ofBASE(Ei) that satisfyH ⊢ ¬h. The pair
〈H,¬h〉 is then an argument ofAb. However, according to Proposition 5,
ARG(BASE(Ei)) = Ei, this means that〈H,¬h〉 ∈ Ei.

If h ∈ T ∩ BELIEFS(δ1), then〈H,¬h〉 Rbd δ1.

If h ∈ T ∩ BELIEFS(δ2), then〈H,¬h〉 Rbd δ2.

Case 2: BASE(Ei) ∩ T 6= ∅. SinceBASE(Ei) 6⊢ ⊥ and T ⊢ ⊥, then
∃h ∈ T andh 6∈ BASE(Ei) such thatBASE(Ei) ⊢ ¬h (this is due to the
fact that BASE(Ei) is a maximal consistent subset ofKb). Consequently,
∃H ⊆ BASE(Ei) with H is minimal for set-inclusion among subsets of
BASE(Ei) that satisfyH ⊢ ¬h. The pair〈H,¬h〉 is then an argument ofAb.
According to Prop. 5,ARG(BASE(Ei)) = Ei, this means that〈H,¬h〉 ∈ Ei.
If h ∈ T ∩BELIEFS(δ1), then and〈H,¬h〉 Rbd δ1. If h ∈ T ∩BELIEFS(δ2),
then and〈H,¬h〉 Rbd δ2.

Proposition 28. Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥ and BELIEFS(δ2) 6⊢ ⊥.
If B ELIEFS(δ1) ∪ BELIEFS(δ2) ⊢ ⊥, then∄E with E a C-stable extension of
CASPR such thatδ1 ∈ E andδ2 ∈ E .
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Proof . Let δ1, δ2 ∈ Ad with BELIEFS(δ1) 6⊢ ⊥, BELIEFS(δ2) 6⊢ ⊥, BELIEFS(δ1)
∪ BELIEFS(δ2) ⊢ ⊥.

Assume that∃E with E a C-stable extension ofCASPR. According to [11],E
is also a stable extension ofASPR. Suppose thatδ1 ∈ E andδ2 ∈ E .

According to Proposition 20, the setE ∩ Ab is a stable extension of〈Ab,Rb〉.
Moreover, according to Proposition 27,∃α ∈ E∩Ab such thatαRbdδ1, orαRbdδ2.
Thus, there is a contradiction, and we can conclude that∄E with E a stable ex-
tension ofASPR such thatδ1 ∈ E and δ2 ∈ E . Thus, we have a contradiction.

Proposition 29. Let δ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥. If BELIEFS(δ) ∪
PREC(π) ⊢ ⊥ then∀E with E is a stable extension of〈Ab,Rb〉, ∃α ∈ E such that
αRbdδ, orαRbpπ.

Proof . Letδ ∈ Ad, π ∈ Ap with BELIEFS(δ) 6⊢ ⊥ andBELIEFS(δ)∪PREC(π) ⊢
⊥. Let us suppose thatE is a stable extension of〈Ab,Rb〉, and thatδ ∈ E and
π ∈ E .

SinceBELIEFS(δ) ∪ PREC(π) ⊢ ⊥, BELIEFS(δ) 6⊢ ⊥, and PREC(π) 6⊢ ⊥,
then∃T1 ⊆ BELIEFS(δ) and∃T2 ⊆ PREC(π) such thatT1 ∪ T2 ⊢ ⊥ andT1 ∪ T2

is the minimal inconsistent subset ofBELIEFS(δ) ∪ PREC(π). We know also that
T1 ⊆ Kb (since according to Proposition 3,BELIEFS(δ) ⊆ Kb) and T2 ⊆ Kb

(sincePREC(π) ⊆ Kb). LetT = T1 ∪ T2.
According to Proposition 5,BASE(E) is a maximal (for set inclusion) consis-

tent subset ofKb. Then, two cases are distinguished:

Case 1:BASE(E)∩ T = ∅. This means that∀h ∈ T , BASE(E)∪{h} ⊢ ⊥.
Thus,BASE(E) ⊢ ¬h. Consequently,∃H ⊆ BASE(E) with H is minimal
for set-inclusion among subsets ofBASE(E) that satisfyH ⊢ ¬h. The pair
〈H,¬h〉 is then an argument ofAb. However, according to Proposition 5,
ARG(BASE(E)) = E , this means that〈H,¬h〉 ∈ E .

If h ∈ T1, then〈H,¬h〉 Rbd δ.

If h ∈ T2, then〈H,¬h〉 Rbp π.

Case 2: BASE(E) ∩ T 6= ∅. SinceBASE(E) 6⊢ ⊥ and T ⊢ ⊥, then
∃h ∈ T and h 6∈ BASE(E) such thatBASE(E) ⊢ ¬h (this is due to the
fact that BASE(E) is a maximal consistent subset ofKb). Consequently,
∃H ⊆ BASE(E) with H is minimal for set-inclusion among subsets of
BASE(E) that satisfyH ⊢ ¬h. The pair〈H,¬h〉 is then an argument ofAb.
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According to Prop. 5,ARG(BASE(E)) = E , this means that〈H,¬h〉 ∈ E . If
h ∈ T ∩ BELIEFS(δ1), then〈H,¬h〉 Rbd δ1. If h ∈ T ∩ BELIEFS(δ2), then
〈H,¬h〉 Rbd δ2.

Proposition 30. Let δ ∈ Ad andπ ∈ Ap with BELIEFS(δ) 6⊢ ⊥. If BELIEFS(δ) ∪
PREC(π) ⊢ ⊥ then∄E with E a C-stable extension ofCASPR such thatδ ∈ E
andπ ∈ E .

Proof . Let δ ∈ Ad and π ∈ Ap with BELIEFS(δ) 6⊢ ⊥ and BELIEFS(δ) ∪
PREC(π) ⊢ ⊥. LetE be aC-stable extension ofCASPR. So, according to [11],
E is also a stable extension ofASPR. Let us suppose thatδ ∈ E and π ∈ E .
SinceE is a stable extension ofASPR, thenE ′ = E ∩ Ab is a stable extension of
〈Ab,Rb〉 (according to Proposition 20). Moreover, according to Proposition 29,
sinceBELIEFS(δ) ∪ PREC(π) ⊢ ⊥ then∃α ∈ E ′ such thatαRbdδ or αRbpπ.
This means thatE attacksδ or E attacksπ. However,δ ∈ E andπ ∈ E . This
contradicts the fact thatE is conflict-free.

Theorem 1. Let CASPR be a constrained argumentation system for PR, andE1,
. . . ,En itsC-stable extensions.∀Ei, i = 1, . . . , n, it holds that:

1. The set BEL(Ei) = BEL(Ei ∩Ab).
2. The set BEL(Ei) is a maximal (for set inclusion) consistent subset ofKb.
3. The set

⋃
πk∈Ei∩Ap

POST(πk) is consistent.

4. The set DES(Ei) is consistent.

Proof . LetEi be a stable extension of the systemCASPR.

1. Let us show that the setBEL(Ei) = BEL(Ei ∩ Ab).
In order to prove this, one should handle two cases:

BEL(Ei ∩ Ab) ⊆ BEL(Ei). This is a direct consequence from the fact
that BEL(Ei ∩ Ab) =

⋃
SUPP(αi) with αi ∈ Ei ∩ Ab (cf. definition of

BEL(E)).

BEL(Ei) ⊆ BEL(Ei ∩Ab). Let us suppose that∃h ∈ BEL(Ei) andh 6∈
BEL(Ei ∩Ab). According to Proposition 20,Ei ∩Ab is a stable exten-
sion of〈Ab,Rb〉. Moreover, according to Proposition 5,BEL(Ei∩Ab)
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is a maximal (for set-⊆) consistent subset ofKb
18. However,BEL(Ei)

⊆ Kb, thenh ∈ Kb. Sinceh 6∈ BEL(Ei ∩ Ab), thenBEL(Ei ∩ Ab) ∪
{h} ⊢ ⊥ (this is due to the fact thatBEL(Ei ∩ Ab) is a maximal (for
set-⊆) consistent subset ofKb). Thus,BEL(Ei∩Ab) ⊢ ¬h. This means
that∃H ⊆ BEL(Ei ∩Ab) such thatH is the minimal consistent subset
of BEL(Ei ∩ Ab), thusH ⊢ ¬h. SinceH ⊆ Kb (sinceBEL(Ei ∩ Ab)
⊆ Kb), then 〈H,¬h〉 ∈ Ab. However, according to Proposition 5,
ARG(BEL(Ei ∩Ab)) = Ei ∩Ab. Besides,h ∈ BEL(Ei), there are three
possibilities:
(a) h ∈ BELIEFS(δ) with δ ∈ Ei. In this case,〈H,¬h〉 Rbd δ. This

contradicts the fact thatEi is a stable extension that is conflict-
free.

(b) h ∈ PREC(π) with π ∈ Ei. In this case,〈H,¬h〉 Rbp π. This
contradicts the fact thatEi is a stable extension that is conflict-
free.

(c) h ∈ SUPP(α) withα ∈ Ei. This is impossible since the setEi∩Ab

is a stable extension, thus it is conflict free.

2. Let us show that the setBEL(Ei) is a maximal (for set inclusion) consistent
subset ofKb.
SinceEi is a C-stable extension ofCASPR, thenEi is also a stable exten-
sion of ASPR (according to [11]). Moreover, according to the first item
of Theorem 1,BEL(Ei) = BEL(Ei ∩ Ab). However, according to Proposi-
tion 20,Ei∩Ab is a stable extension of〈Ab,Rb〉, and according to Proposi-
tion 5,BEL(Ei∩Ab) is a maximal (for set-⊆) consistent subset ofKb. Thus,
BEL(Ei) is a maximal (for set inclusion) consistent subset ofKb.

3. Let us show that the set
⋃

πk∈Ei∩Ap
POST(πk) is consistent. Assume that⋃

πk∈Ei∩Ap
POST(πk) is inconsistent. This means that∃π1, . . . , πn ∈ Ei such

that POST(π1) ∪ . . . ∪ POST(πn) is inconsistent. According to Assumption
1 given in the end of Section 6.3,Rp is binary, and thus, by definition of
the relationRp, it holds thatπiRpπj , for all i, j ∈ 1 . . . n and i 6= j. This
contradicts the fact thatEi is aC-stable extension, thus conflict-free.

4. Let us show that the setDES(Ei) is consistent.
SinceEi is a C-stable extension ofCASPR, thenEi is also a stable exten-
sion ofASPR (according to [11]). Let us suppose thatDES(Ei) is inconsis-
tent, this means that

⋃
DESIRES(δk) ∪

⋃
CONC(πj) ⊢ ⊥ with δk ∈ Ei and

18Because BEL(Ei∩Ab) =
⋃

SUPP(αi) with αi ∈ Ei∩Ab; so, BEL(Ei∩Ab) = BASE(Ei∩Ab).
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πj ∈ Ei. SinceDES(Ei) ⊆ PD (according to Proposition 3), then∃d1, d2 ∈
DES(Ei) such thatd1 ≡ ¬d2. Three possible situations may occur:

(a) ∃π1, π2 ∈ Ei ∩ Ap such thatCONC(π1) = d1, and CONC(π2) = d2.
This means thatπ1Rpπ2, thusπ1Rπ2. This is impossible sinceEi is a
stable extension, thus it is supposed to be conflict-free.

(b) ∃δ1, δ2 ∈ Ei∩Ad such thatd1 ∈ DESIRES(δ1) andd2 ∈ DESIRES(δ2).
This means thatδ1Rdδ2, thusδ1Rδ2. This is impossible sinceEi is a
stable extension, thus it is supposed to be conflict-free.

(c) ∃δ ∈ Ei ∩ Ad, ∃π ∈ Ei ∩ Ap such thatd1 ∈ DESIRES(δ) and d2 =
CONC(π).
Sinced1 ∈ DESIRES(δ), thus∃δ′ ∈ SUB(δ) such thatCONC(δ′) =
d1. This means thatδ′Rpdpπ, thusδ′Rπ. However, sinceδ ∈ Ei, thus
according to Proposition 22δ′ ∈ Ei. This is impossible sinceEi is a
stable extension, thus it is supposed to be conflict-free.

Theorem 2. Let CASPR be a constrained argumentation system for PR, and
E1, . . . , En itsC-preferred extensions.∀Ei, i = 1, . . . , n, it holds that:

1. The set BEL(Ei) is consistent.
2. The set

⋃
πk∈Ei∩Ap

POST(πk) is consistent.

3. The set DES(Ei) is consistent.

Proof . Let CASPR be a constrained argumentation system for PR.

1. LetE be a preferred extension ofASPR. Assume thatBEL(E) is inconsistent.
Thus, there existsC ⊆ BEL(E) s.t.C is a minimal (for set inclusion) subset
of BEL(E) that is inconsistent. SinceC ⊢ ⊥, there existsh ∈ C s.t. C \
{h} ⊢ ¬h. SinceC is minimal, thus∄H ⊂ C \ {h} s.t.H ⊢ ¬h. Moreover,
BEL(E) ⊆ Kb, thusC \ {h} ⊆ Kb. Consequently,〈C \ {h},¬h〉 ∈ Ab and
there existsy ∈ E such that:
(a) eithery = δ ⊆ E∩Ad andh ∈ BELIEFS(δ). Thus,〈C\{h},¬h〉 Rbd δ.
(b) or y = π ⊆ E ∩ Ap andh ∈ PREC(π). Thus,〈C \ {h},¬h〉 Rbp π.
(c) or y = α ⊆ E ∩ Ap andh ∈ SUPP(α). Thus,〈C \ {h},¬h〉 Rb α.

In each situation (y = δ, y = π, y = α), sincey ∈ E , then∃α′ ∈ E ∩ Ab

which attacks the attacker ofy, so s.t.α′ Rb 〈C \{h},¬h〉. This means that
∃h′ ∈ C \ {h} s.t. CONC(α′) = ¬h′. However, sinceh′ ∈ C \ {h} which is
included inBEL(E), then∃x ∈ E s.t:
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(a) x ∈ Ab andh′ ∈ SUPP(x). Thus,α′Rbx. This contradicts the fact
thatE is conflict-free.

(b) x ∈ Ad andh′ ∈ BELIEFS(x). Thus,α′Rbdx. This contradicts the
fact thatE is conflict-free.

(c) x ∈ Ap andh′ ∈ PREC(x). Thus,α′Rbpx. This contradicts the fact
thatE is conflict-free.

Since for each preferred extensionE of ASPR, BEL(E) is consistent, then
eachC-preferred extensionE ′, BEL(E ′) is consistent as well sinceE ′ is a
subset of a preferred extensionE . Thus,BEL(E ′) ⊆ BEL(E).

2. LetE be aC-preferred extension ofCASPR. Assume that
⋃

πk∈E∩Ap
POST(πk)

is inconsistent. Thus, there existsC ⊆
⋃

πk∈E∩Ap
POST(πk) s.t. C is min-

imal (for set inclusion) and inconsistent. According to Assumption 1 given
in Section 6.3 and Definition 10,C = C1 ∪ C2 with C1, C2 6= ∅ and
∃π1, π2 ∈ E ∩ Ap s.t.C1 ⊆ POST(π1) andC2 ⊆ POST(π2). Thus,π1Rpπ2

(andπ2Rpπ1). This contradicts the fact thatE is conflict-free.
3. LetE be aC-preferred extension ofCASPR. Assume thatDES(E) is incon-

sistent. Thus,∃d1, d2 ∈ DES(E) s.t.d1 ≡ ¬d2. There are three cases:
(a) d1 ∈ DESIRES(δ1) andd2 ∈ DESIRES(δ2) with δ1, δ2 ∈ Ad ∩ E . This

means thatδ1Rdδ2 and δ2Rdδ1. This contradicts the fact thatE is
conflict-free.

(b) d1 ∈ DESIRES(δ) andd2 ∈ CONC(π) with δ ∈ Ad∩E andπ ∈ Ap∩E .
This means thatδRdpπ. This contradicts the fact thatE is conflict-free.

(c) d1 ∈ CONC(π1) and d2 ∈ CONC(π2) with π1, π2 ∈ Ap ∩ E . This
means thatπ1Rpπ2. This contradicts the fact thatE is conflict-free.

Theorem 3. Under the stable and preferred semantics, each set of intentions of
CASPR is consistent.

Proof . LetI be a set of intentions ofCASPR. Let us suppose thatI is inconsis-
tent. From the definition of an intention set, it is clear thatI ⊆ DES(Ei) with Ei
is an extension ofCASPR. However, according to Theorem 1 and Theorem 2 the
setDES(Ei) is consistent.

Theorem 4. Let CASPR be a constrained argumentation system for PR, andE1,
. . . ,En itsC-stable extensions.∀Ei, i = 1, . . . , n, it holds that:

1. The set ARG(BEL(Ei)) = Ei ∩Ab.
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2. As =Ei.

Proof . Let Ei be aC-stable extension of the systemCASPR. Ei is also a stable
extension ofASPR (according to [11]).

1. Let us show thatARG(BEL(Ei)) = Ei ∩Ab.
According to Theorem 1, it is clear thatBEL(Ei) = BEL(Ei ∩ Ab). More-
over, according to Proposition 20,Ei ∩Ab is a stable extension of〈Ab,Rb〉.
Besides, according to Proposition 5,ARG(BEL(Ei ∩ Ab)) = Ei ∩ Ab, thus
ARG(BEL(Ei)) = Ei ∩ Ab.

2. Let us show thatAs = Ei.

Ei ⊆ As: This is trivial.

As⊆ Ei: Let us suppose that∃y ∈ As andy /∈ Ei. There are three
possible situations:
(a) y ∈ As∩Ab: Sincey /∈ Ei, this means that∃α ∈ Ei ∩ Ab such

thatαRby. Thus,SUPP(α) ∪ SUPP(y) ⊢ ⊥. However,SUPP(α)
⊆ BEL(Ei) andSUPP(y)⊆ BEL(Ei), thusSUPP(α)∪ SUPP(y)⊆
BEL(Ei). This means thatBEL(Ei) is inconsistent. According to
Theorem 1 this is impossible.

(b) y ∈ As ∩Ad: Sincey /∈ Ei, this means that∃x ∈ Ei such that
xRy. There are three situations:
Case 1:x ∈ Ab This means thatBELIEFS(y) ∪ SUPP(x) ⊢ ⊥.

However,BELIEFS(y) ∪ SUPP(x)⊆ BEL(Ei). Thus,BEL(Ei)
is inconsistent. This contradicts Theorem 1.

Case 2:x ∈ Ad This means thatDESIRES(y) ∪ DESIRES(x) ⊢
⊥. However,DESIRES(y) ∪ DESIRES(x) ⊆ DES(Ei). So,
DES(Ei) is inconsistent. This contradicts Theorem 1.

Case 3:x ∈ Ap This means thatDESIRES(y) ∪ CONC(x) ⊢ ⊥.
However,DESIRES(y)∪ CONC(x)⊆ DES(Ei). Thus,DES(Ei)
is inconsistent. This contradicts Theorem 1.

(c) y ∈ As ∩Ap: Sincey /∈ Ei, this means that∃x ∈ Ei such that
xRy. There are three situations:
Case 1:x ∈ Ab This means thatxRbpy, thusSUPP(x)∪ PREC(y)

⊢ ⊥. However,SUPP(x)∪ PREC(y)⊆ BEL(Ei). Thus,BEL(Ei)
is inconsistent. This contradicts Theorem 1.

Case 2:x ∈ Ad This means thatxRpdpy, so we haveDESIRES(x)
∪ CONC(y)⊢ ⊥. However,DESIRES(x) ∪ CONC(y)⊆ DES(Ei).
Thus,DES(Ei) is inconsistent. This contradicts Theorem 1.
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Case 3:x ∈ Ap This means thatxRpy. There are three different
cases:

PREC(x) ∪ PREC(y) ⊢ ⊥.
However,PREC(x) ∪ PREC(y)⊆ BEL(Ei). Thus,BEL(Ei)
is inconsistent. This contradicts Theorem 1.

POSTC(x) ∪ PREC(y) ⊢ ⊥. We know thaty is built using
one of the plans ofEi, sayp = 〈S, T, a〉. Thus,∃π ∈ Ei
such thatπ = 〈p, d〉. Thus,POSTC(x) ∪ PREC(π) ⊢ ⊥,
consequently,xRπ. This is impossible sinceEi is a stable
extension, thus it is supposed to be conflict-free.

POSTC(x) ∪ POSTC(y) ⊢ ⊥. Sincey ∈ As, thusy is built
using one of the plans ofEi, sayp = 〈S, T, a〉. Thus,∃π ∈
Ei such thatπ = 〈p, d〉. Thus,POSTC(x) ∪ POSTC(π) ⊢ ⊥,
consequently,xRπ. This is impossible sinceEi is a stable
extension, thus it is supposed to be conflict-free.
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