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Abstract

A large number of evaluation methods, caltenanticshave
been proposed in the literature for assessingngthof argu-
ments. This paper investigates theguivalence It argues

that for being equivalent, two semantics should have com-
patible evaluations of both individual arguments and pafirs
arguments. The first requirement ensures that the two seman-
tics judge an argument in the same way, while the second
states that they provide the same ranking of arguments. We
show that the two requirements are completely independent.

The paper introduces three novel relations between seman-
tics based on their rankings of argument&ak equivalence
strong equivalencand refinement They state respectively
that two semantics do not disagree on their strict rankings;
the rankings of the semantics coincide; one semantics sgree
with the strict comparisons of the second and it may break
some of its ties. We investigate the properties of the theee r
lations and their links with existing principles of semasti

and study the nature of relations between most of the egistin
semantics. The results show that the main extensions seman-
tics are pairwise weakly equivalent. The gradual semantics
we considered are pairwise incompatible, however soms pair
are strongly equivalent in case of flat graphs including Max-
based Iifbs) and Euler-basecEfbs), for which we provide

full characterizations in terms respectively of Fibonauain-

bers and the numbers of an exponential series. Furthermore,
we show that both semantidgbs, EMbs) refine the grounded
semantics, and are weakly equivalent with the other exaensi
semantics. We show also that in case of flat graphs, the two
gradual semantics Trust-based and Iterative Schema eharac
terize the grounded semantics, making thus bridges between
gradual semantics and extension semantics. Finally, trex ot
gradual semantics are incompatible with extension secgnti

1 Introduction

Argumentation is a reasoning approach based on
the justification of claims by arguments. It has
been used for solving different problems including
inconsistency handling (Besnard and Hunter 2001,
Amgoud and Cayrol 2002), decision making
(Amgoud and Prade 2009;  Zhong et al. 2019), case-

based reasoning (Cyras, Satoh, and Toni 2016;
Zheng, Grossi, and Verheij 2020), and negotia-
tion (Dimopoulos, Mailly, and Moraitis 2019). See

(Simari and Rahwan 2009) for more applications.

An argumentation-based system consists of a (flat or
weighted) graph and an evaluation method, called a seman-
tics. The nodes of the graph aaggumentsand its edges rep-
resentattacksbetween them. The graph is weighted when
arguments are assigned basic weights and flat otherwise.
The semantics is a formal method for evaluatinggtiength
of every argument in the graph.

A great number of semantics have been proposed in the
literature. They can roughly be classified into two fami-
lies: extension-baseandgradual Initiated in (Dung 1995),
the former look for sets of arguments (callegtensions
that can be jointly accepted. Then, a dialectical status
or strength is assigned to each argument according to its
membership in the identified extensions. Introduced in
(Cayrol and Lagasquie-Schiex 2005), gradual semantics fo-
cus on individual arguments, and ascribe to each of them a
value taken from an ordered scale representing its strength

Comparing existing semantics has been a hot topic
in recent years. A dominant approach consists in iden-
tifying properties (called principle§ that semantics
may satisfy, then analysing every semantics against
them. (Baroni and Giacomin 2007) proposed several
principles that (van der Torre and Vesic 2017) used
for comparing all the existing extension semantics.
(Amgoud and Ben-Naim 2016) introduced another list
of principles and used it for comparing some existing
gradual/extension semantics. While these studies redeale
conceptual differences between the analysed semantés, th
messages they convey are not clear. Namely, the following
questions remain unanswered:

» Are semantics satisfying the same principles similar (i.e
they provide the same evaluation of arguments)?

 Are semantics following different principles incompag¢ib
(i.e. they may provide contradictory evaluations)?

More generally, when are two semantics similar? We
argue that to be similar, two semantics should agree not
only on the evaluation of every individual argument but also
on the ranking of arguments wrt their strengths. The first
agreement depends on the principles followed by the two
semantics. For instance, if both semantics satisfyntg-
imality principle from (Amgoud and Ben-Naim 2016), then
they would assign the highest strength to a non-attacked ar-
gument. However, satisfying the same principles does not



guarantee agreement on the ranking of arguments. This
is particularly the case for the two gradual semanitics
(Amgoud et al. 2017) anfMbs (Amgoud and Doder 2019),
which satisfy the same set of principles but may provide con-
tradictory rankings of arguments when graphs are weighted.
They are thus not similar and decision systems using them
may make opposite recommendations. Consider for instance
the case of a committee which recruits a new researcher, and

sion semantics and gradual semantics respectively, Be&tio
compares extension semantics with gradual ones, Section 7
is devoted to related work, and the last section concludes.

2 Background
Letus introduce some useful notions for the rest of the paper
Definition 1 (Weighting) Aweightingon a setX is a func-

assume there are two candidates Carla and Paul who are suption fromX to [0, 1].

ported respectively by the argumentandb. Assume also
that Mbs declaresa as stronger thah and EMbs proposes
the opposite ranking. Note that according to the seman-
tics that is considered, the committee may make different
recruitments (Carla witMbs and Paul witfEMbs).

To sum up, the existing comparisons of semantics are in-
complete as they focused only on the first requirement for
semantics similarity. This paper completes them by inves-
tigating the second requirement on rankings. Its contribu-
tions are threefold: First, it introduces three novel ielsd
between semantics based on their rankings of arguments:
weak equivalengestrong equivalencandrefinement They
state respectively that two semantics do not disagree @m the
strict rankings; the rankings of the semantics coincides on
semantics agrees with the strict comparisons of the second
and may break some of its ties. Second, it investigates the
properties of the three relations and their links with engt
principles of semantics. Third, it studies the nature odirel
tions between most of the existing semantics when dealing
with flat or weighted graphs. The results show the following:

» The main extensions semantics (grounded, ideal, stable,
preferred) are pairwise weakly equivalent.

 The gradual semantics we studied are pairwise in-
compatible in case of weighted graphs. However,
some pairs are strongly equivalent when graphs
are flat, namely the pairlterative Schema/(I8)
(Gabbay and Rodrigues 2015) andrust-based (TB)
(da Costa Pereira, Tettamanzi, and Villata 2011), and
the pair Mbs and EMbs for which we provide novel
characterizations in terms respectively of the Fibonacci
numbers and the numbers of an exponential series.

In case of flat graphs, we show that the gradual seman-
ticsTB andIs are two alternative characterizations of the
grounded semantics. Consequently, the three are pairwise
strongly equivalent. Furthermore, baths andEMbs re-

fine the grounded semantics (thT& andIS). They are
thus more discriminating since they provide finer evalu-
ations of arguments. Note that this is crucial in applica-
tions like decision making where the more discriminat-
ing a model, the more efficient it is. These results make
the first bridges between the two families of semantics
(extension-based and gradual). The four semantiBs (
IS, Mbs, EMbs) are weakly equivalent with ideal, stable
and preferred semantics while the other gradual seman-
tics are incompatible with extension semantics.

The paper is structured as follows: Section 2 recalls basic
notions, Section 3 defines novel relations between seman-
tics, Sections 4 and 5 compare rankings produced by exten-

A preordering on a set of objects is a binary relation that
is reflexive and transitive.

Definition 2 (Preordering) A preorderingon a setX is a
binary relation>> on X such that:

e Foranyz € X,z =z (Reflexivity)
e Forall z,y,z € X, ifx = yandy > z,
thenx > z (Transitivity)

A preordering- is totaliff forall x,y € X,z > yory = z.

The notationz > y is a shortcut forr > y andy ¥ =
andz = y is a shortcut forr > y andy = z. Throughout
the paper, the relatior is the strict version of, i.e. > =
{(x,y) € X? |z = y}, and~ is the equivalence relation,
i.e. (z,y) € X? |z = yandy = x}.

Property 1. If a binary relation - is a total preordering,
then= = > U =~.

Throughout the paper, we consider argumentation graphs
whose nodes are arguments, each of which hdmsc
weightrepresenting an aggregation of votes given by users
(Leite and Martins 2011), or a certainty degree of the argu-
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ment's premises (Benferhat, Dubois, and Prade 1993),
or a trustworthiness degree of its source
(da Costa Pereira, Tettamanzi, and Villata 2011), etc.

Edges represemttacks(i.e. conflicts) between arguments.
For the sake of simplicity, basic weights are elements of the
unit interval [0, 1]. The greater the value, the stronger the
argument. We denote by gs the universe of all arguments.

Definition 3 (AG). Anargumentation grapfAG) is a tuple

G = (4,0,R), with A C; Args’, R C A x Aisan at-
tack relation,o is a weighting onA. G is flat if o = 1% and
weightedotherwise. Let\G denote the set of all argumenta-
tion graphs that can be built frorrgs.

Let us now define the notion of semantics. It is a function
that assigns a value from a given ordered scale to each ar-
gument. The value represents the strength of the argument.
The greater it is, the stronger the argument. Differentescal
can be used, but for simplicity we use the unit intefdal |.

Definition 4 (Semantics) A semanticds a functionS as-
signing to anyé = (A4, 0, R) € AG a weightingDegs on A.
For anya € A, Deg$ (a) represents thetrengthof a.
LetSem denote the set of all possible semantics.

We introduce next some useful notations.

Notations: LetG = (4,0, R) € AG anda € A. Attg(a)
denotes the sdtb € A | (b,a) € R} of direct attackerf

YA C; Args meansA is a finite subset ofrgs.
2y = 1meansva € A, o(a) = 1.



a in G. WhenG is clear from the context, we writett(a)
for short. Let¢’ = (A’, o', R’) € AGsuchthatd N A’ = 0.
GHG = (AUA, 0", RUR') € AG such that/z € A (resp.
x e A), o"(x) =o(x) (resp.o”(z) = o'(x)).

We recall below the list of principles proposed
(Amgoud et al. 2017) for semantiS&s< Sem.

Anonymity.VG = (A,0,R),6¢’ = (4,0, R') € AG, for
any isomorphismf from G to G/, Va € A,DegS(a) =
Degg (f(a)).

IndependenceVG = (A,0,R),G' = (A',0',R') € AG
such thatd N A" = 0, Va € A, Degg (a) = Deggo (a).
Directionality. VG = (A, 0, R),G’ = (4,0, R’) € AG such
thata,b € A, R' = RU{(a,b)}itholds that:Vz € A, if
there is no path from b to x, théregS (z) = Deg$ (2).
Neutrality. VG = (A,0,R) € AG, Va,b € A, if o(a) =
o(b), Attg(b) = Attg(a) U {z} with z € A \Attg(a)

andDegS (r) = 0, thenDeg$ (a) = Deg5 (b).

EquivalenceV¥G = (4,0,R) € AG, Va,b € A, if o(a) =
o(b) and there exists a bijective function f fromtg(a)
to Attg(b) S.t. Vo € Attg(a), DegS(z) = Degf (f()),
thenDeg? (a) = Deg? (b).

Maximality. VG = (A, 0, R) € AG, Va € A, if Attg(a) =
(), thenDegS (a) = o (a).

Counting.VG = (A, 0, R) € AG, Va,b € A, if Deg3(a) >
0 andAttG( = AttG( )U{x} with z € A\Atte(a) and
DegS (7) > 0, thenDeg$ (a) > Deg? (b).

Weakenlng\jG (A,0,R) € AG,Va € A, if 3b € Attg(a)
s.t.Degd(b) > 0 ando—( ) > 0, thenDeg3 (a) < o(a).

Weakening Soundnes& = (A4, 0, R) € AG, if Deg$ (a) <
o(a), then3b € Atte(a) S.tDegf (b) > 0.

ReinforcementvG = (A,0,R) € AG, Va,b € A, if i)
o(a) = o(b), i) Degg(a) > 0 or Degd(b) > 0, iii)
Attg(a)\Attg(b) = {z}, iv) Attg(b)\Atte(a) = {y},
V) DegS (y) > DegS () > 0, thenDegg (a) > Deg$ (b).

ResilienceYG = (4,0, R) € AG,Va € A, if o(a) > 0then
DegS(a) > 0.

Proportionality. VG = (A,0,R) € AG, Va,b € A, if
o(a) > o(b) andAtte(a) = Attg(b), thenDegf (a) >
Deg3 (b).

Monotony. VG = (4,0, R) € AG, Va,b € A, if o(a) =
o(b) andAtt(a) C Att(b), thenDeg$ (a) > DegS (b).

Quality PrecedencevG = (4,0, R) € AG, Va,b € A, if
i) DegS (a) > 0 and i) Jy € Attg(b) S.t. Vo € Attg(a),
DegS (y) > DegS (), thenDegS (a) > Deg$ (b).

Cardinality Precedence¥G = (A,0,R) € AG, Va,b €
A, if i) o(a) = o(b) ii) Degi(b) > 0, and iii)
H{z € Attg(a) st. Degi(x) > 0} > |{y €
Attg(b) s.t. DegS(y) > 0}, thenDegS (a) < Degs (b).

CompensationdG = (A, 0, R) € AG s.t for two arguments
a,b € A, i) o(a) = o(b) i) DegS(a) > 0, iii) |[{z €
Attg(a)Degg () > 0} > [{y € Atte(b)|Deg3 (y) >
0}, iv) Jy € Attg(b) s.t. Vo € Attg(a), Degd(y) >
Deg?S (z) andDeg? (a) = Degs (b).

in

3 Notions of Equivalence

We have seen in the previous section that a semantics as-
signs a numerical value to each argument in an argumenta-
tion graph. Those values are used for defining a preference
relation between arguments as follows.

Definition 5 (Ranking) LetS € SemandG = (4,0, R) €
AG. Aranking inducedrom S is a binary relation-§ on .4
such that for alla, b € A,

a =% b iff DegS(a) > Degd(b).

The notationz =% b expresses that the argumenis at
least as strong as the argumérih the graphG under the
semanticsS. Hencea -§ b anda ~§ b state respectively
thata is stronger tham anda is as strong as undersS.

The relation>=S is obviously a total preordering, i.e. it is
reflexive, transitive and compares every pair of arguments.

Property 2. For anyS € Sem, for anyG € AG, the ranking
~¢ is a total preordering.

In this section, we study when two semant&sand S,
are equivalent by comparing the rankings they provide. We
introduce three relations between two rankings. The first
relation is that ofefinementA semantics refines (or is more
discriminatingthan) another semantics when it agrees with
its strict comparisons and may break some of its ties.

Definition 6 (Refinement) LetS;,Ss € Sem. We say that
S, refinesS; iff VG € AG, -§ C ~§ .

Property 3. The following properties hold:

* LetS{,S; € Sem. If S refinesS,, thenVG € AG, the
inclusion~§ C ~§, holds.
* The refinement relation is transitive.

The second notionyeak equivalenceensures the com-
patibility of two rankings. More precisely, two semantics
are weakly equivalent if they never provide opposite strict
rankings of arguments. They are said to be incompatible
otherwise. This notion is more general than refinement be-
cause neither of the two semantics should refine the other.

Definition 7 (Weak Equivalence)LetS;, S, € Sem. We say
thatS; andS, are weakly equivaleniff VG = (4,0, R) €
AG, B a,be Ast.a ¢ bandb-§ a. The two semantics
are said to bencompatibleotherwise.

Weak equivalence is a binary relation over the set of all
possible semantics. It is reflexive but not transitive. ktle
for three semantic$1, So, S3, it is possible thatS;, Ss
(resp.S,, S3) are weakly equivalent b, S3 are not.

Property 4. The weak equivalence relation is not transitive.

It is worthy to notice that two weakly equivalent seman-
tics may not provide exactly the same ranking of arguments.
Consider for instance four argumernts, ¢, d and two se-
manticsS; andS,. One may havea >g, b, ¢ ~s, d and
a=g, b crs, d.

The third notion oftrong equivalencensures total agree-
ment of two semantics regarding their rankings.

Definition 8 (Strong Equivalence)Let S;,S; € Sem. We
say thatS; and S, are strongly equivaleniff for any G =
(A,0,R) € AG, the equality-§ = =& holds.



Since rankings induced by semantics are total preorder-
ings, then two strongly equivalent semantics agree both on
strict rankings and on ties.

Property 5. The following properties hold:

* Two semantic$;, S, are strongly equivalent ift-g, =
S, and%s] = =g,
» Strong equivalence is transitive.

The following property summarizes the different links be-
tween the above three relations.

Proposition 1. LetS;, S5, S3 € Sem.
1.

2.
3.

S1, So are strongly equivalent iff they refine each other.
If S refinesS,, thenS; andS, are weakly equivalent.

If S; andS, are strongly equivalent, then they are weakly
equivalent. The converse does not hold.

. If S; and S, are strongly equivalent anf; and S5 are
weakly equivalent, the®; andSs are weakly equivalent.

. If Sy refinesS, andS; is strongly equivalent t83, then
S5 refinesS,.

. If S; and S, are strongly equivalent anfl; and S5 are
incompatible, thet$; andS3 are incompatible.

. If S; refinesS, andS, andS3 are incompatible, the®;
andSj are incompatible.

We show next that the principles recalled in the previous
section are necessary but not sufficient for the equivalence
of two semantics. Indeed, two semantics may satisfy the
same set of principles without necessarily being strongly
or weakly equivalent. Conversely, two semantics may be
strongly equivalent while they do not follow the same prin-
ciples. Before introducing the formal result, let us first in
troduce two notations.

Notations: Let Princ(S) denote the subset of principles
satisfied by a semanti&e Sem, and by! the set containing
the following principles: Neutrality, Equivalence, Cound,
Reinforcement, Proportionality, and Monotony.

Proposition 2. The following properties hold:

* LetS{,S; € Semandz € I. If S; satisfiesz and S,
violatesz, thenS; andS; are not strongly equivalent.

e LetS;,S, € Sem. If S; satisfies Cardinality Precedence
and S, satisfies Quality Precedence, th8n andS- are
incompatible.

* 351,85 € Sem such thatS;, So are strongly equivalent
andPrinc(S;) # Princ(Ss).

* 354,82 € Sem such thatPrinc(S;) = Princ(S;) and
S1,Ss are incompatible.

The above results show that for being similar, it is not
sufficient that two semantics evaluate in the same way every
individual arguments. They should also provide the same
ranking of arguments. Existing comparisons of semantics
focused exclusively on the first criterion by relying on the
principles followed by semantics. In the next section, we
will compare semantics wrt their rankings.

4 Comparison of Extension Semantics

Initially proposed by (Dung 1995) for evaluating arguments
of flat graphs (i.e. graphs of the forfd,oc = 1,R)),
extension semantics compute sets of jointly acceptable ar-
guments. They are based on three key concepigflict-
freenessdefensendadmissibility LetE C A,

« &isconflict-freeiff fia,b € £ such thafa,b) € R.

» £ defends: € Aiff Vb € A, if (b,a) € R, then3c € £
such thaf(c, b) € R.

* £is anadmissibleset iff it is conflict-free and defends all
its elements.

We recall below the standard extension seman-
tics from (Dung 1995) and the ideal semantics from
(Dung, Mancarella, and Toni 2007).

« £ is apreferred extensiofff it is a maximal (wrt set in-
clusion) admissible extension.

« £ is astable extensioiff it is conflict-free andva € A\,
b € € such thatb, a) € R.

» £ is anideal extensioriff it is a maximal (wrt set inclu-
sion) admissible set that is subset of every preferred ex-
tension.

» £ is agrounded extensioiff it is the least fixpoint of the
characteristic functiotF : 24 — 24 where forS C A,

F(S)={a e A| S defends:}.
LetGr(G) denote the grounded extensioncof

Itis worth recalling that an argumentation graph has a sin-
gle grounded (resp. ideal) extension. However, it may have
zero, one or several stable extensions. Every stable exten-
sion is a preferred one, but the converse is not necessarily
true. Throughout the paper we referdy, s, p respectively
to ideal, grounded, stable and preferred semantics.

Given a set of extensions of a flat grapht, o = 1, R),
the most common way to assign a strength to an argu-
menta € A (see (Baroni, Giacomin, and Guida 2005;
Cayrol and Lagasquie-Schiex 2005;
Grossi and Modgil 2015)) is as follows:

 aissceptically accepteil it belongs to all extensions,

« a is credulously accepteit belongs to some but not all
extensions,

* aisrejectedif it does not belong to any extension.

Since we considered a numerical scale for argu-
ment strength, we transform the three-valued qualitative
scale into a numerical one following the approach of
(Amgoud and Ben-Naim 2016). The idea is to use the scale
T ={1,0,5,0}, with1 > o > 8 > 0, and to assign
the value 1 to sceptically accepted arguments, the valoe
credulously accepted ones, and to distinguish two kinds of
rejected arguments: those that are not attacked by any-exten
sion and which got valug, and those that are attacked by at
least one extension and that got the minimal value 0. Note
that a set of argumenégsattacks an argumentif it contains
at least one argumebtwhich attacks:.



Semantics | Definition | Graphs |
h-Categorizer{Cat) (Besnard and Hunter 2001)| Degl(a) = m Flat
bRa
1/«
Compensation-based { BBS) (Amgoud et al. 2016) Degy **(a) = 1 + (Z W) ,a € (0,400) | Flat
bRa
Weightedh-Categorizerifbs) (Amgoud et al. 2017)| Degi®®(a) = % Weighted
bRa
Weighted Card-based¥s) (Amgoud etal. 2017) | DegS™(a) = "(a)z sy Where Weighted
1+|AttFG(a)\+%
AttFg(a) = {b € Attg(a) | o(b) > 0}
Weighted Max-basedips) (Amgoud et al. 2017) | Deg®*(a) = ngfigg(b) Weighted
bRa __°
— max Deg® .
Euler-Max-basedsbs) (Amgoud and Doder 2019) Degi™s(a) = o(a) - e tRa Pegs (%) Weighted
Trust-based1B) Degi®(a) = ‘hgl fi(a), where Weighted
1—>—+00
(da Costa Pereira, Tettamanzi, and Villata 2011) f;(a) = % f;—1(a) + 3 min[w(a), 1 — max fi—1(0)]
lterative SchemalI§) (Gabbay and Rodrigues 201%)Degz®(a) = | liin fi(a), where Weighted
1—>+00
fila) = (1= fi1(@) min(3, 1 — max s, (b)) +
fiz1(a) max(%, 1-— max fi_1(b))

Table 1: Gradual semantics dealing with cycles.

Definition 9. LetS € {i,s,p,g},G= (A, 0 =1,R) €

anda € A. If G has no extensions, theregS (a)
Otherwise,

* Degf (a) = 1iff a belongs to all extensions.

; O
¢

* Degf (a) = «iff a is in some but not all extensions. @ @
* Degf(a) = B iff a does not belong to any extension and

is not attacked by any extension.

* Degf (a) = 0iff a does not belong to any extension and is

attacked by at least one extension.

Grounded semantics:

» 6r(Q) = {e}
Depending on the semantics some values of the $€ale e Deg?(e) = 1 andDeg?(a) = Deg?(b) = Deg?(c) —
may not be used. Indeed, under grounded and ideal, an ar- D:ég;gfl)) _ 3 andbegg () = Degg(b) = Degs(c)

gument can never get the value When stable extensions

exist, an argument cannot receive the vaue
Property 6. LetG = (A,0 =1, R) € AGanda € A.
* Degj(a) € T'\ {a}

* Degg(a) € T\ {a}
* If stable extensions exiftegs(a) € T\ {8}.

cergamgbrgcrgd
Stable semantics:
» The graph has two extensiofig, d, e} and{b, d, e}.
* Degj(d) = Degg(e) = 1, Degg(a) = Degf(b) = avand
Deg(c) = 0.
cdrsersamgs b=,

From their definitions, the four semantics seem compat- Note that the stable semantics does not refine the
ible. For instance, grounded is more sceptical than ideal, grounded since-, ¢ ~;. The two semantics are also not
which in turn is more sceptical than preferred and stable. strongly equivalent since, # >..

The following result confirms this observation, however it
shows that the four semantics are only weakly equivalent. 5 Comparison of Gradual Semantics
None of them refines or is strongly equivalent to the others. |njtiated in (Cayrol and Lagasquie-Schiex 2005), gradual

Theorem 1. The four semantics (stable, preferred, Semantics have received increasing interest during the

grounded, ideal) are pairwise weakly equivalent.
Consider the following example.

last few years due to their fine-grained evaluations of
arguments. Indeed, several semantics have been pro-
posed in the literature, some of which deal only with

Example 1. Consider the following flat argumentation  acyclic graphs like QUAD (Baronietal. 2015) and DF-
graphgG, and let us focus on grounded and stable semantics. QUAD (Rago et al. 2016) and others are suitable for any

graph typology. Since we are interested by comparison of



pairs of semantics, we focus in this paper on the second type * Deg?(a) = 1 iff a ¢ Gr(G) andGr(G) does not attack.

of semantics and more precisely on the eight recalled in Ta-
ble 1. Note that the two first semantiagCét anda—BBS)
deal only with flat graphs. In what follows, we present re-

The two semanticsT@, IS) are thus strongly equivalent
when dealing with flat graphs.

sults that hold when argumentation graphs are weighted and Theorem 5. In case of flat argumentation graphs and

others that hold in case of flat graphs.

The first result states thatat anda—BBS are strongly
equivalent. Furthermore, in case of flat graphs (i.e. graphs
with ¢ = 1), hCat and Weightedh-categorizer Kbs) are
also strongly equivalent since they coincide. These three
semantics are fully similar since they provide both the same
evaluations of individual arguments and the same rankings.

Theorem 2. In case of flat graph&Cat, «—BBS (with o =
1) andHbs are pairwise strongly equivalent.

The six semantics that deal with weighted graphs are pair-
wise incompatible, that is, they may return contradictory
rankings for pairs of arguments. They are thus all different

IS are strongly equivalent.

The two semanticbs and EMbs also are strongly
equivalent when applied to flat graphs. Before presenting
the formal result, we start by providing novel characteriza
tions of Mbs and EMbs using two well-known sequences:
Fibonacci foMbs and Exponential foEMbs.

When a grapla is flat, the strength of an argument, say
undervbs is given by the following equation:

(a) = -

_1 D Mbsb'
+ max Degg*()

Degl\G'[bs

and the choice of the one to use depends on the application |t has been shown in (Amgoud et al. 2017) theg!* (a) €

and the nature of arguments (deductive, analogical, ...).

Theorem 3. The six semantidsbs, Mbs, Cbs, EMbs, TB and
IS are pairwise incompatible.

It is worthy to recall thatlbs andEMbs satisfy exactly the
same subset of principles (see (Amgoud and Doder 2019)).
However, they may disagree on their ranking of arguments
as shown in the following example.

Example 2. Consider the weighted graph below where
o(a) =0.6252, 0(b) = 0.3939 ando(c) = 0.8107.

O—O0—O

It can be checked thadlegl>®(a) = 0.3953, Degh>s(b) =
0.3939, Degi™s(a) = 0.362, and DegZ™s(h) = 0.3939.
Note thata =ws b andb =mms a. This shows that the
two semantics may lead to different results.

Let us now focus only on flat argumentation graphs (i.e.
graphs of the fornc = (4,0 = 1,R)), and let us in-
vestigate the relations between the four gradual seman-
tics (Mbs, EMbs, TB, IS). These all use the same function,
namelymax, for aggregating the strengths of an argument’s
attackers. In other words, they consider only the strongest
attacker when computing the strength of any argument.

We show that the two semanticsB( IS) coincide, i.e.
they assign exactly the same value to an argument. Recall
that this property is not true in the general case of weighted

graphs. We show also that the value of an argument depends

on whether the argumentis in or is attacked by the grounded
extensionGr(G) of the graph. This means thatg, IS) are
two alternative characterizations of the grounded sermanti

Theorem 4. For anyG = (A,o = 1, R) € AG, it holds that
DeggB = Degés.

Moreover, for anyc € {TB, IS}, for anya € A,

* Deg¥(a) = 1iff a € Gr(G).

* Deg?(a) = 0iff Gr(G) attacksa.

[1,1]. In what follows, we show that the values assigned
to arguments byibs are not arbitrary, they are rather the
Fibonacci numberd.e. elements of the Fibonacci sequence
{F"},>0 defined as follows:

F'=0 Fl=1 F*=F"14F" 2forn>1.

We get the sequence of so-called Fibonacci numbers:
0,1,1,2,3,5,8,13,21, 34,55, 89, 144, 233,377,610, .. .).

It has been shown in (Philippou 2015) that the ratio of two
consecutive Fibonacci numbers (i.eFﬁ—fl) tends to the

so-calledgolden ratiop = 1““2—\/5 asn increases.

From the Fibonacci sequendé™},>o, we define an-
other sequencgS™ },,>1 such that:

Fn
ni_
S" = Fr 1)
_f1 1235 8 13 21 34 55 89 144 233
I‘et‘s‘_{1’2737578’13’217 4’55’89’144,’233’377""}

be the set of all numbers "},>1. Itis worth notic-
ing that this sequence contains two sub-sequences: The
decreasingub-sequence

25 13 34 89 233
e A I €

made of the numbers that are at odd positionS,imnd the
increasingsub-sequence

13 8 21 55 144

————— — ... 3
2757137347897 233’ ) @)
which contains the numbers that are at even positioss in

S =0

S = (

Notation: We denote byS: the i element of the sub-
sequenceS, wherez € {1,2}. For instanceS] = 1,

1 1 3 8
Sy = 5 andSy = 3.
It is worthy to recall that the two sub-sequences converge,
furthermore they have the same limit. Indeed,

lim S = lim &3
n— o0 n— o0



It is also well-known that

S§<l<8f, Vn > 1.
¥
In case of a flat graphi, the semanticiibs takes its val-
ues from the sequenc® i.e. Deghi>®(.) € S. It uses the
above three parts of the sequerdenamelyS;, Ss, %, for
distinguishing between three groups of arguments in

e The first group is composed of all elements of the set

U F4(0), with F being the characteristic function de-
i>1

Q0000

F1(0) attacks bothb, ¢, then Deg"®s(b) = DegMbs( )
83 = 3, and sinceF?(0) attackse, thenDeg"™ s (e) = S3

3. Finally, Deg"™(g) = é.

Let us now provide a novel characterization of the Euler
Max-basedEMbs) semantics in case of a flat graphRecall

fined by (Dung 1995) and that returns all the arguments that the strength of an argumenis computed as follows:

defended by a given set of arguments. Hence, this group

contains all arguments that are defended (directly or indi-
rectly) by non attacked argumentsdn Its members are
stronger than any argument outside the group,
values are taken from the sub-sequefice

» The second group contains the arguments that are attacked

by at least one argument of the ¢t. , 77 (0). These will

be weaker than any argument of the two other groups, and 0.5796,. .

their values are numbers of the sub-sequetice

* The third group contains all the remaining arguments, i.e.
those that are neither in nor attacked by the(gefF* ().
i>1
The semanticBbs ascribes the valug to every argument
of this group.

Unlike the third group, the semantics may assign different
values to arguments of the first group. It is interesting to

— max Deg=™ (b)
Degi™(a) =e btRa .

. We show thaEMbs takes its values from the set of numbers
and their of the following exponential sequen¢&™ },,~o such that:

Uut=1 U =e 4" forn>1 (4)
Let / = {1, 0.3678, 0.6922, 0.5004, 0.6062, 0.5453,
.}. Like the Fibonacci sequenc@{("},,>( con-
tains two sub-sequences: THecreasingub-sequence
U, = (1,0.6922,0.6062,0.5796, . . .) (5)

made of the numbers that are at odd positiorig jmnd the
increasingsub-sequence

Uy = (0.3678,0.5004, 0.5453, . . ) (6)

which contains the numbers that are at even positiods in
We denote by/! the it element of the sub- -sequente

note that the value of an argument depends on the iteration atwherez € {1,2}. Finally, it is well-known that the two

which it appears for the first time in the st 7*(0). Recall
i>1
that J F*(0) = FL(0)UF3(D)U

i>1

L F(0), with F4(0) =
F(Fi=1(0)) is the set of arguments defendedBy * (). If
an argument appears for the first time " (), then it gets
the value of the!” element ofS;, namelyS;. Furthermore,
every argument it attacks receive the valijemeaning that

arguments of the second group do not necessarily have the

same strength as well.

Theorem 6. LetG = (A,0 = 1,R) € AGand: € N. For
anya € A, Degi®(a) € S. Furthermore,

* Degi®®(a) = Si iff a € F'(0) anda ¢ lL:Jl FI(0).

1—1
* Deg!™ (a) = Sj iff Fi(() attacksa and |J F7(0) does
7j=1
not attacka.
* Degg™(a) =
not attacka.

Note that according tdbs, the longer the defence path of
an argument, the weaker the argument.

Example 3. Consider the flat graph depicted below:

Note thatF'(0) = {a}, F2(0) = {a,d} andf3((ZJ) =
{a,d, f}. It can be checked thatbeg"™s(a )
Deg™=(d) = S} = 2, andDeg™(f) = S}

3 iff a ¢ UF=1(0) andJ F*=1(0) does

=1,
51

3- Since

sub-sequences converge to the same limit
lim U = hm Z/{2 =0

n—oo
whereQ) ~ 0.5671432904 is the so-calle®mega Constant
and
Uy < Q <uy, Yn > 1.

Like Mbs, the semanticEMbs divides the set of arguments

into three groups: i) those that belong to the s¢tF:((),
i>1
ii) those attacked by J F%(0), and iii) the remaining ones.
i>1

Theorem 7. LetG = (A,0 = 1,R) € AGand: € N. For
anya € A, Degt™s(a) € U. Furthermore,

EMbs ( )

* Degg = U] iff a € F'(0) anda ¢ iEJl FI(0).
j=1

EMbs ( )

1—1
= U} iff 7¢(0) attacksa and |J F7(0) does

Jj=1

* Deg

not attacka.
* Degt™s(a) = Qiff a ¢ Y F=1(0) andJ F=1(0) does
not attacka.
Example 3 (Cont) It can be checked thaieg®™s(a) =
Ui = 1, Deg™™s(d) = U7 = 0.6922, andDeg™™s(f) =
Uy = 0.6062. Since F'(0) attacks bothb,c, then
Degf™s(h) = Deg™s(c) = Us = 0.3678, and since
F2(0) attackse, thenDeg™®=(e) = U3 = 0.5004. Finally,
Deg®:(g) = Q.



Notations: Let G be a flat graphA, B be two sets of ar-
guments and: € Sem. The notationA >, B stands for
Va € A, Vb € B, it holdsDeg”(a) > Deg”(b). Let AT de-

We show also thatbs (resp.EMbs) refines the grounded
semantics when applied to flat argumentation graphs. How-
ever, the converse does not hold, thus the two semantics are

note the set of arguments that are attacked by at least one ar-not strongly equivalent (see Example 3).

gument ofA, andA° be the set of arguments that are neither
i—1

in nor attacked by the set. Let.X; = Fi(0) \ ( U F(0))
j=1

with < > 1 and by convention; = F((). This means
thatx; = F(0), X, = F2(0) \ F*(0), and so on.

The following result follows from the characterizations
of Mbs, EMbs. It shows how the two semantics refine the

Theorem 13. In case of flat argumentation graphEps
(resp.EMbs) refines the grounded semantics.

Mbs (resp. EMbs) does not refine ideal, stable and pre-
ferred semantics. It is thus not strongly equivalent witla an
of these three semantics as shown below.

Example 4. Consider the flat graph below. It has a sin-
gle preferred (respectively stable) extension which ddies

grounded extension of a graph, and how they refine the set With the ideal and grounded extensiéa, c}. Thus,a = ¢,

of arguments attacked by the grounded extension.
Theorem 8. LetG be a flat graph and: € {Mbs, EMbs}.
o Xy >y Ao p oL g A

s X X ma o= AT

* Gr(G) >, 6r(G)° =, Gr(c)*.

From the characterizations #@bs andEMbs, it follows
that the two semantics are strongly equivalent.

Theorem 9. In case of flat argumentation graph$s and
EMbs are strongly equivalent.

The previous results show thEg andIs assign the same
value to any argument that belongs to (or is attacked by) the
grounded extensionMbs andEMbs are more discriminat-
ing and provide finer-grained evaluations and comparisons
of arguments. Thus, they both refine andIs.

Theorem 10. In case of flat argumentation graphEps
(resp.EMbs) refinesTB (resp.IS).

The novel characterizations of the four semantioes,
EMbs, TB and IS show that they are based on the grounded
extension of a graplk asGr(G) = |J F*(0). They can

i>1

with z € {4, s, p}, whilea >ups c anda =gs c.

O~O~©

The last result shows that th®s (resp.EMbs) semantics
is weakly equivalent with ideal, stable and Preferred seman
tics. They provide thus compatible rankings of arguments.

Theorem 14. In case of flat argumentation graphEps
(resp.EMbs) is weakly equivalent with ideal, stable and pre-
ferred semantics.

Table 2 summarizes the relations between the reviewed
semantics in case of flat argumentation graphs. There
are 5 groups of semantics. The first group contains
(hCat, Hbs, a—BBS), which are strongly equivalent, provide
the same evaluations for individual arguments, and are in-
compatible with all the other semantics. The second group
contains onl\Cbs, which is incompatible with any other se-
mantics. Like the semantics of the first group, withs ev-
ery attacker is harmful to its target. Howevéhs favors
the quantity of attackers while the former promote compen-
sation. The third group is made #@bs, EMbs, which are
strongly equivalent, and refine some semantics that canside

also be seen as different characterizations of the groundedonly one attacker, namef§B, IS and grounded. The fourth

semantics in terms of various gradual semantics.

6 Extension Semantics vs Gradual Semantics

Throughout this section, we focus on flat argumentation
graphs. We show thatCat, «—BBS, Hbs andCbs are in-
compatible with any of the recalled extension semantics.
This is mainly due to the fact that the first group takes into
account all the attackers of an argument while the second
focuses only on the strongest one.

Theorem 11. hCat (resp. a—BBS, Hbs, Cbs) is incompati-
ble with grounded, ideal, stable and preferred.

Unsurprisingly, the two semanti@® andIs are strongly
equivalent with the grounded semantics. Furthermore, they
are weakly equivalent to the three other extension sensantic

Theorem 12. In case of flat argumentation graphs, the fol-
lowing properties hold:
» TB, IS and grounded are pairwise strongly equivalent.

« TB (resp.IS) is weakly equivalent with ideal (resp. stable
and preferred).

group is made of these three semantics, which are strongly
equivalent. The last group contains ideal, stable and pre-
ferred, which are incompatible with semantics of the first
and second groups, and are weakly equivalent with any of
the remaining semantics.

An important question is which semantics to choose
in a given application? In (Amgoud and Ben-Naim 2013;
Rago, Baroni, and Toni 2018), the authors have argued that
the choice of the suitable semantics depends on the nature of
arguments (deductive, analogical, causal, ...) and the-spe
ficities of the application. It is worth mentioning that ex-
isting principles provide a good basis for assessing the sui
ability of a semantics. However, they are insufficient since
two semantics may satisfy the same principles and still re-
turn opposite rankings. This means the two semantics may
lead to different outcomes in decision making, for instance

7 Related Work

As said in the introduction, several works have been devoted
to the comparison of semantics. They focused on the defi-
nition of principles and analysis of semantics against them



| Semantics]| hCat | «—BBS | Hbs | Cbs | Mbs | EMbs | TB | IS | Grounded| Ideal | Stable| Preferred|
hCat — S s 7 7 7 ) ) 7 7 7 )
a—BBS s — s 7 7 7 ) ) 7 7 7 )
Hbs S S — 7 7 7 7 7 7 7 7 7

| Cbs [ i e =T ¢ ] i JTa]a] i I i
Mbs ) ) ) ) — s T T r w w w
EMbs 7 7 ) 7 S — r r r w w w
TB 7 7 ) 7 w w — S S w w w
IS 7 7 7 7 w w S S w w w
Grounded 1 1 1 1 w w s s — w w w
Ideal 1 1 1 1 w w w | w w — w w
Stable 7 7 7 7 w w w | w w w — w
Preferred 1 1 1 1 w w w | w w w w —

Table 2: Case of Flat Argumentation Graphsw, r, i stand resp. for strong equivalence, weak equivalence graéint, incompatibility.

To the best of our knowledge, this is the first work that com-
pares semantics wrt their rankings.

An important question is how this work relates
to ranking semantics that have been introduced by
(Amgoud and Ben-Naim 2013). Those semantics take as
input a flat argumentation graph, and rank arguments ac-
cording to their strengths. Some existing ranking seman-
tics have been compared by (Bonzon et al. 2016) on the ba-
sis of the principles they satisfy. However, as for gradual
semantics, the fact that two ranking semantics satisfy the

same principles does not necessarily mean they provide the

same ranking. The principles ensure only some rational be-
haviour of semantics. Finally, it is worth mentioning that
(Baumann et al. 2019) studied a different notion of equiva-
lence in argumentation. While we focused on equivalence of
semantics, they were interested in comparing argumentatio
graphs. They check the extensions (under various extension
based semantics) they deliver under any addition of argu-
ments and/or attacks.

8 Conclusion

The paper has tackled the question of comparing semantics,
be them extension-based or gradual. It has shown that ex-

isting comparisons in the literature are not conclusivegesi
they were only based on the evaluations of individual argu-
ments. It has argued that comparing rankings is also crucial
for the similarity of semantics. The paper has thus investi-
gated a notion of equivalence which is based on the compar-
ison of rankings, and has studied several existing sengntic
The results have shown compatibilities between the claksic

count preferences with gradual semantics. We will also look
for novel principles that can distinguish betweés and
EMbs in case of weighted graphs. Indeed, the two seman-
tics satisfy exactly the same subset of existing principles
may provide opposite rankings when graphs are weighted.
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