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Abstract

Arguments play two different roles in day life decisions, as well as in the discussion
of more crucial issues. Namely, they help to select one or several alternatives, or to
explain and justify an already adopted choice.

This paper proposes the first general and abstract argument-based framework for
decision making. This framework follows two main steps. At the first step, argu-
ments for beliefs and arguments for options are built and evaluated using classical
acceptability semantics. At the second step, pairs of options are compared using
decision principles. Decision principles are based on the accepted arguments sup-
porting the options. Three classes of decision principles are distinguished: unipolar,
bipolar or non-polar principles depending on whether i) only arguments pro or only
arguments con, or ii) both types, or iii) an aggregation of them into a meta-argument
are used. The abstract model is then instantiated by expressing formally the mental
states (beliefs and preferences) of a decision maker. In the proposed framework,
information is given in the form of a stratified set of beliefs. The bipolar nature of
preferences is emphasized by making an explicit distinction between prioritized goals
to be pursued, and prioritized rejections that are stumbling blocks to be avoided.
A typology that identifies four types of argument is also proposed. Indeed, each
decision is supported by arguments emphasizing its positive consequences in terms
of goals certainly satisfied and rejections certainly avoided. A decision can also be
attacked by arguments emphasizing its negative consequences in terms of certainly
missed goals, or rejections certainly led to by that decision. Finally, this paper artic-
ulates the optimistic and pessimistic decision criteria defined in qualitative decision
making under uncertainty, in terms of an argumentation process. Similarly, different
decision principles identified in multiple criteria decision making are restated in our
argumentation-based framework.
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1 Introduction

Decision making, often viewed as a form of reasoning toward action, has raised
the interest of many scholars including philosophers, economists, psychologists,
and computer scientists for a long time. Any decision problem amounts to se-
lecting the “best” or sufficiently “good” action(s) that are feasible among dif-
ferent alternatives, given some available information about the current state
of the world and the consequences of potential actions. Note that available
information may be incomplete or pervaded with uncertainty. Besides, the
goodness of an action is judged by estimating, maybe by means of several
criteria, how much its possible consequences fit the preferences or the inten-
tions of the decision maker. This agent is assumed to behave in a rational way
[42,43,49], at least in the sense that his decisions should be as much as pos-
sible consistent with his preferences. However, we may have a more requiring
view of rationality, such as demanding for the conformity of decision maker’s
behavior with postulates describing how a rational agent should behave [45].

Decision problems have been considered from different points of view. We
may distinguish two main trends, which are currently influencing research
in artificial intelligence (Al): classical decision theory on the one hand, and
cognitively-oriented approaches such as practical reasoning or beliefs-desires-
intentions (BDI) settings on the other hand.

1.1 Classical decision making vs. practical reasoning

Classical decision theory, as developed mainly by economists, has focused on
making clear what is a rational decision maker. Thus, they have looked for
principles for comparing different alternatives. A particular decision principle,
such as the classical expected utility [45], should then be justified on the ba-
sis of a set of rationality postulates to which the preference relation between
actions should obey. This means that in this approach, rationality is captured
through a set of postulates that describe what is a rational decision behavior.
Moreover, a minimal set of postulates is identified in such a way that it corre-
sponds to a unique decision principle. The inputs of this approach are a set of
candidate actions, and a function that assesses the value of their consequences
when the actions are performed in a given state, together with complete or par-
tial information about the current state of the world. In other words, such an
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approach distinguishes between knowledge and preferences, which are respec-
tively encoded in practice by a distribution function assessing the plausibility
of the different states of the world, and by a utility function encoding pref-
erences by estimating how good a consequence is. The output is a preference
relation between actions encoded by the associated principle. Note that such
an approach aims at rank-ordering a group of candidate actions rather than
focusing on a candidate action individually. Moreover, the candidate actions
are supposed to be feasible. Roughly speaking, we may distinguish two groups
of works in Al dealing with decision that follow the above type of approach.
The first group is represented by researches using Bayesian networks [41], and
works on planning under uncertainty (e.g. [22]). Besides, some Al works have
aimed at developing more qualitative frameworks for decision, but still along
the same line of thoughts (e.g. [23,28,47]).

Other researchers in Al, working on practical reasoning, starting with the
generic question “what is the right thing to do for an agent in a given situa-
tion” [42,44], have proposed a two steps process to answer this question. The
first step, often called deliberation [49], consists of identifying the goals of the
agent. In the second step, they look for ways of achieving those goals, i.e. for
plans, and thus for intermediary goals and sub-plans. Such an approach raises
issues such as: how are goals generated 7 are actions feasible ? do actions
have undesirable consequences ? are sub-plans compatible ? are there alterna-
tive plans for achieving a given goal, ... In [17], it has been argued that this
can be done by representing the cognitive states, namely agent’s beliefs, de-
sires and intentions (thus the so-called BDI architecture). This requires a rich
knowledge/preference representation setting, which contrasts with the classi-
cal decision setting that directly uses an uncertainty distribution (a probability
distribution in the case of expected utility), and a utility (value) function. Be-
sides, the deliberation step is merely an inference problem since it amounts to
finding a set of desires that are justified on the basis of the current state of
the world and of conditional desires. Checking if a plan is feasible and does
not lead to bad consequences is still a matter of inference. A decision problem
only occurs when several plans or sub-plans are possible, and one of them has
to be chosen. This latter issue may be viewed as a classical decision problem.
What is worth noticing in most works on practical reasoning is the use of
argument schemes for providing reasons for choosing or discarding an action
(e.g. [31,36]). For instance, an action may be considered as potentially useful
on the basis of the so-called practical syllogism [48]:

e (5 is a goal for agent X
e Doing action A is sufficient for agent X to carry out goal G
e Then, agent X ought to do action A

The above syllogism is in essence already an argument in favor of doing action
A. However, this does not mean that the action is warranted, since other argu-



ments (called counter-arguments) may be built or provided against the action.
Those counter-arguments refer to critical questions identified in [48] for the
above syllogism. In particular, relevant questions are “Are there alternative
ways of realizing G?7”, “Is doing A feasible?”, “Has agent X other goals than
G?”, “Are there other consequences of doing A which should be taken into
account?”. Recently in [11,12], the above syllogism has been extended to ex-
plicitly take into account the reference to ethical values in arguments. Anyway,
the idea of using arguments for justifying or discarding candidate decisions is
certainty very old, and its account in the literature at least dates back to Aris-
totle. See also Benjamin Franklin [34] for an early precise account on the way
of balancing arguments pro and con a choice, more than two hundred years
ago.

1.2 Argumentation and decision making

Generally speaking, argumentation is a reasoning model based on the con-
struction and the evaluation of interacting arguments. Those arguments are
intended to support / explain / attack statements that can be decisions, opin-
ions, ... Argumentation has been used for different purposes [1], such as non-
monotonic reasoning (e.g. [29]). Indeed, several frameworks have been devel-
oped for handling inconsistency in knowledge bases (e.g. [2,4,14]). Moreover,
it has been shown that such an approach is general enough to capture different
existing approaches for nonmonotonic reasoning [29]. Argumentation has also
been extensively used for modeling different kinds of dialogues, in particular
persuasion (e.g. [6]), and negotiation (e.g. [38]). Indeed, an argumentation-
based approach for negotiation has the advantage of exchanging in addition to
offers, reasons that support these offers. These reasons may lead their receivers
to change their preferences. Consequently, an agreement may be more easily
reached with such approaches, when in other approaches (where agent’s prefer-
ences are fixed) negotiation may fail. Adopting such an approach in a decision
problem would have some obvious benefits. Indeed, not only would the user
be provided with a “good” choice, but also with the reasons underlying this
recommendation, in a format that is easy to grasp. Note that each potential
choice usually has pros and cons of various strengths. Argumentation-based
decision making is expected to be more akin with the way humans deliberate
and finally make or also understand a choice. This has been pointed out for a
long time (see e.g. [34]).



1.8 Contribution of the paper

In this paper we deal with an argumentative view of decision making, thus
focusing on the issue of justifying the best decision to make in a given situ-
ation, and leaving aside the other related aspects of practical reasoning such
as goal generation, feasibility, and planning. It is why we remain close to the
classical view of decision, but now discussed in terms of arguments. The idea
of articulating decisions on the basis of arguments is relevant for different
decision problems or approaches such as decision making under uncertainty,
multiple criteria decisions, or rule-based decisions. These problems are usually
handled separately, and until recently without a close reference to argumen-
tation. In practical applications, for instance in medical domain, the decision
to be made has to be chosen under incomplete or uncertain information, the
potential results of candidate decisions are evaluated from different criteria.
Moreover, there may exist some expertise in the form of decision rules that as-
sociate possible decisions to given contexts. This makes the different decision
problems somewhat related, and consequently a unified argumentation-based
model is needed. This paper proposes such a model.

This paper proposes the first general, and abstract argument-based frame-
work for decision making. This framework follows two main steps. At the first
step, arguments for beliefs and arguments for options are built and evaluated
using classical acceptability semantics. At the second step, pairs of options
are compared using decision principles. Decision principles are based on the
accepted arguments supporting the options. Three classes of decision princi-
ples are distinguished: unipolar, bipolar or non-polar principles depending on
whether i) only arguments pro or only arguments con, or ii) both types, or iii)
an aggregation of them into a meta-argument are used. The abstract model is
then instantiated by expressing formally the mental states (beliefs and pref-
erences) of a decision maker. In the proposed framework, information is given
in the form of a stratified set of beliefs. The bipolar nature of preferences is
emphasized by making an explicit distinction between prioritized goals to be
pursued, and prioritized rejections that are stumbling blocks to be avoided. A
typology that identifies four types of argument is also proposed. Indeed, each
decision is supported by arguments emphasizing its positive consequences in
terms of goals certainly satisfied and rejections certainly avoided. A decision
can also be attacked by arguments emphasizing its negative consequences in
terms of certainly missed goals, or rejections certainly led to by that decision.
Another contribution of the paper consists of applying the general framework
to decision making under uncertainty and to multiple criteria decision. Proper
choices of decision principles are shown to be equivalent to known qualitative
decision approaches.

The paper is organized as follows: Section 2 presents an abstract framework



for decision making. Section 3 discusses a typology of arguments supporting
or attacking candidate decisions. Section 4 applies the abstract framework to
multiple criteria decision making, and section 5 applies the framework to de-
cision making under uncertainty. Section 6 compares our approach to existing
works on argumentation-based decision making, and section 7 is devoted to
some concluding remarks and perspectives.

2 A general framework for argumentative decision making

Solving a decision problem amounts to defining a pre-ordering, usually a com-
plete one, on a set D of possible options (or candidate decisions), on the basis
of the different consequences of each decision. Let us illustrate this problem
through a simple example borrowed from [32].

Example 1 (Having or not a surgery) The example is about having a surgery
(sg) or not (—sg), knowing that the patient has colonic polyps. The knowledge
base contains the following information:

having a surgery has side-effects,

not having surgery avoids having side-effects,

when having a cancer, having a surgery avoids loss of life,

if a patient has cancer and has no surgery, the patient would lose his life,
the patient has colonic polyps,

having colonic polyps may lead to cancer.

In addition to the above knowledge, the patient has also some goals like: “no
side effects” and “to not lose his life”. Obviously it is more important for him
to not lose his life than to not have side effects.

In what follows, £ will denote a logical language. From L, a finite set D =
{dy,...,d,} of n options is identified. Note that an option d; may be a con-
junction of other options in D. Let us, for instance, assume that an agent
wants a drink and has to choose between tea, milk or both. Thus, there are
three options: d; : tea, dy : milk and d3 : tea and milk. In Example 1, the set
D contains only two options: d; : sg and ds : —sg.

Argumentation is used in this paper for ordering the set D. An argumentation-
based decision process can be decomposed into the following steps:

(1) Constructing arguments in favor/against statements (pertaining to be-
liefs or decisions)
(2) Evaluating the strength of each argument



(3) Determining the different conflicts among arguments
(4) Evaluating the acceptability of arguments
(5) Comparing decisions on the basis of relevant “accepted” arguments

Note that the first four steps globally correspond to an “inference problem” in
which one looks for accepted arguments, and consequently warranted beliefs.
At this step, one only knows what is the quality of arguments in favor/against
candidate decisions, but the “best” candidate decision is not determined yet.
The last step answers this question once a decision principle is chosen.

2.1 Types of arguments

As shown in Example 1, decisions are made on the basis of available knowledge
and the preferences of the decision maker. Thus, two categories of arguments
are distinguished: i) epistemic arguments justifying beliefs and are themselves
based only on beliefs, and ii) practical arguments justifying options and are
built from both beliefs and preferences/goals. Note that a practical argument
may highlight either a positive feature of a candidate decision, supporting thus
that decision, or a negative one, attacking thus the decision.

Example 2 (Example 1 cont.) In this example, o« = [“the patient has colonic
polyps”, and “having colonic polyps may lead to cancer”] is considered as an
argument for believing that the patient may have cancer. This epistemic ar-
gument involves only beliefs. While §; = [“the patient may have a cancer”,
“when having a cancer, having a surgery avoids loss of life”] is an argument
for having a surgery. This is a practical argument since it supports the op-
tion “having a surgery”. Note that such argument involves both beliefs and
preferences. Similarly, 0o = [“not having surgery avoids having side-effects”]
s a practical argument in favor of “not having a surgery”. However, the two
practical arguments 63 = [“having a surgery has side-effects”] and 6, = [“the
patient has colonic polyps”, and “having colonic polyps may lead to cancer”,
“if a patient has cancer and has no surgery, the patient would lose his life”]
are respectively against surgery and no surgery since they point out negative
consequences of the two options.

In what follows, A. denotes a set of epistemic arguments, and A, denotes a
set of practical arguments such that A.NA, = ). Let A = A, U A, (i.e. Awill
contain all those arguments). The structure and origin of the arguments are
assumed to be unknown. Epistemic arguments will be denoted by variables
a1, Qa, . . ., while practical arguments will be referred to by variables 41, do, . ..
When no distinction is necessary between arguments, we will use the variables
a,b,c,...

Example 3 (Example 1 cont.) A. = {a} while A, = {d1,02,63,04}.



Let us now define two functions that relate each option to the arguments
supporting it and to the arguments against it.

o F,:D — 2% isa function that returns the arguments in favor of a candidate
decision. Such arguments are said pro the option.

o F.: D — 2% is a function that returns the arguments against a candidate
decision. Such arguments are said cons the option.

The two functions satisfy the following requirements:

e VdeD,}5 € A,st.0 € Fy(d) and § € F.(d). This means that an argument
is either in favor of an option or against that option. It cannot be both.

o If 0 € F,(d) and § € F,(d') (resp. if § € F.(d) and 6 € F.(d')), then d = d'.
This means that an argument refers only to one option.

o Let D={dy,....d,}. A, = (UF,(d;)) U (UFe(d;)), withi =1,...,n. This

means that the available practical arguments concern options of the set D.

When § € F,(d) with x € {p, c}, we say that d is the conclusion of ¢, and we
write Conc(d) = d.

Example 4 (Example 1 cont.) The two options of the set D = {sg, 7sg}
are supported/attacked by the following arguments: F,(sg) = {01}, Fe(sg) =

{05}, Fp(msg) = {02}, and Fe(=sg) = {0}

2.2  Comparing arqguments

As pointed out by several researchers (e.g. [20,30]), arguments may have forces
of various strengths. These forces play two key roles: i) they may be used in
order to refine the notion of acceptability of epistemic or practical arguments,
ii) they allow the comparison of practical arguments in order to rank-order
candidate decisions. Generally, the strength of an epistemic argument reflects
the quality, such as the certainty level, of the pieces of information involved in
it. Whereas the strength of a practical argument reflects both the quality of
knowledge used in the argument, as well as how important it is to fulfill the
preferences to which the argument refers.

In our particular application, three preference relations between arguments
are defined. The first one, denoted by >., is a (partial or total) preorder! on
the set A.. The second relation, denoted by >, is a (partial or total) preorder
on the set A,. Finally, a third relation, denoted by >, (m stands for mixed
relation), captures the idea that any epistemic argument is stronger than any
practical argument. The role of epistemic arguments in a decision problem

LA preorder is a binary relation that is reflezive and transitive



is to validate or to undermine the beliefs on which practical arguments are
built. Indeed, decisions should be made under “certain” information. Thus,
Va e A, Vo € A,, (o,0) €>,, and (6, ) ¢>,.

Note that (a,b) €>,, with x € {e,p,m}, means that a is at least as good
as b. At some places, we will also write a >, b. In what follows, >, denotes
the strict relation associated with >,. It is defined as follows: (a,b) €>, iff
(a,b) €>, and (b,a) ¢>,. When (a,b) €>, and (b,a) €>,, we say that a and
b are indifferent, and we write a =, b. When (a,b) ¢>, and (b,a) ¢>,, the
two arguments are said incomparable.

Example 5 (Example 1 cont.) >, = {(a,a)} and >, = {(«, 1), (e, 02)}.
Now, regarding >,, one may, for instance, assume that 6, is stronger than 0,
since the goal satisfied by 61 (namely, not loss of life) is more important than
the one satisfied by 9y (not having side effects). Thus, >, = {(01,01), (J2,02),
(01,09)}. This example will be detailed in a next section.

2.8 Attacks among arguments

Since knowledge may be inconsistent, the arguments may be conflicting too.
Indeed, epistemic arguments may attack each others. Such conflicts are cap-
tured by the binary relation R, C A, X A.. This relation is assumed abstract
and its origin is not specified.

Epistemic arguments may also attack practical arguments when they challenge
their knowledge part. The idea is that an epistemic argument may undermine
the beliefs part of a practical argument. However, practical arguments are not
allowed to attack epistemic ones. This avoids wishful thinking. This relation,
denoted by R,,, contains pairs (o, d) where a € A, and 6 € A,,.

We assume that practical arguments do not conflict. The idea is that each
practical argument points out some advantage or some weakness of a candidate
decision, and it is crucial in a decision problem to list all those arguments for
each candidate decision, provided that they are accepted w.r.t. the current
epistemic state, i.e built from warranted beliefs. According to the attitude of
the decision maker in face of uncertain or inconsistent knowledge, these lists
associated with the candidate decisions may be taken into account in different
manners, thus leading to different orderings of the decisions. This is why all
accepted arguments should be kept, whatever their strengths, for preserving all
relevant information in the decision process. Otherwise, getting rid of some of
those accepted arguments (w.r.t. knowledge), for instance because they would
be weaker than others, may prevent us to have a complete view of the decision
problem and then may even lead us to recommend decisions that would be
wrong w.r.t. some decision principles (agreeing with the presumed decision



maker’s attitude). This point will be made more concrete in a next section.
Thus, the relation R, C A, x A, is equal to the empty set (R, = 0).

Each preference relation >, (with « € {e,p, m}) is combined with the conflict
relation R, into a unique relation between arguments, denoted by Def, and
called defeat relation, in the same way as in ([5], Definition 3.3, page 204).

Definition 1 (Defeat relation) Let A be a set of arguments, and a, b € A.
(a,b) € Def, iff:

(a,b) € Ry, and
(b;a) >4

Let Def., Def, and Def,, denote the three defeat relations corresponding to
the three attack relations. In case of Def,,, the second bullet of Definition 1
is always true since epistemic arguments are strictly preferred (in the sense of
> ) to any practical arguments. Thus, Def,, = R,, (i.e. the defeat relation is
exactly the attack relation R,,). The relation Def,, is the same as R, thus it
is empty. However, the relation Def, coincides with its corresponding attack
relation R, in case all the arguments of the set A, are incomparable.

2.4 FExtensions of arguments

Now that the sets of arguments and the defeat relations are identified, we can
define the decision system.

Definition 2 (Decision system) Let D be a set of options. A decision sys-
tem for ordering D is a triple AF = (D, A,Def) where A = A, U A,? and
Def = Def, UDef, UDef,,?.

Note that a Dung style argumentation system is associated to a decision sys-
tem AF = (D, A, Def), namely the system (A, Def). This latter can be seen as
the union of two distinct argumentation systems: AF, = (A, Def,), called epis-
temic system, and AF, = (A,,Def,), called practical system. The two systems
are related to each other by the defeat relation Def,,.

Due to Dung’s acceptability semantics defined in [29], it is possible to identify
among all the conflicting arguments, which ones will be kept for ordering the
options. An acceptability semantics amounts to define sets of arguments that
satisfy a consistency requirement and must defend all their elements.

2 Recall that options are related to their supporting and attacking arguments by
the functions F, and F. respectively.
3 Since the relation Def, is empty, then Def = Def, U Def,,.

10



Definition 3 (Conflict-free, Defence) Let AF = (D, .A,Def) be a decision
system, B C A, and a € A.

e B is conflict-free iff B a, b € B s.t. (a,b) € Def.
e B defends a iff Vb € A, if (b,a) € Def, then 3 ¢ € B s.t. (¢,b) € Def.

The main semantics introduced by Dung are recalled in the following defini-
tion. Note that other semantics have been defined in the literature (e.g. [13]).
However, these will not be discussed in this paper.

Definition 4 (Acceptability semantics) Let AF = (D, A,Def) be a deci-
sion system, and B be a conflict-free set of arguments.

e BB is admissible extension iff it defends any element in B.
e 3 is a preferred extension iff B is a maximal (w.r.t set C) admissible set.
e 3 is a stable extension iff it is a preferred extension that defeats any arqu-

ment in A\B.

Using these acceptability semantics, a status is assigned to each argument of
AF as follows.

Definition 5 (Argument status) Let AF = (D, A,Def) be a decision sys-
tem, and &1, ... ,E, its extensions under a given semantics. Let a € A.

e a 1s skeptically accepted iff a € &;, V& withi=1,... x.
e a is credulously accepted iff AE; such that a € &;.
e a is rejected iff BE; such that a € &;.

A direct consequence of the above definition is that an argument is skeptically
accepted iff it belongs to the intersection of all extensions, and that it is
rejected iff it does not belong to the union of all extensions. Formally:

Property 1 Let AF = (D, .A,Def) be a decision system, and &i,...,E, its
extensions under a given semantics. Let a € A.

o a is skeptically accepted iff a € N, &;
e a is rejected iff a ¢ U7, &;

Let Acc(z,y) be a function that returns the skeptically accepted arguments
of decision system z under semantics y (y € {ad, st,pr} with ad (resp. st
and pr) stands for admissible (resp. stable and preferred) semantics). This set
may contain both epistemic and practical arguments. Such arguments are very
important in argumentation process since they support the conclusions to be
inferred from a knowledge base or the options that will be chosen. Indeed, for
ordering the different candidate decisions, only skeptically accepted practical
arguments are used. The following property shows the links between the sets
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of accepted arguments under different semantics.

Property 2 Let AF = (D, A,Def) be a decision system.

e Acc(AF,ad) = 0.

If AF has no stable extensions, then Acc(AF,st) = () and Acc(AF,st) C

Acc(AF, pr).

If AF has stable extensions, then Acc(AF,pr) C Acc(AF, st).

Proof Let AF = (D, A,Def) be a decision system.

In [29], it has been shown that the empty set is an admissible extension of
any argumentation system. Thus, NEi—1. . = 0 where &,...,&, are the
admissible extensions of AF. Consequently, Acc(AF,ad) = ().

Let us assume that the system AF has no stable extensions. Thus, according
to Definition 5, all arguments of A are rejected. Thus, Acc(AF, st) = ().
Let us now assume that the system AF has stable extensions, say &, ...,&E,.
Dung has shown in [29] that any stable extension is a preferred one, but
the converse is not true. Thus, &1, ...,E, are also preferred extensions. Let
us now assume that the system has other extensions that are preferred but
not stable, say Epy1,...,E with x > n + 1. From set theory, it is clear
that N7_, & C Ny & According to Property 1, it follows that Acc(AF, pr)
C Acc(AF, st).

From the above property, one concludes that in a decision problem, it is not
interesting to use admissible semantics. The reason is that no argument is
accepted. Consequently, argumentation will not help at all for ordering the
different candidate decisions. Let us illustrate this issue through the following
simple example.

Example 6 Let us consider the decision system AF = (D, A.UA,,Def) where
D = {dy,ds}, Ac = {1, 2,03}, A, = {0} and Def is depicted in figure below.
We assume that F,(dy) = § whereas F,(dz) = Fe(ds) = 0.

Q@m0
Nog

©

The admissible extensions of this system are: £, = {}, & = {1}, & = {an},
Er={a1,0} and & = {aq,0}. Under admissible semantics, the practical ar-
gument & is not skeptically accepted. Thus, the two options dy and dy may

12



be equally preferred since the first one has an argument but not an accepted
one, and the second has no argument at all. However, the same decision sys-
tem has two preferred extensions: £, and Es. Under preferred semantics, the
set Acc(AF, pr) contains the argument § (i.e. Acc(AF,pr) = {6}). Thus, it is
natural to prefer the option di to ds.

Consequently, in the following, we will use stable semantics if the system
has stable extensions, otherwise preferred semantics will be considered for
computing the set Acc(AF,y).

Since the defeat relation Def, is empty, it is trivial that the practical system
AF, has exactly one preferred/stable extension which is the set A, itself.

Property 3 The practical system AF,, = (A,,Def,,) has a unique preferred/stable
extension, which is the set A,.

Proof This follows directly from the fact that the set A, is conflict-free since
Def, = (). ]

It is important to notice that the epistemic system AF. in its side is very
general and does not necessarily present particular properties like for instance
the existence of stable/preferred extensions.

In what follows, we will show that the result of the decision system depends
broadly on the outcome of its epistemic system. The first result states that
the epistemic arguments of each admissible extension of AF constitute an ad-
missible extension of the epistemic system AF..

Theorem 1 Let AF = (D, A. U A,,Def, UDef, U Def,,) be a decision sys-
tem, &1, ...,&, its admissible extensions, and AF, = (A.,Def.) its associated
epistemic system.

o V&, the set & N A, is an admissible extension of AF,.
o V&' such that £ is an admissible extension of AF,, 3E; such that &' C E;NA..

Proof
o Let & be an admissible extension of AF. Let £ = £ N A.. Let us assume that

& is not an admissible extension of AF.. There are two cases:

Case 1: £ is not conflict-free. This means that Jay,ay € £ such that
(a1, 0) € Def.. Thus, Jag, s € & such that (a1, ) € Def. This is
impossible since &; is an admissible extension, thus conflict-free.

Case 2: £ does not defend its elements. This means that da € &, such that
3o’ € A, (¢/,a) € Def, and Ba” € € such that (", ') € Def.. Since
(¢/, ) € Def., this means that (o, «) € Def with « € &;. However, &; is
admissible, then Ja € & such that (a,o’) € Def. Assume that a € A,.
This 1s impossible since practical arguments are not allowed to defeat
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epistemic ones. Thus, a € A.. Hence, a € £. Contradiction.

o Let &' be an admissible extension of AF.. Let us prove that £ is an admissible
extension of AF. Assume that £ is not an admissible extension of AF. There
are two possibilities: i) £ is not conflict-free in AF. This is not possible since
E' an admissible extension of AF., thus conflict-free.

ii) & does not defend all its elements in the system AF. This means that
da € & such that &' does not defend a. This means also that 3b ¢ &'
such that (b,a) € Def and fc € & such that (c,b) € Def. There are two
cases: either b € A, or b e A,. b cannot be in A, since £ is an admissible
extension thus defends its arguments against any attack, consequently it
defends also a against b. Assume now that b € A,, this is also impossible
since practical arguments are not allowed to attack epistemic ones. Thus, £
1s an admissible extension of the system AF.

Note that the above theorem holds as well for stable and preferred extensions
since each stable (resp. preferred) extension is an admissible one.

It is easy to show that when Def,, is empty, i.e. no epistemic argument defeats
a practical one, then the extensions of AF (under a given semantics) are exactly
the different extensions of AF, (under the same semantics) augmented by the
set AF,,.

Theorem 2 Let AF = (D, A. U A,,Def. UDef, UDef,,) be a decision system.
Let &, ...,E, be the extensions of AF, under a given semantics. If Def,, = ()
then Y& with i =1,...,n, then the set £ U A, is an extension of AF.

Proof Let £ be an admissible extension of AF.. Let us assume that €U A, is
not an admissible extension of AF. There are two cases:

Case 1: £ U A, is not conflict-free. Since € and A, are conflict-free, then
da € € and 35 € A, such that (o, 0) € Def. Contradiction with the fact
that Def,, = 0.

Case 2: £ U A, does not defend its elements. This means that: i) 3o € &
such that 3o/ € A., (o/, ) € Def, and EUA, does not defend it. Impossible
since £ is an admissible extension then it defends its arguments. i1) 36 € A,
such that 3a € A, and (a,d) € Def and 0 is not defended by € U A,. Since
Def,, = 0 then a € A,. This is impossible since R, = 0. Contradiction.

Finally, it can be shown that if the empty set is the only admissible extension
of the decision system AF, then the empty set is also the only admissible
extension of the corresponding epistemic system AF.. Moreover, each practical
argument is attacked by at least one epistemic argument.
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Theorem 3 Let AF = (D, A.UA,,Def. UDef, UDef,,) be a decision system.
The only admissible extension of AF is the empty set iff:

(1) The only admissible extension of AF, is the empty set, and
(2) V6 € A,, 3a € A, such that (a,d) € Def,,.

Proof Let AF = (D, A. U A,,Def. UDef, UDef,,) be a decision system.

Case 1: Assume that the empty set is the only admissible extension of AF.
Assume also that the epistemic system AF. has a non-empty admissible ex-
tension,say E. This means that E is not an admissible extension of AF.
There are two cases:

a) E is not conflict-free. This is impossible since E is an admissible exten-
siton of AF,.

b) E does not defend its elements. This means that 3a € A. U A, such that
Jb € E and (a,b) € Def and Pc € E such that (c,a) € Def. There are two
possibilities: i) a € A,. This is impossible since practical arguments are not
allowed to attack epistemic arguments. 1) a € A,. Since E is an admissible
extension of AF., then Jc € E such that (c¢,a) € Def.. Thus, (c,a) € Def.
Contradiction.

Case 2: Let us now assume that the empty set is the only admissible exten-
sion of AF. and that V6 € A,, 3a € A, such that (a,d) € Def,,. Assume
also that AE # O such that E is an admissible extension of the decision
system AF.

From Theorem 1, E N A, is an admissible extension of AF.. Since the
only admissible extension of AF, is the empty set, then E N A, = (0. Thus,
E CA,.

Let 6 € E. By assumption, Ja € A, such that (o,§) € Def,,. Since E
1s an admissible extension, thus it defends all its elements. Consequently,
30" € E such that (&', «) € Def. Since E C A, then §' € A,. It is impossible
to have (§',«) € Def since practical arguments are not allowed to attack
epistemic ones.

At this step, we have only defined the accepted arguments among all the
existing ones. However, nothing is yet said about which option to prefer. In
the next section, we will study different ways of comparing pairs of options on
the basis of skeptically accepted practical arguments.

2.5 Ordering options

Comparing candidate decisions, i.e. defining a preference relation > on the set
D of options, is a key step in a decision process. In an argumentation-based
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approach, the definition of this relation is based on the sets of “accepted”
arguments pro or cons associated with candidate decisions. Thus, the input of
this relation is no longer A,, but the set Acc(AF,y) N A,, where Acc(AF,y) is
the set of skeptically accepted arguments of the decision system (D, .A,Def)
under stable or preferred semantics. In what follows, we will use the notation
Acc(AF) for short.

Note that in a decision system, when the defeat relation Def,, is empty, the
epistemic arguments become useless for the decision problem, i.e. for ordering
options. Thus, only the practical system AF, is needed.

Depending on what sets are considered and how they are handled, one can
roughly distinguish between three categories of principles:

Unipolar principles: are those that only refer to either the arguments pro
or the arguments con.

Bipolar principles: are those that take into account both types of argu-
ments at the same time.

Non-polar principles: are those where arguments pro and arguments con
a given choice are aggregated into a unique meta-argument. It results that
the negative and positive polarities disappear in the aggregation.

Whatever the category is, a relation > should suitably satisfy the following
minimal requirements:

(1) Transitivity: The relation should be transitive (as usually required in
decision theory).

(2) Completeness: Since one looks for the “best” candidate decision, it
should then be possible to compare any pair of choices. Thus, the relation
should be complete.

2.5.1 Unipolar principles

In this section we present basic principles for comparing decisions on the basis
of only arguments pro. Similar ideas apply to arguments con. We start by
presenting those principles that do not involve the strength of arguments,
then their respective refinements when strength is taken into account.

A first natural criterion consists of preferring the decision that has more ar-
guments pro.

Definition 6 (Counting arguments pro) Let AF = (D, .A,Def) be a deci-
sion system and Acc(AF) its accepted arqguments. Let dy, dy € D.

d1 t dg ’Lﬁ |fp(d1) N ACC(AF)| Z |./Tp(d2) N ACC(AF)|.
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Property 4 This relation is a complete preorder.

Note that when the decision system has no accepted arguments (i.e. Acc(AF) =
(), all the options in D are equally preferred w.r.t. the relation >. It can be
checked that if a practical argument is defined as done later in Definition
18, then with such a principle, one may prefer a decision d, which has three
arguments pointing all to the same goal, to decision d’, which is supported by
two arguments pointing to different goals.

When the strength of arguments is taken into account in the decision process,
one may think of preferring a choice that has a dominant argument, i.e. an
argument pro that is preferred w.r.t. the relation >,C A, x A, to any argument
pro the other choices. This principle is called promotion focus principle in [3].

Definition 7 Let AF = (D, A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let dy, dy € D.

di = dy iff 36 € F,(dy) N Acc(AF) such that Yo' € F,(ds) N Acc(AF),0 >, §'.

With this criterion, if the decision system has no accepted arguments, then
all the options in D are equally preferred. The above definition relies heavily
on the relation >, that compares practical arguments. Thus, the properties
of this criterion depend on those of >,. Namely, it can be checked that the
above criterion works properly if >, is a complete preorder.

Property 5 If the relation >, is a complete preorder, then > is also a com-
plete preorder.

Note that the above relation may be found to be too restrictive, since when
the strongest arguments in favor of d; and dy have equivalent strengths (i.e.
are indifferent), d; and dj are also seen as equivalent. However, we can refine
the above definition by ignoring the strongest arguments with equal strengths,
by means of the following strict preorder.

Definition 8 Let AF = (D, A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let dy, dy € D, and >, be a complete preorder. Let (01,
oy On), (6, .o, 0%) such that Yoz, 0; € Fp(dr) N Acc(AF), and V&)_, .,
65 € Fp(da) N Acc(AF).

FEach of these vectors is assumed to be decreasingly ordered w.r.t >, (e.g. &;
>, .. >p 00). Let v = min(r, s).

d1 >_' d2 ’Lﬁ

e 4§y >, 01, or
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o Jk < w such that oy, >, 6, andV j < k, §; =, 9, or

p Yy
: ~ 5
or>vand‘v’j§v,6j~p5j.

Till now, we have only discussed decision principles based on arguments pro.
However, the counterpart principles when arguments con are considered can
also be defined. Thus, the counterpart principle of the one defined in Definition
6 is the following complete preorder:

Definition 9 (Counting arguments con) Let AF = (D, A,Def) be a deci-
sion system and Acc(AF) its accepted arqguments. Let dy, dy € D.

dl t d2 fo ’fc(dl) N ACC(AF)‘ S |fc(d2) N ACC(AF)’

The principles that take into account the strengths of arguments have also
their counterparts when handling arguments con. The prevention focus prin-
ciple prefers a decision when all its cons are weaker than at least one argument
against the other decision. Formally:

Definition 10 Let AF = (D, A,Def) be a decision system and Acc(AF) its
accepted arguments. Let dy, dy € D.

dy ¥ dy iff 36 € F.(da) N Acc(AF) such that V' € F.(dy) N Acc(AF),d >, 8.

As in the case of arguments pro, when the relation >, is a complete preorder,
the above relation is also a complete preorder, and can be refined into the
following strict one.

Definition 11 Let AF = (D, A,Def) be a decision system and Acc(AF) its
accepted arguments. Let dy, dy € D.

Let (64, ..., 6.), (01, ..., 0.) such that ¥o;—1 ., 0; € Fe(dy) N Acc(AF), and
Voi_y . o 05 € Fe(dy) NAcc(AF).

FEach of these vectors is assumed to be decreasingly ordered w.r.t >, (e.g. &
>, ... >p 6p). Let v = min(r, s).
dy > dy iff:

o ) >, 01, or

o Jk < w such that 6, >, 6 andV j < k, §; =, §

;,or
y ~ /
ov<sande§v,5j~p5j.

2.5.2  Bipolar principles

Let’s now define some principles where both types of arguments (pros and
cons) are taken into account when comparing decisions. Generally speaking,
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we can conjunctively combine the principles dealing with arguments pro with
their counterpart handling arguments con. For instance, the principles given
in Definition 6 and Definition 9 can be combined as follows:

Definition 12 Let AF = (D, A,Def) be a decision system and Acc(AF) its
accepted arguments. Let di, dy € D. dy = dy iff

o |F,(di) NAcc(AF)| > |F,(d2) NAcc(AF)|, and
o |F.(dy) NAcc(AF)| < |F.(da) N Acc(AF)|.

However, note that unfortunately this is no longer a complete preorder. Sim-
ilarly, the principles given respectively in Definition 7 and Definition 10 can
be combined into the following one:

Definition 13 Let AF = (D, A,Def) be a decision system and Acc(AF) its
accepted arguments. Let dy, do € D. dy = dy iff:

e 36 € F,(di) NAcc(AF) such that ¥V ¢' € F,(dy) NAcc(AF), 6 >, &', and
e 35 € F.(dy) N Acc(AF) such that ¥V &' € F.(dy) N Acc(AF), § >, &'

This means that one prefers a decision that has at least one supporting argu-
ment which is better than any supporting argument of the other decision, and
also has not a very strong argument against it. Note that the above definition
can be also refined in the same spirit as Definitions 8 and 11.

Another family of bipolar decision principles applies the Franklin principle
which is a natural extension to the bipolar case of the idea underlying Defi-
nition 8. This principle consists, when comparing pros and cons a decision, of
ignoring pairs of arguments pro and cons which have the same strength. After
such a simplification, one can apply any of the above bipolar principles. In
what follows, we will define formally the Franklin simplification.

Definition 14 (Franklin simplification) Let AF = (D, A,Def) be a deci-
sion system and Acc(AF) its accepted arguments. Let d € D.

Let P = (01, ..., 6,), C = (8}, ..., 0,,) such that ¥0;,0; € F,(d) N Acc(AF)
and V&', 0 € F.(d) N Acc(AF).

2770

Each of these vectors is assumed to be decreasingly ordered w.r.t >, (e.g. &
>, ... >p 0;). The result of the simplification is P’ = (6,41, ..., 6,), C' =
(6515 -5 Opy) 801

o V1<i<j, 0=y 0 and (641 >p 05y o1 0%y >, 0j11)
o Ifj =1 (resp. j =m), then P' =0 (resp. C" =0).
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2.5.8  Non-polar principles

In some applications, the arguments in favor of and against a decision are ag-
gregated into a unique meta-argument having a unique strength. Thus, com-
paring two decisions amounts to compare the resulting meta-arguments. Such
a view is well in agreement with current practice in multiple criteria decision
making, where each decision is evaluated according to different criteria us-
ing the same scale (with a positive and a negative part), and an aggregation
function is used to obtain a global evaluation of each decision.

Definition 15 (Aggregation criterion) Let AF = (D, A,Def) be a decision
system and Acc(AF) its accepted arguments. Let dy, dy € D. Let (61, ..., 0,)*
and (&), ..., 8/ )5 (resp. (y1,...,7)¢ and (v},...,7)" ) the vectors of the
arguments pro and cons the decision dy (resp. ds).

di = dy iff h(01, ..., On, 01, -, 00) =0 h(vas - Y VY, -+ VL), where s
an aggregation function.

A simple example of this aggregation attitude is computing the difference of
the number of arguments pros and cons.

Definition 16 Let AF = (D, A,Def) be a decision system and Acc(AF) its
accepted arguments. Let dy, dy € D. dy = dy iff |F,(d1) NAcc(AF)| — | F.(dy) N
Acc(AF)| > |F,(d2) N Acc(AF)| — |F.(d2) N Acc(AF)|.

This has the advantage to be again a complete preorder, while taking into
account both pros and cons arguments.

3 A typology of formal practical arguments

This section aims at presenting a systematic study of practical arguments.
Epistemic arguments will not be discussed here because they have been much
studied in the literature (eg. [4,14,46]), and their handling does not make
new problems in the general setting of Section 2, even in the decision process
perspective of this paper. Moreover, they only play a role when the knowl-
edge base is inconsistent. Before presenting the different types of practical
arguments, we start first by introducing the logical language as well as the
different bases needed in a decision making problem.

Each §; € Fp(d1) N Acc(AF).
Each 0] € F.(d1) N Acc(AF).
Each v; € F,(d2) N Acc(AF).
Each ~/ € F.(d2) N Acc(AF).

N O Ot
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3.1 Logical representation of knowledge and preference

This section introduces the representation setting of knowledge and preference
which are here distinct, as it is in classical decision theory. Moreover, prefer-
ences are supposed to be handled in a bipolar way, which means that what
the decision maker is really looking for may be more restrictive than what it
is just willing to avoid.

In what follows, a vocabulary P of propositional variables contains two kinds
of variables: decision variables, denoted by vy, ..., v,, and state variables. De-
cision variable are controllable, that is their value can be fixed by the decision
maker. Making a decision then amounts to fixing the truth value of every de-
cision variable. On the contrary, state variables are fixed by nature, and their
value is a matter of knowledge by the decision maker. He has no control on
them (although he may express preferences about their values).

(1) D is a set of formulas built from the decision variables. Elements of D
represent the different alternatives, or candidate decisions. Let us consider
the following example of an agent who wants to know whether she should
take her umbrella, her raincoat or both. In this case, there are two decision
variables: umb (for umbrella) and rac (for raincoat). Assume that this
agent hesitates between the three following options: i) dy : umb (i.e. to
take her umbrella), ii) dy : rac (i.e. to take her raincoat), or iii) ds :
umb A rac (i.e. to take both). Thus, D = {d;, ds, d3}. Note that elements
of D are not necessarily mutually exclusive. In the example, if the agent
chooses the option ds then the two other options are satisfied.

(2) G is a set of propositional formulas built from state variables. It gathers
the goals of an agent (the decision maker). A goal represents what the
agent wants to achieve, and has thus a positive flavor. This means that
if g € G, the decision maker wants that the chosen decision leads to a
state of affairs where ¢ is true. This base may be inconsistent. In this
case it would be for sure impossible to satisfy all the goals, which would
induce the simultaneous existence of practical arguments pro and cons. In
general G contains several goals. Clearly, an agent should try to satisfy all
goals in its goal base G if possible. This means that G may be thought as a
conjunction. However, the two goal bases G = {g1, g2} and G’ = {g1 A g2 }
although they are logically equivalent, will not be handled in the same
way in an argumentative perspective, since in the second case there is
no way to consider intermediary objectives such as here satisfying gy,
or satisfying g» only, in case it turns out that it is impossible to satisfy
g1 N\ g2. This means that our approach is syntax-dependent.

(3) The set R is a set of propositional formulas built from state variables. It
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gathers the rejections of an agent. A rejection represents what the agent
wants to avoid. Clearly rejections express negative preferences. The set
{=r|r € R} describing what is acceptable for the agent is assumed to
be consistent, since acceptable alternatives should satisfy —r due to the
rejection of r, and at least there should remain some possible worlds that
are not rejected. There are at least two reasons for separately considering
a set of goals and a set of rejections. First, since agents naturally express
themselves in terms of what they are looking for (i.e. their goals), and
in terms of what they want to avoid (i.e. their rejections), it is better to
consider goals and rejections separately in order to articulate arguments
referring to them in a way easily understandable for the agents. Moreover,
recent cognitive psychology studies [18] have confirmed the cognitive va-
lidity of this distinction between goals and rejections. Second, if r is a
rejection, this does not necessarily mean that —r is a goal, and thus re-
jections cannot be equivalently restated as goals. For instance, in case of
choosing a medical drug, one may have as a goal the immediate availabil-
ity of the drug, and as a rejection its availability only after at least two
days. In such a case, if the candidate decision guarantees the availability
only after one day, this decision will for sure avoid the rejection without
satisfying the goal. Another simple example is the case of an agent who
wants to get a cup of either coffee or tea, and wants to avoid getting
no drink. If the agent obtains a glass of water, again he would avoid its
rejection, without being completely satisfied.

We can imagine different forms of consistency between the goals and the
rejections. A minimal requirement is to have G "R = (), otherwise it will
mean that an agent both wants to have p true and to avoid it.

The set K represents the background knowledge that is not necessarily
assumed to be consistent. The argumentation framework for inference
presented in Section 2 will handle such inconsistency, namely with the
epistemic system. Elements of I are propositional formulas built from
the alphabet P, and assumed to be put in a clausal form. The base K
contains basically two kinds of clauses: i) those not involving any element
from D, which encode pieces of knowledge or factual information (possibly
involving goals) about how the world is; ii) those involving one negation
of a formula d of the set D, and which states what follows when decision
d is applied.

Thus, the decision problem we consider will always be encoded with the four
above sets of formulas (with the restrictions stated above). Moreover, we sup-
pose that each of the three bases K, G, and R are stratified. Having IC stratified
would mean that we consider that some pieces of knowledge are fully certain,
while others are less certain (maybe distinguishing between several levels of
partial certainty such as “almost certain”, “rather certain”, ...). Clearly, for-
mulas that are not certain at all cannot be in K. Similarly, having G (resp. R)
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stratified means that some goals (resp. rejections) are imperative, while some
others are less important (one may have more than two levels of importance).
Completely unimportant goals (resp. rejections) do not appear in any stratum

of G (resp. R).

It is worth pointing out that we assume that candidate decisions are all con-
sidered as a priori equally potentially suitable, and thus there is no need to
have D stratified.

For encoding the stratifications, we use the set {0, 1,...,n} of integers as a lin-
early ordered scale, where n stands for the highest level of certainty if dealing
with C (resp. level of importance if dealing with G or R) and ‘0’ corresponds
to the complete lack of certainty (resp. importance). Other encodings (e.g.
using levels inside the unit interval or using the integer scale in a reversed
way) would be equivalent.

Definition 17 (Decision theory) A decision theory (or a theory for short)
is a tuple T = (D, K, G, R).

e The base IKC is partitioned and stratified into Ky, ..., K, (K =Ky U ... U
K.) such that formulas in K; have the same certainty level and are more
certain than formulas in K; where j < i. Moreover, Ky is not considered
since it gathers formulas which are completely uncertain.

o The base G is partitioned and stratified into Gy, ..., G, (G = G, U ... U
Gn) such that goals in G; have the same importance and are more important
than goals in G; where j < i. Moreover, Gy is not considered since it gathers
goals which are completely unimportant.

o The base R is partitioned and stratified into Ry, ..., R, (R = R1 U ...
U R,) such that rejections in R; have the same importance and are more
important than rejections in R; where j < i. Moreover, Ry is not considered
since it gathers rejections which are completely unimportant.

3.2 A typology of formal practical arguments

Each candidate decision may have arguments in its favor (called pros), and
arguments against it (called cons). In the following, an argument is associated
with an alternative, and always either refers to a goal or to a rejection.

Arguments pros point out the “existence of good consequences” or the “ab-
sence of bad consequences” for a candidate decision. A good consequence
means that applying decision d will lead to the satisfaction of a goal, or to
the avoidance of a rejection. Similarly, a bad consequence means that the
application of d leads for sure to miss a goal, or to reach a rejected situation.
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We can distinguish between practical arguments referring to a goal, and those
arguments referring to rejections. When focusing on the base ¢, an argument
pro corresponds to the guaranteed satisfaction of a goal when there exists a
consistent subset S of K such that S U{d} F g.

Definition 18 (Positive arguments pro) Let 7 be a theory. A positively
expressed argument in favor of an option d is a tuple § = (S,d, g) s.t:

(1) SCK,deD,gegG, SU{d} is consistent
(2) SU{d} F g, and S is minimal for set inclusion among subsets of K
satisfying the above criteria (arguments of Type PP).

S is called the support of the arqgument, and d is its conclusion. Let App be
the set of all arguments of type PP that can be built from a decision theory T .

In what follows, Supp denotes a function that returns the support S of an
argument, Conc denotes a function that returns the conclusion d of the ar-
gument, and Result denotes a function that returns the consequence of the
decision. The consequence may be either a goal as in the previous definition,
or a rejection as we can see in the next definitions of argument types.

The above definition deserves several comments.

e The consistency of S U {d} means that d is applicable in the context S, in
other words that we cannot prove from S that d is impossible. This means
that impossible alternatives w.r.t. K have been already taken out when
defining the set D. In the particular case where the base IC would be consis-
tent, then condition 1, namely SU{d} is consistent, is equivalent to U {d}
is consistent. But, in the case where I is inconsistent, independently from
the existence of a PP argument, it may happen that for another consistent
subset S’ of IC, S’ b —d. This would mean that there is some doubt about
the feasibility of d, and then constitute an epistemic argument against d. In
the general framework proposed in section 2, such an argument will overrule
decision d since epistemic arguments take precedence over any practical ar-
gument (provided that this epistemic argument is not itself killed by another
epistemic argument).

e Note that argument of type PP are reminiscent of the practical syllogism
recalled in the introduction. Indeed, it emphasizes that a candidate deci-
sion might be chosen if it leads to the satisfaction of a goal. However, this
is only a clue for choosing the decision since this last may have arguments
against, which would weaken it, or there may exist other candidate deci-
sions with stronger arguments. Moreover, due to the nature of the practical
syllogism, it is worth noticing that practical arguments have an abductive
form, contrarily to epistemic arguments that are defined in a deductive way,
as revealed by their formal respective definitions.
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Another type of arguments pro refers to rejections. It amounts to avoid a
rejection for sure, i.e. S U {d} - —r (where S is a consistent subset of ).

Definition 19 (Negative arguments pro) Let 7 be a theory. A negatively
expressed argument in favor of an option is a tuple 6 = (S,d,r) s.t:

(1) SCK,deD,reR, SU{d} is consistent
(2) SU{d} & —r and S is minimal for set inclusion among subsets of K
satisfying the above criteria (arguments of Type NP).

Let Ayp be the set of all arguments of type NP that can be built from a decision
theory T .

Arguments cons highlight the existence of bad consequences for a given can-
didate decision. Negatively expressed arguments con are defined by exhibiting
a rejection that is necessarily satisfied. Formally:

Definition 20 (Negative arguments con) Let 7 be a theory. A negatively
expressed argument against an option d is a tuple 6 = (S,d,r) s.t:

(1) SCK,deD,reR, SU{d} is consistent,
(2) SUA{d} + r and S is minimal for set inclusion among subsets of K
satisfying the above criteria (arguments of Type NC).

Let Ayc be the set of all arguments of type NC that can be built from a decision
theory T .

Lastly, the absence of positive consequences can also be seen as an argument
against (cons) an alternative.

Definition 21 (Positive arguments con) Let 7 be a theory. A positively
expressed argument against an option d is a tuple 6 = (S,d, g) s.t:

(1) SCK,deD,geqG, SU{d} is consistent,
(2) SU{d} F =g and S is minimal for set inclusion among subsets of K
satisfying the above criteria (arguments of Type PC).

Let Apc be the set of all arguments of type PC that can be built from a decision
theory T .

Let us illustrate the previous definitions on an example.

Example 7 Two decisions are possible, organizing a show (d), or not (—d).
Thus D = {d,—d}. The knowledge base K contains the following pieces of
knowledge: if a show is organized and it rains then small money loss (—d V
—rV sml); if a show is organized and it does not rain then benefit (~dVr\Vb);
small money loss entails money loss (—smlV ml); if benefit there is no money
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loss (—bV —ml); small money loss is not large money loss (—smlV =lml); large
money loss is money loss (—lml\ ml); there are clouds (c); if there are clouds
then it may rain (—c V r). All these pieces of knowledge are in the stratum
of level n, except the last one which is in a stratum with a lower level due
to uncertainty. Consider now the cases of two organizers (O and Oz) having
different preferences. Oy does not want any loss R = {ml}, and would like
benefit G = {b}. Oy does not want large money loss R = {lml}, and would
like benefit G = {b}. In such case, it is expected that Oy prefers —d to d, since
there is a NC argument against d and no arqgument for —d. For Os, there is
no longer any NC argument against d. He might even prefer d to —d, if he
15 optimistic and he considers that there is a possibility that it does not rain
(leading to a potential PP arqument under the hypothesis to have —r in K.

Due to the asymmetry in human mind between what is rejected and what is
desired, the former being usually considered as stronger than the latter, one
may assume that NC arguments are stronger than PC arguments, and conversely
PP arguments are stronger than NP arguments.

In classical decision frameworks, bipolarity is not considered. Indeed, we are
in the particular case where rejections mirror goals in the sense that g is a
goal iff —g is a rejection. Consequently, in our argumentation setting the two
types NC and PC coincide. Similarly, the two types PP and NP are the same.

4 Application to multiple criteria decision making

4.1 Introduction to multiple criteria decision making

In multiple criteria decision making, each candidate decision d in D is eval-
uated from a set C of m different points of view (i = 1,m), called criteria.
The evaluation can be done in an absolute manner or in a relative way. This
means that for each i, d can be either evaluated by an absolute estimate C;(d)
belonging to the evaluation scale used for i, or there exists a valued preference
relation R;(d, d") associated with each i that is applicable to any pair (d, d’) of
elements of D. Then one can distinguish between two families of approaches:
i) the ones based on a global aggregation of value criteria-based functions
where the obtained global absolute evaluations are of the form g(f1(C1(d), ...,
fm(Cr(d))) where the mappings f; map the original evaluations on a unique
scale, which assumes commensurability, and ii) the ones that aggregate the
preference indices R;(d, d') into a global preference R(d, d’) from which a rank-
ing of the elements in D can be obtained. In the following, only the first type
of approach is considered.
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4.2 Arguments in multiple criteria decision making

The decision maker uses a set C of different criteria. For each criterion c¢;,
one assumes that we have a bipolar univariate ordered scale T; which enables
us to distinguish between positive and negative values. Such a scale has a
neutral point, or more generally a neutral area that separates positive and
negative values. The lower bound of the scale stands for total dissatisfaction
and the upper bound for total satisfaction, while neutral value(s) stand for
indifference. The closer to the upper bound the value of criterion ¢; for choice
d, denoted ¢;(d) is, the more satisfactory choice d is w.r.t ¢;; the closer to the
lower bound the value of criterion ¢; for choice d is, the more dissatisfactory
choice d is w.r.t ¢;. As in multiple criteria aggregation, we assume that the
different scales T; can be mapped on a unique bipolar scale T, i.e. for any 4,
fi(ci(d)) € T. Moreover, we assume here that 7" is discrete and will be denoted
T ={-k,...,—1,0, +1, ..., +k} with the classical ordering convention of
relative integers.

Example 8 (Choosing an apartment) Imagine we have a set C of three
criteria for choosing an apartment: Price (c,), Size (co), and Location w.r.t.
downtown (c3). The criteria are valued on the same bipolar univariate scale
{=2,—1,0,41,42} (this means that all the f; mappings are the identity).
Prices of apartments may be judged “very expensive’, ’‘expensive’, ‘reason-
ably priced’, ’cheap’, "very cheap’. Size may be wvery small’, ‘small’, 'nor-
mal sized’, ‘large’, “very large’. Distance may be very far’, ’far’, 'medium’,
‘close’, wery close’. In each case, the five linguistic expressions would be val-
uwed by —2,—1,0,+1,+2 respectively. Thus an apartment d that is expensive,
medium-sized, and very close to downtown will be evaluated as c¢i(d) = —1,
co(d) = 0, and c3(d) = +2. It is clear that this scale implicitly encodes that
the best apartments are those that are very cheap, very large, and very close
to both downtown and transportation.

From this setting, it is possible to express goals and rejections in terms of
criteria values. A bipolar-valued criterion can be straightforwardly translated
into a set of stratified goals, and a stratified set of rejections. The idea is
the following. The criteria may be satisfied either in a positive way (if the
satisfaction degree is higher than the neutral point 0 of T') or in a negative
way (if the satisfaction degree is lower than the neutral point of T'). Formally
speaking, the two bases G and R are defined as follows: having the condition
fi(ci(d)) > +j satisfied, where +j belongs to the positive part of T, is a goal
g; for the agent that uses ¢; as a criterion. This goal is all the more important
as j is small (but positive), since as suggested by the above example, the
less restrictive conditions are the most imperative ones. The importance of
gj can be taken as equal to k —j + 1 for j > 1 (using the standard order-
reversing map on {1,...,k}). Indeed the most important condition f;(c;(d))
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> +1 will have the maximal value in T, while the condition f;(¢;(d)) > +k
will have the minimal positive level in T, i.e. +1. We can proceed similarly
with rejections. The rejection r; corresponding to the condition f;(c;(d)) < —j
will have importance j (importance uses only the positive part of the scale).
This corresponds to the view of a fuzzy set as a nested family of level cuts,
which translates in possibilistic logic into a collection of propositions whose
extensions are all the larger as the proposition is more imperative. In the above
example, consider for instance the price criterion. We will have two goals: g; =
very cheap and go = cheap with respective weights 1 and 2. Thus, being cheap
is more imperative than being very cheap as expected. Similarly, r; = very
expensive and ry = expensive are rejections with respective weights 2 and 1.
Note that if an apartment is normally sized, then there will be no argument
in favor or against it w.r.t. its size.

In multiple criteria aggregation, criteria may have different levels of impor-
tance. Let w; € {0, +1, ..., +k} be the importance of criterion ¢;. Then, we
can apply the above translation procedure where, now the importance k—j+1
of condition f;(¢;(d)) > +j is changed into min(w;, k — j+1). Indeed, if w; is
maximal, i.e. w; = +k, the importance is unchanged; in case the importance
w; of criterion ¢; would be minimal, i.e. w; = 0, then the resulting importance
of the associated goal (the condition f;(¢;(d)) > +7) is indeed also 0 expressing
its complete lack of importance.

In addition to the bases D, C, G and R, the decision maker is also equipped
with a stratified knowledge base IC encoding what he knows. In particular, IC
contains factual information about the values of the f;(¢;(x))’s for the different
criteria and the different candidate decisions. K also contains rules expressing
that values in T are linearly ordered, i.e. rules of the form if ¢;(x) > j, then
ci(x) > j'if j > 7/ € T. More generally, K can also contain pieces of knowledge
that enable the decision maker to evaluate criteria from more elementary eval-
uation of facts. This may be useful in practice for describing complex notions,
e.g. comfort of a house in our example, which indeed may depend on many
parameters. A goal is assumed to be associated with a unique criterion are
no longer allowed). Then, a goal gf is associated to a criterion ¢; by a propo-
sitional formula of the form g/ — ¢; meaning just that the goal g/ refers to
the evaluation of criterion ¢;. Such formulas will be added to IC,,. Note that in
classical multiple criteria problems, complete information is usually assumed
w.r.t. the precise evaluation of criteria. Clearly, our setting is more general
since it leaves room to incomplete information, and facilitates the expression
of goals and rejections.

Now that the different bases are introduced, we can apply our general decision
system, and build the arguments pro and cons for any candidate decision. In
addition to the completeness of information, it is usually assumed in classical
approaches to multiple criteria decision making that knowledge is consistent.
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In such a case, it is not possible to have conflicting evaluations of a criterion
for a choice. Consequently, the whole power of our argumentation setting will
not be used, in particular all arguments will be accepted.

4.3 Retrieving some classical multiple criteria aggregations

The aim of this subsection is to show the agreement of the argumentation-
based approach with some classical approaches to multiple criteria decision
making. It is worth mentioning that until recently, most multiple criteria ap-
proaches use only positive evaluations, i.e. unipolar scales ranging from “bad”
to “good” wvalues, rather than distinguishing genuinely good values from re-
ally bad ones that have to be rejected. The argumentation-based approach
makes natural the reference to the distinction between what is favored and
what is disfavored by the decision maker for giving birth to arguments for and
arguments against candidate decisions. Here, only two types of arguments are
needed: positive arguments pro of type PP, and negative arguments con of type
NC since rejections in this case are just the complement of goals. Indeed, the
negative values of a criterion reflect the fact that we are below some threshold
while the positive values express to what extent we are above. Thus, A, =

App U Aye.

In what follows, the base K is supposed to be consistent, fully certain (i.e.
K = K,), and to contain complete information w.r.t. the evaluation of criteria.
Thus, the set A of arguments is exactly A. U A,,. Since K is consistent, then the
two attack relations R, and R, are empty (i.e. R, = R,, = 0)). Consequently,
Def, = Def,, = (), and the set of skeptically accepted arguments of the decision
system AF = (D, A,Def = () is exactly Acc(AF) = A.

The first category of classical approaches to multiple criteria decision making
that we will study is the one that gives the same importance to the different
criteria of the set C. The idea is to prefer the alternative that satisfies positively
more criteria. Let ¢;(d) = 1 if ¢;(d) > 0 and ¢}(d) = 0 if ¢;(d) < 0, where ¢;(d)
is the evaluation of choice d by the i-th criterion. In order to capture this idea,
a particular unipolar principle is used. Before introducing this principle, let
us first define a function Results that returns for a given set B of practical
arguments, all the consequences of those arguments, i.e. all the goals and
rejections to which arguments of B refer to.

Definition 22 Letd,, dy € D. d; = ds iff Results(F,(d2)) C Results(F,(d)).
Note that in our case, F,(d) C App and F.(d) C Ayc for a given d € D.
Property 6 Let AF = (D, A,Def) be a decision system. Let dy,dy € D. When

C =C,, dy = dy (according to Definition 22) iff >, ci(d1) > >, ci(dz).
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If we focus on arguments con, the idea is to prefer the option that violates
less criteria. Let ¢/ (d) = 0 if ¢;(d) > 0 and ¢/(d) = 1 if ¢;(d) < 0. This idea is
captured by the following unipolar principle.

Definition 23 Letd,, dy € D. d; = ds iff Results(F.(d;)) C Results(F.(dy)).

Property 7 Let (D, A,Def) be a decision system. Let dy, dy € D. When C =
Cn, di = dy (according to Definition 23) iff >, ¢! (dy) < 32 c¢/(dy).

When the criteria do not have the same level of importance, the promotion
focus principle given in Definition 7 amounts to use max; ¢;(d) with c;(d) =
¢i(d) if ¢;(d) > 0 and ¢(d) = 0 if ¢;(d) < 0 as an evaluation function for
comparing decisions. Recall that the promotion focus principle is based on a
preference relation >, between arguments. In what follows, we will propose a
definition of the force of an argument, as well as a definition of >,. The two
definitions are chosen in such a way that they will allow us to retrieve the

above idea on the promotion focus principle.

In our application, the force of an argument depends on two components: the
certainty level of the knowledge involved in the argument, and the importance
degree of the goal (or rejection). Formally:

Definition 24 (Force of an argument) Let 6 = (S,d,g) € App (resp. § =
(S, d, r) € Ayc). The strength of § is a pair (Lev(d), Wei(d)) s.t.

e The certainty level of the argument is Lev(d) = min{i|1l <i < n such that
S; # 0}, where S; denotes SNK;. If S = 0 then Lev(d) = n.
o The weight of the argument is Wei(d) = j if g € G; (resp. r € R;).

The levels of satisfaction of the criteria should be balanced with their relative
importance. Indeed, for instance, a criterion ¢; highly satisfied by d is not a
strong argument in favor of d if ¢; has little importance. Conversely, a poorly
satisfied criterion for d is a strong argument against d only if the criterion is
really important. Moreover, in case of uncertain criteria evaluation, one may
have to discount arguments based on such evaluation. In other terms, the force
of an argument represents to what extent the decision will satisfy the most
important criteria. This suggests the use of a conjunctive combination of the
certainty level, the satisfaction / dissatisfaction degree and the importance of
the criterion. This requires the commensurateness of the scales.

Definition 25 (Conjunctive strength) Let 0, € App.
d >, ¢ iff min(Lev(d),Wei(d)) > min(Lev(d'), Wei(d')).

Property 8 Let AF = (D, A, Def) be a decision system. Let dy, dy € D. When

C =C,, di = dy (according to Definition 7 and using Definition 25 for the
relation >, ) iff max; c¢;(dy) > maz; c¢;(ds).

30



The prevention focus principle (see Definition 10) amounts to use min; ¢ (d)
with ¢/(d) = 0if ¢;(d) > 0 and ¢/(d) = —c;(d) if ¢;(d) < 0.

Property 9 Let AF = (D, A, Def) be a decision system. Let dy, dy € D. When
C =C,, di = ds (according to Definition 10 and using Definition 25 for the
relation >, ) iff min; ¢ (di) < min; ] (ds).

When each criterion ¢; is associated with a level of importance w; ranging
on the positive part of the criteria scale, the above c;(d) is changed into
min(c;(d),w;) in the promotion case.

Property 10 Let AF = (D, A,Def) be a decision system. Let dy, dy € D. dy
> dy (according to Definition 7 and using Definition 25 for the relation >,)
iff maz; min(c;(dy),w;) > max; min(ci(dy), w;).

This expresses that d is all the more preferred as there is an important cri-
terion that is positively evaluated. A similar proposition holds for the pre-
vention focus principle. Thus, weighted disjunctions and conjunctions defined
in [27] are retrieved. It would even be possible to provide the argumenta-
tive counter-part of a general qualitative weighted conjunction of the form
min;max(c;(d), neg(w;)), where neg is the reversing map of the discrete scale
where w; takes its value. However, this would be quite similar to the qualitative
decision making under uncertainty problem which is now discussed in great
detail, and where aggregations having the same structure are encountered.

5 Application to decision making under uncertainty

Decision making under uncertainty relies on the comparative evaluation of
different alternatives on the basis of a decision principle, which can be usu-
ally justified by means of a set of rationality postulates. This is, for example,
the Savage view of decision making under uncertainty based on expected util-
ity [45]. Thus, standard approaches for making decisions under uncertainty
consist in defining decision principles in terms of analytical expressions that
summarize the whole decision process, and for which it is shown that they
encode a preference relation obeying postulates that are supposedly mean-
ingful. Apart from quantitative principles such as expected utility, another
example of such an approach is provided by the qualitative pessimistic or
optimistic decision principles, which have been more recently proposed and
also axiomatically justified [28,35]. The qualitative nature of these decision
evaluations make them more liable to be unpacked in terms of arguments in
favor /against each choice, in order to better understand the underpinnings of
the evaluation. We successively study the pessimistic and optimistic decision
principles. Note, however, that these qualitative decision criteria do not make
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use of a bipolar univariate scale, so in the following we apply our general deci-
sion system with an empty set of rejections. Thus, we will consider a decision
theory 7 = (D, K, G). Consequently, the set of practical arguments built from
such a theory is A, = App U Apc. Recall that arguments of type PP are pro
their conclusions whereas arguments of type PC are cons their conclusions. In
classical decision systems, the knowledge base and the goals base are assumed
to be consistent. Thus, in what follows, we will assume that they are consis-
tent as well. Thus, the three defeat relations Def,, Def, and Def,, are empty.
Consequently, the decision system that will be used is (D, A, U A,,Def = 0)).
In such a system, the whole decision process is reduced to the last step, which
consists of ordering pairs of options. This means that in order to show how
pessimistic and optimistic principles are captured, it is sufficient to choose the
most suitable decision principle among the ones proposed in Section 2.5.

5.1 Pessimistic Criterion

The pessimistic decision criterion is defined as follows: given a possibility dis-
tribution 7y restricting the plausible states that can be reached when a deci-
sion d takes place, and a qualitative utility function u, the so-called pessimistic
qualitative decision principle, which estimates a kind of qualitative expecta-
tion, is defined as [28]:

E.(d) = minmax (u(w), neg(ma(w))) (1)

where 74 is a mapping from a set of interpretations €2 to a linearly ordered
scale U = {0, 1,...,n}, and p is a mapping from 2 to the same scale U, and neg
is the involutive order-reversing map on U = {0, 1,...,n} such that neg(0) =
n and and neg(n) = 0, where 0 and n are the bottom and the top elements of
U. Namely, neg(n — k) = k. Thus, mg(w) (resp. u(w)) is all the greater as w
is more plausible (resp. satisfactory), 0 standing for the minimal level, and n
for the maximal level. Moreover, 74 and i are assumed to be normalized, i.e.
Jw € Q such that m4(w) = 1, and similarly 3 o’ € Q, p(w') = 1.

E.(d) is all the greater as all the states w that have some plausibility according
to mq are among the most preferred states according to p. E.(d) is in fact a
degree of inclusion of the fuzzy set of plausible states (when d is applied)
into the fuzzy set of preferred states. The pessimistic utility F.(d) is small as
soon as there exists a possible consequence of d that is both highly plausible
and has a low satisfaction level with respect to preferences. This is clearly a
risk-averse and thus a pessimistic attitude.

32



In [26], it has been shown that a stratified knowledge base has a possibility
distribution as semantic counterpart. See annex for a refresher on possibilistic
logic. Let ICy be the knowledge base built from the base IC to which the decision
d is added to the stratum IC,,. Let w4 be the possibility distribution associated
with K4, and p be the possibility distribution associated with the base G of
goals. The normalization of 7y and g is equivalent to the non-emptiness of
the highest strata K, and G,. It has been shown in [24] that it is possible
to compute E,(d), as expressed by formula 1, by only using a classical logic
machinery on z-level cuts of the two bases Ky and G.

Proposition 1 [2/] E.(d) is the mazimal value of x € U s.t.

(’Cd)az = (g)%@) (2)

where (B), (resp. (B)z) is the set of formulas of a base B that appear in the
strata x,...,n (resp. in the strata v + 1,...,n). Mind that (B), is a set of
strata, while B, is a stratum. By convention, E.(d) = 0 if there is no such x.

E.(d) is equal to n (z = n) if the completely certain part of IC; entails the
satisfaction of all the goals, even the ones with low priorities.

In the pessimistic view, as pointed out by Proposition 1, we are interested in
finding a decision d (if it exists) such that K, U {d} + G, with x high and
y low, i.e. such that the decision d together with the most certain part of IC
entails the satisfaction of the goals, even those with low priority (provided
that those with higher priority are also satisfied).

Example 9 (Surgery example continued) The example is about having
or not a surgery, knowing that the patient has colonic polyps. The knowledge
base is K = K, U K,, with K, = {cp,sg — se, -sg — —se, sg — ll,
ca A\ —sg — U}, and K, = {cp — ca}, (0 < © < n) where se: having side-
effect, ca: cancer, ll: loss of life, sg: having a surgery, cp: having colonic polyps.
The integer x < n refers to a lack of complete certainty.

The goals base is G = G, UG, with G, = {=ll}, and G, = {—se} (where 0
<y < n). We do not like to have side effects after a surgery, but it is more
important to not lose life.

The set of decisions is D = {sg, ~sg}.

Note that (Ksg)n = (G)n. However, (Ksy)n ¥ (G)y. Note also that (Ksg)1 F
(G)n while (Ksg)1 ¥ (G)y. It is clear that (Ksg)n ¥ (G)negtn) = (G)1. Thus, the
only value that satisfies Proposition 1 is neg(y). Indeed, (Ksg)negy) F (G)y-
Consequently, E.(sg) = neg(y).
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In its side, the option —sg violates the most important goal (—ll). Thus, there
is no value that satisfies Proposition 1. Consequently, E.(—sg) = 0.

We are going to show that the result of Proposition 1 can be captured in terms
of arguments pro, i.e., arguments of type PP are underlying the pessimistic
criterion. We first relate the absence of PP arguments to some consequences
on the value of F,. We then conversely relate the value of E, to the existence
of some PP arguments. Lastly, we show that the comparison of decisions in
terms of tcriterion F, can also be handled directly in terms of PP arguments.

Let us first recall the definition of the strength of an argument already used
in the previous section (Definition 24).

Definition 26 (Strength of an Argument) Let 6 = (S,d,g) € A,. The
strength of § is a pair (Lev(d), Wei(d)) s.t.

e The certainty level of the argument is Lev(d) = min{i|1l <i < n such that
S; # 0}, where S; denotes SNK;. If S = 0 then Lev(d) =
o The weight of the argument is Wei(d) =y s.t g € G,.

The two following theorems state that the absence of strong PP argument can
only weaken E,(d).

Theorem 4 Let d € D. If 3g € Gy, s.t. 35 = (S,d,g) € App then E.(d)
< neg(k).

Proof By reduction ab absurbo. Assume E.(d) £ neg(k). Then E.(d) >
neg(k)+1. By Proposition 1, (Kaq)negk)y+1 = (G)negneg(i)+1)- But neg(neg(k) +
1) =k = 1. Thus, (Kq)negtky+1 = (G)r- This clearly contradicts the hypothesis
that 3g € Gy, s.t. B 6 = (S,d, g) € App. u

Theorem 5 Letd € D. IfVg€ G, 6 =(S,d,g) € App with Lev(d) > [ and
[ >1, then E.(d) <.

Proof By reduction ab absurbo also. Assume that E.(d) € l. Then E,.(d)
> 1+ 1. By Proposition 1, (Kaq)ai1) F (G)negs1y- Since 1 > 1, neg(l +1) <
n — 2. Thus, (Ka)as1y & (G)m—1y. This contradicts the hypothesis that Vg,
36 =(S.dg) € App with Lev(8) > I, which means that ¥ (S,d,g) € App,
Lev(d) <1, since (G)n—1) cannot be empty. u

The third theorem states that the value of E,(d) is determined by the existence
of sufficiently certain PP arguments in favor of decision d with respect to all
important goals whose priority is above some value, and the absence of any
more certain PP argument in favor of decision d with respect to some goal
whose priority may be smaller.
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Theorem 6 Let d € D. If E.(d) = z, then Vg € (G)nega)+1, 3 0 = (S,d, g)
€ App, and Lev(8) > . Moreover, 3g € G s.t. $ § = (S,d,g) € App with
Lev(d) > x + 1 and Wei(d) > neg(z).

Proof Assume that E,.(d) = x. By Proposition 1, (Kq)s & (G)neg(x)- Thus,
Vg € (Gneg@)+1, 3 0 = (S,d,g) € App and Lev(0) > x. Besides, (Kq)z1 ¥
(G)neg(z+1), and then 3g € G s.t. $ § = (S,d,g) € App with Lev(d) > x and
Wei(d) > neg(x + 1) + 1 = neg(x). u

However, as illustrated by the following example, E,(d) = = does not neces-
sarily mean that there does not exist a sufficiently good PP argument for some

goal in Gpeg(z)-

Example 10 Let n = 4. Let Gy = {q1}, G5 = {92}, Go = {g3}. Assume
(K)s F {92,935}, and (K)2 = {g1}, but (K)s t/ {g1}. Then (K)2 = (G)s, i.e.
(K)2 = (G)2, and then E.(d) = 2. Note that here (IC)a = (G)1, but (K)s t/ (G)1
(here neg(3) = 1), since the most important goal has only a rather weak proof

when d takes place, namely (K)s t/ {g:1}, although stronger proofs exist for less
important goals: (K)2 F (G)1, and thus E.(d) # 3.

The above results show the links between PP arguments supporting candidate
decisions and the pessimistic values F, assigned to those decisions. In what
follows, we will show that an instantiation of our decision system returns the
same ordering on the set D as the one obtained by comparing the pessimistic
values of elements of D. As already said, this amounts to choose the most
appropriate decision principle. In the case of pessimistic decision making, the
most suitable principle is the one proposed in Definition 7. Let us recall that
principle:

Definition 27 Let AF = (D, A,Def) be a decision system and Acc(AF) its
accepted arguments. Let dy, dy € D.

dy > dy iff 36 € F,(dy) N Acc(AF) such that Yo' € F,(ds) N Acc(AF),0 >, §'.

Note that this principle is based on a preference relation >, between practical
arguments. For our purpose, this relation prefers the argument that is based
on a subset of K made of beliefs that are more certain and that together entail
a goal having a higher priority. Formally, using the usual Pareto strict partial
order between vectors:

Definition 28 (Comparing arguments of type PP) Let §,0' € PP. ¢ is
stronger than ¢', denoted 6 >, ¢', if and only if (Lev(d), neg(Wei(d))) > pareto
(Lev(d"), neg(Wei(d'))).
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Let us now relate the result of our decision system to that of pessimistic
decision making.

Theorem 7 Let T = (D,K,G) be a decision theory, and AF = (D, A, U
A,,Def = () be the decision system. If Vg € G s. t. ¥ ¢’ = (S,da,g) € App, 3
6= (S d1,g) € App and § >, 89, then E.(dy) > FE.(dy).

Proof Assume 0 < E.(dy) < FE.(d2). Then 3z s. t. E.(dy) = x. Then
(Kay)z F (g>neg(x) and (Ka,)zt1 ¥ (g)neg(:r+1); while (Kay)z1 b (g)neg(erl)-
This contradicts the hypothesis. Indeed Y6 € App s.t. Conc(d) = dy, Lev(d) <
x + 1, but 36" € App s.t. Conc(d) = dy and Lev(d) = = + 1. Assume 0 =
E.(dy) < E.(ds). Then (K4, )o t/ (G)n, and 36 € App s.t. Conc(d) = dj. [ |

The converse of the above theorem is false as shown by the example below,
where F, (d1> > E*<d2)

Example 11 Let G = {g1, 92}, Go = {1}, Gn1 = {92} Assume (Kg,)n F
{a1}, (Ka)n—2 F {g2} (but (Kay)n 1/ {92} and (Ka,)n—1 ¥ {g2}). Similarly,
(Kay)n F {92}, Kay)n-1 F {1}, and (Kay)n ¥ {91}. We can take n = 3.
Thus, E.(dy) = 2 since (Ka,)2 F (G)2, while E.(d2) =1 since (Kg)1 F (G)1.
So, E.(dy) > FE.(d2). Let 69 = ((K)3,d2, g2) € App, so Lev(dy) = 3 and
neg(Wei(ds)) = neg(2) = 1. But, regarding di, # 6, € App s.t. Conc(d;) = d,
and Lev(d1) = 3 and neg(Wei(dy)) = 2 = neg(1), i.e. s.t. &1 >, 02 (according
to Definition 28). Indeed, the best arguments for dy are §; = ((K)3,d1, g1) with
Lev(d1) = 3 and neg(Wei(dy)) = 0, and 07 = ((K)1,dy, g2) with Lev(d]) = 2
and neg(Wei(d))) = 1.

Going back to our running example, we have,

Example 12 (Surgery example continued) In the above example, there
is an argument of type PP in favor of sg: § = ({sg — —ll}, sg, —ll), and there
is an argument of type PP in favor of —sg: &' = ({—sg — —se}, —sg, —se).

The strength of § is <n, n>, whereas the strength of &' is <n, o>. Thus, § is
preferred to &' (according to Definition 28). Consequently, the decision sg is
preferred to the decision —sg.

The agreement between the pessimistic qualitative decision criterion and the
argument-based view is due to a decomposability property of arguments of
type PP w.r.t the conjunction of goals. Namely, K, U{d} F g and K, U{d} - ¢
is equivalent to K, U {d} - g A ¢’. Indeed, the pessimistic evaluation sanctions
the fact that all the most important goals are satisfied for sure up to a level
where this is no longer true. However, things are not as simple with consistency
since one may have I, U {d} consistent with both g and ¢’ separately without

8 According to Definition 28.
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having it consistent with g A ¢’. This means that the absence of arguments
of type PC is only a necessary condition for consistency w.r.t the whole set
of goals. Thus, the optimistic criterion can only be approximated in terms of
the evaluation of elementary practical arguments. Indeed, as it will be recalled
in the next section the optimistic evaluation refers to the fact that the most
certain part of K, and the most important goals are consistent together in
presence of a candidate decision.

5.2 Optimistic Criterion

The optimistic qualitative criterion [28] is given by

E*(d) = maxmin (u(w), 7a(w)) - (3)

It is a consistency evaluation since it amounts to estimate to what extent the
intersection of the fuzzy set of good states (in the sense of p) with the fuzzy
set of plausible states (when d is applied) is not empty. The criterion E*(d)
corresponds to an optimistic attitude since it is high as soon as there exists
a possible consequence of d that is both highly plausible and highly prized.
E*(d) is equal to n (is maximal) as soon as one fully acceptable choice w (i.e.,
such that pu(w) = n) is also completely plausible. As for the pessimistic case,
the optimistic utility can be expressed in logical terms.

Proposition 2 [2/] E*(d) is equal to the greatest x € U such that (Kgq)neg()
and (G)neg(z) are logically consistent together.

The above proposition means that in the optimistic point of view, we are
interested in finding a decision d (if it exists) which is consistent with the
knowledge base and the goals (i.e. £ A {d} A G # L). This is optimistic in
the sense that it assumes that goals may be attained as soon as their negation
cannot be proved.

Example 13 (Surgery example continued) In this example, E*(sg) = neg(y)
and E*(—sg) = neg(x). Thus the best decision in the optimistic case depends
on the values x and y.

In order to capture the result of Proposition 2, arguments of type PC are
needed. The strength of such arguments is given using Definition 24.

Theorem 8 Letd € D. If 30 € Apc s.t. Conc(d) = d, then
E*(d) < maz(neg(Lev(d)), neg(Wei(d))).

Proof E*(d) = maz,min(mi,(w), ug(w)) = mazfmaz..c,), min(mi, (W),
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1o (W), MAT it (icy), Min(mic,(w), pg(w))]. Let & = (S,d, g) be a PC argument
with Lev(d) = x and Wei(0) =y. Then, K, U{d} F —g. Thus, Vw, w = (Kg)z,
then mi,(w) < neg(z). Thus, E*(d) < maz[min(n,neg(y)), min(neg(x),n)]
= maz(neg(y), neg(x)). u

Conversely, we have the following theorem

Theorem 9 Letd € D. If E*(d) = x, then there is a PC argument § = (S, d, g)
for d such that Wei(d) < neg(x).

Proof IfE*(d) =x, then x is the mazimal value such as (Kq)neg(z) U (G)neg(a)
is consistent, from Proposition 2. This entails that (’Cd)neg(x/) F =Gneg(ary for
neg(x) > neg(x'). u

Example 14 (Surgery example continued) In the above example, there
is one strong argument against the decision ‘sqg’: <{sg — se}, sg, nse>.
There is also a unique strong argument against the decision —sg: <{cp,cp —
ca,ca N\ —sg — U}, —sg, —ll>.

The level of the argument <{sg — se}, sg, se> is n whereas its weight is y.
Concerning the argument <{cp,cp — ca,ca \ =sg — U}, —sg, ~ll>, its level
15 x, and its weight is n.

In this example, the comparison of the two arqguments amounts to compare x
with y. Namely, if y (the priority of the goal “no side effect”) is small then
the best decision will be to have a surgery. If the certainty degree x of having
cancer in presence of colonic polyps for the particular patient is small enough
then the best optimistic decision will not be to have a surgery.

In order to retrieve the exact value of E*(d) as weight of an argument, we
would have to use a non-elementary notion of arguments, described in [7],
that considers as a whole the goals base G.

6 Related Works

Different works have combined the ideas of argumentation and decision in ar-
tificial intelligence systems. In particular, Fox and Parsons [32] have developed
an inference-based decision support machinery, which have been implemented
in medical applications (see e.g. Fox and Das in [31]). In this approach the
knowledge base is made of recommendation rules that conclude on candidate
decisions. However, in [32,33], no explicit distinction is made between knowl-
edge and goals. However, in their examples, values (belonging to a linearly
ordered scale) are assigned to formulas which represent goals. These values
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provide an empirical basis for comparing arguments using a symbolic combi-
nation of strengths of beliefs and goals values. This symbolic combination is
performed through dictionaries corresponding to different kinds of scales that
may be used. Only one type of arguments in favor of or against is used. An-
other recent example of argument-based decision system that is purely based
on an inference system is proposed by Chesnevar et al. in [21] for advising
about language usage assessment on the basis of corpus available on the web.

We now survey works that handle classical multiple decision or decision making
under uncertainty problems in an argumentative manner. This means that
recommended decisions have to be found or explained from user’s preferences
and information about the current state of the world. Moreover, no “pre-
compiled” rules that explicitly recommend decisions in a given situation are
supposed to be available in these works.

In [15], Bonet and Geffner have also proposed an original approach to quali-
tative decision, inspired from Tan and Pearl [47], based on “action rules” that
link a situation and an action with the satisfaction of a positive or a nega-
tive goal. However in contrast with the previous work and the work presented
in this paper, this approach does not refer to any model in argumentative
inference. In their framework, there are four parts:

(1) aset D of actions or decisions.

(2) a set Z of input propositions defining the possible input situation. A
degree of plausibility is associated with each input. Thus, Z = {(k;, o)}
with a; € {likely, plausible, unlikely}.

(3) aset G of prioritized goals such that G = Gt U G~. Gt gathers the pos-
itive goals that one wants to achieve and G~ gathers the negative goals
that one wants to avoid. Thus, G = {(g;, 3;)} with 8; € [0,1,...N].

Note that in our framework what they call here negative goals are con-
sidered in our goal base as negative literals.

(4) a set of action rules AR = {(A; A C; = x;, \;), \; > 0}, where A; is an
action, Cj is a conjunction of input literals, and z; is a goal. Each action
rule has two measures: a priority degree which is exactly the priority
degree of the goal x;, and a plausibility degree. This plausibility is defined
as follows: A rule AAC = z is likely if any conjunct of C' is likely. A rule
ANC = zx is unlikely if some conjunct of C'is unlikely. A rule ANC' =
is plausible if it is neither likely nor unlikely.

In this approach only input propositions are weighted in terms of plausibility.
Action rules inherit these weights through the three above rules in a rather
empirical manner which depends on the chosen plausibility scale. The action
rules themselves are not weighted since they are potentially understood as de-
feasible rules, although no non-monotonic reasoning system is associated with
them.
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In contrast, our approach makes use of an abstract scale. Moreover, weighted
possibilistic clauses have been shown to be able to properly handle non-
monotonic inference in the sense of Kraus, Lehmann and Magidor [37]" pref-
erential system augmented with rational monotony. So a part of our weighted
knowledge may be viewed as the encoding of a set of default rules. From the
above four bases, reasons are constructed for (against) actions in [15]. Indeed,
goals provide reasons for (or against) actions. Positive goals provide reasons
for actions, whereas negative goals provide reasons against actions. The basic
idea behind this distinction is that negative goals should be discarded, and
consequently any action which may lead to the satisfaction of such goals should
be avoided. However, the approach makes no distinction between what we call
pessimism and optimism. The definition of a ‘reason’ in [15] is quite differ-
ent from our definition of an argument. Firstly, a reason considers only one
goal and secondly, the definition is poor since it only involves facts. Finally,
in Bonet and Geffner’s framework, decisions which satisfy the most important
goals are privileged. This is also true in our approach, but the comparison
between decisions can be further refined, in case of several decisions yielding
to the satisfaction of the most important goals, by taking into account the
other goals which are not violated by these decisions.

Amgoud and Prade in [7] have already proposed an argumentation-based read-
ing of possibilistic decision criteria. However, their approach has some draw-
backs from a pure argumentation point of view. In their approach, there was
only one type of arguments pros and one type of arguments con. Moreover,
these arguments were taking into account the goal base as a whole, and a
consequence for a given decision there was at most a unique argument pros
and a unique argument cons. This does not really fit with the way human are
discussing decisions, for which there are usually several arguments pro and
cons, rather than a summarized one. On the contrary in this paper, we have
discussed all the possible types of arguments pro and cons in a systematic
way, and each argument pertains to only one goal.

Dubois and Fargier [25] have studied a framework where a candidate decision
d is associated with two distinct sets of positive arguments (pros) and negative
arguments (cons). It is assumed that positiveness and negativeness are not a
matter of degrees. If one considers that the arguments refers to criteria, this
means that an implicit scale {—, 0,4} would be used for evaluating a candi-
date decision according to each criterion. Moreover, there is no uncertainty.
However, a function 7 assesses the level of importance of each argument for
the decision maker. Importance ranges on a totally ordered scale from "no im-
portant at all” to a maximal level of importance. If w(z) > 7(y), "the strength
of x is considered at least one order of magnitude higher than the one of y,
so that y is negligible in front of x”. The authors provide an axiomatic char-
acterization of different natural rules in this setting, with a possibility theory
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interpretation of their meaning. In particular, a ”bipolar lexicographic” pref-
erence relation (which is among the decision principles discussed in Section 6)
is characterized. It amounts to compare two candidate decisions d and d’ by
comparing the difference of the cardinalities of the sets of positive and nega-
tive arguments they have (thus allowing for cancellation between positive and
negative arguments), starting with the highest level of importance; in case of
equality at a given level, the level immediately below is considered to solve
the ties and so on. In direct relation to this work, an empirical study of the
different decision rules considered (Bonnefon and Fargier [16]) has shown that
the bipolar lexicographic rule is largely favored by humans in practice.

Another trend of works relating argumentation and decision is mainly inter-
ested in the use of arguments for explaining and justifying multiple criteria
decisions once they have been made using some definite aggregation function.
A systematic study for different aggregation functions can be found in [40,39].
The implemented system developed by Carenini and Moore [19] is an example
of such a use for an aggregation process based on weighted sums associated
to value trees.

7 Conclusion

The paper has proposed an abstract argumentation-based framework for de-
cision making. The main idea behind this work is how to define a complete
preorder on a set of candidate decisions on the basis of arguments. The frame-
work distinguishes between two types of arguments: epistemic arguments that
support beliefs and practical arguments that justify candidate decisions. Each
practical argument concerns only one candidate decision, and may be either
in favor of that decision or against it. The framework follows two main steps:

(1) An inference step in which arguments are evaluated using acceptability
semantics. This step amounts to return among the practical arguments,
those which are warranted in the current state of information, i.e. the
“accepted” arguments.

(2) A pure decision step in which candidate decisions are compared on the
basis of accepted practical arguments.

For the second step of the process, we have proposed three families of prin-
ciples for comparing pairs of choices. An axiomatic study and a cognitive

validation of these principles are worth developing, in particular in connection
with [16,25].

The abstract framework is then instantiated in order to handle decision un-
der uncertainty and multiple criteria decision making. For that purposes, the
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framework emphasizes clearly the bipolar nature of the consequences of choices
by distinguishing goals to be pursued from rejections to be avoided. These
bipolar preferences are encoded by two sets of stratified formulas stating goals
and rejections with their level of importance. In addition, the knowledge about
the current state of the world in encoded in another stratified base which may
be inconsistent. The bipolar nature of the setting has led us to identify two
types of arguments pro a choice (resp. against a choice).

The proposed approach is very general and includes as particular cases already
studied argumentation-based decision systems. Moreover it is suitable for mul-
tiple criteria decision making as well as decision making under uncertainty. In
particular, the approach has been shown to fully agree with qualitative deci-
sion making under uncertainty, and to distinguish between a pessimistic and
an optimistic attitude of the decision maker.

Although our model is quite general, it may be still worth extending along
different lines. First, the use of default knowledge could be developed. Second,
our approach does not take into account rules that recommend or disqualify
decisions in given contexts. Such rules should incorporate modalities for dis-
tinguishing between strong and weak recommendations. Moreover, they are
fired by classical argumentative inference. This contrasts with our approach
where the only arguments pertaining to decisions have an abductive structure.
Recommendation rules may also turn to be inconsistent with other pieces of
knowledge in practical arguments pro or cons w.r.t. a decision. Lastly, agents
may base their decision on two types of information, namely generic knowledge
and a repertory of concrete reported cases. Then, past observations recorded
in the repertory may be the basis of a new form of arguments by exemplifica-
tion of cases where a decision has succeeded or failed. This would amount to
relate argumentation and case-based decision.
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Appendix: Brief refresher on possibility logic

A possibilistic logic base I can be viewed as a stratified set of classical logical
formulas, such that £ =Ky U...UK; U...UK,, with Vi, j, ;N K; = 0. It
is assumed that formulas in KC; are associated with a higher level of certainty
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or priority than formulas in IC;_;. Thus, I, contains the formulas with the
highest level, and K; the ones with the smallest non-zero level.

Let p be a function that returns the rank of stratum to which a formula
belongs, i.e. p(k;) = i such that k; € ;. In the following, p(k;) will be denoted
for short p;. Thus, K can be rewritten as K = {(k;, p;); j = 1,1}, as often done
in possibilistic logic [26]. K may represent the available knowledge about the
world, or goals having different levels of priority. The pair (k;, p;) is understood
as N(k;) > p;, where N is a necessity measure obeying the characteristic
decomposability axiom N(p A q) = min(N(p), N(q)). Namely (k;, p;) encodes
that the piece of knowledge “k; is true” is certain or prioritized at least at
level p;, where p; belongs to a linearly ordered valuation scale whose top and
bottom elements are resp. n and 1. At the semantic level, a possibilistic base
KC is associated with a possibility distribution defined by

mi(w) = minj=1; maz(v,(k;), neg(p;)),

where neg is the order reversing map of the scale (0, 1, ..., n), and where v, (k;)
= n if w is a model of k; and v, (k;) = 0 if w falsifies k;. An interpretation
w is thus all the less plausible or satisfactory, as it falsified a proposition k;
associated with a high level p;. It rank-orders the more or less plausible states
of the world.

The equivalence between a possibilistic logic base and its possibility distribution-
based semantic counter-part has been established in terms of correction and
completeness of the inference mechanism that is associated with these repre-
sentations [26]. This inference mechanism is governed at the syntactic level by
the resolution rule (=pV ¢, p), (pVr,A) F (¢ V r, min(p, A)).
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