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Abstract

A large number of evaluation methods, calledsemantics, have
been proposed in the literature for assessingstrengthof argu-
ments. This paper investigates theirequivalence. It argues
that for being equivalent, two semantics should have com-
patible evaluations of both individual arguments and pairsof
arguments. The first requirement ensures that the two seman-
tics judge an argument in the same way, while the second
states that they provide the same ranking of arguments. We
show that the two requirements are completely independent.

The paper introduces three novel relations between seman-
tics based on their rankings of arguments:weak equivalence,
strong equivalenceand refinement. They state respectively
that two semantics do not disagree on their strict rankings;
the rankings of the semantics coincide; one semantics agrees
with the strict comparisons of the second and it may break
some of its ties. We investigate the properties of the three re-
lations and their links with existing principles of semantics,
and study the nature of relations between most of the existing
semantics. The results show that the main extensions seman-
tics are pairwise weakly equivalent. The gradual semantics
we considered are pairwise incompatible, however some pairs
are strongly equivalent in case of flat graphs including Max-
based (Mbs) and Euler-based (EMbs), for which we provide
full characterizations in terms respectively of Fibonaccinum-
bers and the numbers of an exponential series. Furthermore,
we show that both semantics (Mbs, EMbs) refine the grounded
semantics, and are weakly equivalent with the other extension
semantics. We show also that in case of flat graphs, the two
gradual semantics Trust-based and Iterative Schema charac-
terize the grounded semantics, making thus bridges between
gradual semantics and extension semantics. Finally, the other
gradual semantics are incompatible with extension semantics.

1 Introduction
Argumentation is a reasoning approach based on
the justification of claims by arguments. It has
been used for solving different problems including
inconsistency handling (Besnard and Hunter 2001;
Amgoud and Cayrol 2002), decision making
(Amgoud and Prade 2009; Zhong et al. 2019), case-
based reasoning (Cyras, Satoh, and Toni 2016;
Zheng, Grossi, and Verheij 2020), and negotia-
tion (Dimopoulos, Mailly, and Moraitis 2019). See
(Simari and Rahwan 2009) for more applications.

An argumentation-based system consists of a (flat or
weighted) graph and an evaluation method, called a seman-
tics. The nodes of the graph areargumentsand its edges rep-
resentattacksbetween them. The graph is weighted when
arguments are assigned basic weights and flat otherwise.
The semantics is a formal method for evaluating thestrength
of every argument in the graph.

A great number of semantics have been proposed in the
literature. They can roughly be classified into two fami-
lies: extension-basedandgradual. Initiated in (Dung 1995),
the former look for sets of arguments (calledextensions)
that can be jointly accepted. Then, a dialectical status
or strength is assigned to each argument according to its
membership in the identified extensions. Introduced in
(Cayrol and Lagasquie-Schiex 2005), gradual semantics fo-
cus on individual arguments, and ascribe to each of them a
value taken from an ordered scale representing its strength.

Comparing existing semantics has been a hot topic
in recent years. A dominant approach consists in iden-
tifying properties (called principles) that semantics
may satisfy, then analysing every semantics against
them. (Baroni and Giacomin 2007) proposed several
principles that (van der Torre and Vesic 2017) used
for comparing all the existing extension semantics.
(Amgoud and Ben-Naim 2016) introduced another list
of principles and used it for comparing some existing
gradual/extension semantics. While these studies revealed
conceptual differences between the analysed semantics, the
messages they convey are not clear. Namely, the following
questions remain unanswered:

• Are semantics satisfying the same principles similar (i.e.
they provide the same evaluation of arguments)?

• Are semantics following different principles incompatible
(i.e. they may provide contradictory evaluations)?

More generally, when are two semantics similar? We
argue that to be similar, two semantics should agree not
only on the evaluation of every individual argument but also
on the ranking of arguments wrt their strengths. The first
agreement depends on the principles followed by the two
semantics. For instance, if both semantics satisfy themax-
imality principle from (Amgoud and Ben-Naim 2016), then
they would assign the highest strength to a non-attacked ar-
gument. However, satisfying the same principles does not



guarantee agreement on the ranking of arguments. This
is particularly the case for the two gradual semanticsMbs

(Amgoud et al. 2017) andEMbs (Amgoud and Doder 2019),
which satisfy the same set of principles but may provide con-
tradictory rankings of arguments when graphs are weighted.
They are thus not similar and decision systems using them
may make opposite recommendations. Consider for instance
the case of a committee which recruits a new researcher, and
assume there are two candidates Carla and Paul who are sup-
ported respectively by the argumentsa andb. Assume also
that Mbs declaresa as stronger thanb andEMbs proposes
the opposite ranking. Note that according to the seman-
tics that is considered, the committee may make different
recruitments (Carla withMbs and Paul withEMbs).

To sum up, the existing comparisons of semantics are in-
complete as they focused only on the first requirement for
semantics similarity. This paper completes them by inves-
tigating the second requirement on rankings. Its contribu-
tions are threefold: First, it introduces three novel relations
between semantics based on their rankings of arguments:
weak equivalence, strong equivalenceandrefinement. They
state respectively that two semantics do not disagree on their
strict rankings; the rankings of the semantics coincide; one
semantics agrees with the strict comparisons of the second
and may break some of its ties. Second, it investigates the
properties of the three relations and their links with existing
principles of semantics. Third, it studies the nature of rela-
tions between most of the existing semantics when dealing
with flat or weighted graphs. The results show the following:

• The main extensions semantics (grounded, ideal, stable,
preferred) are pairwise weakly equivalent.

• The gradual semantics we studied are pairwise in-
compatible in case of weighted graphs. However,
some pairs are strongly equivalent when graphs
are flat, namely the pairIterative Schema (IS)
(Gabbay and Rodrigues 2015) andTrust-based (TB)
(da Costa Pereira, Tettamanzi, and Villata 2011), and
the pair Mbs and EMbs for which we provide novel
characterizations in terms respectively of the Fibonacci
numbers and the numbers of an exponential series.

• In case of flat graphs, we show that the gradual seman-
ticsTB andIS are two alternative characterizations of the
grounded semantics. Consequently, the three are pairwise
strongly equivalent. Furthermore, bothMbs andEMbs re-
fine the grounded semantics (thusTB andIS). They are
thus more discriminating since they provide finer evalu-
ations of arguments. Note that this is crucial in applica-
tions like decision making where the more discriminat-
ing a model, the more efficient it is. These results make
the first bridges between the two families of semantics
(extension-based and gradual). The four semantics (TB,
IS, Mbs, EMbs) are weakly equivalent with ideal, stable
and preferred semantics while the other gradual seman-
tics are incompatible with extension semantics.

The paper is structured as follows: Section 2 recalls basic
notions, Section 3 defines novel relations between seman-
tics, Sections 4 and 5 compare rankings produced by exten-

sion semantics and gradual semantics respectively, Section 6
compares extension semantics with gradual ones, Section 7
is devoted to related work, and the last section concludes.

2 Background
Let us introduce some useful notions for the rest of the paper.

Definition 1 (Weighting). A weightingon a setX is a func-
tion fromX to [0, 1].

A preordering on a set of objects is a binary relation that
is reflexive and transitive.

Definition 2 (Preordering). A preorderingon a setX is a
binary relation� onX such that:

• For anyx ∈ X , x � x (Reflexivity)
• For all x, y, z ∈ X , if x � y andy � z,

thenx � z (Transitivity)

A preordering� is total iff for all x, y ∈ X , x � y or y � x.

The notationx ≻ y is a shortcut forx � y andy 6� x
andx ≈ y is a shortcut forx � y andy � x. Throughout
the paper, the relation≻ is the strict version of�, i.e. ≻ =
{(x, y) ∈ X2 | x ≻ y}, and≈ is the equivalence relation,
i.e.≈ = {(x, y) ∈ X2 | x � y andy � x}.

Property 1. If a binary relation� is a total preordering,
then� = ≻ ∪ ≈.

Throughout the paper, we consider argumentation graphs
whose nodes are arguments, each of which has abasic
weightrepresenting an aggregation of votes given by users
(Leite and Martins 2011), or a certainty degree of the argu-
ment’s premises (Benferhat, Dubois, and Prade 1993),
or a trustworthiness degree of its source
(da Costa Pereira, Tettamanzi, and Villata 2011), etc.
Edges representattacks(i.e. conflicts) between arguments.
For the sake of simplicity, basic weights are elements of the
unit interval [0, 1]. The greater the value, the stronger the
argument. We denote byArgs the universe of all arguments.

Definition 3 (AG). An argumentation graph(AG) is a tuple
G = 〈A, σ,R〉, with A ⊆f Args1, R ⊆ A × A is an at-
tack relation,σ is a weighting onA. G is flat if σ ≡ 12 and
weightedotherwise. LetAG denote the set of all argumenta-
tion graphs that can be built fromArgs.

Let us now define the notion of semantics. It is a function
that assigns a value from a given ordered scale to each ar-
gument. The value represents the strength of the argument.
The greater it is, the stronger the argument. Different scales
can be used, but for simplicity we use the unit interval[0, 1].

Definition 4 (Semantics). A semanticsis a functionS as-
signing to anyG = 〈A, σ,R〉 ∈ AG a weightingDegSG onA.
For anya ∈ A, DegSG (a) represents thestrengthof a.
LetSem denote the set of all possible semantics.

We introduce next some useful notations.

Notations: Let G = 〈A, σ,R〉 ∈ AG anda ∈ A. AttG(a)
denotes the set{b ∈ A | (b, a) ∈ R} of direct attackersof

1A ⊆f Args meansA is a finite subset ofArgs.
2σ ≡ 1 means∀a ∈ A, σ(a) = 1.



a in G. WhenG is clear from the context, we writeAtt(a)
for short. LetG′ = 〈A′, σ′,R′〉 ∈ AG such thatA ∩A′ = ∅.
G⊕G′ = 〈A∪A′, σ′′,R∪R′〉 ∈ AG such that∀x ∈ A (resp.
x ∈ A′), σ′′(x) = σ(x) (resp.σ′′(x) = σ′(x)).

We recall below the list of principles proposed in
(Amgoud et al. 2017) for semanticsS ∈ Sem.
Anonymity.∀G = 〈A, σ,R〉, G′ = 〈A′, σ′,R′〉 ∈ AG, for
any isomorphismf from G to G′, ∀a ∈ A, DegSG (a) =
DegSG′(f(a)).

Independence.∀G = 〈A, σ,R〉, G′ = 〈A′, σ′,R′〉 ∈ AG

such thatA ∩A′ = ∅, ∀a ∈ A, DegSG (a) = DegSG⊗G′(a).

Directionality.∀G = 〈A, σ,R〉, G′ = 〈A, σ,R′〉 ∈ AG such
thata, b ∈ A, R′ = R∪{(a, b)} it holds that:∀x ∈ A, if
there is no path from b to x, thenDegSG (x) = DegSG′(x).

Neutrality. ∀G = 〈A, σ,R〉 ∈ AG, ∀a, b ∈ A, if σ(a) =
σ(b), AttG(b) = AttG(a) ∪ {x} with x ∈ A \AttG(a)
andDegSG (x) = 0, thenDegSG (a) = DegSG (b).

Equivalence.∀G = 〈A, σ,R〉 ∈ AG, ∀a, b ∈ A, if σ(a) =
σ(b) and there exists a bijective function f fromAttG(a)
to AttG(b) s.t. ∀x ∈ AttG(a), DegSG (x) = DegSG (f(x)),
thenDegSG (a) = DegSG (b).

Maximality. ∀G = 〈A, σ,R〉 ∈ AG, ∀a ∈ A, if AttG(a) =
∅, thenDegSG (a) = σ(a).

Counting.∀G = 〈A, σ,R〉 ∈ AG, ∀a, b ∈ A, if DegSG (a) >
0 andAttG(b) = AttG(a)∪{x} with x ∈ A\AttG(a) and
DegSG (x) > 0, thenDegSG (a) > DegSG (b).

Weakening.∀G = 〈A, σ,R〉 ∈ AG, ∀a ∈ A, if ∃b ∈ AttG(a)
s.t.DegSG (b) > 0 andσ(a) > 0, thenDegSG (a) < σ(a).

Weakening Soundness.∀G = 〈A, σ,R〉 ∈ AG, if DegSG (a) <
σ(a), then∃b ∈ AttG(a) s.tDegSG (b) > 0.

Reinforcement.∀G = 〈A, σ,R〉 ∈ AG, ∀a, b ∈ A, if i)
σ(a) = σ(b), ii) DegSG (a) > 0 or DegSG (b) > 0, iii)
AttG(a)\AttG(b) = {x}, iv) AttG(b)\AttG(a) = {y},
v) DegSG (y) > DegSG (x) > 0, thenDegSG (a) > DegSG (b).

Resilience.∀G = 〈A, σ,R〉 ∈ AG, ∀a ∈ A, if σ(a) > 0 then
DegSG (a) > 0.

Proportionality. ∀G = 〈A, σ,R〉 ∈ AG, ∀a, b ∈ A, if
σ(a) > σ(b) andAttG(a) = AttG(b), thenDegSG (a) >
DegSG (b).

Monotony.∀G = 〈A, σ,R〉 ∈ AG, ∀a, b ∈ A, if σ(a) =
σ(b) andAtt(a) ⊂ Att(b), thenDegSG (a) ≥ DegSG (b).

Quality Precedence.∀G = 〈A, σ,R〉 ∈ AG, ∀a, b ∈ A, if
i) DegSG (a) > 0 and ii) ∃y ∈ AttG(b) s.t. ∀x ∈ AttG(a),
DegSG (y) > DegSG (x), thenDegSG (a) > DegSG (b).

Cardinality Precedence.∀G = 〈A, σ,R〉 ∈ AG, ∀a, b ∈
A, if i) σ(a) = σ(b) ii) DegSG (b) > 0, and iii)
|{x ∈ AttG(a) s.t. DegSG (x) > 0}| > |{y ∈
AttG(b) s.t. Deg

S

G (y) > 0}|, thenDegSG (a) < DegSG (b).

Compensation.∃G = 〈A, σ,R〉 ∈ AG s.t for two arguments
a, b ∈ A, i) σ(a) = σ(b) ii) DegSG (a) > 0, iii) |{x ∈
AttG(a)|DegSG (x) > 0}| > |{y ∈ AttG(b)|DegSG (y) >
0}|, iv) ∃y ∈ AttG(b) s.t. ∀x ∈ AttG(a), DegSG (y) >
DegSG (x) andDegSG (a) = DegSG (b).

3 Notions of Equivalence
We have seen in the previous section that a semantics as-
signs a numerical value to each argument in an argumenta-
tion graph. Those values are used for defining a preference
relation between arguments as follows.

Definition 5 (Ranking). LetS ∈ Sem andG = 〈A, σ,R〉 ∈
AG. A ranking inducedfromS is a binary relation�G

S
onA

such that for alla, b ∈ A,

a �G
S
b iff DegSG (a) ≥ DegSG (b).

The notationa �G
S
b expresses that the argumenta is at

least as strong as the argumentb in the graphG under the
semanticsS. Hence,a ≻G

S
b anda ≈G

S
b state respectively

thata is stronger thanb anda is as strong asb underS.
The relation�S is obviously a total preordering, i.e. it is

reflexive, transitive and compares every pair of arguments.

Property 2. For anyS ∈ Sem, for anyG ∈ AG, the ranking
�G

S
is a total preordering.

In this section, we study when two semanticsS1 andS2

are equivalent by comparing the rankings they provide. We
introduce three relations between two rankings. The first
relation is that ofrefinement. A semantics refines (or is more
discriminatingthan) another semantics when it agrees with
its strict comparisons and may break some of its ties.

Definition 6 (Refinement). LetS1,S2 ∈ Sem. We say that
S1 refinesS2 iff ∀G ∈ AG, ≻G

S2
⊆ ≻G

S1
.

Property 3. The following properties hold:

• Let S1,S2 ∈ Sem. If S1 refinesS2, then∀G ∈ AG, the
inclusion≈G

S1
⊆ ≈G

S2
holds.

• The refinement relation is transitive.

The second notion,weak equivalence, ensures the com-
patibility of two rankings. More precisely, two semantics
are weakly equivalent if they never provide opposite strict
rankings of arguments. They are said to be incompatible
otherwise. This notion is more general than refinement be-
cause neither of the two semantics should refine the other.

Definition 7 (Weak Equivalence). LetS1,S2 ∈ Sem. We say
thatS1 andS2 are weakly equivalentiff ∀G = 〈A, σ,R〉 ∈
AG, ∄ a, b ∈ A s.t.a ≻G

S1
b andb ≻G

S2
a. The two semantics

are said to beincompatibleotherwise.

Weak equivalence is a binary relation over the set of all
possible semantics. It is reflexive but not transitive. Indeed,
for three semanticsS1,S2,S3, it is possible thatS1,S2

(resp.S2,S3) are weakly equivalent butS1,S3 are not.

Property 4. The weak equivalence relation is not transitive.

It is worthy to notice that two weakly equivalent seman-
tics may not provide exactly the same ranking of arguments.
Consider for instance four argumentsa, b, c, d and two se-
manticsS1 andS2. One may have:a ≻S1 b, c ≈S1 d and
a ≈S2 b, c ≻S2 d.

The third notion ofstrong equivalenceensures total agree-
ment of two semantics regarding their rankings.

Definition 8 (Strong Equivalence). Let S1,S2 ∈ Sem. We
say thatS1 andS2 are strongly equivalentiff for any G =
〈A, σ,R〉 ∈ AG, the equality�G

S1
= �G

S2
holds.



Since rankings induced by semantics are total preorder-
ings, then two strongly equivalent semantics agree both on
strict rankings and on ties.

Property 5. The following properties hold:

• Two semanticsS1,S2 are strongly equivalent iff≻S1 =
≻S2 and≈S1 = ≈S2 .

• Strong equivalence is transitive.

The following property summarizes the different links be-
tween the above three relations.

Proposition 1. LetS1,S2,S3 ∈ Sem.

1. S1, S2 are strongly equivalent iff they refine each other.

2. If S1 refinesS2, thenS1 andS2 are weakly equivalent.

3. If S1 andS2 are strongly equivalent, then they are weakly
equivalent. The converse does not hold.

4. If S1 andS2 are strongly equivalent andS2 andS3 are
weakly equivalent, thenS1 andS3 are weakly equivalent.

5. If S1 refinesS2 andS1 is strongly equivalent toS3, then
S3 refinesS2.

6. If S1 andS2 are strongly equivalent andS2 andS3 are
incompatible, thenS1 andS3 are incompatible.

7. If S1 refinesS2 andS2 andS3 are incompatible, thenS1

andS3 are incompatible.

We show next that the principles recalled in the previous
section are necessary but not sufficient for the equivalence
of two semantics. Indeed, two semantics may satisfy the
same set of principles without necessarily being strongly
or weakly equivalent. Conversely, two semantics may be
strongly equivalent while they do not follow the same prin-
ciples. Before introducing the formal result, let us first in-
troduce two notations.

Notations: Let Princ(S) denote the subset of principles
satisfied by a semanticsS ∈ Sem, and byI the set containing
the following principles: Neutrality, Equivalence, Counting,
Reinforcement, Proportionality, and Monotony.

Proposition 2. The following properties hold:

• Let S1,S2 ∈ Sem and x ∈ I. If S1 satisfiesx andS2

violatesx, thenS1 andS2 are not strongly equivalent.

• LetS1,S2 ∈ Sem. If S1 satisfies Cardinality Precedence
andS2 satisfies Quality Precedence, thenS1 andS2 are
incompatible.

• ∃S1,S2 ∈ Sem such thatS1,S2 are strongly equivalent
andPrinc(S1) 6= Princ(S2).

• ∃S1,S2 ∈ Sem such thatPrinc(S1) = Princ(S2) and
S1,S2 are incompatible.

The above results show that for being similar, it is not
sufficient that two semantics evaluate in the same way every
individual arguments. They should also provide the same
ranking of arguments. Existing comparisons of semantics
focused exclusively on the first criterion by relying on the
principles followed by semantics. In the next section, we
will compare semantics wrt their rankings.

4 Comparison of Extension Semantics
Initially proposed by (Dung 1995) for evaluating arguments
of flat graphs (i.e. graphs of the form〈A, σ ≡ 1,R〉),
extension semantics compute sets of jointly acceptable ar-
guments. They are based on three key concepts:conflict-
freeness, defenseandadmissibility. Let E ⊆ A,

• E is conflict-freeiff ∄a, b ∈ E such that(a, b) ∈ R.

• E defendsa ∈ A iff ∀b ∈ A, if (b, a) ∈ R, then∃c ∈ E
such that(c, b) ∈ R.

• E is anadmissibleset iff it is conflict-free and defends all
its elements.

We recall below the standard extension seman-
tics from (Dung 1995) and the ideal semantics from
(Dung, Mancarella, and Toni 2007).

• E is a preferred extensioniff it is a maximal (wrt set in-
clusion) admissible extension.

• E is astable extensioniff it is conflict-free and∀a ∈ A\E ,
∃b ∈ E such that(b, a) ∈ R.

• E is an ideal extensioniff it is a maximal (wrt set inclu-
sion) admissible set that is subset of every preferred ex-
tension.

• E is agrounded extensioniff it is the least fixpoint of the
characteristic functionF : 2A → 2A where forS ⊆ A,

F(S) = {a ∈ A | S defendsa}.

Let Gr(G) denote the grounded extension ofG.

It is worth recalling that an argumentation graph has a sin-
gle grounded (resp. ideal) extension. However, it may have
zero, one or several stable extensions. Every stable exten-
sion is a preferred one, but the converse is not necessarily
true. Throughout the paper we refer byi, g, s, p respectively
to ideal, grounded, stable and preferred semantics.

Given a set of extensions of a flat graph〈A, σ ≡ 1,R〉,
the most common way to assign a strength to an argu-
ment a ∈ A (see (Baroni, Giacomin, and Guida 2005;
Cayrol and Lagasquie-Schiex 2005;
Grossi and Modgil 2015)) is as follows:

• a is sceptically acceptedif it belongs to all extensions,

• a is credulously acceptedit belongs to some but not all
extensions,

• a is rejectedif it does not belong to any extension.

Since we considered a numerical scale for argu-
ment strength, we transform the three-valued qualitative
scale into a numerical one following the approach of
(Amgoud and Ben-Naim 2016). The idea is to use the scale
T = {1, α, β, 0}, with 1 > α > β > 0, and to assign
the value 1 to sceptically accepted arguments, the valueα to
credulously accepted ones, and to distinguish two kinds of
rejected arguments: those that are not attacked by any exten-
sion and which got valueβ, and those that are attacked by at
least one extension and that got the minimal value 0. Note
that a set of argumentsE attacks an argumenta if it contains
at least one argumentb which attacksa.



Semantics Definition Graphs

h-Categorizer (hCat) (Besnard and Hunter 2001) DeghG (a) = 1
1+

∑

bRa

DeghG (b)
Flat

Compensation-based (α−BBS) (Amgoud et al. 2016) Deg
α−BBS
G (a) = 1 +

(

∑

bRa

1
(s(b))α

)1/α

, α ∈ (0,+∞) Flat

Weightedh-Categorizer (Hbs) (Amgoud et al. 2017) DegHbsG (a) = σ(a)
1+

∑

bRa

DegHbsG (b)
Weighted

Weighted Card-based (Cbs) (Amgoud et al. 2017) DegCbsG (a) = σ(a)

1+|AttFG(a)|+

∑

b∈AttFG(a)
DegCbs

G
(b)

|AttFG(a)|

where Weighted

AttFG(a) = {b ∈ AttG(a) | σ(b) > 0}

Weighted Max-based (Mbs) (Amgoud et al. 2017) DegMbsG (a) = σ(a)
1+max

bRa

DegMbsG (b) Weighted

Euler-Max-based (EMbs) (Amgoud and Doder 2019) DegEMbsG (a) = σ(a) · e
−max

bRa

Deg
EMbs
G (b)

Weighted
Trust-based (TB) DegTBG (a) = lim

i→+∞
fi(a), where Weighted

(da Costa Pereira, Tettamanzi, and Villata 2011) fi(a) = 1
2fi−1(a) +

1
2 min[w(a), 1 −max

bRa
fi−1(b)]

Iterative Schema (IS) (Gabbay and Rodrigues 2015)DegISG (a) = lim
i→+∞

fi(a), where Weighted

fi(a) = (1 − fi−1(a))min(12 , 1−max
bRa

fi−1(b)) +

fi−1(a)max(12 , 1−max
bRa

fi−1(b))

Table 1: Gradual semantics dealing with cycles.

Definition 9. LetS ∈ {i, s, p, g}, G = 〈A, σ ≡ 1,R〉 ∈ AG

and a ∈ A. If G has no extensions, thenDegSG (a) = β.
Otherwise,

• DegSG (a) = 1 iff a belongs to all extensions.

• DegSG (a) = α iff a is in some but not all extensions.

• DegSG (a) = β iff a does not belong to any extension and
is not attacked by any extension.

• DegSG (a) = 0 iff a does not belong to any extension and is
attacked by at least one extension.

Depending on the semantics some values of the scaleT
may not be used. Indeed, under grounded and ideal, an ar-
gument can never get the valueα. When stable extensions
exist, an argument cannot receive the valueβ.

Property 6. LetG = 〈A, σ ≡ 1,R〉 ∈ AG anda ∈ A.

• Deg
g
G(a) ∈ T \ {α}

• DegiG(a) ∈ T \ {α}

• If stable extensions exist,DegsG(a) ∈ T \ {β}.

From their definitions, the four semantics seem compat-
ible. For instance, grounded is more sceptical than ideal,
which in turn is more sceptical than preferred and stable.
The following result confirms this observation, however it
shows that the four semantics are only weakly equivalent.
None of them refines or is strongly equivalent to the others.

Theorem 1. The four semantics (stable, preferred,
grounded, ideal) are pairwise weakly equivalent.

Consider the following example.

Example 1. Consider the following flat argumentation
graphG, and let us focus on grounded and stable semantics.

ba

c

d e

Grounded semantics:
• Gr(G) = {e}
• Deg

g
G(e) = 1 andDeggG(a) = Deg

g
G(b) = Deg

g
G(c) =

Deg
g
G(d) = β.

• e ≻g a ≈g b ≈g c ≈g d

Stable semantics:
• The graph has two extensions{a, d, e} and{b, d, e}.
• DegsG(d) = DegsG(e) = 1, DegsG(a) = DegsG(b) = α and
DegsG(c) = 0.

• d ≈s e ≻s a ≈s b ≻s c

Note that the stable semantics does not refine the
grounded since≻g 6⊆ ≻s. The two semantics are also not
strongly equivalent since�g 6= �s.

5 Comparison of Gradual Semantics
Initiated in (Cayrol and Lagasquie-Schiex 2005), gradual
semantics have received increasing interest during the
last few years due to their fine-grained evaluations of
arguments. Indeed, several semantics have been pro-
posed in the literature, some of which deal only with
acyclic graphs like QuAD (Baroni et al. 2015) and DF-
QuAD (Rago et al. 2016) and others are suitable for any
graph typology. Since we are interested by comparison of



pairs of semantics, we focus in this paper on the second type
of semantics and more precisely on the eight recalled in Ta-
ble 1. Note that the two first semantics (hCat andα−BBS)
deal only with flat graphs. In what follows, we present re-
sults that hold when argumentation graphs are weighted and
others that hold in case of flat graphs.

The first result states thathCat andα−BBS are strongly
equivalent. Furthermore, in case of flat graphs (i.e. graphs
with σ ≡ 1), hCat and Weightedh-categorizer (Hbs) are
also strongly equivalent since they coincide. These three
semantics are fully similar since they provide both the same
evaluations of individual arguments and the same rankings.

Theorem 2. In case of flat graphs,hCat, α−BBS (withα =
1) andHbs are pairwise strongly equivalent.

The six semantics that deal with weighted graphs are pair-
wise incompatible, that is, they may return contradictory
rankings for pairs of arguments. They are thus all different,
and the choice of the one to use depends on the application
and the nature of arguments (deductive, analogical, ...).

Theorem 3. The six semanticsHbs, Mbs, Cbs, EMbs, TB and
IS are pairwise incompatible.

It is worthy to recall thatMbs andEMbs satisfy exactly the
same subset of principles (see (Amgoud and Doder 2019)).
However, they may disagree on their ranking of arguments
as shown in the following example.

Example 2. Consider the weighted graph below where
σ(a) = 0.6252 , σ(b) = 0.3939 andσ(c) = 0.8107.

acb

It can be checked thatDegMbsG (a) = 0.3953, DegMbsG (b) =
0.3939, DegEMbsG (a) = 0.362, and DegEMbsG (b) = 0.3939.
Note thata ≻Mbs b and b ≻EMbs a. This shows that the
two semantics may lead to different results.

Let us now focus only on flat argumentation graphs (i.e.
graphs of the formG = 〈A, σ ≡ 1,R〉), and let us in-
vestigate the relations between the four gradual seman-
tics (Mbs, EMbs, TB, IS). These all use the same function,
namelymax, for aggregating the strengths of an argument’s
attackers. In other words, they consider only the strongest
attacker when computing the strength of any argument.

We show that the two semantics (TB, IS) coincide, i.e.
they assign exactly the same value to an argument. Recall
that this property is not true in the general case of weighted
graphs. We show also that the value of an argument depends
on whether the argument is in or is attacked by the grounded
extensionGr(G) of the graph. This means that (TB, IS) are
two alternative characterizations of the grounded semantics.

Theorem 4. For anyG = 〈A, σ ≡ 1,R〉 ∈ AG, it holds that

DegTBG ≡ DegISG .

Moreover, for anyx ∈ {TB, IS}, for anya ∈ A,

• DegxG (a) = 1 iff a ∈ Gr(G).
• DegxG (a) = 0 iff Gr(G) attacksa.

• DegxG (a) =
1
2 iff a /∈ Gr(G) andGr(G) does not attacka.

The two semantics (TB, IS) are thus strongly equivalent
when dealing with flat graphs.

Theorem 5. In case of flat argumentation graphs,TB and
IS are strongly equivalent.

The two semanticsMbs and EMbs also are strongly
equivalent when applied to flat graphs. Before presenting
the formal result, we start by providing novel characteriza-
tions of Mbs and EMbs using two well-known sequences:
Fibonacci forMbs and Exponential forEMbs.

When a graphG is flat, the strength of an argument, saya,
underMbs is given by the following equation:

DegMbsG (a) =
1

1 + max
bRa

DegMbsG (b)
.

It has been shown in (Amgoud et al. 2017) thatDegMbsG (a) ∈
[ 12 , 1]. In what follows, we show that the values assigned
to arguments byMbs are not arbitrary, they are rather the
Fibonacci numbers, i.e. elements of the Fibonacci sequence
{Fn}n≥0 defined as follows:

F 0 = 0 F 1 = 1 Fn = Fn−1 + Fn−2 for n > 1.

We get the sequence of so-called Fibonacci numbers:
〈0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .〉.
It has been shown in (Philippou 2015) that the ratio of two
consecutive Fibonacci numbers (i.e.F

n

Fn−1 ) tends to the

so-calledgolden ratioϕ = 1+
√
5

2 asn increases.

From the Fibonacci sequence{Fn}n≥0, we define an-
other sequence{Sn}n≥1 such that:

Sn =
Fn

Fn+1
(1)

LetS = {1, 12 ,
2
3 ,

3
5 ,

5
8 ,

8
13 ,

13
21 ,

21
34 ,

34
55 ,

55
89 ,

89
144 ,

144
233 ,

233
377 , . . .}

be the set of all numbers of{Sn}n≥1. It is worth notic-
ing that this sequence contains two sub-sequences: The
decreasingsub-sequence

S1 = 〈1,
2

3
,
5

8
,
13

21
,
34

55
,
89

144
,
233

377
, . . .〉 (2)

made of the numbers that are at odd positions inS, and the
increasingsub-sequence

S2 = 〈
1

2
,
3

5
,
8

13
,
21

34
,
55

89
,
144

233
, . . .〉 (3)

which contains the numbers that are at even positions inS.

Notation: We denote bySi
x the ith element of the sub-

sequenceSx wherex ∈ {1, 2}. For instance,S1
1 = 1,

S1
2 = 1

2 andS3
2 = 8

13 .

It is worthy to recall that the two sub-sequences converge,
furthermore they have the same limit. Indeed,

lim
n→∞

Sn
1 = lim

n→∞
Sn
2 =

1

ϕ
.



It is also well-known that

Sn
2 <

1

ϕ
< Sn

1 , ∀n ≥ 1.

In case of a flat graphG, the semanticsMbs takes its val-
ues from the sequenceS, i.e. DegMbsG (.) ∈ S. It uses the
above three parts of the sequenceS, namelyS1,S2,

1
ϕ , for

distinguishing between three groups of arguments inG:

• The first group is composed of all elements of the set
⋃

i≥1

F i(∅), with F being the characteristic function de-

fined by (Dung 1995) and that returns all the arguments
defended by a given set of arguments. Hence, this group
contains all arguments that are defended (directly or indi-
rectly) by non attacked arguments inG. Its members are
stronger than any argument outside the group, and their
values are taken from the sub-sequenceS1.

• The second group contains the arguments that are attacked
by at least one argument of the set

⋃

i≥1 F
i(∅). These will

be weaker than any argument of the two other groups, and
their values are numbers of the sub-sequenceS2.

• The third group contains all the remaining arguments, i.e.
those that are neither in nor attacked by the set

⋃

i≥1

F i(∅).

The semanticsMbs ascribes the value1ϕ to every argument
of this group.

Unlike the third group, the semantics may assign different
values to arguments of the first group. It is interesting to
note that the value of an argument depends on the iteration at
which it appears for the first time in the set

⋃

i≥1

F i(∅). Recall

that
⋃

i≥1

F i(∅) = F1(∅)∪F2(∅)∪ . . .Fn(∅), with F i(∅) =

F(F i−1(∅)) is the set of arguments defended byF i−1(∅). If
an argumenta appears for the first time inF i(∅), then it gets
the value of theith element ofS1, namelySi

1. Furthermore,
every argument it attacks receive the valueSi

2 meaning that
arguments of the second group do not necessarily have the
same strength as well.

Theorem 6. Let G = 〈A, σ ≡ 1,R〉 ∈ AG and i ∈ N. For
anya ∈ A, DegMbsG (a) ∈ S. Furthermore,

• DegMbsG (a) = Si
1 iff a ∈ F i(∅) anda /∈

i−1
⋃

j=1

F j(∅).

• DegMbsG (a) = Si
2 iff F i(∅) attacksa and

i−1
⋃

j=1

F j(∅) does

not attacka.
• DegMbsG (a) = 1

ϕ iff a /∈
⋃

F i≥1(∅) and
⋃

F i≥1(∅) does
not attacka.

Note that according toMbs, the longer the defence path of
an argument, the weaker the argument.

Example 3. Consider the flat graph depicted below:
Note thatF1(∅) = {a}, F2(∅) = {a, d} and F3(∅) =
{a, d, f}. It can be checked that:DegMbs(a) = S1

1 = 1,
DegMbs(d) = S2

1 = 2
3 , andDegMbs(f) = S3

1 = 5
8 . Since

a b

c

d e f

g

F1(∅) attacks bothb, c, then DegMbs(b) = DegMbs(c) =
S1
2 = 1

2 , and sinceF2(∅) attackse, thenDegMbs(e) = S2
2 =

3
5 . Finally, DegMbs(g) = 1

ϕ .

Let us now provide a novel characterization of the Euler
Max-based (EMbs) semantics in case of a flat graphG. Recall
that the strength of an argumenta is computed as follows:

DegEMbsG (a) = e
−max

bRa

Deg
EMbs
G

(b)
.

We show thatEMbs takes its values from the set of numbers
of the following exponential sequence{Un}n≥0 such that:

U1 = 1 Un = e−Un−1

for n > 1 (4)
Let U = {1, 0.3678, 0.6922, 0.5004, 0.6062, 0.5453,
0.5796,. . .}. Like the Fibonacci sequence,{Un}n≥0 con-
tains two sub-sequences: Thedecreasingsub-sequence

U1 = 〈1, 0.6922, 0.6062, 0.5796, . . .〉 (5)

made of the numbers that are at odd positions inU , and the
increasingsub-sequence

U2 = 〈0.3678, 0.5004, 0.5453, . . .〉 (6)

which contains the numbers that are at even positions inU .
We denote byU i

x the ith element of the sub-sequenceUx

wherex ∈ {1, 2}. Finally, it is well-known that the two
sub-sequences converge to the same limitΩ,

lim
n→∞

Un
1 = lim

n→∞
Un
2 = Ω

whereΩ ≈ 0.5671432904 is the so-calledOmega Constant
and

Un
2 < Ω < Un

1 , ∀n ≥ 1.

Like Mbs, the semanticsEMbs divides the set of arguments
into three groups: i) those that belong to the set

⋃

i≥1

F i(∅),

ii) those attacked by
⋃

i≥1

F i(∅), and iii) the remaining ones.

Theorem 7. Let G = 〈A, σ ≡ 1,R〉 ∈ AG and i ∈ N. For
anya ∈ A, DegEMbs(a) ∈ U . Furthermore,

• DegEMbsG (a) = U i
1 iff a ∈ F i(∅) anda /∈

i−1
⋃

j=1

F j(∅).

• DegEMbsG (a) = U i
2 iff F i(∅) attacksa and

i−1
⋃

j=1

F j(∅) does

not attacka.
• DegEMbsG (a) = Ω iff a /∈

⋃

F i≥1(∅) and
⋃

F i≥1(∅) does
not attacka.

Example 3 (Cont) It can be checked thatDegEMbs(a) =
U1
1 = 1, DegEMbs(d) = U2

1 = 0.6922, andDegEMbs(f) =
U3
1 = 0.6062. Since F1(∅) attacks bothb, c, then

DegEMbs(b) = DegEMbs(c) = U1
2 = 0.3678, and since

F2(∅) attackse, thenDegEMbs(e) = U2
2 = 0.5004. Finally,

DegEMbs(g) = Ω.



Notations: Let G be a flat graph,A,B be two sets of ar-
guments andx ∈ Sem. The notationA ≻x B stands for
∀a ∈ A, ∀b ∈ B, it holdsDegx(a) > Degx(b). LetA+ de-
note the set of arguments that are attacked by at least one ar-
gument ofA, andAo be the set of arguments that are neither

in nor attacked by the setA. LetXi = F i(∅) \
(

i−1
⋃

j=1

F j(∅)
)

with i > 1 and by convention,X1 = F1(∅). This means
thatX1 = F(∅), X2 = F2(∅) \ F1(∅), and so on.

The following result follows from the characterizations
of Mbs, EMbs. It shows how the two semantics refine the
grounded extension of a graph, and how they refine the set
of arguments attacked by the grounded extension.

Theorem 8. LetG be a flat graph andx ∈ {Mbs, EMbs}.

• X1 ≻x X2 ≻x . . . ≻x Xn.

• X+
n ≻x X+

n−1 ≻x . . . ≻x X+
1 .

• Gr(G) ≻x Gr(G)o ≻x Gr(G)+.

From the characterizations ofMbs andEMbs, it follows
that the two semantics are strongly equivalent.

Theorem 9. In case of flat argumentation graphs,Mbs and
EMbs are strongly equivalent.

The previous results show thatTB andIS assign the same
value to any argument that belongs to (or is attacked by) the
grounded extension.Mbs andEMbs are more discriminat-
ing and provide finer-grained evaluations and comparisons
of arguments. Thus, they both refineTB andIS.

Theorem 10. In case of flat argumentation graphs,Mbs
(resp.EMbs) refinesTB (resp.IS).

The novel characterizations of the four semanticsMbs,
EMbs, TB andIS show that they are based on the grounded
extension of a graphG as Gr(G) =

⋃

i≥1

F i(∅). They can

also be seen as different characterizations of the grounded
semantics in terms of various gradual semantics.

6 Extension Semantics vs Gradual Semantics
Throughout this section, we focus on flat argumentation
graphs. We show thathCat, α−BBS, Hbs andCbs are in-
compatible with any of the recalled extension semantics.
This is mainly due to the fact that the first group takes into
account all the attackers of an argument while the second
focuses only on the strongest one.

Theorem 11. hCat (resp.α−BBS, Hbs, Cbs) is incompati-
ble with grounded, ideal, stable and preferred.

Unsurprisingly, the two semanticsTB andIS are strongly
equivalent with the grounded semantics. Furthermore, they
are weakly equivalent to the three other extension semantics.

Theorem 12. In case of flat argumentation graphs, the fol-
lowing properties hold:

• TB, IS and grounded are pairwise strongly equivalent.

• TB (resp.IS) is weakly equivalent with ideal (resp. stable
and preferred).

We show also thatMbs (resp.EMbs) refines the grounded
semantics when applied to flat argumentation graphs. How-
ever, the converse does not hold, thus the two semantics are
not strongly equivalent (see Example 3).
Theorem 13. In case of flat argumentation graphs,Mbs
(resp.EMbs) refines the grounded semantics.

Mbs (resp. EMbs) does not refine ideal, stable and pre-
ferred semantics. It is thus not strongly equivalent with any
of these three semantics as shown below.
Example 4. Consider the flat graph below. It has a sin-
gle preferred (respectively stable) extension which coincides
with the ideal and grounded extension{a, c}. Thus,a ≡x c,
with x ∈ {i, s, p}, whilea ≻Mbs c anda ≻EMbs c.

a b c

The last result shows that theMbs (resp.EMbs) semantics
is weakly equivalent with ideal, stable and Preferred seman-
tics. They provide thus compatible rankings of arguments.
Theorem 14. In case of flat argumentation graphs,Mbs
(resp.EMbs) is weakly equivalent with ideal, stable and pre-
ferred semantics.

Table 2 summarizes the relations between the reviewed
semantics in case of flat argumentation graphs. There
are 5 groups of semantics. The first group contains
(hCat, Hbs, α−BBS), which are strongly equivalent, provide
the same evaluations for individual arguments, and are in-
compatible with all the other semantics. The second group
contains onlyCbs, which is incompatible with any other se-
mantics. Like the semantics of the first group, withCbs ev-
ery attacker is harmful to its target. However,Cbs favors
the quantity of attackers while the former promote compen-
sation. The third group is made ofMbs, EMbs, which are
strongly equivalent, and refine some semantics that consider
only one attacker, namelyTB, IS and grounded. The fourth
group is made of these three semantics, which are strongly
equivalent. The last group contains ideal, stable and pre-
ferred, which are incompatible with semantics of the first
and second groups, and are weakly equivalent with any of
the remaining semantics.

An important question is which semantics to choose
in a given application? In (Amgoud and Ben-Naim 2013;
Rago, Baroni, and Toni 2018), the authors have argued that
the choice of the suitable semantics depends on the nature of
arguments (deductive, analogical, causal, ...) and the speci-
ficities of the application. It is worth mentioning that ex-
isting principles provide a good basis for assessing the suit-
ability of a semantics. However, they are insufficient since
two semantics may satisfy the same principles and still re-
turn opposite rankings. This means the two semantics may
lead to different outcomes in decision making, for instance.

7 Related Work
As said in the introduction, several works have been devoted
to the comparison of semantics. They focused on the defi-
nition of principles and analysis of semantics against them.



Semantics hCat α−BBS Hbs Cbs Mbs EMbs TB IS Grounded Ideal Stable Preferred
hCat − s s i i i i i i i i i
α−BBS s − s i i i i i i i i i
Hbs s s − i i i i i i i i i

Cbs i i i − i i i i i i i i

Mbs i i i i − s r r r w w w
EMbs i i i i s − r r r w w w

TB i i i i w w − s s w w w
IS i i i i w w s − s w w w
Grounded i i i i w w s s − w w w

Ideal i i i i w w w w w − w w
Stable i i i i w w w w w w − w
Preferred i i i i w w w w w w w −

Table 2: Case of Flat Argumentation Graphs.s, w, r, i stand resp. for strong equivalence, weak equivalence, refinement, incompatibility.

To the best of our knowledge, this is the first work that com-
pares semantics wrt their rankings.

An important question is how this work relates
to ranking semantics that have been introduced by
(Amgoud and Ben-Naim 2013). Those semantics take as
input a flat argumentation graph, and rank arguments ac-
cording to their strengths. Some existing ranking seman-
tics have been compared by (Bonzon et al. 2016) on the ba-
sis of the principles they satisfy. However, as for gradual
semantics, the fact that two ranking semantics satisfy the
same principles does not necessarily mean they provide the
same ranking. The principles ensure only some rational be-
haviour of semantics. Finally, it is worth mentioning that
(Baumann et al. 2019) studied a different notion of equiva-
lence in argumentation. While we focused on equivalence of
semantics, they were interested in comparing argumentation
graphs. They check the extensions (under various extension-
based semantics) they deliver under any addition of argu-
ments and/or attacks.

8 Conclusion
The paper has tackled the question of comparing semantics,
be them extension-based or gradual. It has shown that ex-
isting comparisons in the literature are not conclusive, since
they were only based on the evaluations of individual argu-
ments. It has argued that comparing rankings is also crucial
for the similarity of semantics. The paper has thus investi-
gated a notion of equivalence which is based on the compar-
ison of rankings, and has studied several existing semantics.
The results have shown compatibilities between the classical
extension semantics and the gradual semantics that consider
only the stronger attacker of an argument when computing
its strength. Some gradual semantics likeTB, IS go further
by providing characterizations for the grounded semantics,
while Mbs, EMbs refine the latter in a reasoned way. The
gradual semantics that consider all attackers are incompati-
ble with extension semantics. Furthermore, they are them-
selves pairwise incompatible in case of weighted graphs.

This work will be extended in different directions. First,
we plan to compare extension semantics that take into ac-

count preferences with gradual semantics. We will also look
for novel principles that can distinguish betweenMbs and
EMbs in case of weighted graphs. Indeed, the two seman-
tics satisfy exactly the same subset of existing principlesbut
may provide opposite rankings when graphs are weighted.
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